JP3593723B2 - Boiler feedwater treatment apparatus and boiler feedwater treatment method - Google Patents

Boiler feedwater treatment apparatus and boiler feedwater treatment method Download PDF

Info

Publication number
JP3593723B2
JP3593723B2 JP23701094A JP23701094A JP3593723B2 JP 3593723 B2 JP3593723 B2 JP 3593723B2 JP 23701094 A JP23701094 A JP 23701094A JP 23701094 A JP23701094 A JP 23701094A JP 3593723 B2 JP3593723 B2 JP 3593723B2
Authority
JP
Japan
Prior art keywords
water
boiler
resin
reverse osmosis
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23701094A
Other languages
Japanese (ja)
Other versions
JPH0899086A (en
Inventor
勝彦 百崎
孝男 沼倉
重美 藤原
成一 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP23701094A priority Critical patent/JP3593723B2/en
Publication of JPH0899086A publication Critical patent/JPH0899086A/en
Application granted granted Critical
Publication of JP3593723B2 publication Critical patent/JP3593723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はボイラ給水処理装置及びボイラ給水処理方法に係り、特に、溶存酸素(DO)濃度が低く、ボイラ本体のみならず、蒸気配管や復水配管の防食にも有効なボイラ給水を得ることができるボイラ給水処理装置及びボイラ給水処理方法に関する。
【0002】
【従来の技術】
従来、ボイラの補給水としては、原水(市水、地下水、工業用水等)から軟化器により硬度成分を取り除いた軟化水が用いられ、また、ボイラ処理剤として、脱酸素剤、スケール防止剤などの薬剤が添加使用されている。
【0003】
一方、電子産業分野において、電子部品洗浄用の超純水の脱酸素処理のために、従来、脱酸素樹脂が利用されている(特開平6−23349号公報)。また、電子産業分野等において、水の軟化及び脱酸素を行って超純水を製造する目的で、逆浸透膜分離装置と脱気膜装置とを組み合せた処理装置も提案されている(特公平6−38894号公報)。
【0004】
【発明が解決しようとする課題】
従来の軟化水をボイラ給水として用いた場合、薬剤の使用の有無にかかわらず、ボイラ中で炭酸ガス(CO )の発生が起こり、これが蒸気配管や復水配管の腐食原因となっていた。
【0005】
また、ボイラ処理剤として各種の薬剤を用いる方法では、蒸気の用途等を考慮して、安全性の高い薬品を選定する必要がある上に、運転管理や給水ラインの腐食等の面で様々な問題があった。即ち、例えば、温度が比較的低い給水ラインでは、薬剤による脱酸素が不十分となり腐食が発生する場合がある。
【0006】
一方、脱酸素樹脂は、電子産業分野における超純水の製造工程においては有効であるが、ボイラ給水の処理に用いた場合には、脱酸素樹脂にファウリング障害が生じ、脱酸素能が低下する。このため、現状では、ボイラ給水の処理のために、脱酸素樹脂は殆ど用いられていない。
【0007】
また、やはり電子産業分野の超純水の製造技術として提案されている逆浸透膜分離装置及び脱気膜装置を、ボイラ給水の処理に適用した場合には、脱酸素レベルがDO濃度0.5ppm程度と、十分ではなく、しかも、給水温度が高いため、脱気膜の劣化が著しく、長期の使用に耐えない上に、脱酸素レベルが低下するという問題がある。
【0008】
即ち、実際のボイラ給水系では、ボイラからの復水を給水として回収利用することが多く、復水回収率によっても異なるが、通常の場合、給水温度は、2〜3割の復水回収率で40〜50℃程度、8〜9割の復水回収率で80〜90℃程度の高温となり、脱気膜を著しく劣化させ、十分な脱酸素効果を得ることができない。
【0009】
本発明は上記従来の問題点を解決し、DO濃度が著しく低く、ボイラ薬剤を用いることなく、ボイラ本体や蒸気配管、復水配管の腐食を有効に防止することができるボイラ給水を、長期にわたり安定に得ることができるボイラ給水処理装置及びボイラ給水処理方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のボイラ給水処理装置は、逆浸透膜分離装置と、該逆浸透膜分離装置の処理水が導入される脱酸素機能を有する脱酸素樹脂装置とを備えてなることを特徴とする。
本発明のボイラ給水処理方法は、原水を逆浸透膜分離処理する第一工程と、該第一工程の処理水を脱酸素樹脂により脱酸素処理する第二工程とを含むことを特徴とする。
【0011】
【作用】
本発明において、原水は、逆浸透膜分離装置で脱塩処理される。この逆浸透膜分離装置における脱塩処理において、原水中の重炭酸イオン(HCO )も除去されるため、蒸気配管や復水配管等で腐食原因となる炭酸ガス(CO)の発生は低減され、良好な腐食防止効果が得られる。また、逆浸透膜分離装置における処理により、脱酸素樹脂装置の樹脂のファウリングも防止され、安定した脱酸素能力を長期間確保することが可能となる。
【0012】
脱酸素樹脂装置では、効率的な脱酸素処理を行って、DO濃度が数ppbと著しく低DO濃度のボイラ給水を生産することができる。この脱酸素樹脂装置における処理に当り、脱酸素樹脂は高温でも劣化が起き難いため、流入水温度が高い場合であっても、脱気膜のような劣化を起こすことがなく、長期間安定した処理を行える。
【0013】
本発明のボイラ給水処理装置及びボイラ給水処理方法によれば、十分に低DO濃度で純度の高いボイラ給水が得られることから、脱酸素剤やスケール防止剤が不要となり、薬剤注入のための作業が解消され、純度の高い蒸気を得ることができることから、安全性等の面でも工業的に極めて有利である。
【0014】
【実施例】
以下に図面を参照して本発明のボイラ給水処理装置及びボイラ給水処理方法の実施例について詳細に説明する。
【0015】
図1は本発明のボイラ給水処理装置を設けたボイラ給水処理システムの一実施例を示す系統図である。図中、1は活性炭処理装置、2は熱交換器、3はガードフィルター、4は逆浸透膜分離装置、5はホットウェルタンク(給水タンク)、6はガードフィルター、7は脱酸素樹脂装置、8は水素ガスボンベ、9はボイラである。11〜25の各符号は配管を示し、P ,P ,P はポンプを示す。
【0016】
本実施例においては、補給水(市水、地下水、軟水、工業用水等の原水)を、前処理として、残留塩素を除去するための活性炭処理装置1、流量を安定して確保するための熱交換器2、及び、ファウリング防止のためのガードフィルター3に通水した後、逆浸透膜分離装置4で処理する。逆浸透膜分離装置4の処理水(透過水)は配管16よりホットウェルタンク(給水タンク)5に送給され、濃縮水は配管15より系外へ排水される。このホットウェルタンク5には、配管25よりボイラ9の復水が循環回収されている。
【0017】
ホットウェルタンク5内の水は、ガードフィルター6を経て、配管19より水素が供給された後、脱酸素樹脂装置7に導入される。脱酸素樹脂装置7で脱酸素された水は、配管20より、ボイラ9への給水配管21に送給され、ボイラ9に給水される。配管20より送給された水が過剰となった場合はホットウェルタンク5に返送される。ボイラ9で発生する蒸気は配管22から、配管23を経て需要箇所に送給され、復水は配管24より回収される。
【0018】
このようなボイラ給水処理システムにおいて、補給水は、逆浸透膜分離装置4で効率的に脱塩処理される。この逆浸透膜分離装置4における脱塩処理においては、補給水中の重炭酸イオン(HCO )も除去されるため、蒸気配管や復水配管等の腐食原因となる炭酸ガス(CO )の発生を低減できる。また、逆浸透膜分離装置4によれば、スケール及び腐食防止のための脱塩を行うばかりでなく、脱酸素樹脂のファウリング防止作用も達成される。
【0019】
本発明において、逆浸透膜分離装置による処理としては、スパイラル型の非対称酢酸セルロール(CA)膜を用い、操作圧力25〜30kg/cm で行うか、或いは、スパイラル型の架橋アラミド系複合(PA)膜を用い、操作圧力10〜20kg/cm で行うのが好ましい。特に、ボイラ給水に適する水質を得るにはスパイラル型の架橋アラミド系複合(PA)膜を用いて、操作圧力15〜20kg/cm で行うのが望ましいが、何らこのような処理条件に限定されるものではない。
【0020】
このような逆浸透膜分離装置によれば、高い補給水脱塩能力で、得られる処理水(逆浸透膜透過水)中のNa/SiO 比を大きくする作用が得られる。
【0021】
一方、脱酸素樹脂装置による脱酸素反応は、脱酸素樹脂に担持された触媒の存在下、下記反応式に従って行われる。
【0022】
2H +O → 2H
即ち、被処理水中のDOと、これに添加される水素とが混じり合い、触媒表面での化学反応により水が生成して脱酸素が行われる。
【0023】
本発明において、脱酸素樹脂としては、強塩基性ゲル型のイオン交換樹脂等の樹脂表面にパラジウム触媒を500〜2000mg/l−樹脂の割合で担持させたものが好ましいが、何らこのようなものに限定されるものではなく、脱酸素機能を有するものであれば、他の触媒を担持した樹脂であっても良い。
【0024】
図1に示す実施例において、例えば、下記条件にて処理を行うことにより、ボイラ9に下記のような水質の給水を長期にわたり安定に供給することができ、薬剤を添加することなく、ボイラ本体や蒸気配管、復水配管の腐食を防止して、安全な運転を行うことができた。
【0025】
処理条件
逆浸透膜分離装置:
膜:スパイラル型の架橋アラミド複合膜
操作圧力:15kg/cm
脱酸素樹脂装置:
触媒樹脂:強塩基性ゲル型のイオン交換樹脂にPd触媒を1000mg/l−樹脂の割合で充填したもの
樹脂充填量:40リットル
通水速度:2000リットル/hr
水素供給量:200ミリリットル/min
給水量:
配管25からの復水量:280リットル/hr
配管16からの透過水量:210リットル/hr
配管20からの脱酸素処理水量:2000リットル/hr
ボイラ9への給水量:490リットル/hr
ボイラ9への給水水質
Mアルカリ度:2mg−CaCO /l未満(分析下限値以下)
DO:50ppb
なお、図1に示すシステムは、本発明のボイラ給水処理装置の適用の一実施例であって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。例えば、本発明のボイラ給水処理装置は、補給水を逆浸透膜分離装置で処理した後、透過水を直接脱酸素樹脂装置に通水して処理するものであっても良い。又、水素源としても水素ボンベに限られず、水素ガスを発生するものであれば何でも良い。
【0026】
以下に、実験例を挙げて、本発明による効果をより詳細に説明する。
【0027】
実験例1
脱酸素樹脂(強塩基性ゲル型のイオン交換樹脂にPdを1000mg/l−樹脂担持したもの。)1リットルを充填したカラムの前段に、前処理装置を設け、軟水に表1に示す前処理を施した後、水素ガスを添加して脱酸素樹脂カラムに下記通水条件で連続通水した(ただし、No. 2では前処理なし。)。
【0028】
このときの脱酸素樹脂のファウリング状況を、樹脂のスライム付着状況及び処理水のDO濃度の上昇により調べた結果を表1に示した。なお、樹脂のスライム付着状況は、脱酸素能力の低下の有無にかかわらず、樹脂の顕微鏡観察による結果で調べた。
【0029】
通水条件
通水量:100リットル/hr
脱酸素樹脂量:1リットル
通水温度:20〜25℃
通水期間:6ヶ月(ただし、途中で脱酸素能力が低下したものは、その時点で通水を停止した。)
【0030】
【表1】

Figure 0003593723
【0031】
表1より、逆浸透膜分離処理を施すことにより、脱酸素樹脂のファウリングを有効に防止することができることが明らかである。
【0032】
実験例2
図2に示すテストボイラ30(本体材質:SUS316)に表2に示す給水を供給して下記試験条件で腐食試験を行い、結果を表2に示した。なお、図2において、31は給水配管、32は給水ポンプ、33は蒸気配管、34は圧力調整弁、35はヒーター、36はテストチューブ(材質:SB42)、37はボイラ缶である。
【0033】
試験条件
試験時間:20hr
使用圧力:20kg/cm (213℃)
缶水:50倍濃縮水を想定して、pH11.0,シリカ濃度30mg/lの缶水を缶内に満たした。(試験中、50倍濃縮を維持した。)
【0034】
【表2】
Figure 0003593723
【0035】
表2より次のことが明らかである。即ち、逆浸透膜分離処理した後、脱酸素樹脂で脱酸素処理した水を給水したNo. 8では、純水を給水したNo. 7に比べて明らかに腐食量が少なく、テストチューブ表面も良好な状態である。また、従来のヒドラジン処理のNo. 9に比べても、同等以上の結果を得ることができ、逆浸透膜分離装置と脱酸素樹脂装置との組み合せで、ボイラ本体や配管の腐食を薬剤を用いることなく有効に防止できることが明らかである。
【0036】
実験例3
図3に示す試験装置により、下記手順に従って、腐食試験を行った。なお、図中、41は給水配管、42はポンプ、43はボイラ本体(ボイラ缶)、44は蒸気配管、45は熱交換器、46はブロー配管、47a,47bは冷却水配管、48は復水配管、49はテストピースカラム、50はテストピース(軟鋼(硝酸及び硫酸エッチング処理品))、51は排出配管である。
【0037】
まず、ボイラ本体(ボイラ缶)43に、水酸化ナトリウムを添加することにより表3に示すpHとなるようにpH調整した初期投入水を入れ、所定の圧力(10kg/cm )になるように加熱する。次に、表3に示すMアルカリ度の逆浸透膜分離装置の処理水(RO処理水)又は軟水を脱酸素樹脂装置で表3に示すDO濃度に調整したものを給水として供給し、下記試験条件でテストピース50の腐食速度及び復水水質を調べ、結果を表3に示した。
【0038】
試験条件
給水量:13リットル/hr
ブロー率:7%
復水水温:50℃
試験期間:5日間
【0039】
【表3】
Figure 0003593723
【0040】
表3より次のことが明らかである。即ち、給水のDOが高い程、腐食速度が大きい。また、Mアルカリ度が50mg−CaCO /lの給水に対して、逆浸透膜分離処理を行って、Mアルカリ度を2mg−CaCO /l未満(分析下限値以下)とした給水を行った場合には、腐食速度は大幅に低下する。
【0041】
これらの結果から、逆浸透膜分離装置によるMアルカリ度の除去と、脱酸素樹脂装置による脱酸素処理とで、ボイラ本体や蒸気配管、復水配管を有効に防食できることが明らかである。
【0042】
【発明の効果】
以上詳述した通り、本発明のボイラ給水処理装置及びボイラ給水処理方法によれば、著しく低DO濃度で純度が高く、ボイラ本体や蒸気配管及び復水配管の防食に有効なボイラ給水を長期にわたり安定かつ効率的に得ることができる。
【0043】
本発明によれば、脱酸素剤やスケール防止剤が不要となり、薬剤注入のための作業が解消され、純度の高い蒸気を得ることができることから、安全性等の面でも工業的に極めて有利である。
【図面の簡単な説明】
【図1】本発明のボイラ給水処理装置を設けたボイラ給水処理システムの一実施例を示す系統図である。
【図2】実験例2で用いたテストボイラを示す概略的な構成図である。
【図3】実験例3で用いた試験装置を示す系統図である。
【符号の説明】
1 活性炭処理装置
2 熱交換器
3,6 ガードフィルター
4 逆浸透膜分離装置
5 ホットウェルタンク(給水タンク)
7 脱酸素樹脂装置
8 水素ガスボンベ
9 ボイラ
30 テストボイラ
36 テストチューブ
43 ボイラ本体
45 熱交換器
49 テストピースカラム
50 テストピース[0001]
[Industrial applications]
The present invention relates to a boiler feed water treatment apparatus and a boiler feed water treatment method , and in particular, to obtain boiler feed water having a low dissolved oxygen (DO) concentration and effective for preventing corrosion of not only the boiler body but also steam pipes and condensate pipes. The present invention relates to a boiler feedwater treatment device and a boiler feedwater treatment method that can be performed.
[0002]
[Prior art]
Conventionally, as boiler make-up water, softened water obtained by removing hardness components from raw water (city water, groundwater, industrial water, etc.) using a softener is used, and as a boiler treatment agent, a deoxidizer, a scale inhibitor, etc. Are used in addition.
[0003]
On the other hand, in the field of the electronics industry, conventionally, a deoxygenated resin has been used for deoxidizing ultrapure water for cleaning electronic components (Japanese Patent Laid-Open No. 6-23349). In addition, in the field of the electronics industry, for the purpose of producing ultrapure water by softening and deoxidizing water, a processing apparatus combining a reverse osmosis membrane separation apparatus and a degassing membrane apparatus has been proposed (Japanese Patent Publication No. Hei 9-222). No. 6-38894).
[0004]
[Problems to be solved by the invention]
When conventional softened water is used as boiler feedwater, carbon dioxide (CO 2 ) is generated in the boiler regardless of the use of chemicals, and this causes corrosion of steam piping and condensate piping.
[0005]
In addition, in the method using various chemicals as a boiler treatment agent, it is necessary to select a highly safe chemical in consideration of the use of steam and the like, and various methods such as operation management and corrosion of a water supply line are required. There was a problem. That is, for example, in a water supply line having a relatively low temperature, deoxidation by a chemical may become insufficient and corrosion may occur.
[0006]
On the other hand, oxygen-absorbing resins are effective in the process of producing ultrapure water in the electronics industry, but when used in boiler feedwater treatment, the oxygen-absorbing resins suffer from fouling failure and decrease oxygen-absorbing capacity. I do. For this reason, at present, deoxygenated resins are hardly used for the treatment of boiler feedwater.
[0007]
When a reverse osmosis membrane separation device and a degassing membrane device, which are also proposed as a production technology of ultrapure water in the electronics industry, are applied to the treatment of boiler feedwater, the deoxygenation level is 0.5 ppm DO concentration. However, since the water supply temperature is high, the deaeration film is significantly deteriorated, so that it cannot be used for a long period of time and the deoxygenation level is lowered.
[0008]
That is, in an actual boiler water supply system, condensed water from the boiler is often recovered and used as feed water, and it differs depending on the condensate recovery rate. And the condensate recovery rate is about 80 to 90 ° C. and the degassing film is significantly deteriorated, and a sufficient deoxygenation effect cannot be obtained.
[0009]
The present invention solves the above-mentioned conventional problems, and has a long-lasting boiler feedwater that has a remarkably low DO concentration and can effectively prevent corrosion of the boiler body, steam piping, and condensate piping without using a boiler chemical. An object of the present invention is to provide a boiler feedwater treatment apparatus and a boiler feedwater treatment method that can be obtained stably.
[0010]
[Means for Solving the Problems]
The boiler feedwater treatment device of the present invention is characterized by comprising a reverse osmosis membrane separation device and a deoxygenation resin device having a deoxygenation function into which treated water of the reverse osmosis membrane separation device is introduced .
The boiler feedwater treatment method of the present invention is characterized by including a first step of subjecting raw water to reverse osmosis membrane separation, and a second step of deoxidizing the treated water of the first step with a deoxygenating resin.
[0011]
[Action]
Oite this onset bright, raw water is desalted by reverse osmosis membrane separation device. In the desalination treatment in the reverse osmosis membrane separation device, bicarbonate ions (HCO 3 ) in the raw water are also removed, so that the generation of carbon dioxide gas (CO 2 ) that causes corrosion in steam pipes, condensate pipes, etc. It is reduced and a good corrosion prevention effect is obtained. In addition, the treatment in the reverse osmosis membrane separation device also prevents fouling of the resin in the deoxygenating resin device, and makes it possible to secure a stable deoxygenating ability for a long time.
[0012]
In the deoxidizing resin device, boiler feedwater with a very low DO concentration of several ppb can be produced by performing an efficient deoxidizing treatment. In the treatment in this deoxidizing resin apparatus, the deoxidizing resin hardly deteriorates even at a high temperature. Therefore, even when the inflow water temperature is high, the deoxidizing resin does not deteriorate like a degassing film and is stable for a long time. Processing can be performed.
[0013]
According to the boiler feed water treatment apparatus and the boiler feed water treatment method of the present invention, boiler feed water with a sufficiently low DO concentration and high purity can be obtained. Is eliminated, and high-purity steam can be obtained, which is extremely industrially advantageous in terms of safety and the like.
[0014]
【Example】
Hereinafter, embodiments of a boiler feedwater treatment apparatus and a boiler feedwater treatment method of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a system diagram showing one embodiment of a boiler feed water treatment system provided with the boiler feed water treatment device of the present invention. In the figure, 1 is an activated carbon treatment device, 2 is a heat exchanger, 3 is a guard filter, 4 is a reverse osmosis membrane separation device, 5 is a hot well tank (water supply tank), 6 is a guard filter, 7 is a deoxygenating resin device, 8 is a hydrogen gas cylinder and 9 is a boiler. Reference numerals 11 to 25 indicate pipes, and P 1 , P 2 , and P 3 indicate pumps.
[0016]
In the present embodiment, make-up water (raw water such as city water, groundwater, soft water, industrial water, etc.) is pretreated as an activated carbon treatment device 1 for removing residual chlorine and heat for ensuring a stable flow rate. After passing water through the exchanger 2 and the guard filter 3 for preventing fouling, the water is treated by the reverse osmosis membrane separation device 4. The treated water (permeated water) of the reverse osmosis membrane separation device 4 is sent from a pipe 16 to a hot well tank (water supply tank) 5, and the concentrated water is drained from a pipe 15 to the outside of the system. In this hot well tank 5, the condensed water of the boiler 9 is circulated and collected from a pipe 25.
[0017]
The water in the hot well tank 5 is introduced into the deoxygenating resin device 7 after hydrogen is supplied from the pipe 19 through the guard filter 6. The water deoxygenated by the deoxygenating resin device 7 is supplied from a pipe 20 to a water supply pipe 21 to the boiler 9 and supplied to the boiler 9. When the water supplied from the pipe 20 becomes excessive, the water is returned to the hot well tank 5. Steam generated in the boiler 9 is sent from a pipe 22 to a demand point via a pipe 23, and condensed water is recovered from a pipe 24.
[0018]
In such a boiler feed water treatment system, the makeup water is desalted efficiently in the reverse osmosis membrane separation device 4. In the desalination treatment in the reverse osmosis membrane separation device 4, bicarbonate ions (HCO 3 ) in the makeup water are also removed, so that carbon dioxide (CO 2 ), which causes corrosion in steam pipes and condensate pipes, is removed. Generation can be reduced. Further, according to the reverse osmosis membrane separation device 4, not only the desalting for scale and corrosion prevention, but also the anti-fouling action of the deoxidized resin is achieved.
[0019]
In the present invention, the treatment by the reverse osmosis membrane separation device is performed using a spiral type asymmetric cellulose acetate (CA) membrane at an operating pressure of 25 to 30 kg / cm 2 or a spiral type cross-linked aramid composite (PA). It is preferred to use a membrane and operating pressure of 10 to 20 kg / cm 2 . In particular, in order to obtain water quality suitable for boiler water supply, it is desirable to use a spiral-type crosslinked aramid-based composite (PA) membrane at an operating pressure of 15 to 20 kg / cm 2 , but this is not limited to such processing conditions. Not something.
[0020]
According to such a reverse osmosis membrane separation device, an effect of increasing the Na / SiO 2 ratio in the obtained treated water (reverse osmosis membrane permeated water) can be obtained with a high replenishment water desalination ability.
[0021]
On the other hand, the deoxygenation reaction by the deoxygenation resin device is performed in the presence of a catalyst supported on the deoxygenation resin according to the following reaction formula.
[0022]
2H 2 + O 2 → 2H 2 O
That is, DO in the water to be treated and hydrogen added thereto are mixed, and water is generated by a chemical reaction on the surface of the catalyst to perform deoxidation.
[0023]
In the present invention, as the deoxidizing resin, a resin in which a palladium catalyst is supported at a ratio of 500 to 2000 mg / l-resin on a resin surface such as a strongly basic gel-type ion exchange resin is preferable. The present invention is not limited to this, and resins having other catalysts may be used as long as they have a deoxygenating function.
[0024]
In the embodiment shown in FIG. 1, for example, by performing the treatment under the following conditions, it is possible to stably supply water having the following water quality to the boiler 9 for a long period of time, and without adding a chemical, And safe operation by preventing corrosion of steam and condensate piping.
[0025]
Processing conditions Reverse osmosis membrane separator:
Membrane: Spiral type cross-linked aramid composite membrane Operating pressure: 15 kg / cm 2
Deoxygenation resin device:
Catalyst resin: a strongly basic gel-type ion exchange resin filled with a Pd catalyst at a ratio of 1000 mg / l-resin Resin filling amount: 40 liters Water flow rate: 2000 liters / hr
Hydrogen supply rate: 200 ml / min
Water supply:
Condensate from pipe 25: 280 liters / hr
Permeated water from pipe 16: 210 liter / hr
Deoxygenated water from pipe 20: 2000 liter / hr
Water supply to boiler 9: 490 liters / hr
Water quality of water supplied to boiler 9 M alkalinity: less than 2 mg-CaCO 3 / l (lower than analysis lower limit)
DO: 50 ppb
Note that the system shown in FIG. 1 is an embodiment of the application of the boiler feedwater treatment apparatus of the present invention, and the present invention is not limited to the illustrated one as long as it does not exceed the gist. For example, the boiler feed water treatment apparatus of the present invention may be configured to treat the make-up water by a reverse osmosis membrane separation apparatus and then pass the permeated water directly to a deoxygenating resin apparatus for treatment. Further, the hydrogen source is not limited to a hydrogen cylinder, but may be anything that generates hydrogen gas.
[0026]
Hereinafter, effects of the present invention will be described in more detail with reference to experimental examples.
[0027]
Experimental example 1
A deoxidizing resin (a strongly basic gel-type ion exchange resin loaded with 1000 mg / l of Pd-resin) is provided with a pretreatment device in front of a column filled with 1 liter, and a pretreatment shown in Table 1 in soft water. After that, hydrogen gas was added and water was continuously passed through the deoxygenated resin column under the following water passing conditions (however, no pretreatment was performed in No. 2).
[0028]
Table 1 shows the result of examining the fouling state of the deoxidized resin at this time based on the slime adhesion state of the resin and an increase in the DO concentration of the treated water. In addition, the slime adhesion state of the resin was examined by the result of microscopic observation of the resin regardless of whether or not the deoxygenating ability was reduced.
[0029]
Water flow conditions Water flow: 100 liters / hr
Deoxygenated resin amount: 1 liter Water passing temperature: 20-25 ° C
Water passage period: 6 months (However, if the deoxygenation ability declined on the way, water supply was stopped at that time.)
[0030]
[Table 1]
Figure 0003593723
[0031]
From Table 1, it is apparent that the reverse osmosis membrane separation treatment can effectively prevent fouling of the deoxygenated resin.
[0032]
Experimental example 2
The water supply shown in Table 2 was supplied to the test boiler 30 (body material: SUS316) shown in FIG. 2, and a corrosion test was performed under the following test conditions. The results are shown in Table 2. 2, 31 is a water supply pipe, 32 is a water supply pump, 33 is a steam pipe, 34 is a pressure regulating valve, 35 is a heater, 36 is a test tube (material: SB42), and 37 is a boiler can.
[0033]
Test conditions Test time: 20 hr
Working pressure: 20 kg / cm 2 (213 ° C)
Can water: Assuming a 50-fold concentrated water, the can was filled with can water having a pH of 11.0 and a silica concentration of 30 mg / l. (A 50-fold concentration was maintained during the test.)
[0034]
[Table 2]
Figure 0003593723
[0035]
The following is clear from Table 2. That is, after the reverse osmosis membrane separation treatment, the water deoxygenated with the deoxygenation resin was supplied with water. In No. 8, No. 8 was supplied with pure water. The amount of corrosion is clearly smaller than that of No. 7, and the surface of the test tube is in a good condition. In addition, the conventional hydrazine treatment No. Compared to 9, the same or better results can be obtained, and it is clear that the combination of the reverse osmosis membrane separation device and the deoxygenating resin device can effectively prevent corrosion of the boiler body and piping without using chemicals. is there.
[0036]
Experimental example 3
A corrosion test was performed by the test device shown in FIG. 3 according to the following procedure. In the drawing, 41 is a water supply pipe, 42 is a pump, 43 is a boiler body (boiler can), 44 is a steam pipe, 45 is a heat exchanger, 46 is blow pipe, 47a and 47b are cooling water pipes, and 48 is a return pipe. A water pipe, 49 is a test piece column, 50 is a test piece (mild steel (nitric acid and sulfuric acid etching product)), and 51 is a discharge pipe.
[0037]
First, into the boiler main body (boiler can) 43, initial charging water adjusted to have a pH shown in Table 3 by adding sodium hydroxide is added, and the pressure is adjusted to a predetermined pressure (10 kg / cm 2 ). Heat. Next, treated water (RO treated water) or soft water of a reverse osmosis membrane separation device with an M alkalinity shown in Table 3 or soft water adjusted to a DO concentration shown in Table 3 with a deoxygenating resin device was supplied as feed water, and the following test was performed. The corrosion rate and condensed water quality of the test piece 50 were examined under the conditions, and the results are shown in Table 3.
[0038]
Test conditions Water supply: 13 liters / hr
Blow rate: 7%
Condensate water temperature: 50 ° C
Testing period: 5 days
[Table 3]
Figure 0003593723
[0040]
The following is clear from Table 3. That is, the higher the DO of the feed water, the higher the corrosion rate. In addition, reverse osmosis membrane separation was performed on the water supply with M alkalinity of 50 mg-CaCO 3 / l, and water supply with M alkalinity of less than 2 mg-CaCO 3 / l (analysis lower limit or less) was performed. In such cases, the corrosion rate is significantly reduced.
[0041]
From these results, it is clear that the removal of the M alkalinity by the reverse osmosis membrane separation device and the deoxygenation treatment by the deoxygenation resin device can effectively prevent corrosion of the boiler body, the steam pipe, and the condensate pipe.
[0042]
【The invention's effect】
As described in detail above, according to the boiler feed water treatment apparatus and the boiler feed water treatment method of the present invention, the boiler feed water which is extremely low in DO concentration and high in purity, and is effective for preventing corrosion of the boiler main body, steam piping and condensate piping for a long time. It can be obtained stably and efficiently.
[0043]
According to the present invention, since an oxygen scavenger or a scale inhibitor is not required, the operation for injecting a drug is eliminated, and high-purity steam can be obtained, which is industrially extremely advantageous in terms of safety and the like. is there.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a boiler feed water treatment system provided with a boiler feed water treatment device of the present invention.
FIG. 2 is a schematic configuration diagram illustrating a test boiler used in Experimental Example 2.
FIG. 3 is a system diagram showing a test apparatus used in Experimental Example 3.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Activated carbon processing apparatus 2 Heat exchanger 3, 6 Guard filter 4 Reverse osmosis membrane separation apparatus 5 Hot well tank (water supply tank)
7 Deoxygenating resin device 8 Hydrogen gas cylinder 9 Boiler 30 Test boiler 36 Test tube 43 Boiler body 45 Heat exchanger 49 Test piece column 50 Test piece

Claims (2)

逆浸透膜分離装置と、該逆浸透膜分離装置の処理水が導入される脱酸素機能を有する脱酸素樹脂装置とを備えてなることを特徴とするボイラ給水処理装置。A boiler feedwater treatment device comprising: a reverse osmosis membrane separation device; and a deoxygenation resin device having a deoxygenation function into which treated water of the reverse osmosis membrane separation device is introduced . 原水を逆浸透膜分離処理する第一工程と、該第一工程の処理水を脱酸素樹脂により脱酸素処理する第二工程とを含むことを特徴とするボイラ給水処理方法。A boiler feedwater treatment method comprising: a first step of subjecting raw water to reverse osmosis membrane separation; and a second step of deoxidizing the treated water of the first step with a deoxygenating resin.
JP23701094A 1994-09-30 1994-09-30 Boiler feedwater treatment apparatus and boiler feedwater treatment method Expired - Fee Related JP3593723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23701094A JP3593723B2 (en) 1994-09-30 1994-09-30 Boiler feedwater treatment apparatus and boiler feedwater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23701094A JP3593723B2 (en) 1994-09-30 1994-09-30 Boiler feedwater treatment apparatus and boiler feedwater treatment method

Publications (2)

Publication Number Publication Date
JPH0899086A JPH0899086A (en) 1996-04-16
JP3593723B2 true JP3593723B2 (en) 2004-11-24

Family

ID=17009055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23701094A Expired - Fee Related JP3593723B2 (en) 1994-09-30 1994-09-30 Boiler feedwater treatment apparatus and boiler feedwater treatment method

Country Status (1)

Country Link
JP (1) JP3593723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067529A (en) 2015-10-14 2018-06-20 쿠리타 고교 가부시키가이샤 Boiler water supply water treatment system and operation method of boiler

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109092A (en) * 1996-10-04 1998-04-28 Kubota Karaatoronitsuku Kk Treatment device of water for mold conditioning
JP4583530B2 (en) * 1999-03-19 2010-11-17 オルガノ株式会社 Heat exchange water and its supply device
JP2006239649A (en) * 2005-03-07 2006-09-14 Miura Co Ltd Water supply device for boiler
JP5130618B2 (en) * 2005-10-25 2013-01-30 栗田工業株式会社 Method and apparatus for treating wastewater containing carbonic acid and ammonia
JP4710561B2 (en) * 2005-11-16 2011-06-29 栗田工業株式会社 Anti-corrosion method for boilers during suspension
US20170073256A1 (en) * 2015-09-11 2017-03-16 Cameron Solutions, Inc. System And Process To Protect Chlorine-Susceptible Water Treatment Membranes From Chlorine Damage Without The Use Of Chemical Scavengers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067529A (en) 2015-10-14 2018-06-20 쿠리타 고교 가부시키가이샤 Boiler water supply water treatment system and operation method of boiler

Also Published As

Publication number Publication date
JPH0899086A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP3180348B2 (en) Pure water production method
JP4917581B2 (en) Pure water production method
JP3593723B2 (en) Boiler feedwater treatment apparatus and boiler feedwater treatment method
JP2002136994A (en) Apparatus and method for treating water supplied to boiler
US20050056594A1 (en) Method and system for the manufacture of pharmaceutical water
JP4043328B2 (en) Power plant and power generation method
JP4996812B2 (en) Water supply equipment
JP4165273B2 (en) Boiler system
JP4238654B2 (en) Boiler feed water treatment method and treatment apparatus
JP2005066544A (en) Method for recovering monoethanolamine
JPS6336890A (en) Apparatus for producing high-purity water
KR102398703B1 (en) Method for Recycling Reverse Osmosis Membrane, Process for Producing Ultra Pure Water, and System for Manufacturing Ultra Pure Water
JP2008121941A (en) Method of operating steam boiler device
JP5013062B2 (en) Supplying water for boiler feed water
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
WO2020184044A1 (en) Pure-water production device and pure-water production method
JPH0790220B2 (en) Boiler feedwater treatment method and boiler feedwater treatment device
JPH05309372A (en) Apparatus for producing water of high purity
KR20230123466A (en) Systems and methods for desalination of liquids
JP5463928B2 (en) Water treatment system
JP2703034B2 (en) Ultrapure water equipment using a heating deaerator
CN112424128A (en) Pure water production system and pure water production method
JPH09122689A (en) Apparatus for feeding and treating water for boiler
US20190160452A1 (en) Low temperature wet air oxidation
JP4082258B2 (en) Boiler system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees