JP5029260B2 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
JP5029260B2
JP5029260B2 JP2007253757A JP2007253757A JP5029260B2 JP 5029260 B2 JP5029260 B2 JP 5029260B2 JP 2007253757 A JP2007253757 A JP 2007253757A JP 2007253757 A JP2007253757 A JP 2007253757A JP 5029260 B2 JP5029260 B2 JP 5029260B2
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
alloy wire
driven body
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007253757A
Other languages
Japanese (ja)
Other versions
JP2009086142A (en
Inventor
伸哉 三木
滋 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2007253757A priority Critical patent/JP5029260B2/en
Publication of JP2009086142A publication Critical patent/JP2009086142A/en
Application granted granted Critical
Publication of JP5029260B2 publication Critical patent/JP5029260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)

Description

本発明は、駆動装置、及びレンズ駆動装置に関し、特に形状記憶合金線を備えた駆動装置、及びレンズ駆動装置に関する。   The present invention relates to a driving device and a lens driving device, and more particularly to a driving device and a lens driving device provided with a shape memory alloy wire.

近年、様々な駆動装置に形状記憶合金線(以下、SMAとも記する)を用いることが試みられている。このような駆動装置では、SMAが変態温度よりも低い温度下で変形しても、変態温度よりも高い温度に加熱されると記憶された元の形状に回復する性質を利用している。通常、SMAは紐状の形態に形成され、通電加熱制御により長さ方向に伸縮させることで、アクチュエータとしての動作をさせることができる。   In recent years, attempts have been made to use shape memory alloy wires (hereinafter also referred to as SMA) for various driving devices. Such a drive device utilizes the property that even if the SMA is deformed at a temperature lower than the transformation temperature, it is restored to the original shape stored when heated to a temperature higher than the transformation temperature. Usually, SMA is formed in a string-like form, and can be operated as an actuator by expanding and contracting in the length direction by energization heating control.

一方、SMAは、記憶した形状への復帰方向にのみ変形するため、使用に際しては、SMAを復帰方向と反対方向に変形させる他のアクチュエータが必要とされる。このため、通常、SMAは、バイアス用のバネとセットにした構成で用いられている。SMAを安価で制御が不要なバネとセットとした構成のアクチュエータとすることで、装置の簡素化と低価格化を図ることができ、種々の機器への応用が検討されている。   On the other hand, since the SMA is deformed only in the return direction to the memorized shape, in use, another actuator that deforms the SMA in the direction opposite to the return direction is required. For this reason, SMA is usually used in a configuration in which it is set with a biasing spring. By making the SMA an actuator with a set that is inexpensive and does not require control, the device can be simplified and reduced in price, and application to various devices is being studied.

例えば、レンズ支持枠を、互いに逆方向に移動可能に付勢するSMAとバネを備え、SMAの通電制御により発生力を変化させ、SMAの発生力とバネの張力とが均衡する位置を制御することで、レンズ支持枠を所定の位置に移動させるレンズ駆動装置が知られている(特許文献1参照)。
特開2005−337262号公報
For example, the lens support frame is provided with an SMA and a spring that urges the lens support frame so as to be movable in directions opposite to each other. Thus, a lens driving device that moves the lens support frame to a predetermined position is known (see Patent Document 1).
JP 2005-337262 A

ところで、このような機器においては、SMAは、反応温度(変態温度)より低い温度では全く変形せず、反応温度より高い温度で直線に近い変形をするような理想的な性質を前提として用いられている。しかしながら、実際は、SMAは、反応温度より低い温度においても微小に変形し、反応温度に近づくに伴い変形の割合が大きくなるものである。   By the way, in such a device, SMA is used on the premise of an ideal property that does not deform at a temperature lower than the reaction temperature (transformation temperature) at all, and deforms in a straight line at a temperature higher than the reaction temperature. ing. However, in practice, SMA deforms slightly even at a temperature lower than the reaction temperature, and the deformation rate increases as the reaction temperature is approached.

特許文献1に開示されているレンズ駆動装置においては、このようなSMAの反応温度より低い温度における性質を考慮されていない。すなわち、環境温度がSMAの反応温度より低い常温領域においても、環境温度の変化によりSMAが微小に変形することにより、レンズの位置が変化し、レンズは定まった位置を維持することができない。したがって、特に自動焦点カメラで用いられる無限位置からの繰出し量制御といったレンズ駆動では、環境温度の変化によりレンズが無限位置から移動し撮影範囲が狭りAF性能に大きく影響を及ぼすといった問題がある。   The lens driving device disclosed in Patent Document 1 does not consider such properties at temperatures lower than the reaction temperature of SMA. That is, even in a normal temperature region where the environmental temperature is lower than the reaction temperature of SMA, the SMA is slightly deformed due to a change in the environmental temperature, so that the position of the lens changes, and the lens cannot maintain a fixed position. Therefore, in particular, in lens driving such as control of the amount of extension from an infinite position used in an autofocus camera, there is a problem that the lens moves from the infinite position due to a change in environmental temperature and the photographing range is narrowed, greatly affecting AF performance.

また、SMAは、加熱に伴い急激な反応を開始するオーステナイト変態開始点(As点)と、より高温で反応が劣化するオーステナイト変態終了点(Af点)と、反応が飽和し記憶状態になって後、冷却するに伴い再び急激な逆反応が開始するマルテンサイト変態開始点(Ms点)と、急激な逆反応からゆっくりとした反応に切替わるマルテンサイト変態終了点(Mf点)と、を有している。そして、SMAの温度と歪率の関係は、ヒステリシスを示し、As点とMf点は、歪率は近似しているが(若干Mf点の歪率が大きい)、温度はAs点のほうが高い。また、同様にAf点とMs点は、歪率は近似しているが(若干Ms点の歪率が大きい)、温度はAf点のほうが高い。   In addition, SMA has an austenite transformation start point (As point) at which a rapid reaction starts with heating, an austenite transformation end point (Af point) at which the reaction deteriorates at a higher temperature, and the reaction becomes saturated and becomes a memory state Thereafter, it has a martensitic transformation start point (Ms point) at which a rapid reverse reaction starts again as it cools, and a martensitic transformation end point (Mf point) at which the rapid reverse reaction is switched to a slow reaction. is doing. The relationship between the SMA temperature and the strain rate shows hysteresis, and the As point and the Mf point are similar in strain rate (slightly larger strain rate at the Mf point), but the temperature is higher at the As point. Similarly, the Af point and the Ms point have similar strain rates (slightly higher strain rate at the Ms point), but the temperature is higher at the Af point.

このように、SMAの温度と歪率の関係は、ヒステリシスを示すことから、環境温度がMf点より高い場合、SMAを通電加熱する前のレンズの位置と、SMAを一旦通電加熱し、その後通電を停止しSMAの温度が冷却されて環境温度に戻った時のレンズの位置は、大きく異なる。その結果、AF性能さらに低下させるといった問題がある。   Thus, since the relationship between the SMA temperature and the distortion rate shows hysteresis, when the environmental temperature is higher than the Mf point, the position of the lens before the SMA is energized and heated, the SMA is energized and heated, and then energized. The position of the lens when the SMA is stopped and the temperature of the SMA returns to the ambient temperature after cooling is greatly different. As a result, there is a problem that the AF performance is further lowered.

本発明は、上記課題を鑑みてなされたもので、環境温度に影響されることなく、高い精度で被駆動体の位置制御を行うことが可能な駆動装置、及びレンズ駆動装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a driving device and a lens driving device capable of performing position control of a driven body with high accuracy without being affected by environmental temperature. Objective.

上記目的は、下記の1または2の1項に記載に記載の発明によって達成される。 The above object is achieved by the invention described in 1 or 2 below.

1.通電加熱により収縮伸長して変形する形状記憶合金線と、
前記形状記憶合金線の変形によって移動される被駆動体と、
を有する駆動部と、
前記被駆動体に支持されるレンズと、
を備えるレンズ駆動装置において、
前記レンズ駆動装置は、さらに、
前記形状記憶合金線の加熱による収縮によって移動する方向とは反対の方向にバイアス力を付与するバイアス部と、
前記形状記憶合金線の非通電時には前記バイアス力により前記形状記憶合金線が伸長して移動する前記被駆動体を規制する規制部と、
を有し、
前記被駆動体の有効移動範囲の一方の端は前記レンズの無限位置であり、他方の端は、前記レンズの最近接位置であって、
前記形状記憶合金線への通電をオフした伸長時に、前記レンズ駆動装置の使用環境温度範囲の上限値として設定された所定の上限温度において、前記被駆動体が前記規制部によって前記有効移動範囲外で規制状態にあり、
前記被駆動体は、前記形状記憶合金線への通電をオフした伸長時には、前記レンズ駆動装置の使用環境温度範囲について設定された所定の上限温度では前記規制部に接触しており、かつ、前記形状記憶合金線への通電加熱による収縮により前記被駆動体が前記規制部を離れた後の冷却による伸長時には、前記形状記憶合金線が前記所定の上限温度に下がるまでは、前記規制部に接触しないように、前記有効移動範囲が設定され、
前記有効移動範囲に対応する前記形状記憶合金線の歪率が、前記使用環境温度範囲における非通電時の歪率よりも小さくなるように前記有効移動範囲が設定されていることを特徴とする駆動装置。
1. A shape memory alloy wire that contracts and expands by electric heating and deforms;
A driven body moved by deformation of the shape memory alloy wire;
A drive unit having
A lens supported by the driven body;
In a lens driving device comprising:
The lens driving device further includes:
A bias unit for applying a bias force in a direction opposite to the direction of movement by contraction due to heating of the shape memory alloy wire;
A restriction portion for restricting the driven body that the shape memory alloy wire extends and moves by the bias force when the shape memory alloy wire is not energized;
Have
One end of the effective movement range of the driven body is an infinite position of the lens, and the other end is a closest position of the lens,
When the energization to the shape memory alloy wire is turned off, the driven body is moved out of the effective movement range by the restricting portion at a predetermined upper limit temperature set as an upper limit value of the use environment temperature range of the lens driving device. Is in a regulated state,
The driven body is in contact with the restricting portion at a predetermined upper limit temperature set for a use environment temperature range of the lens driving device when extending the energization to the shape memory alloy wire, and the At the time of extension by cooling after the driven body leaves the restricting portion due to contraction due to energization heating to the shape memory alloy wire, the shape memory alloy wire is in contact with the restricting portion until the shape memory alloy wire falls to the predetermined upper limit temperature. The effective movement range is set so as not to
The effective movement range is set such that the distortion rate of the shape memory alloy wire corresponding to the effective movement range is smaller than the distortion rate at the time of non-energization in the operating environment temperature range. apparatus.

2.前記使用環境温度範囲の上限は、前記形状記憶合金線のマルテンサイト変態終了点に相当する温度より高く、オーステナイト変態開始点に相当する温度より低く設定されたことを特徴とする前記1に記載の駆動装置。 2. The upper limit of the ambient temperature range, according to the 1, wherein the higher than corresponding temperatures martensite transformation finish point of the shape memory alloy wire was low Ku set than a temperature corresponding to a austenite transformation start point Drive device.

本発明によれば、被駆動体の有効移動範囲に対応する形状記憶合金線の歪率が、使用環境温度範囲における非通電時の歪率より小さくなるように有効移動範囲を設定する構成とした。すなわち、使用環境温度範囲における非通電時の被駆動体の位置が、有効移動範囲の外に位置する構成とした。したがって、被駆動体の有効移動範囲は、環境温度の変化による被駆動体の位置変化やヒステリシスによる通電加熱前後の環境温度における被駆動体の位置ずれ等に影響されることなく所定の範囲を維持される。その結果、高い精度で被駆動体の位置制御を行うことが可能となる。   According to the present invention, the effective movement range is set so that the distortion rate of the shape memory alloy wire corresponding to the effective movement range of the driven body is smaller than the distortion rate at the time of non-energization in the use environment temperature range. . That is, the configuration is such that the position of the driven body when not energized in the operating environment temperature range is located outside the effective movement range. Therefore, the effective movement range of the driven body is maintained within a predetermined range without being affected by the position change of the driven body due to a change in the environmental temperature or the positional deviation of the driven body at the environmental temperature before and after the energization heating due to hysteresis. Is done. As a result, the position of the driven body can be controlled with high accuracy.

また、前述の被駆動体でレンズを支持する構成としたので、高い精度でレンズの焦点位置制御を行うことができ、AF性能を高めることができる。   Further, since the lens is supported by the above-mentioned driven body, the focal position of the lens can be controlled with high accuracy, and the AF performance can be improved.

以下図面に基づいて、本発明に係る駆動装置、及びレンズ駆動装置の実施の形態を説明する。尚、本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限られない。   Embodiments of a driving device and a lens driving device according to the present invention will be described below with reference to the drawings. In addition, although this invention is demonstrated based on embodiment of illustration, this invention is not limited to this embodiment.

〔実施形態1〕
最初に、実施形態1による駆動装置の要部構成を図1を用いて説明する。図1は、実施形態1による駆動装置10の要部構成を示す模式図である。
Embodiment 1
First, the main configuration of the driving apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating a main configuration of a driving apparatus 10 according to the first embodiment.

駆動装置10は、図1に示すように、所定温度を境に急激に反応し所定方向(矢印Y1方向)に収縮するSMA102と、SMA102の収縮方向とは逆の方向(矢印Y2方向)に負荷を発生させるバイアスバネ103と、SMA102とバイアスバネ103の双方の発生力を受け、双方の力が均衡する位置に移動される被駆動体101と、SMA102を通電制御する図示しない駆動回路と、SMA102が通電されていない時に、バイアスバネ103に引張られる被駆動体101の移動を規制するストッパー104等から構成される。   As shown in FIG. 1, the driving device 10 has a SMA 102 that reacts abruptly at a predetermined temperature and contracts in a predetermined direction (arrow Y1 direction), and loads in a direction opposite to the contraction direction of the SMA 102 (arrow Y2 direction). , The driven body 101 that is moved to a position where both forces are balanced, a drive circuit (not shown) that controls energization of the SMA 102, and the SMA 102 Is configured by a stopper 104 or the like that restricts the movement of the driven body 101 pulled by the bias spring 103 when the current is not energized.

SMA102は通電による自身のジュール熱で温度が制御される。使用環境下における非通電時にはSMA102は超弾性を示し、負荷の軽い状態で伸びており、被駆動体101は、バイアスバネ103の張力でストッパー104に押し付けられている。バイアスバネ103の張力は、SMA102の許容応力より小さいが比較的大きめに設定されている。使用環境下の中心温度におけるSMA102にかかる応力は、バイアスバネ103の張力に相当する応力未満に設定される。   The temperature of the SMA 102 is controlled by its own Joule heat by energization. The SMA 102 exhibits superelasticity when it is not energized in a use environment, and is stretched with a light load. The driven body 101 is pressed against the stopper 104 by the tension of the bias spring 103. The tension of the bias spring 103 is set to be relatively large although it is smaller than the allowable stress of the SMA 102. The stress applied to the SMA 102 at the center temperature under the use environment is set to be less than the stress corresponding to the tension of the bias spring 103.

ここで、SMA102の温度と歪の関係について図2を用いて説明する。図2は、SMA102の温度と歪率の関係を示す図である。   Here, the relationship between the temperature and strain of the SMA 102 will be described with reference to FIG. FIG. 2 is a diagram showing the relationship between the temperature and strain rate of the SMA 102.

SMA102は、図2に示すように、加熱に伴い急激な反応を開始するオーステナイト変態開始点(As点)と、より高温で反応が劣化するオーステナイト変態終了点(Af点)と、反応が飽和し記憶状態になった後、冷却するに伴い再び急激な逆反応が開始するマルテンサイト変態開始点(Ms点)と、急激な逆反応からゆっくりとした反応に切替わるマルテンサイト変態終了点(Mf点)と、を有している。また、SMA102の温度と歪率の関係は、ヒステリシスを示し、As点とMf点は、歪率は近似しているが(若干Mf点の歪率が大きい)、温度はAs点のほうが高い。また、同様にAf点とMs点は、歪率は近似しているが(若干Ms点の歪率が大きい)、温度はAf点のほうが高い。   As shown in FIG. 2, the SMA 102 is saturated with the austenite transformation start point (As point) at which a rapid reaction starts with heating and the austenite transformation end point (Af point) at which the reaction deteriorates at a higher temperature. After entering the memory state, the martensite transformation start point (Ms point) at which a rapid reverse reaction starts again with cooling, and the martensite transformation end point (Mf point) at which the rapid reverse reaction is switched to a slow reaction. ) And. Further, the relationship between the temperature and the strain rate of the SMA 102 shows hysteresis, and the As point and the Mf point have similar strain rates (slightly higher strain rate at the Mf point), but the temperature is higher at the As point. Similarly, the Af point and the Ms point have similar strain rates (slightly higher strain rate at the Ms point), but the temperature is higher at the Af point.

各反応の切替わり点(As点、Af点、Ms点、Mf点)は、鋭角的に切替わるのが理想ではあるが、比較的急激な切替わりが起こるTiとNiの合金、あるいは、TiとNi及びCuの合金からなるSMAでさえ緩やかな反応を示している。各反応切替わり点は、図2に示すように、直線的に反応する領域の接線の延長の交点で決定される。   The switching point (As point, Af point, Ms point, Mf point) of each reaction is ideally switched at an acute angle, but a Ti and Ni alloy in which a relatively rapid switching occurs, or Ti Even SMA made of an alloy of Ni and Cu shows a mild reaction. As shown in FIG. 2, each reaction switching point is determined by the intersection of the tangents of the linear reaction regions.

SMAは、記憶状態が決まっているのでその歪率は、SMAにかかる初期応力によって異なってくる。初期応力が大きければ歪率は大きく取れ、小さければ歪率は小さい。また、歪率に応じて反応温度も高くなる。   Since the memory state of the SMA is determined, the distortion rate varies depending on the initial stress applied to the SMA. If the initial stress is large, the strain rate is large, and if it is small, the strain rate is small. Also, the reaction temperature increases with the distortion rate.

つまり被駆動体101を駆動させるのに使用する歪(ストローク)をどの領域で使用するかによって温度による反応が異なってくる。   That is, the reaction due to temperature differs depending on in which region the strain (stroke) used to drive the driven body 101 is used.

図1に示す構成の駆動装置10においては、駆動中は、SMA102の応力は、バイアスバネ103の張力と均衡しているので、SMA102の温度と歪率の関係は、図2に示す実線の曲線上を移動するが、非通電時には低応力時の反応曲線(破線)上の左端Po点に位置する。尚、このときのSMA102の応力は、バイアスバネ103の張力より小さく、被駆動体101は、ストッパー104に押し付けられている。反応が進むとSMA102は、記憶状態に戻ろうとし力を発生するが駆動応力以下であれば被駆動体101は、移動せず応力が上がるのみである(矢印X1)。SMA102の応力がバイアスバネ103の張力と均衡する値を上回るとようやく被駆動体101が移動される。均衡の取れた位置は、駆動応力時の反応曲線(実線)上の初期設定歪の位置Ps点にあたる。   In the driving apparatus 10 having the configuration shown in FIG. 1, since the stress of the SMA 102 is balanced with the tension of the bias spring 103 during driving, the relationship between the temperature and the strain rate of the SMA 102 is a solid curve shown in FIG. Although it moves up, it is located at the left end Po point on the reaction curve (dashed line) at the time of low stress at the time of deenergization. Note that the stress of the SMA 102 at this time is smaller than the tension of the bias spring 103, and the driven body 101 is pressed against the stopper 104. As the reaction progresses, the SMA 102 generates a force to return to the memory state, but if it is equal to or lower than the driving stress, the driven member 101 does not move and only the stress increases (arrow X1). The driven body 101 is finally moved when the stress of the SMA 102 exceeds a value that balances with the tension of the bias spring 103. The balanced position corresponds to the position Ps of the initial set strain on the reaction curve (solid line) at the time of driving stress.

ここで、環境温度がMf点より高い例えば図2に示すt1の場合におけるSMA102の動きについて図1、図2を用いて説明する。SMA102を通電加熱すると、前述のようにSMA102の応力は高まり、SMA102は、Ps点からAf点に向けて実線に沿って収縮する。所定量収縮した後、通電を停止すると、SMA102は、冷却され戻り側の実線に沿ってMf点に向けて伸長し環境温度t1に対応するPt1点で平衡に達する。すなわち、環境温度がMf点より高い場合、ヒステリシスの影響を大きく受け環境温度が同じt1であるにも係らず通電加熱前後で、図2に示すように、SMA102の歪率(伸び)にd1の差が発生し、通電過熱前のPs点に相当する歪率まで戻らない。つまり、SMA102に通電加熱していない時の被駆動体101の基準位置が変化する。その結果、被駆動体101の図2に示す使用領域、すなわち有効移動範囲が変化し(狭まり)、高い精度で被駆動体101の位置制御を行うことが困難になる。   Here, the movement of the SMA 102 when the environmental temperature is higher than the Mf point, for example, at t1 shown in FIG. 2, will be described with reference to FIGS. When the SMA 102 is energized and heated, the stress of the SMA 102 increases as described above, and the SMA 102 contracts along the solid line from the Ps point toward the Af point. When the energization is stopped after contracting a predetermined amount, the SMA 102 is cooled and extended toward the Mf point along the solid line on the return side, and reaches equilibrium at the Pt1 point corresponding to the environmental temperature t1. That is, when the environmental temperature is higher than the Mf point, the distortion rate (elongation) of the SMA 102 is d1 as shown in FIG. A difference occurs, and the distortion rate corresponding to the Ps point before energization overheating does not return. That is, the reference position of the driven body 101 when the SMA 102 is not energized and heated changes. As a result, the use area of the driven body 101 shown in FIG. 2, that is, the effective movement range changes (narrows), and it becomes difficult to control the position of the driven body 101 with high accuracy.

そこで、本発明の実施形態1に係る駆動装置10は、このような問題に対応する為に、被駆動体101の有効移動範囲に対応するSMA102の歪率(伸び)が、使用環境温度範囲における非通電時の歪率(伸び)より小さくなるように有効移動範囲を設定する構成とした。すなわち、使用環境温度範囲における非通電時の被駆動体101の位置が、有効移動範囲の外に位置する構成とした。   Therefore, in order to cope with such a problem, the driving apparatus 10 according to the first embodiment of the present invention has a distortion rate (elongation) of the SMA 102 corresponding to the effective movement range of the driven body 101 in the use environment temperature range. The effective movement range is set to be smaller than the distortion rate (elongation) at the time of non-energization. In other words, the configuration is such that the position of the driven body 101 when not energized in the operating environment temperature range is located outside the effective movement range.

具体的には、図1に示すように、被駆動体101を駆動制御する際の基準位置Pi点を、前述の温度t1における被駆動体101の位置Pt1点よりもSMA102の収縮方向(矢印Y1方向)、すなわち歪率(伸び)が小さくなる方向に所定量d2隔てた位置に設定し、被駆動体101の有効移動範囲Dを基準位置Pi点からPn点とする構成とした。ここで、温度t1は、使用温度範囲の上限値とし、Mf点より高くAs点より低い温度とする。   Specifically, as shown in FIG. 1, the reference position Pi point for driving and controlling the driven body 101 is set to a contraction direction (arrow Y1) of the SMA 102 more than the position Pt1 point of the driven body 101 at the temperature t1 described above. (Direction), that is, a position separated by a predetermined amount d2 in a direction in which the distortion rate (elongation) decreases, and the effective movement range D of the driven body 101 is set from the reference position Pi point to the Pn point. Here, the temperature t1 is the upper limit value of the operating temperature range, and is higher than the Mf point and lower than the As point.

これにより、被駆動体101の有効移動範囲Dは、環境温度の変化による被駆動体101の位置変化やヒステリシスによる通電加熱前後の環境温度における被駆動体101の位置ずれ等に影響されることなく所定の範囲を維持される。その結果、高い精度で被駆動体101の位置制御を行うことが可能となる。   Thereby, the effective movement range D of the driven body 101 is not affected by the position change of the driven body 101 due to the change of the environmental temperature, the positional deviation of the driven body 101 at the environmental temperature before and after the energization heating due to the hysteresis, and the like. A predetermined range is maintained. As a result, the position of the driven body 101 can be controlled with high accuracy.

尚、本実施形態による駆動装置10においては、SMA102の温度と歪率の関係は、非通電時には低応力時の反応曲線(破線)上を移動し、駆動時には駆動応力時の反応曲線(実線)上を移動する構成としたが、非通電時、駆動時の何れも駆動応力時の反応曲線(実線)上を移動する構成としても、同様の効果が得られる。   In the driving apparatus 10 according to the present embodiment, the relationship between the temperature and the strain rate of the SMA 102 moves on a response curve (broken line) at low stress when not energized, and a response curve (solid line) at driving stress during driving. Although the configuration is such that it moves upward, the same effect can be obtained even when it is configured to move on the response curve (solid line) at the time of driving stress both during non-energization and during driving.

〔実施形態2〕
実施形態2によるレンズ駆動装置の要部構成を図3を用いて説明する。図3は、実施形態2によるレンズ駆動装置1の要部構成を示す模式図である。
[Embodiment 2]
The main configuration of the lens driving device according to the second embodiment will be described with reference to FIG. FIG. 3 is a schematic diagram illustrating a main configuration of the lens driving device 1 according to the second embodiment.

レンズ駆動装置1は、前述の駆動装置10を用いたカメラの焦点調整装置である。レンズ駆動装置1は、図示しない距離測定手段による距離情報に基づいて、レンズ110を合焦位置に移動させるものである。   The lens driving device 1 is a camera focus adjusting device using the driving device 10 described above. The lens driving device 1 moves the lens 110 to the in-focus position based on distance information from a distance measuring unit (not shown).

レンズ110は、移動ガイド106に移動可能に支持された被駆動体101に固定されている。レンズ110は、被駆動体101がバイアスバネ103によりストッパー104に押し付けられている位置Ps点から破線で示す最近接位置Pn点まで移動可能に構成されている。SMA102に図示しない駆動回路より通電が行われるとSMA102の応力がバイアスバネ103の相当の応力以上になりレンズ110が移動ガイド106に沿って矢印Y1方向に繰出される。   The lens 110 is fixed to a driven body 101 that is movably supported by the movement guide 106. The lens 110 is configured to be movable from a position Ps where the driven body 101 is pressed against the stopper 104 by the bias spring 103 to a closest position Pn indicated by a broken line. When the SMA 102 is energized from a drive circuit (not shown), the stress of the SMA 102 becomes equal to or greater than the stress of the bias spring 103 and the lens 110 is extended along the movement guide 106 in the direction of the arrow Y1.

このような構成のレンズ駆動装置1は、前述の実施形態1による駆動装置10の場合と同様に、環境温度がMf点より高い場合、ヒステリシスの影響を大きく受け環境温度が同じt1であるにも係らず通電加熱前後で、SMA102の歪率(伸び)にd1の差が発生する。その結果、レンズ110は、通電加熱前のPs点まで戻らずPt1点で均衡する。つまり、SMA102に通電加熱していない時の被駆動体101の基準位置が変化する。   As in the case of the driving device 10 according to Embodiment 1 described above, the lens driving device 1 having such a configuration is greatly affected by hysteresis when the environmental temperature is higher than the Mf point, and the environmental temperature is the same t1. Regardless, the difference in d1 occurs in the distortion rate (elongation) of the SMA 102 before and after energization heating. As a result, the lens 110 does not return to the Ps point before energization heating, and balances at the Pt1 point. That is, the reference position of the driven body 101 when the SMA 102 is not energized and heated changes.

そこで、駆動装置10の場合と同様に、図3に示すように、レンズ110を駆動制御する際の基準位置Pi点(無限位置)を、前述の温度t1におけるレンズ110の位置Pt1点よりもSMA102の収縮方向(矢印Y1方向)、すなわち歪率(伸び)が小さくなる方向に所定量d2隔てた位置に設定し、被駆動体101の有効移動範囲Dを基準位置Pi点(無限位置)から最近接位置Pn点とする構成とした。   Therefore, as in the case of the driving device 10, as shown in FIG. 3, the reference position Pi point (infinite position) when driving the lens 110 is set to be SMA 102 more than the position Pt1 point of the lens 110 at the temperature t1. Is set at a position separated by a predetermined amount d2 in the shrinking direction (arrow Y1 direction), that is, in a direction in which the distortion rate (elongation) decreases, and the effective movement range D of the driven body 101 is recently set from the reference position Pi point (infinity position) The contact position Pn point is used.

これにより、レンズ110の有効移動範囲Dは、環境温度がMf点より高い場合であっても環境温度に影響されることなく所定の範囲を維持される。その結果、無限位置Pi点と最近接位置Pn点の間で高い精度でレンズ110の位置制御を行うことが可能となる。尚、本実施形態においては、Pi、Pnをレンズ110のそれぞれ無限位置、最近接位置としたが、Pi、Pnをレンズ110のそれぞれ最近接位置、無限位置としてもよい。   As a result, the effective movement range D of the lens 110 is maintained within a predetermined range without being influenced by the environmental temperature even when the environmental temperature is higher than the Mf point. As a result, the position of the lens 110 can be controlled with high accuracy between the infinite position Pi point and the closest position Pn point. In this embodiment, Pi and Pn are the infinite position and the closest position of the lens 110, respectively, but Pi and Pn may be the closest position and the infinite position of the lens 110, respectively.

ここで、このような構成のレンズ駆動装置1の駆動制御について図4を用いて説明する。図4は、レンズ110の移動量とSMA102の抵抗値の関係を示す図である。   Here, driving control of the lens driving device 1 having such a configuration will be described with reference to FIG. FIG. 4 is a diagram illustrating the relationship between the movement amount of the lens 110 and the resistance value of the SMA 102.

通常、SMA102は、変態に伴い抵抗値が減少する。SMA102の収縮により、レンズ110を移動する構成としているため、レンズ110の移動に伴い、抵抗値は減少する。図示しない駆動回路とSMA102の両端が接続されており、SMA102に通電を行い加熱する。レンズ110がストッパー104に当たっている位置において、通電前の抵抗値をRoとすると、通電開始に伴い抵抗値は減少する。図2のPs点に相当する温度まで加熱された時点でレンズ110はストッパー104から離間し、このときの抵抗値はRsとなっている。さらに加熱をつづけるとレンズ110は、無限合焦位置Pi点に到達し、抵抗値はRiとなる。被写体に合焦する位置P点の抵抗値をRとすれば、駆動回路は、SMA102の抵抗値を検知しながら、抵抗値がRとなるよにフィードバック制御等の方法により通電制御する。   Normally, the resistance value of the SMA 102 decreases with transformation. Since the lens 110 is moved by contraction of the SMA 102, the resistance value decreases as the lens 110 moves. A drive circuit (not shown) and both ends of the SMA 102 are connected, and the SMA 102 is energized and heated. If the resistance value before energization is Ro at the position where the lens 110 is in contact with the stopper 104, the resistance value decreases as energization starts. When the lens 110 is heated to a temperature corresponding to the Ps point in FIG. 2, the lens 110 is separated from the stopper 104, and the resistance value at this time is Rs. As the heating continues, the lens 110 reaches the infinitely focused position Pi, and the resistance value becomes Ri. If the resistance value at the point P at which the subject is in focus is R, the drive circuit controls energization by a method such as feedback control so that the resistance value becomes R while detecting the resistance value of the SMA 102.

ここで、環境温度が前述のt1の場合、通電停止後、レンズ110は、ストッパー104の位置Ps点には復帰せず、図4に示すPt1点に位置する。この時の抵抗値をRt1とすると、本実施形態の構成においては、Rt1>Riの関係にあるため、この位置Pi点から通電加熱制御を行ってRi(無限合焦位置Pi点における抵抗値)とRn(最近接位置Pnにおける抵抗値)間の任意の抵抗値に相当する位置にレンズ110を移動させることができる。つまり環境温度t1においても、無限位置Pi点と最近接位置Pn点の間で高い精度でレンズ110の位置制御を行うことが可能となる。   Here, when the environmental temperature is the above-described t1, after the energization is stopped, the lens 110 does not return to the position Ps point of the stopper 104 but is positioned at the Pt1 point shown in FIG. Assuming that the resistance value at this time is Rt1, in the configuration of the present embodiment, since Rt1> Ri, the electric heating control is performed from this position Pi point to Ri (resistance value at the infinitely focused position Pi point). And Rn (the resistance value at the closest position Pn) can be moved to a position corresponding to an arbitrary resistance value. That is, even at the environmental temperature t1, the position control of the lens 110 can be performed with high accuracy between the infinite position Pi point and the closest position Pn point.

本発明の実施形態1に係る駆動装置の要部構成を示す模式図である。It is a schematic diagram which shows the principal part structure of the drive device which concerns on Embodiment 1 of this invention. SMAの温度と歪率の関係を示す図である。It is a figure which shows the relationship between the temperature of SMA, and a distortion. 本発明の実施形態2に係るレンズ駆動装置の要部構成を示す模式図である。It is a schematic diagram which shows the principal part structure of the lens drive device which concerns on Embodiment 2 of this invention. レンズの移動量とSMAの抵抗値の関係を示す図である。It is a figure which shows the relationship between the movement amount of a lens, and the resistance value of SMA.

符号の説明Explanation of symbols

1 レンズ駆動装置
10 駆動装置
101 被駆動体
102 SMA
103 バイアスバネ
104 ストッパー
105 固定部材
106 移動ガイド
110 レンズ
DESCRIPTION OF SYMBOLS 1 Lens drive device 10 Drive device 101 Driven object 102 SMA
103 Bias spring 104 Stopper 105 Fixing member 106 Movement guide 110 Lens

Claims (2)

通電加熱により収縮伸長して変形する形状記憶合金線と、
前記形状記憶合金線の変形によって移動される被駆動体と、
を有する駆動部と、
前記被駆動体に支持されるレンズと、
を備えるレンズ駆動装置において、
前記レンズ駆動装置は、さらに、
前記形状記憶合金線の加熱による収縮によって移動する方向とは反対の方向にバイアス力を付与するバイアス部と、
前記形状記憶合金線の非通電時には前記バイアス力により前記形状記憶合金線が伸長して移動する前記被駆動体を規制する規制部と、
を有し、
前記被駆動体の有効移動範囲の一方の端は前記レンズの無限位置であり、他方の端は、前記レンズの最近接位置であって、
前記形状記憶合金線への通電をオフした伸長時に、前記レンズ駆動装置の使用環境温度範囲の上限値として設定された所定の上限温度において、前記被駆動体が前記規制部によって前記有効移動範囲外で規制状態にあり、
前記被駆動体は、前記形状記憶合金線への通電をオフした伸長時には、前記レンズ駆動装置の使用環境温度範囲について設定された所定の上限温度では前記規制部に接触しており、かつ、前記形状記憶合金線への通電加熱による収縮により前記被駆動体が前記規制部を離れた後の冷却による伸長時には、前記形状記憶合金線が前記所定の上限温度に下がるまでは、前記規制部に接触しないように、前記有効移動範囲が設定され、
前記有効移動範囲に対応する前記形状記憶合金線の歪率が、前記使用環境温度範囲における非通電時の歪率よりも小さくなるように前記有効移動範囲が設定されていることを特徴とする駆動装置。
A shape memory alloy wire that contracts and expands by electric heating and deforms;
A driven body moved by deformation of the shape memory alloy wire;
A drive unit having
A lens supported by the driven body;
In a lens driving device comprising:
The lens driving device further includes:
A bias unit for applying a bias force in a direction opposite to the direction of movement by contraction due to heating of the shape memory alloy wire;
A restriction portion for restricting the driven body that the shape memory alloy wire extends and moves by the bias force when the shape memory alloy wire is not energized;
Have
One end of the effective movement range of the driven body is an infinite position of the lens, and the other end is a closest position of the lens,
When the energization to the shape memory alloy wire is turned off, the driven body is moved out of the effective movement range by the restricting portion at a predetermined upper limit temperature set as an upper limit value of the use environment temperature range of the lens driving device. Is in a regulated state,
The driven body is in contact with the restricting portion at a predetermined upper limit temperature set for a use environment temperature range of the lens driving device when extending the energization to the shape memory alloy wire, and the At the time of extension by cooling after the driven body leaves the restricting portion due to contraction due to energization heating to the shape memory alloy wire, the shape memory alloy wire is in contact with the restricting portion until the shape memory alloy wire falls to the predetermined upper limit temperature. The effective movement range is set so as not to
The effective movement range is set such that the distortion rate of the shape memory alloy wire corresponding to the effective movement range is smaller than the distortion rate at the time of non-energization in the operating environment temperature range. apparatus.
前記使用環境温度範囲の上限は、前記形状記憶合金線のマルテンサイト変態終了点に相当する温度より高く、オーステナイト変態開始点に相当する温度より低く設定されたことを特徴とする請求項1に記載の駆動装置。 The upper limit of the use environment temperature range is set higher than a temperature corresponding to a martensite transformation end point of the shape memory alloy wire and lower than a temperature corresponding to an austenite transformation start point. Drive device.
JP2007253757A 2007-09-28 2007-09-28 Drive device Expired - Fee Related JP5029260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253757A JP5029260B2 (en) 2007-09-28 2007-09-28 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253757A JP5029260B2 (en) 2007-09-28 2007-09-28 Drive device

Publications (2)

Publication Number Publication Date
JP2009086142A JP2009086142A (en) 2009-04-23
JP5029260B2 true JP5029260B2 (en) 2012-09-19

Family

ID=40659681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253757A Expired - Fee Related JP5029260B2 (en) 2007-09-28 2007-09-28 Drive device

Country Status (1)

Country Link
JP (1) JP5029260B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099156A2 (en) 2007-02-12 2008-08-21 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
WO2010029316A2 (en) 2008-09-12 2010-03-18 Cambridge Mechatronics Limited Optical image stabilisation
JP5548211B2 (en) 2008-10-29 2014-07-16 ケンブリッジ メカトロニクス リミテッド Control of shape memory alloy actuator device
WO2010073902A1 (en) * 2008-12-24 2010-07-01 コニカミノルタオプト株式会社 Shape memory alloy actuator drive device and method, and imaging device using same
US8866918B2 (en) 2010-09-22 2014-10-21 Cambridge Mechatronics Limited Optical image stabilisation
GB201220485D0 (en) 2012-11-14 2012-12-26 Cambridge Mechatronics Ltd Control of an SMA actuation apparatus
GB201610039D0 (en) 2016-06-08 2016-07-20 Cambridge Mechatronics Ltd Dynamic centring of SMA actuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168282A (en) * 1983-03-11 1984-09-21 Nhk Spring Co Ltd Heat responsive device utilizing shape memory spring
JP2530692B2 (en) * 1988-03-04 1996-09-04 松下電工株式会社 Circuit protection element
JP2002130114A (en) * 2000-10-20 2002-05-09 Toshiba Corp Actuator device
JP4243042B2 (en) * 2001-06-22 2009-03-25 トキコーポレーション株式会社 Shape memory alloy actuator and design method thereof
JP2003195382A (en) * 2001-12-27 2003-07-09 Minolta Co Ltd Driving device using shape memory alloy

Also Published As

Publication number Publication date
JP2009086142A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4946619B2 (en) Drive device
JP5029260B2 (en) Drive device
US9664182B2 (en) Shape memory alloy actuating element with improved fatigue resistance
EP2025932B1 (en) Driving mechanism, driving device, and lens driving device
JP4832373B2 (en) Shape memory alloy actuator
US7614228B2 (en) System and method of manufacturing actuator
EP2394055B1 (en) Shape memory alloy actuation apparatus
US8588598B2 (en) Shape memory alloy actuation apparatus
JP5126362B2 (en) Lens drive device
EP2350456B1 (en) Shape memory alloy actuation apparatus
US20240318641A1 (en) Actuators
EP2546690A1 (en) Driving mechanism, driving device, and method of manufacturing driving device
US20220290659A1 (en) Thermal actuator arrangement having improved reset time
WO2012093567A1 (en) Shape-memory alloy actuator control device and optical component drive unit
WO2011108209A1 (en) Position control device, position control method, driving device and imaging device
WO2012005072A1 (en) Shape-memory alloy actuator control device and optical component drive unit
WO2015133515A1 (en) Lens unit and imaging device
KR101034500B1 (en) Shape memory alloy actuator
WO2012029550A1 (en) Device for controlling and method for controlling shape-memory alloy wire actuator
JP2009108729A (en) Control method and control device for shape memory alloy actuator
JP2009128423A (en) Drive control device
JP2013246335A (en) Drive mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees