WO2012005072A1 - Shape-memory alloy actuator control device and optical component drive unit - Google Patents

Shape-memory alloy actuator control device and optical component drive unit Download PDF

Info

Publication number
WO2012005072A1
WO2012005072A1 PCT/JP2011/062802 JP2011062802W WO2012005072A1 WO 2012005072 A1 WO2012005072 A1 WO 2012005072A1 JP 2011062802 W JP2011062802 W JP 2011062802W WO 2012005072 A1 WO2012005072 A1 WO 2012005072A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory alloy
shape memory
value
energization
current
Prior art date
Application number
PCT/JP2011/062802
Other languages
French (fr)
Japanese (ja)
Inventor
泰啓 本多
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012005072A1 publication Critical patent/WO2012005072A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to an actuator control device using a shape memory alloy and an optical component drive unit using the same.
  • MCUs micro-camera units
  • AF auto focus
  • Ni-Ti and other shape memory alloys are known as actuators based on deformation due to temperature changes as the driving principle. Therefore, it is considered promising for applications such as the above-mentioned MCU AF.
  • Patent Document 1 the disclosure of the range of the wire diameter for ensuring responsiveness of 10 Hz or more (Patent Document 1) and the devising of the cross-sectional shape of the SMA wire can reduce heat dissipation.
  • Patent Document 2 There has been proposed a technique (Patent Document 2) that changes and improves responsiveness.
  • Patent Document 3 adjusts the bias voltage for the purpose of preventing overheating / insufficiency of SMA caused by variations in the SMA cross-sectional area in the push-pull arrangement, and optimizes control response in an excessive state. It is not a thing.
  • the present invention has been made in view of such circumstances, and even when the SMA wire diameter varies, the responsiveness of the actuator is improved by the stable optimum control, and the speed of stabilization is increased. It is an object of the present invention to provide a shape memory alloy actuator control device that can be used.
  • a shape memory alloy actuator control device that controls an actuator using a shape restoring force due to a temperature change of a wire-like shape memory alloy.
  • the energization unit for energizing the shape memory alloy and the value of the energization current to the shape memory alloy for satisfying a predetermined energization reference condition are variably set according to the wire diameter of the shape memory alloy.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the first aspect, wherein the current setting unit controls the energization unit to inspect the shape memory alloy.
  • An inspection energization control unit for energizing and an inspection processing unit for determining a value of the energization current based on a result of the inspection energization to the shape memory alloy, and the energization control unit in the actual drive of the actuator The value of the energization current determined by the inspection energization is used.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the second aspect, wherein the inspection energization applies a current smaller than a current range in actual driving of the actuator to the shape.
  • the test processing unit determines the value of the energization current based on the energization result with the small current.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the second or third aspect, wherein the inspection processing unit detects the shape memory alloy detected by the inspection energization.
  • the value of the energization current is determined based on the resistance value of the shape memory alloy, and the resistance value of the shape memory alloy correlates with the wire diameter of the shape memory alloy. It is determined as a value reflecting the diameter of the memory alloy.
  • a shape memory alloy actuator control device is the shape memory alloy actuator control device according to any one of the second to fourth aspects, wherein the temperature specification for specifying the temperature of the shape memory alloy or its surroundings And a temperature compensation unit that performs temperature compensation when determining the value of the energization current by changing the energization reference condition according to the temperature identified by the temperature identification unit. And
  • a shape memory alloy actuator control device is the shape memory alloy actuator control device according to the fifth aspect, wherein the temperature specifying unit is a temperature sensor disposed in the vicinity of the shape memory alloy. And the temperature compensation unit performs the temperature compensation according to a temperature detected by the temperature sensor.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the fifth aspect, wherein the temperature specifying unit uses the resistance value of the shape memory alloy as a substitute index of the temperature.
  • a resistance value detection unit for detecting, and performing the temperature compensation when determining the value of the energization current by changing the energization reference condition using the resistance value as a substitute index of the temperature. To do.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the first aspect, wherein the current setting unit is configured to store wire diameter information corresponding to the wire diameter of the shape memory alloy.
  • the current setting unit is configured to store wire diameter information corresponding to the wire diameter of the shape memory alloy.
  • a wire diameter information storage unit that stores a value
  • a current value determination unit that determines a value of the energization current based on the value of the wire diameter information.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the eighth aspect, wherein the wire diameter information is a wire diameter of the shape memory alloy measured in advance,
  • the current value determination unit includes a conversion unit that converts the value of the wire diameter stored in the wire diameter information storage unit into the value of the energization current.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the eighth aspect, wherein the wire diameter information storage unit stores a resistance value of the shape memory alloy,
  • the current value determination unit includes a conversion unit that converts the resistance value into a value of the energization current, and determines the value of the energization current based on a conversion result of the conversion unit.
  • the shape memory alloy actuator control device is the shape memory alloy actuator control device according to the tenth aspect, wherein the wire diameter information storage unit measures the resistance value of the shape memory alloy.
  • the temperature is stored together with the resistance value, and the conversion unit performs temperature compensation when determining the value of the energizing current by converting the combination of the resistance value and the temperature into the value of the energizing current. It is characterized by that.
  • a shape memory alloy actuator control device is the shape memory alloy actuator control device according to any one of the first to eleventh aspects, wherein the resistance value is a value representing the resistance of the shape memory alloy.
  • a resistance value detection unit that detects the resistance value
  • a comparison unit that compares the resistance value detected by the resistance value detection unit and a target resistance value as a value representing the target resistance value
  • the energization control unit includes: When the shape memory alloy is deformed into a desired shape, the shape memory alloy is reduced so that a difference between the resistance value signal obtained by the resistance value detection unit and the target resistance value signal is reduced. The average energization current is controlled.
  • a shape memory alloy actuator control device is a shape memory alloy actuator control device according to any one of the first to twelfth aspects, wherein the energization control unit is configured to control the shape memory alloy by a PWM method. Conducting control is performed to change at least one of a pulse amplitude and a pulse width to the shape memory alloy.
  • An optical component driving unit includes an actuator that drives a predetermined optical component using a shape restoring force due to a temperature change of a wire-shaped shape memory alloy, and any one of the first to thirteenth aspects. And a shape memory alloy actuator control device according to the above.
  • the energization conditions can be variably set according to the SMA wire diameter, and energization control according to the wire diameter becomes possible. Even if the wire diameter of the SMA varies, the responsiveness of the actuator is improved by stable optimum control, and the static stabilization speed is also increased.
  • the shape memory alloy actuator control device in order to determine the energization current based on the result of the inspection energization performed at an appropriate time such as immediately after the start, There is no need to measure the diameter and store it in the device.
  • the shape memory alloy actuator control apparatus since the value of the energization current is determined by the inspection energization of the current smaller than the current range in the actual drive of the actuator, a significant temperature change is caused. Therefore, it is possible to determine the energization current stably reflecting the wire diameter of the shape memory alloy.
  • the resistance value of the shape memory alloy is detected, and the value of the energization current is determined using the correlation between the resistance value and the wire diameter. There is a clear correlation between the resistance value and the wire diameter. For this reason, the value of the energization current can be accurately determined through electrical measurement without actually measuring the wire diameter itself of the shape memory alloy.
  • the energization current can be determined more appropriately by performing temperature compensation.
  • the wire diameter (or information correlated with the wire diameter) measured at the manufacturing factory or the like as the wire diameter information is previously stored in the apparatus as the wire diameter information. Since it is stored, it can be read and used when the actuator is driven, and the internal processing for determining the energization current can be simplified to shorten the control time.
  • the shape memory alloy actuator control device by applying the configuration for determining the energization current according to the wire diameter to the PWM drive type shape memory alloy actuator control device, the power supply voltage is reduced. Thus, the effect of reducing power consumption can be increased.
  • FIG. 1 is a plan view schematically showing an essential part of a lens driving system using an SMA driving device according to an embodiment of the present invention.
  • FIG. 2 is a side view showing the operation of the lens driving system of FIG.
  • FIG. 3 is a diagram for explaining that the driving response of the SMA lens driving unit varies depending on the SMA wire diameter.
  • FIG. 4 is a graph showing the temperature dependence of the resistance value and the amount of expansion / contraction of SMA as a characteristic curve.
  • FIG. 5 is a diagram showing the temperature dependence of the resistance value and lens displacement of SMA as a characteristic curve.
  • FIG. 6 is a graph showing the lens displacement dependence of the resistance value of SMA as a characteristic curve.
  • FIG. 7 is a block diagram showing the configuration of the SMA actuator control apparatus according to one embodiment.
  • FIG. 8 is a diagram illustrating an SMA energization waveform.
  • FIG. 9 is a diagram for explaining the correlation between the SMA wire diameter and its physical characteristics.
  • FIG. 10 is a flowchart for explaining the operation of the SMA actuator control apparatus according to the embodiment.
  • FIG. 11 is a block diagram showing the configuration of the SMA actuator control device according to one embodiment.
  • FIG. 12 is a flowchart for explaining the operation of the SMA actuator controller according to the embodiment.
  • FIG. 13 is a diagram showing an example of a temperature / target voltage table for temperature compensation.
  • FIG. 14 is a diagram showing an example of a setting table for energization parameters corresponding to the wire diameter and temperature.
  • FIG. 15 is a diagram showing an example of a table for temperature estimation by resistance detection.
  • FIG. 16 is a diagram showing an example of a table for temperature estimation by resistance detection.
  • FIG. 17 is a diagram showing a table example for temperature estimation by resistance detection.
  • FIG. 1 and FIG. 2 are diagrams schematically showing a main part of a mechanism in a lens driving unit (optical component driving unit) 100 configured using the SMA actuator control device according to the embodiment of the present invention.
  • FIG. 1 is a plan view (lens opening surface) viewed from the lens side
  • FIG. 2 is a side view viewed from the direction of arrow A in FIG. 2A shows a state before driving
  • FIG. 2B shows a state after driving.
  • the lens driving unit 100 is used in a small camera system or the like incorporated in a mobile phone, and performs an AF operation using an actuator using an SMA (SMA actuator) as a driving source.
  • SMA SMA actuator
  • the lens driving unit 100 mainly includes a lens unit 1 (driven object), a lever member 2 that moves the lens unit 1 in the optical axis AX direction (first axis direction), an SMA actuator 3, A base member 4, a top plate 5, parallel plate springs 6 a and 6 b, a bias spring 7, and the like are provided, and the lens unit 1 and the like are assembled to the base member 4.
  • the top plate 5 and the parallel leaf springs 6a and 6b are omitted in FIG. 1 for convenience.
  • the base member 4 is fixed to a member (for example, a mobile phone frame or a mount substrate) to which the lens driving unit 100 is attached, and is a non-moving member constituting the bottom side of the lens driving unit 100.
  • the base member 4 is formed in a square plate shape in plan view, and is entirely made of a resin material or the like.
  • the lens unit 1 has a cylindrical shape, and includes an imaging lens 10, a lens driving frame 12 that holds the imaging lens 10, and a lens barrel 14 that stores the lens driving frame 12.
  • the imaging lens 10 includes an objective lens, a focus lens, a zoom lens, and the like, and constitutes an imaging optical system for a subject image with respect to an imaging element (not shown).
  • the lens driving frame 12 is a so-called ball frame, and moves in the optical axis AX direction together with the lens barrel 14.
  • a pair of support portions 16 project from the outer peripheral edge portion of the lens drive frame 12 at the distal end on the object side with an angular difference of 180 ° in the circumferential direction.
  • the lens unit 1 is disposed on the base member 4 in a state of being inserted into an opening formed in the top plate 5.
  • the pair of support portions 16 are arranged so as to be positioned in the vicinity of the pair of diagonals of the base member 4 (see FIG. 1).
  • Parallel plate springs 6a and 6b are fixed to the base member 4 and the top plate 5, respectively, and the lens unit 1 is fixed to the parallel plate springs 6a and 6b. Accordingly, the lens unit 1 is supported so as to be displaceable with respect to the base member 4 and the like, and the degree of freedom of displacement is restricted in a direction along the optical axis AX.
  • the top plate 5 may be fixed to the base member 4 via a support column (not shown) or may be a structure integrated with the base member 4.
  • the lever member 2 applies a driving force in the direction of the optical axis AX to the lens unit 1 by engaging with the lens unit 1 via the support portion 16.
  • the lever member 2 is disposed on the side of the lens unit 1, specifically, at one corner other than the corner where the support portion 16 of the lens unit 1 is located, which is the corner of the base member 4. .
  • the lever member 2 is supported so as to be swingable about an axis that is orthogonal to the optical axis AX and extends in the direction in which the pair of support portions 16 are arranged (the vertical direction in FIG. 1).
  • the lever member 2 has an arm portion 21 and an inverted L-shape in a side view having an arm portion 21 and an extending portion 22 extending from the base end portion of the arm portion 21 in the optical axis AX direction.
  • the bent portion serving as the boundary between the arm portion 21 and the extended portion 22 is supported on the base member 4 by being supported by the tip of the support leg 8 erected on the base member 4. ing.
  • the shape of the tip of the support leg 8 (hereinafter referred to as the lever support portion 8a) is a substantially cylindrical shape extending in a direction orthogonal to the optical axis AX direction (a direction orthogonal to the paper surface of FIG. 2A).
  • the lever member 2 is supported so as to be swingable about an axis orthogonal to the optical axis AX direction with the lever support portion 8a as a fulcrum.
  • the arm portion 21 is formed in an arc shape in plan view. Specifically, as shown in FIG. 1, the lens unit 1 is bifurcated from the extended portion 22 to both sides of the lens unit 1 and extends evenly in the vicinity of the outer peripheral surface of the lens unit 1. Is formed so as to surround. The tips (both ends) of the arm portion 21 reach the positions of the support portions 16 of the lens unit 1, respectively. Then, the SMA actuator 3 is bridged over the extended portion 22, and a direction perpendicular to the optical axis AX direction (second axis direction: left-right direction in FIG. 2A) at this bridge position (referred to as the displacement input portion 2a). When the moving force F1 (see FIG. 2B) is input, the lever member 2 swings.
  • the tip of the arm portion 21 (referred to as the displacement output portion 2b) is displaced in the optical axis AX direction, and the displacement output portion 2b engages with each support portion 16 to cause the lens unit 1 to move in the optical axis AX direction.
  • a driving force is applied.
  • the SMA actuator 3 applies a moving force F1 (see FIG. 2 (b)) to the lever member 2, and is composed of, for example, an SMA wire such as a Ni—Ti alloy, and is a linear actuator having a substantially circular cross section. is there.
  • F1 moving force
  • SMA wire such as a Ni—Ti alloy
  • SMA3 SMA3
  • the SMA actuator 3 expands when given a predetermined tension in a state where the elastic modulus is low (martensite phase) at a low temperature. When heat is applied in this extended state, the SMA actuator 3 undergoes phase transformation and has a high elastic modulus (austenite). Phase: parent phase) and return to its original length from its extended state (recover shape).
  • the SMA actuator 3 is energized and heated to perform the above-described phase transformation (details will be described later). That is, since the SMA actuator 3 is a conductor having a predetermined resistance value, Joule heat is generated by energizing the SMA actuator 3 itself, and transformation from the martensite phase to the austenite phase is performed by self-heating based on the Joule heat. It is supposed to be configured. For this reason, the first electrode 30 a and the second electrode 30 b for energization heating are fixed to both ends of the SMA actuator 3. These electrodes 30 a and 30 b are fixed to predetermined electrode fixing portions provided on the base member 4.
  • the SMA actuator 3 is bridged between the electrodes 30a and 30b with a portion engaging with the extending portion 22 of the lever member 2 as a turning point.
  • a movement force F1 (see FIG. 2B) is applied to the lever member 2, and this movement force F1.
  • the lever member 2 swings.
  • the electrodes 30a and 30b are arranged in the vicinity of the support portion 16 of the lens unit 1 in the base member 4, respectively.
  • the lengths of the SMA actuator 3 from the electrodes 30a and 30b to the turn-back point are set to be equal to each other, so that the amount of expansion / contraction of the SMA actuator 3 on both sides of the displacement input portion 2a becomes equal. Rubbing between the lever member 2 and the SMA actuator 3 is prevented.
  • a V-groove 21a (corresponding to the displacement input portion 2a) is formed in the extended portion 22, and the SMA actuator 3 is bridged so as to be fitted into the V-groove 21a, whereby the lever member 2 is On the other hand, the SMA actuator 3 is stably suspended.
  • the lens unit 1 moves against the pressing force of the bias spring 7.
  • the amount of displacement of the lens unit 1 is adjusted by controlling the energizing current to the SMA actuator 3 and adjusting the amount of the moving force F1.
  • the moving force F1 disappears, and the pressing force of the bias spring 7
  • the lens unit 1 returns to the home position along the optical axis AX direction. In this way, the lens unit 1 can be displaced along the optical axis AX direction by turning on and off the SMA actuator 3, and the moving force F1 can be controlled by controlling the current supplied to the SMA actuators 3a and 3b.
  • the amount of displacement of the lens unit 1 can be adjusted by adjusting the amount of force.
  • the lens unit 1 can be favorably moved along the optical axis AX in accordance with the operation of the SMA actuator 3.
  • the temperature sensor 107 for detecting the temperature of the SMA actuator 3 itself or in the vicinity thereof is attached to the base member 4 so as to face the SMA actuator 3. A method of using the temperature information obtained by the temperature sensor 107 will be described later.
  • FIG. 3 to 6 are diagrams showing general properties of physical properties of the linear SMA having a substantially circular cross section.
  • FIG. 3 is a diagram for explaining the characteristics of the drive response when the wire diameters (that is, the diameters of the cross sections) are different, and
  • FIG. 3A shows the drive response when performing constant current drive.
  • FIG. 3B shows drive response in step drive (servo).
  • the volume (heat capacity) of the SMA increases in proportion to the square of the wire diameter D.
  • the amount of heat released from the SMA to the outside increases in proportion to the surface area of the SMA, but the surface area is proportional to the wire diameter D.
  • the generated Joule heat is (the square of current I) ⁇ (resistance R), but the resistance R becomes smaller in proportion to the square of the wire diameter D.
  • the temperature rise due to energization (joule heat / heat capacity) is inversely proportional to the fourth power of the wire diameter D, and the heat radiation from the surface is proportional to the wire diameter D. Then, even if the currents flowing through the SMA are the same value, if the wire diameter D is small, the effect of the temperature increase due to energization becomes large, greatly exceeding the heat dissipation. That is, the smaller the wire diameter D, the greater the Joule heat and the smaller the heat capacity, and the more likely the temperature rises. On the other hand, the heat accumulated in the SMA is less likely to dissipate because the surface area decreases. As a result, the smaller the SMA wire diameter (that is, the thinner the wire), the shorter the time required for temperature change and the faster the response speed.
  • the servo control is a method in which the amount of energization is feedback controlled and information is moved to a target displacement while acquiring information on the current displacement.
  • the resistance value of the SMA itself correlates with the deformation amount (expansion / contraction amount) of the SMA. The resistance value of SMA is detected by using this, and the resistance value is used as displacement information of SMA.
  • DR correlation Correlation between “wire diameter-resistance value” (resistance value increases as wire diameter decreases)
  • RT correlation Correlation between "resistance value-temperature” (resistance value decreases with increasing temperature in the temperature range where SMA contracts)
  • TX correlation Correlation between “temperature-SMA expansion / contraction amount” (the higher the temperature, the larger the expansion / contraction amount)
  • the correlation of “resistance value ⁇ SMA expansion / contraction amount (lens displacement)” as shown in FIG. 6 can be specified. Therefore, by measuring the resistance value of SMA, the expansion / contraction of SMA The amount (lens displacement due to expansion and contraction of SMA) is obtained.
  • the amount of current supplied to the SMA by feedback control is determined by comparing the target displacement with the current displacement.
  • proportional control which is a simple control method
  • the energization amount is determined so as to be proportional to the difference between the target displacement and the current displacement. That is, the energization amount is calculated by multiplying the difference amount between the target displacement and the current displacement by a constant (gain).
  • FIG. 3 (b) shows response characteristics when the target displacement P2 is step-driven from a state where the target displacement P1 is settled. Similar to FIG. 3A, in FIG. 3B, three cases of different wire diameters D1 ⁇ wire diameter D1 ⁇ wire diameter D2 ⁇ wire diameter D3 are considered. In this case, even if the gain is set so that the response at the wire diameter D2 is optimized, the response becomes slow at the thicker wire diameter D3, and the response becomes too high at the thinner wire diameter D1, resulting in overshoot. Will occur.
  • FIG. 4 is a diagram showing the relationship between the temperature-resistance value and the temperature-stretching amount of the SMA wire. These correspond to the RT correlation and TX correlation described above.
  • a general characteristic curve is shown when the temperature is changed in a state where Ni-Ti SMA is stretched by applying a tension of about 200 MPa.
  • the resistance value increases like the general metal below the As point, and the strain changes as the crystal phase starts to transform to the austenite phase near the As point. That is, the length of the wire contracts.
  • the transformation does not shrink due to the complete transformation to the austenite phase near the Af point.
  • the resistance value decreases due to the crystal phase change and deformation. Further, in a temperature region exceeding Af, the resistance value increases with increasing temperature like a general metal.
  • the resistance value and strain follow the same trajectory as the temperature increasing process at a temperature higher than the Ms point, but the crystal phase transforms into a martensite phase near the Ms point.
  • the strain is stretched by the tension and starts to return to its original state.
  • transformation to the martensite phase is completed almost completely near the Mf point, and the original stretched state is restored.
  • the resistance value increases, and in the temperature region lower than Mf, the same trajectory as when the temperature rises is reversed.
  • transformation temperature varies depending on the composition ratio of Ni-Ti, when used as an energized actuator, for example, those with As: 80 ° C, Af: 85 ° C, Ms: 65 ° C, Mf: 60 ° C are used. .
  • FIG. 5 is a diagram illustrating the relationship between the temperature-resistance value and the temperature-lens displacement of the SMA used for driving the AF lens in the lens driving unit 100 of the embodiment.
  • FIG. 5 shows a curve that does not include the high temperature side of the characteristic curve of FIG. 4, and shows a range that is actually used as a product.
  • the resistance value becomes maximum (hereinafter referred to as “maximum resistance value Rmax”) in the vicinity of the transformation to the austenite phase.
  • the wire starts to shrink from here, but the lens does not move immediately because of the slack of the wire and the elastic deformation of each part.
  • the resistance value at which the temperature increases and the actuator displacement starts to change is referred to as “displacement resistance value Rinf”.
  • the lens starts to extend in the macro direction from the infinite end.
  • the resistance value decreases as the lens moves in the macro direction.
  • the resistance value when reaching the macro end is referred to as “macro end resistance value Rmcr”.
  • the resistance value increases as the lens moves in an infinite direction.
  • the resistance value (referred to as “radiation resistance value Rstart”) in a completely radiated state before energization varies depending on the ambient temperature (environment temperature or room temperature). Therefore, when calculating the wire diameter based on the resistance value in the heat dissipation state, it is desirable to perform correction based on the ambient temperature.
  • FIG. 6 is a characteristic curve of SMA resistance value-lens displacement used in the lens driving system 100.
  • the temperature rise process and the temperature decrease process have the same trajectory and the hysteresis disappears.
  • this hysteresis can be made very small. It has been known.
  • the resistance value R accompanying the lens displacement in the movable range of the lens is a range of “displacement resistance value Rinf ⁇ resistance value R ⁇ macro-edge resistance value Rmcr”, and in this range, the resistance value of the SMA.
  • -Lens displacement has a substantially linear characteristic.
  • the wire diameter information is used indirectly (first embodiment) or directly (second embodiment), and the energization parameter (typically feedback gain in the case of servo control) is used as the wire diameter. It is a characteristic matter of each embodiment corresponding to the technical idea of the present invention to realize the optimum control even if there is a variation in the wire diameter by setting the variable accordingly.
  • the SMA actuator control device based on the technical idea of the present invention described above controls the actuator using the shape restoring force due to the temperature change of the wire-like SMA 3. Specifically, energization to the SMA 3 is controlled by a PWM (pulse width modulation) method, and the value of the energization parameter to the SMA 3 for satisfying a predetermined energization reference condition can be varied according to the wire diameter D of the SMA 3. Set. Based on the set energization parameter, the control signal is changed according to the operation command value to the actuator, and energization control to the SMA 3 is performed.
  • PWM pulse width modulation
  • FIG. 7 is a block diagram showing the configuration of the SMA actuator control apparatus 101 according to the first embodiment.
  • the SMA actuator control apparatus 101 includes the mechanism system shown in FIGS. 1 and 2 in the lens driving system 100. It corresponds to a control system for controlling.
  • the SMA actuator 3 can be energized by the variable current source 106 from the power supply line PL side between the power supply line PL that supplies the power supply voltage V and the ground line GL.
  • the SMA actuator 3 corresponds to the SMA actuator 3 of the lens driving unit 100 shown in FIGS.
  • Both ends of the SMA actuator 3 is connected to the resistance value detecting section 102, the resistance value detecting section 102, Ohm's law by, detecting the resistance value R SMA from the voltage V across the known current value I and the SMA actuator 3. Since the current value I becomes a substitute index in the one-to-one relationship with the voltage V across if known resistance value R SMA, to detect the voltage V across, it a physical detecting the resistance value R SMA Or mathematically equivalent. That is, the physical quantity detected by the resistance value detection unit 102 is not limited to the absolute resistance value RSMA , but may be another quantity that serves as a substitute index for the resistance value RSMA .
  • a value representing the resistance value SMA may be detected by having a one-to-one relationship with the resistance value SMA.
  • the “resistance value” detected by the resistance value detection unit 102 of the present invention is used in a sense including not only the resistance value itself but also a resistance expression value such as a voltage.
  • Resistance R SMA of the SMA actuator detected by the resistance value detecting section 102 is input to one input terminal of the comparator 103, the other input terminal of the comparator 103 target resistance Rp from the controller 104 Entered.
  • the resistance value R is detected instead of providing the displacement sensor by utilizing the above-described relationship between the SMA resistance value and the lens displacement (see FIG. 6).
  • the comparison between the actual resistance value obtained by this detection and the target resistance value indirectly compares the current lens displacement value with the target lens displacement value. That is, the comparison unit 103 outputs the result of comparing the input values of the actually measured resistance value RSMA and the target resistance value Rp to the energization control calculation unit 105.
  • the ON / OFF control of the variable current source 106 for performing the PWM drive is possible according to the output result of the energization control calculation unit 105 (difference between the actually measured resistance value RSMA and the target resistance value Rp).
  • the target resistance value Rp is also generally May be a value expressing the target resistance value Rp by having a one-to-one relationship with the target resistance value Rp (a “target resistance value” including the target resistance expression value). Therefore, one of the signals input to each input terminal of the comparison unit 103 is a “resistance value” signal output from the resistance value detection unit 102, and the other is a “target resistance value” signal. Become.
  • a PWM waveform has two values, a peak value of a pulse (pulse amplitude) and a duty ratio (ratio of ON time per cycle of a pulse train). It depends on the parameters.
  • the lens displacement drive in this embodiment is realized by changing the duty ratio and thereby increasing or decreasing the average energization amount to the SMA.
  • the current value (pulse amplitude value) at the time of generating such a pulse train is obtained. Set in advance according to the wire diameter.
  • Duty ratio control In the example of the PWM waveform of FIG. 8, the duty ratio DA in the heat dissipation state A and the duty ratio DB in the heating state B are in a relationship of “duty ratio DA ⁇ duty ratio DB”. Further, the variable current source is set to have a constant current output, and the applied current Ip is constant. Therefore, the time average current (energization amount) is determined by the duty ratio, and the heating amount by energization is (state A) ⁇ (state B), so the SMA temperature is (state A) ⁇ (state B).
  • the SMA resistance value RSMA is (state A)> (state B), and the current Ip is constant, so that the SMA terminal voltage is “ Voltage VA> voltage VB ”. Since the current Ip is a known value set in the variable current source, the SMA resistance value RSMA is detected from the terminal voltages VA and VB in any state such as the heat dissipation state A and the heating state B by Ohm's law. be able to.
  • the resistance value RSMA of the SMA is detected and compared with the target resistance value Rp, feedback control is performed to increase or decrease the energization amount based on the duty ratio, thereby controlling the displacement of the actuator to the target position.
  • the current Ip is constant
  • the current Ip is variable according to the wire diameter D.
  • the current adjustment signal SI is a signal that specifies the value of the current Ip.
  • the average energization amount (current conversion) per unit time to the SMA 3 is the product: Ip ⁇ Dp (Dp is the duty ratio)
  • the average energization is performed regardless of which of the current Ip value and the duty ratio Dp is changed.
  • the drive control to the target displacement is performed by duty ratio control, while the value of the current Ip, that is, the pulse amplitude is adjusted according to the wire diameter.
  • This first embodiment employs the latter, and as will be described in detail later, a physical quantity having a specific relationship (correlation) with the wire diameter D is automatically measured in the lens driving unit, and based on the measurement result, “ “Set current Ip according to wire diameter D”.
  • a conversion table or a conversion formula (hereinafter referred to as “conversion information”) determined in advance based on the mutual relationship of physical quantities in FIG. (Generic name) is stored.
  • the control circuit is configured to detect the resistance value RSMA of the SMA 3 as a physical quantity corresponding to the wire diameter, and to feed it back to the energization amount to the SMA 3 . The significance and specific usage of the conversion information will be described later.
  • the temperature sensor 107 measures the temperature (environment temperature) of the SMA 3 or its surroundings, and the temperature value detected by the temperature sensor 107 is used for temperature compensation described later.
  • FIG. 9 is a block diagram for explaining the correlation between the wire diameter D of the SMA 3 and its physical characteristics.
  • the wire diameter of the SMA 3 is “wire diameter D”
  • the temperature of the SMA 3 detected by the temperature sensor 107 is “temperature T”
  • the resistance value of the SMA 3 is “resistance R”
  • the voltage of the SMA 3 as the energization reference condition is “ Assuming that the current to the SMA 3 at which the voltage Vp ”and the terminal voltage of the SMA 3 become the voltage Vp is“ current Ip ”, the physical relationship between these factors is shown in FIG.
  • the gain of the feedback loop of PWM control depends on the current Ip. That is, when the duty ratio of the PWM waveform is changed in accordance with the difference between the target displacement and the current displacement, the larger the current Ip, the larger the amount of heat generation of the SMA 3 is, which corresponds to the larger gain of the feedback loop. Therefore, adjusting the gain according to the wire diameter D means that the magnitude of the current Ip is variably set according to the wire diameter D.
  • the influence of the wire diameter D can be set to the gain of the feedback loop of the PWM control. Can be imported automatically.
  • the response tends to be hypersensitive, but the resistance R increases as the wire diameter D decreases. Therefore, the current value Ip at which the terminal voltage V of the SMA 3 becomes the predetermined value Vp is determined as a smaller current value when the wire diameter D is small than when the wire diameter D is large. As a result, when the wire diameter D is small, the gain becomes small, and a sensitive response is suppressed. The reverse is true when the linear D is large.
  • the resistance value R of the SMA can be expressed by the following equation (1) using the resistivity ⁇ (T) and the shape factor F (D).
  • the “shape factor” mentioned here is a factor that generally changes according to the geometric shape and size of the SMA, but in this embodiment, the linear SMA 3 having a substantially circular cross section is used. Is the wire diameter D of SMA.
  • the resistance R is not only small when the wire diameter D is large and large when the wire diameter D is small, but is also restricted by the resistivity ⁇ , that is, the temperature T. . Therefore, the resistance R detected by the resistance value detection unit 102 reflects not only the wire diameter D but also the value of the temperature T.
  • step S1 in response to an initial operation in which the user turns on the power supply of the mobile phone or the camera mode, the power supply to the SMA actuator control device 101 is turned on, this operation flow is started, and the process proceeds to step S1.
  • “inspection energization” is first performed on the SMA 3.
  • the “inspection energization” referred to here is an energization process for acquiring information related to the wire diameter D of the SMA 3 in order to determine the current value Ip of the PWM pulse train in accordance with the wire diameter D of the SMA 3.
  • an initial current value I0 is set in the current adjustment signal SI (FIG. 7), and a minimum duty ratio D0 is set in the energization control calculation unit 105. Since the pulse cycle (frequency) is fixed in PWM control, setting the minimum duty ratio D0 is equivalent to setting the minimum pulse width Pw0.
  • the initial current value I0 and the minimum duty ratio D0 are stored in the memory 108 in advance, and are common values that do not depend on the wire diameter D of each SMA actuator controller 101.
  • This minimum duty waveform is set by setting the minimum duty ratio D0 to a value in a range corresponding to about 2 to 3%, for example, by converting it to an ON / OFF period ratio, so that only a very short time is required within the pulse repetition period. The waveform is set to turn on the current.
  • the initial current value I0 is also set to a current value smaller than the current range (design range set as the current Ip) when the SMA 3 is actually driven by PWM control.
  • the reason why the initial current value I0 and the minimum duty ratio D0 are made small in this way is that the heat generation of the SMA 3 is small in the energization of inspection, and the resistance value of the temperature-resistance value characteristic curve of FIG.
  • the SMA 3 is intended to operate in a low temperature region RL that increases monotonically. This is because, in the low temperature region RL, the temperature-resistance value characteristic curve has no hysteresis and is a linear characteristic curve, so that the repetitive loop described later for obtaining the wire diameter information has high convergence. . This also has the advantage of suppressing the power consumption of the mobile phone due to the energization of inspection.
  • the minimum duty ratio D0 (and therefore the minimum pulse width Pw0) set in step S1 is always constant before the PWM drive for actual photographing is started (up to the step S7).
  • step S2 a current waveform having the initial current value I0 and the minimum duty ratio D0 set in step S1 is supplied to SMA3.
  • step S3 the target voltage Vp of SMA3 is determined. Details are as follows.
  • a current value Ip is obtained such that the terminal voltage V of the SMA 3 detected by the resistance value detection unit 102 matches the predetermined voltage Vp. This is equivalent to specifying the current value Ip according to the value of the resistance R of the SMA 3.
  • temperature compensation is performed in consideration of the influence of the temperature T during the energization of the inspection in selecting what voltage value is used as the voltage Vp.
  • the target voltage Vp of SMA3 such that the relationship between the resistance value R of SMA3 and the wire diameter D is substantially the same.
  • a table is referred to as a “temperature / target voltage table”. This is because the relationship between the resistance R and the wire diameter D is quantitatively different when the temperature T is different in the above-described equation (1), and the difference is expressed in a table format. .
  • T / V correspondence information When the numerical relationship in the temperature / target voltage table is expressed by an approximate expression, information specifying the conversion expression (approximation function) is stored in the memory 108, and the temperature variable of the conversion expression is the temperature T.sub.T. And the value of the target voltage Vp may be obtained.
  • T / V correspondence information such a conversion formula and the temperature / target voltage table are collectively referred to as “T / V correspondence information”.
  • the value of the target voltage Vp corresponding to the temperature T detected by the temperature sensor 107 is read from the temperature / target voltage table, and is set as the value of the target voltage Vp (step S3 in FIG. 10).
  • the temperature of the SMA 3 is maintained approximately equal to the environmental temperature, and the temperature T detected by the temperature sensor 107 approximates both the temperature of the SMA 3 and the environmental temperature. Give it. Further, during the period of energization of inspection, the SMA 3 also maintains the resistance value R in the almost complete heat dissipation state. Therefore, the temperature of the SMA 3 does not change suddenly during the energization of the inspection, and the resistance R of the SMA 3 shows a good correlation with the wire diameter D of the SMA 3 by the above temperature compensation.
  • the value of the target voltage Vp as the energization reference condition in PWM control is determined in a form including temperature compensation.
  • next steps S4 to S6 are processes for determining the value of the energization parameter (optimum current Ip) based on the energization reference condition (target voltage Vp) thus determined.
  • energization to the SMA 3 is performed with the initial current value I0 and the minimum duty ratio D0.
  • the initial current value I0 is set as an initial value, but the minimum duty ratio D0 is set. Is unchanged over the period of steps S4 to S6.
  • step S4 the resistance value detection unit 102 detects the SMA terminal voltage V.
  • step S5 the controller 104 determines whether or not the SMA terminal voltage V detected in step S4 is smaller than the value of the target voltage Vp determined in step S3. If the SMA terminal voltage V is smaller than the target voltage Vp (determination reference value), the process proceeds to step S6. If the SMA terminal voltage V indicates a value equal to or higher than the target voltage Vp, the process proceeds to step S7.
  • step S6 a current value larger than the current applied in step S3 by a predetermined increment is set, and by returning to step S4, inspection energization to SMA3 is continued. If the predetermined increase width of the current here is set to be sufficiently small, the current value increases in small increments every time step S6 is passed.
  • the value of the energization parameter (current Ip) is determined on the basis of the resistance value R of the SMA 3 detected by the resistance value detection unit 102 through the inspection energization from step S1 to step S5. Therefore, when the resistance value R of the SMA 3 is correlated with the wire diameter D of the SMA, it means that the value of the energization parameter (current Ip) is determined as a value reflecting the wire diameter D of the SMA 3 (FIG. 9). In other words, the PWM current value Ip is determined according to the variation in the wire diameter D from the inspection energization from step S1 to step S5.
  • step S8 the current value Ip is set in the variable current source 106, and a control signal that changes in accordance with the lens displacement operation command value is given to the energization control calculation unit 105, and the PWM drive energization of the SMA actuator 3 is performed. Is started. The duty ratio of the PWM pulse train changes according to the operation command value to the SMA actuator 3, but the current value Ip is kept constant. In step S9, such servo control is continued based on a command from a host microcomputer (not shown).
  • step S10 if the PWM current driving is continued, the process returns to step S9, and if the PWM current driving is interrupted, the operation flow is ended.
  • variable current source 106 functions as an energization unit that energizes the SMA 3.
  • the assembly of the elements 102 to 108 in FIG. 7 sets the value of the energization current to the SMA 3 for satisfying a predetermined energization standard condition. It is determined according to the wire diameter D of the SMA 3 and functions as a current setting unit that sets the value of the energization current in the memory 108.
  • the value of the energization current set in the memory 108 is variable according to the wire diameter D of the SMA 3, and the value of the energization current is a basis for generating the current adjustment signal SI in actual control.
  • the assembly of the elements 102 to 106 and 108 in FIG. 7 is a control signal (FIG. 7) that changes in accordance with the operation command value to the actuator with reference to the energizing current set as described above in the actual control stage.
  • the current adjustment signal SI and the ON / OFF signal is supplied to the variable current source 106 serving as an energization unit, and functions as an energization control unit that controls energization of the SMA.
  • the resistance value detection unit 102 functions as a resistance value detection unit that detects a resistance value as a value representing the resistance of the SMA 3.
  • the comparison unit 103 functions as a comparison unit that compares the resistance value detected by the resistance value detection unit with the target resistance value as a value representing the target resistance value.
  • the energization control unit sets the average energization current to the SMA so that the difference between the resistance value signal and the target resistance value signal corresponding to the SMA operation command value is small.
  • the feedback control to be controlled is executed based on the output signal of the comparison unit 103.
  • the controller 104 executes the program of steps S1 and S2 in FIG. 10 and uses the energization control calculation unit 105 while also using the variable current source 106 (energization unit).
  • the controller 104 executes the program of steps S1 and S2 in FIG. 10 and uses the energization control calculation unit 105 while also using the variable current source 106 (energization unit).
  • the controller 104 executes the program of steps S1 and S2 in FIG. 10 and uses the energization control calculation unit 105 while also using the variable current source 106 (energization unit).
  • the controller 104 executes the program of steps S1 and S2 in FIG. 10 and uses the energization control calculation unit 105 while also using the variable current source 106 (energization unit).
  • the controller 104 repeats step S6 of FIG. 10 and executes the program of steps S5 and S7 to operate the elements 102 to 106 and 108, and based on the result of the inspection energization to the SMA 3 obtained from the comparison unit 103.
  • it functions as an inspection processing unit that determines the value of the energization current.
  • the above energization control unit uses the value of the energization current determined by the inspection energization in the actual driving of the actuator.
  • the inspection processing unit is a unit that determines the value of the energization current based on the resistance value of the SMA detected by the inspection energization, and the resistance value of the SMA 3 correlates with the wire diameter of the shape memory alloy.
  • the value of the energization current is determined as a value reflecting the wire diameter D of the SMA 3.
  • the temperature sensor 107 is used as a temperature specifying unit that specifies the temperature of the SMA 3 or its surroundings. Then, the controller 104 executes a program for determining the target voltage Vp in step S3, thereby changing the energization reference condition according to the temperature specified by the temperature specifying unit, and temperature compensation when determining the value of the energization current. It functions as a temperature compensation unit that performs
  • the current setting unit variably sets the energization parameter (current Ip) according to the wire diameter D, so that the wire diameter is changed in the energization control unit. Since energization control according to D is possible, even if the wire diameter D of the SMA varies, the responsiveness of the actuator is improved by stable optimum control, and the static stabilization is also speeded up.
  • the energization parameter can be determined internally by the inspection processing unit based on the result of the inspection energization executed by the inspection energization control unit at an appropriate time such as immediately after startup. For this reason, the process of measuring the wire diameter D in advance and storing it in the memory 108 in the manufacturing process of the apparatus can be omitted.
  • the current setting unit can more appropriately determine the energization parameter regardless of the temperature during the energization of the inspection.
  • FIG. 11 is a block diagram of an SMA actuator control apparatus 101A according to the second embodiment of the present invention. This SMA actuator control device 101A is also used in combination with the mechanism part of the lens driving unit 100 shown in FIGS. 1 and 2, and can be incorporated in a mobile phone or the like.
  • the current setting unit stores in advance the value of the wire diameter information corresponding to the wire diameter D of the SMA by the wire diameter information storage unit, and based on the value of the wire diameter information by the current value determination unit.
  • the hardware is the same as the configuration of FIG. 7, and the functions are almost the same. Therefore, in the SMA actuator control apparatus 101A of FIG. 11 according to the second embodiment, the same parts as those of the SMA actuator control apparatus 101 according to the first embodiment are denoted by the same reference numerals and the following description is omitted. In addition, only differences from the SMA actuator control apparatus 101 according to the first embodiment will be mainly described.
  • controller 104 includes a memory 108A.
  • the memory 108A as wire diameter information, (1) The value of the wire diameter D measured in advance at the manufacturing factory, and (2) As illustrated in FIG. 14, the correspondence relationship between the value of the wire diameter D and the energization parameter Ip is expressed, and a table or conversion formula (when converting the wire diameter D into the energization parameter Ip ( (Hereinafter collectively referred to as “D / I correspondence information”) is stored in the memory 108 in advance.
  • the value of the wire diameter D is unique to the SMA actuator control device 101.
  • the D / I correspondence information is information common to each SMA actuator control device 101. That is, although the wire diameter D varies depending on the product of the control device 101, the D / I correspondence information on what current value Ip is set according to the value of the wire diameter D is common to each control device 101. Prepared and stored as a thing.
  • the wire diameter D is measured at the manufacturing factory of the SMA actuator control device 101, and the value of the energization parameter (current value Ip) specific to the control device 101 is determined at the factory accordingly.
  • current value Ip current value specific to the control device 101
  • FIG. 12 is a flowchart showing processing operations in the SMA actuator control apparatus 101A. Hereinafter, the processing operation will be described with reference to the flowchart of FIG.
  • the power supply to the SMA actuator control device 101 is turned on, and this operation flow is started.
  • step ST1 the value of the wire diameter information corresponding to the wire diameter D measured in advance of SMA is read from the memory 108A and acquired.
  • step ST2 the value of the wire diameter D acquired in step ST1 is converted into the value of the energization parameter Ip using the D / I correspondence information.
  • the conversion unit directly converts the wire diameter D of the SMA 3 stored in advance into the energization parameter (optimum current Ip).
  • steps ST3 to ST5 are the same as steps S8 to S10 in the first embodiment.
  • the part different from the function realization unit in the first embodiment is as follows.
  • the current setting unit includes a memory 108 as a wire diameter information storage unit that stores a value of wire diameter information corresponding to the wire diameter D of the SMA 3.
  • the controller 104 functions as a current value determination unit that determines the value of the energization current based on the value of the wire diameter information by executing the program steps of steps ST1 and ST2 of FIG.
  • the controller 104 functions as a conversion unit that converts the value of the wire diameter into the value of the energization current using the table of FIG. 14 stored in advance in the memory 108, which functions as a current value determination unit.
  • the energization control according to the wire diameter D can be performed by setting the energization parameter (current Ip) variably according to the wire diameter D. Therefore, even if the wire diameter D of the SMA varies, the responsiveness of the actuator is improved by the stable optimum control, and the stabilization speed is increased.
  • the wire diameter D measured at the manufacturing factory or the like is stored in advance in the apparatus as the wire diameter information, it can be read and used when the actuator is driven. It is possible to shorten the control time by simplifying the internal processing for determining the energization parameter.
  • the manufacturing process of the SMA actuator control device 101 is as follows. This is simpler than the SMA actuator control apparatus 101A of the second embodiment.
  • the temperature compensation by the temperature compensation unit described in the first embodiment can be realized without providing a temperature sensor in the temperature specifying unit.
  • the actual measurement of the temperature SMA3 or its surrounding temperature T is substituted with the actual measurement of the resistance value R of the SMA3.
  • the resistance value R of the SMA 3 corresponding to each set of values of the temperature T is experimentally determined in advance, and the table 108 is stored in the memory 108 of the SMA actuator controller 101. Alternatively, it is stored as a conversion formula (hereinafter “T / R correspondence information”).
  • the resistance R depends on the temperature T and the wire diameter D
  • the wire diameter when the T / R correspondence information is created.
  • D for example, a wire diameter as a design value of SMA3 is assumed.
  • the value of the temperature T corresponding to the value of the resistance R is estimated using the T / R correspondence information.
  • the current setting unit can store the resistance value R for each temperature T in the memory in the same manner as in the first embodiment, so that the current setting unit responds to the specified temperature T.
  • the resistance value R is selected, and the current Ip corresponding to the resistance value R is determined by inspection energization by the inspection energization control unit.
  • the resistance value detection unit detects the resistance value R of the SMA 3 as a substitute index of the temperature T, and the temperature compensation unit changes the energization reference condition using the resistance value R, thereby This means that temperature compensation is performed when determining the value.
  • the temperature specifying unit used when performing the temperature compensation when determining the value of the energization current detects the resistance value detection unit 102 and the resistance value of the SMA 3 as a temperature substitute index. It is functioning as a resistance value detection unit.
  • the value of the wire diameter D itself is stored by the wire diameter information storage unit, but may be a value of another physical quantity that reflects the wire diameter D.
  • the resistance R of the SMA 3 may be measured in advance at a device manufacturing factory and used as a substitute index for the wire diameter D.
  • a correspondence table (FIG. 16) listing appropriate current values Ip corresponding to various values of the resistance R is created in advance by the wire diameter information storage unit and stored in the memory 108A.
  • the conversion unit in the determination unit uses the correspondence table to convert the current Ip as the energization parameter.
  • the controller 104 functions as a conversion unit that performs this conversion in the program step for converting the resistance value of the SMA 3 into the value of the energizing current while using the table of FIG. 16 stored in the memory 108 in advance. This constitutes a part of the current value determination unit.
  • the wire diameter information storage unit also measures the SMA 3 or the temperature T around it when the resistance R of the SMA 3 is measured in advance at the device manufacturing factory. Then, the values of the resistance R and the temperature T are stored in the memory 108A.
  • a correspondence table (generally “TR / I” which lists values of appropriate currents Ip corresponding to respective sets of values of the resistance R and the temperature T). Correspondence information ") is created and stored in advance. Then, the value of the current Ip corresponding to the resistance R and the temperature T is read and set as an energization parameter.
  • the resistance R is a substitute index of the wire diameter D.
  • the controller 104 uses the table of FIG. 17 stored in advance in the memory 108 by the wire diameter information storage unit, and sets the resistance value and temperature by the conversion unit in the current value determination unit. Is converted into a value of the energizing current, thereby functioning as a part for performing temperature compensation when determining the value of the energizing current.
  • the energization control unit adjusts the energization current according to the wire diameter D of the SMA by adjusting the current value Ip (that is, the pulse amplitude). It may be performed by adjusting (duty ratio).
  • the servo control (feedback control) using the PWM control is described as an example.
  • the present invention is not limited to this, and a continuous current (non-pulse type current) is applied to the SMA to generate heat.
  • the present invention can also be applied to the case of the system and the open control system.
  • the continuous current value (continuous current reference value) corresponding to the current value Ip in the above embodiment is set to SMA. Adjust according to the wire diameter D.
  • the current setting unit in the above embodiment determines the energization current Ip based only on the wire diameter D. Although the influence on the control is small, other variation factors such as SMA initial tension and bias spring force There are also variations in elastic properties. Therefore, in addition to the linear D, depending on the variation value for each individual regarding these elastic characteristics (more generally, characteristic quantities including various mechanical characteristic quantities that define the responsiveness of the SMA), The energization current may be determined.
  • the inspection energization by the inspection energization control unit in the first embodiment may be performed only at the initial setting when the camera unit incorporating the SMA actuator control device 101 is activated for the first time, or is performed at each activation of the camera unit. Also good. Further, in the maintenance mode, it may be executed even in response to a predetermined operation at an arbitrary time.
  • the SMA actuator control device of the present invention can be applied not only to a lens drive unit but also to a drive unit of various optical components such as a minute mirror and a minute prism.
  • the method for determining the target voltage Vp in the first embodiment is not limited to the above method.
  • a correspondence table listing appropriate resistances R and temperatures T corresponding to the value of the wire diameter D, or a conversion formula (hereinafter referred to as “D / RT correspondence information”), and a wire diameter D A table or conversion equation (hereinafter referred to as “D / Vp correspondence information”) that can be used when converting the voltage to the target voltage Vp is created and stored in the memory 108 in advance.
  • the wire diameter D is estimated from the D / RT correspondence information, and the estimated line
  • the target voltage Vp may be determined from the diameter D from the D / Vp correspondence information.

Abstract

Disclosed is an actuator control device using a wire-shaped shape-memory alloy (SMA), which energizes an SMA actuator (3), and variably sets the value of current applied to the SMA actuator (3) in accordance with the wire diameter of the SMA, to satisfy predetermined energization reference conditions. The information of the wire diameter may be preliminarily stored in the device, or can be obtained on the basis of the energization for inspection within the device. The determined current to be applied is used as a criteria, and the current to be applied to the SMA is controlled to change the current in accordance with the value of an operation command sent to the actuator. Thus, the control can be optimized to improve the response, regardless of the wire diameter of the SMA.

Description

形状記憶合金アクチュエータ制御装置および光学部品駆動ユニットShape memory alloy actuator controller and optical component drive unit
 本発明は、形状記憶合金を用いたアクチュエータの制御装置および、それを用いた光学部品駆動ユニットに関する。 The present invention relates to an actuator control device using a shape memory alloy and an optical component drive unit using the same.
 携帯電話などに内蔵されるマイクロカメラユニット(MCU)は現在数多く生産されているが、近年、高画質化が進むとともに、画質とユーザ利便を求めるために、オートフォーカス(AF)機能が必須になりつつある。一方、携帯電話の部品としてのMCUには、小型、低価格に対する非常に強い要求がある。 Many micro-camera units (MCUs) built in cellular phones are currently being produced, but in recent years, with the progress of higher image quality, the auto focus (AF) function is indispensable in order to demand image quality and user convenience. It's getting on. On the other hand, there is a very strong demand for small size and low price for MCUs as parts of mobile phones.
 また、温度変化による変形を駆動原理としたアクチュエータとして、Ni-Ti等の形状記憶合金(Shape Memory Alloy: SMA)を線材に加工したものが知られており、小型、大出力で十分な応答速度を実現できることから、上記のMCUのAF用のような用途向けとして有望視されている。 In addition, Ni-Ti and other shape memory alloys (Shape Memory Alloy: SMA) are known as actuators based on deformation due to temperature changes as the driving principle. Therefore, it is considered promising for applications such as the above-mentioned MCU AF.
 この用途では、SMAの線材に通電し、ジュール熱を発生させて加熱する方式があるが、その際、SMAの線径が異なると、熱容量や放熱効率および発生するジュール熱が異なるために、形状記憶合金の変形の応答速度が異なり、特にフィードバック制御した場合には、静定時間に悪影響を及ぼす場合がある。 In this application, there is a method in which the SMA wire is energized to generate Joule heat and heated. However, if the SMA wire diameter is different, the heat capacity, the heat radiation efficiency and the generated Joule heat are different. The response speed of deformation of the memory alloy is different, and particularly when feedback control is performed, the settling time may be adversely affected.
 これを予防するため、例えば、マイクロカメラ用アクチュエータとして、10Hz以上の応答性を確保するための線径の範囲の開示(特許文献1)や、SMA線材の断面形状を工夫することで、放熱を変化させ応答性を向上させる技術(特許文献2)などが提案されている。 In order to prevent this, for example, as an actuator for a micro camera, the disclosure of the range of the wire diameter for ensuring responsiveness of 10 Hz or more (Patent Document 1) and the devising of the cross-sectional shape of the SMA wire can reduce heat dissipation. There has been proposed a technique (Patent Document 2) that changes and improves responsiveness.
 一方、像ぶれ補正等のために、可動部の両端にワイヤ状の2本のSMA線材が接続されているプッシュ・プル配置において、SMAの断面積に応じてSMAに与えるバイアス電圧を調整することが提案されている(特許文献3)。 On the other hand, in the push-pull arrangement in which two wire-like SMA wires are connected to both ends of the movable part for image blur correction, etc., the bias voltage applied to the SMA is adjusted according to the cross-sectional area of the SMA. Has been proposed (Patent Document 3).
特開2006-336617号公報JP 2006-336617 A 特開2007-139965号公報JP 2007-139965 A 特開2006-329146号公報JP 2006-329146 A
 しかしながら、特許技術1では、応答性を最適化するために、使用する線材において特定の線径に応じて、通電量やフィードバック制御のゲインを最適に設計するが、実際の製品では線径のバラツキにより、理想的な最適制御からはズレが生じる。また、特許文献2のように形状を工夫しても、やはりバラツキの要因は残る。 However, in Patent Technology 1, in order to optimize the responsiveness, the energization amount and the gain of feedback control are optimally designed according to the specific wire diameter in the wire to be used. As a result, a deviation occurs from the ideal optimum control. Further, even if the shape is devised as in Patent Document 2, the cause of variation still remains.
 特許文献3は、プッシュ・プル配置において、SMA断面積のばらつきによって生じるSMAの過加熱/加熱不足を防ぐ目的で、バイアス電圧を調整するものであり、過度状態での制御応答性を最適化するものではない。 Patent Document 3 adjusts the bias voltage for the purpose of preventing overheating / insufficiency of SMA caused by variations in the SMA cross-sectional area in the push-pull arrangement, and optimizes control response in an excessive state. It is not a thing.
 本発明は、このような事情に鑑みてなされたものであり、SMAの線径にバラツキがある場合においても、安定した最適制御によってアクチュエータの応答性が向上し、且つ、静定も高速化することができる形状記憶合金アクチュエータ制御装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when the SMA wire diameter varies, the responsiveness of the actuator is improved by the stable optimum control, and the speed of stabilization is increased. It is an object of the present invention to provide a shape memory alloy actuator control device that can be used.
 上記課題を解決するために、第1の態様に係る形状記憶合金アクチュエータ制御装置は、線材状の形状記憶合金の温度変化による形状復元力を利用したアクチュエータを制御する形状記憶合金アクチュエータ制御装置であって、前記形状記憶合金への通電を行う通電部と、所定の通電基準条件を満足させるための前記形状記憶合金への通電電流の値を、前記形状記憶合金の線径に応じて可変に設定する電流設定部と、前記通電電流を基準として、前記アクチュエータへの作動指令値に応じて変化する制御信号を前記通電部に与えて、前記形状記憶合金への通電制御を行う通電制御部と、を備えることを特徴とする。 In order to solve the above problems, a shape memory alloy actuator control device according to a first aspect is a shape memory alloy actuator control device that controls an actuator using a shape restoring force due to a temperature change of a wire-like shape memory alloy. In addition, the energization unit for energizing the shape memory alloy and the value of the energization current to the shape memory alloy for satisfying a predetermined energization reference condition are variably set according to the wire diameter of the shape memory alloy An energization control unit that performs energization control on the shape memory alloy by giving the energization unit a control signal that changes in accordance with an operation command value to the actuator, using the current setting unit as a reference, It is characterized by providing.
 第2の態様に係る形状記憶合金アクチュエータ制御装置は、第1の態様に係る形状記憶合金アクチュエータ制御装置であって、前記電流設定部が、前記通電部を制御して前記形状記憶合金への検査通電を行う検査通電制御部と、前記形状記憶合金への検査通電の結果に基づいて、前記通電電流の値を決定する検査処理部、を備え、前記通電制御部は、前記アクチュエータの実駆動において、前記検査通電で決定された前記通電電流の値を用いることを特徴とする。 The shape memory alloy actuator control device according to the second aspect is the shape memory alloy actuator control device according to the first aspect, wherein the current setting unit controls the energization unit to inspect the shape memory alloy. An inspection energization control unit for energizing and an inspection processing unit for determining a value of the energization current based on a result of the inspection energization to the shape memory alloy, and the energization control unit in the actual drive of the actuator The value of the energization current determined by the inspection energization is used.
 第3の態様に係る形状記憶合金アクチュエータ制御装置は、第2の態様に係る形状記憶合金アクチュエータ制御装置であって、前記検査通電は、前記アクチュエータの実駆動における電流範囲よりも小さな電流を前記形状記憶合金に流して行われ、前記検査処理部は、当該小さな電流での通電結果に基づいて前記通電電流の値を決定することを特徴とする。 The shape memory alloy actuator control device according to a third aspect is the shape memory alloy actuator control device according to the second aspect, wherein the inspection energization applies a current smaller than a current range in actual driving of the actuator to the shape. The test processing unit determines the value of the energization current based on the energization result with the small current.
 第4の態様に係る形状記憶合金アクチュエータ制御装置は、第2または第3の態様に係る形状記憶合金アクチュエータ制御装置であって、前記検査処理部は、前記検査通電によって検出された前記形状記憶合金の抵抗値に基づいて前記通電電流の値を決定する部であり、前記形状記憶合金の抵抗値が前記形状記憶合金の線径と相関していることによって、前記通電電流の値が、前記形状記憶合金の線径を反映した値として決定されることを特徴とする。 The shape memory alloy actuator control device according to a fourth aspect is the shape memory alloy actuator control device according to the second or third aspect, wherein the inspection processing unit detects the shape memory alloy detected by the inspection energization. The value of the energization current is determined based on the resistance value of the shape memory alloy, and the resistance value of the shape memory alloy correlates with the wire diameter of the shape memory alloy. It is determined as a value reflecting the diameter of the memory alloy.
 第5の態様に係る形状記憶合金アクチュエータ制御装置は、第2ないし第4の何れかの態様に係る形状記憶合金アクチュエータ制御装置であって、前記形状記憶合金またはその周囲の温度を特定する温度特定部と、前記温度特定部によって特定された温度に応じて前記通電基準条件を変化させることにより、前記通電電流の値の決定の際の温度補償を行う温度補償部と、をさらに備えることを特徴とする。 A shape memory alloy actuator control device according to a fifth aspect is the shape memory alloy actuator control device according to any one of the second to fourth aspects, wherein the temperature specification for specifying the temperature of the shape memory alloy or its surroundings And a temperature compensation unit that performs temperature compensation when determining the value of the energization current by changing the energization reference condition according to the temperature identified by the temperature identification unit. And
 第6の態様に係る形状記憶合金アクチュエータ制御装置は、第5の態様に係る形状記憶合金アクチュエータ制御装置であって、前記温度特定部が、前記形状記憶合金の付近に配置された温度センサ、を備え、前記温度補償部は、前記温度センサによって検知された温度に応じて、前記温度補償を行うことを特徴とする。 A shape memory alloy actuator control device according to a sixth aspect is the shape memory alloy actuator control device according to the fifth aspect, wherein the temperature specifying unit is a temperature sensor disposed in the vicinity of the shape memory alloy. And the temperature compensation unit performs the temperature compensation according to a temperature detected by the temperature sensor.
 第7の態様に係る形状記憶合金アクチュエータ制御装置は、第5の態様に係る形状記憶合金アクチュエータ制御装置であって、前記温度特定部が、前記形状記憶合金の抵抗値を前記温度の代用指標として検出する抵抗値検出部、を備え、前記抵抗値を前記温度の代用指標として用いて前記通電基準条件を変更することにより、前記通電電流の値の決定の際の温度補償を行うことを特徴とする。 The shape memory alloy actuator control device according to a seventh aspect is the shape memory alloy actuator control device according to the fifth aspect, wherein the temperature specifying unit uses the resistance value of the shape memory alloy as a substitute index of the temperature. A resistance value detection unit for detecting, and performing the temperature compensation when determining the value of the energization current by changing the energization reference condition using the resistance value as a substitute index of the temperature. To do.
 第8の態様に係る形状記憶合金アクチュエータ制御装置は、第1の態様に係る形状記憶合金アクチュエータ制御装置であって、前記電流設定部が、前記形状記憶合金の線径に対応した線径情報の値を記憶する線径情報記憶部と、前記線径情報の値に基づいて、前記通電電流の値を決定する電流値決定部と、を備えることを特徴とする。 The shape memory alloy actuator control device according to an eighth aspect is the shape memory alloy actuator control device according to the first aspect, wherein the current setting unit is configured to store wire diameter information corresponding to the wire diameter of the shape memory alloy. A wire diameter information storage unit that stores a value, and a current value determination unit that determines a value of the energization current based on the value of the wire diameter information.
 第9の態様に係る形状記憶合金アクチュエータ制御装置は、第8の態様に係る形状記憶合金アクチュエータ制御装置であって、前記線径情報は、あらかじめ測定された前記形状記憶合金の線径であり、前記電流値決定部は、前記線径情報記憶部に記憶された前記線径の値を前記通電電流の値へと変換する変換部、を備えることを特徴とする。 The shape memory alloy actuator control device according to a ninth aspect is the shape memory alloy actuator control device according to the eighth aspect, wherein the wire diameter information is a wire diameter of the shape memory alloy measured in advance, The current value determination unit includes a conversion unit that converts the value of the wire diameter stored in the wire diameter information storage unit into the value of the energization current.
 第10の態様に係る形状記憶合金アクチュエータ制御装置は、第8の態様に係る形状記憶合金アクチュエータ制御装置であって、前記線径情報記憶部は、前記形状記憶合金の抵抗値を記憶し、前記電流値決定部は、前記抵抗値を前記通電電流の値に変換する変換部、を備え、前記変換部の変換結果に基づいて前記通電電流の値を決定することを特徴とする。 The shape memory alloy actuator control device according to a tenth aspect is the shape memory alloy actuator control device according to the eighth aspect, wherein the wire diameter information storage unit stores a resistance value of the shape memory alloy, The current value determination unit includes a conversion unit that converts the resistance value into a value of the energization current, and determines the value of the energization current based on a conversion result of the conversion unit.
 第11の態様に係る形状記憶合金アクチュエータ制御装置は、第10の態様に係る形状記憶合金アクチュエータ制御装置であって、前記線径情報記憶部は、前記形状記憶合金の前記抵抗値を測定した際の温度を前記抵抗値とともに記憶し、前記変換部は、前記抵抗値と前記温度との組を前記通電電流の値に変換することにより、前記通電電流の値を決定する際の温度補償を行うことを特徴とする。 The shape memory alloy actuator control device according to an eleventh aspect is the shape memory alloy actuator control device according to the tenth aspect, wherein the wire diameter information storage unit measures the resistance value of the shape memory alloy. The temperature is stored together with the resistance value, and the conversion unit performs temperature compensation when determining the value of the energizing current by converting the combination of the resistance value and the temperature into the value of the energizing current. It is characterized by that.
 第12の態様に係る形状記憶合金アクチュエータ制御装置は、第1ないし第11の何れかの態様に係る形状記憶合金アクチュエータ制御装置であって、前記形状記憶合金の抵抗を表現する値としての抵抗値を検出する抵抗値検出部と、前記抵抗値検出部により検出された抵抗値と、目標抵抗値を表現する値としての目標抵抗値とを比較する比較部と、を備え、前記通電制御部は、前記形状記憶合金を所望の形状に変形させる際に、前記抵抗値検出部で得られる前記抵抗値の信号と、前記目標抵抗値の信号との差が小さくなるように、前記形状記憶合金への平均通電電流を制御することを特徴とする。 A shape memory alloy actuator control device according to a twelfth aspect is the shape memory alloy actuator control device according to any one of the first to eleventh aspects, wherein the resistance value is a value representing the resistance of the shape memory alloy. A resistance value detection unit that detects the resistance value, a comparison unit that compares the resistance value detected by the resistance value detection unit and a target resistance value as a value representing the target resistance value, and the energization control unit includes: When the shape memory alloy is deformed into a desired shape, the shape memory alloy is reduced so that a difference between the resistance value signal obtained by the resistance value detection unit and the target resistance value signal is reduced. The average energization current is controlled.
 第13の態様に係る形状記憶合金アクチュエータ制御装置は、第1ないし第12の何れかの態様に係る形状記憶合金アクチュエータ制御装置であって、前記通電制御部は、PWM方式によって前記形状記憶合金の通電制御を行い、前記形状記憶合金へのパルス振幅およびパルス幅の少なくとも何れかを変化させることを特徴とする。 A shape memory alloy actuator control device according to a thirteenth aspect is a shape memory alloy actuator control device according to any one of the first to twelfth aspects, wherein the energization control unit is configured to control the shape memory alloy by a PWM method. Conducting control is performed to change at least one of a pulse amplitude and a pulse width to the shape memory alloy.
 第14の態様に係る光学部品駆動ユニットは、線材状の形状記憶合金の温度変化による形状復元力を利用して所定の光学部品の駆動を行うアクチュエータと、第1ないし第13の何れかの態様に係る形状記憶合金アクチュエータ制御装置と、を備えることを特徴とする。 An optical component driving unit according to a fourteenth aspect includes an actuator that drives a predetermined optical component using a shape restoring force due to a temperature change of a wire-shaped shape memory alloy, and any one of the first to thirteenth aspects. And a shape memory alloy actuator control device according to the above.
 第1ないし第14の態様に係る形状記憶合金アクチュエータ制御装置によれば、SMAの線径に応じて通電条件を可変に設定可能となっており、線径に応じた通電制御が可能になるため、SMAの線径がばらついても、安定した最適制御によってアクチュエータの応答性が向上し、静定も高速化する。 According to the shape memory alloy actuator control device according to the first to fourteenth aspects, the energization conditions can be variably set according to the SMA wire diameter, and energization control according to the wire diameter becomes possible. Even if the wire diameter of the SMA varies, the responsiveness of the actuator is improved by stable optimum control, and the static stabilization speed is also increased.
 第2ないし第4の態様に係る形状記憶合金アクチュエータ制御装置によれば、起動直後などの適宜の時期に実行する検査通電の結果に基づいて通電電流を決めるため、装置の製造過程において事前に線径を測定して装置内に記憶させておく必要がない。 According to the shape memory alloy actuator control device according to the second to fourth aspects, in order to determine the energization current based on the result of the inspection energization performed at an appropriate time such as immediately after the start, There is no need to measure the diameter and store it in the device.
 第3の態様に係る形状記憶合金アクチュエータ制御装置によれば、アクチュエータの実駆動での電流範囲よりも小さな電流の検査通電によって通電電流の値が決定されるために、著しい温度変化を生じさせることなく、安定して形状記憶合金の線径を反映した通電電流の決定が可能となる。 According to the shape memory alloy actuator control apparatus according to the third aspect, since the value of the energization current is determined by the inspection energization of the current smaller than the current range in the actual drive of the actuator, a significant temperature change is caused. Therefore, it is possible to determine the energization current stably reflecting the wire diameter of the shape memory alloy.
 第4の態様に係る形状記憶合金アクチュエータ制御装置によれば、形状記憶合金の抵抗値を検出し、抵抗値と線径との相関を利用しつつ通電電流の値を決定するが、形状記憶合金の抵抗値と線径とは明瞭な相関がある。このため、形状記憶合金の線径自身を実測することなく、電気的な測定を通じて通電電流の値を正確に決定することができる。 According to the shape memory alloy actuator control device according to the fourth aspect, the resistance value of the shape memory alloy is detected, and the value of the energization current is determined using the correlation between the resistance value and the wire diameter. There is a clear correlation between the resistance value and the wire diameter. For this reason, the value of the energization current can be accurately determined through electrical measurement without actually measuring the wire diameter itself of the shape memory alloy.
 第5ないし第7および第11の態様に係る形状記憶合金アクチュエータ制御装置によれば、温度補償を行うことによって、より適切に通電電流を決定可能である。 According to the shape memory alloy actuator control device according to the fifth to seventh and eleventh aspects, the energization current can be determined more appropriately by performing temperature compensation.
 第8ないし第10の態様に係る形状記憶合金アクチュエータ制御装置によれば、線径情報として製造工場などで測定された線径(または線径に相関する情報)を線径情報としてあらかじめ装置内に記憶させておくため、アクチュエータ駆動時にはそれを読み出して利用することが可能となり、通電電流の決定のための内部処理を簡略化して制御時間の短縮を図ることができる。 According to the shape memory alloy actuator control apparatus according to the eighth to tenth aspects, the wire diameter (or information correlated with the wire diameter) measured at the manufacturing factory or the like as the wire diameter information is previously stored in the apparatus as the wire diameter information. Since it is stored, it can be read and used when the actuator is driven, and the internal processing for determining the energization current can be simplified to shorten the control time.
 第13の態様に係る形状記憶合金アクチュエータ制御装置によれば、線径に応じた通電電流の決定を行うための構成をPWM駆動方式の形状記憶合金アクチュエータ制御装置に適用することにより、電源電圧を低減化し、消費電力低減の効果を大きくすることができる。 According to the shape memory alloy actuator control device according to the thirteenth aspect, by applying the configuration for determining the energization current according to the wire diameter to the PWM drive type shape memory alloy actuator control device, the power supply voltage is reduced. Thus, the effect of reducing power consumption can be increased.
図1はこの発明の一実施形態に係るSMA駆動装置を使用したレンズ駆動システムの機構要部を概略的に示す平面図である。FIG. 1 is a plan view schematically showing an essential part of a lens driving system using an SMA driving device according to an embodiment of the present invention. 図2は図1のレンズ駆動システムの動作を示す側面図である。FIG. 2 is a side view showing the operation of the lens driving system of FIG. 図3はSMAの線径によってSMAレンズ駆動ユニットの駆動応答が変化することを説明する図である。FIG. 3 is a diagram for explaining that the driving response of the SMA lens driving unit varies depending on the SMA wire diameter. 図4はSMAの抵抗値および伸縮量の温度依存性を特性曲線として示す図である。FIG. 4 is a graph showing the temperature dependence of the resistance value and the amount of expansion / contraction of SMA as a characteristic curve. 図5はSMAの抵抗値およびレンズ変位との温度依存性を特性曲線として示す図である。FIG. 5 is a diagram showing the temperature dependence of the resistance value and lens displacement of SMA as a characteristic curve. 図6はSMAの抵抗値のレンズ変位依存性を特性曲線として示す図である。FIG. 6 is a graph showing the lens displacement dependence of the resistance value of SMA as a characteristic curve. 図7は一実施形態に係るSMAアクチュエータ制御装置の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the SMA actuator control apparatus according to one embodiment. 図8はSMA通電波形を例示する図である。FIG. 8 is a diagram illustrating an SMA energization waveform. 図9はSMAの線径とその物理特性との相関を説明する図である。FIG. 9 is a diagram for explaining the correlation between the SMA wire diameter and its physical characteristics. 図10は一実施形態に係るSMAアクチュエータ制御装置の動作を説明するフローチャートである。FIG. 10 is a flowchart for explaining the operation of the SMA actuator control apparatus according to the embodiment. 図11は一実施形態に係るSMAアクチュエータ制御装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of the SMA actuator control device according to one embodiment. 図12は一実施形態に係るSMAアクチュエータ制御装置の動作を説明するフローチャートである。FIG. 12 is a flowchart for explaining the operation of the SMA actuator controller according to the embodiment. 図13は温度補償のための温度/目標電圧テーブルの例を示す図である。FIG. 13 is a diagram showing an example of a temperature / target voltage table for temperature compensation. 図14は線径と温度とに応じた通電パラメータの設定テーブル例を示す図である。FIG. 14 is a diagram showing an example of a setting table for energization parameters corresponding to the wire diameter and temperature. 図15は抵抗検出による温度推定のためのテーブル例を示す図である。FIG. 15 is a diagram showing an example of a table for temperature estimation by resistance detection. 図16は抵抗検出による温度推定のためのテーブル例を示す図である。FIG. 16 is a diagram showing an example of a table for temperature estimation by resistance detection. 図17は抵抗検出による温度推定のためのテーブル例を示す図である。FIG. 17 is a diagram showing a table example for temperature estimation by resistance detection.
 <1.レンズ駆動ユニット(光学部品駆動ユニット)の機構部の概要および構成>
 図1および図2は、この発明の実施の形態のSMAアクチュエータ制御装置を使用して構成したレンズ駆動ユニット(光学部品駆動ユニット)100のうち、機構要部を概略的に示す図である。このうち、図1は、レンズ側から見た平面図(レンズ開口面)であり、図2は、図1における矢示A方向から見た側面図を示している。なお、図2(a)は、駆動前の状態を、図2(b)は、駆動後の状態を表している。
<1. Overview and Configuration of Lens Drive Unit (Optical Component Drive Unit) Mechanism>
FIG. 1 and FIG. 2 are diagrams schematically showing a main part of a mechanism in a lens driving unit (optical component driving unit) 100 configured using the SMA actuator control device according to the embodiment of the present invention. Among these, FIG. 1 is a plan view (lens opening surface) viewed from the lens side, and FIG. 2 is a side view viewed from the direction of arrow A in FIG. 2A shows a state before driving, and FIG. 2B shows a state after driving.
 このレンズ駆動ユニット100は、携帯電話に組み込まれる小型カメラシステムなどにおいて使用されるものであり、SMAを用いたアクチュエータ(SMAアクチュエータ)を駆動源としてAF動作を行う。 The lens driving unit 100 is used in a small camera system or the like incorporated in a mobile phone, and performs an AF operation using an actuator using an SMA (SMA actuator) as a driving source.
 具体的構成において、このレンズ駆動ユニット100は、主に、レンズユニット1(被駆動物)、このレンズユニット1を光軸AX方向(第1軸方向)に移動させるレバー部材2、SMAアクチュエータ3、ベース部材4、天板5、平行板バネ6a,6bおよびバイアスバネ7等を備え、ベース部材4に対してレンズユニット1等が組み付けられた構成となっている。天板5および平行板バネ6a,6bは、便宜上、図1では省略している。 In a specific configuration, the lens driving unit 100 mainly includes a lens unit 1 (driven object), a lever member 2 that moves the lens unit 1 in the optical axis AX direction (first axis direction), an SMA actuator 3, A base member 4, a top plate 5, parallel plate springs 6 a and 6 b, a bias spring 7, and the like are provided, and the lens unit 1 and the like are assembled to the base member 4. The top plate 5 and the parallel leaf springs 6a and 6b are omitted in FIG. 1 for convenience.
 ベース部材4は、レンズ駆動ユニット100の取り付け対象となる部材(例えば携帯電話機のフレームやマウント基板等)に固定されるものであり、レンズ駆動ユニット100の底辺を構成する不動の部材である。このベース部材4は、平面視正方形の板状に形成され、全体が樹脂材料等により構成されている。 The base member 4 is fixed to a member (for example, a mobile phone frame or a mount substrate) to which the lens driving unit 100 is attached, and is a non-moving member constituting the bottom side of the lens driving unit 100. The base member 4 is formed in a square plate shape in plan view, and is entirely made of a resin material or the like.
 レンズユニット1は円筒形を有し、撮像レンズ10と、この撮像レンズ10を保持するレンズ駆動枠12と、該レンズ駆動枠12が収納される鏡筒14とから構成されている。 The lens unit 1 has a cylindrical shape, and includes an imaging lens 10, a lens driving frame 12 that holds the imaging lens 10, and a lens barrel 14 that stores the lens driving frame 12.
 撮像レンズ10は、対物レンズ、フォーカスレンズ、ズームレンズ等を有し、図外の撮像素子に対する被写体像の結像光学系を構成している。レンズ駆動枠12は、所謂玉枠であって、鏡筒14と共に光軸AX方向に移動する。レンズ駆動枠12の対物側先端の外周縁部には、周方向に180°の角度差を有して一対の支持部16が突設されている。 The imaging lens 10 includes an objective lens, a focus lens, a zoom lens, and the like, and constitutes an imaging optical system for a subject image with respect to an imaging element (not shown). The lens driving frame 12 is a so-called ball frame, and moves in the optical axis AX direction together with the lens barrel 14. A pair of support portions 16 project from the outer peripheral edge portion of the lens drive frame 12 at the distal end on the object side with an angular difference of 180 ° in the circumferential direction.
 レンズユニット1は、天板5に形成される開口部分に挿入された状態でベース部材4上に配置されている。詳しくは、一対の支持部16がベース部材4の一対の対角の近傍に位置するように配置されている(図1参照)。 The lens unit 1 is disposed on the base member 4 in a state of being inserted into an opening formed in the top plate 5. Specifically, the pair of support portions 16 are arranged so as to be positioned in the vicinity of the pair of diagonals of the base member 4 (see FIG. 1).
 ベース部材4および天板5には、それぞれ平行板バネ6a,6bが固定されており、これら平行板バネ6a,6bにレンズユニット1が固定されている。これによってレンズユニット1がベース部材4等に対して変位可能に支持されると共に、その変位自由度が、光軸AXに沿った方向に規制されている。なお、天板5は、ベース部材4に対して図外の支柱等を介して固定しても良いし、ベース部材4と一体となる構造でも良い。 Parallel plate springs 6a and 6b are fixed to the base member 4 and the top plate 5, respectively, and the lens unit 1 is fixed to the parallel plate springs 6a and 6b. Accordingly, the lens unit 1 is supported so as to be displaceable with respect to the base member 4 and the like, and the degree of freedom of displacement is restricted in a direction along the optical axis AX. Note that the top plate 5 may be fixed to the base member 4 via a support column (not shown) or may be a structure integrated with the base member 4.
 レバー部材2は、支持部16を介してレンズユニット1に係合することによってレンズユニット1に光軸AX方向の駆動力を付与するものである。 The lever member 2 applies a driving force in the direction of the optical axis AX to the lens unit 1 by engaging with the lens unit 1 via the support portion 16.
 このレバー部材2は、レンズユニット1の側方、具体的には、ベース部材4の角部であってレンズユニット1の支持部16が位置する角部以外の一の角部に設置されている。このレバー部材2は、光軸AXと直交し、かつ一対の支持部16の並び方向(図1では上下方向)に延びる軸線回りに揺動可能に支持されている。 The lever member 2 is disposed on the side of the lens unit 1, specifically, at one corner other than the corner where the support portion 16 of the lens unit 1 is located, which is the corner of the base member 4. . The lever member 2 is supported so as to be swingable about an axis that is orthogonal to the optical axis AX and extends in the direction in which the pair of support portions 16 are arranged (the vertical direction in FIG. 1).
 図2(a)に示すように、レバー部材2は、アーム部分21と、このアーム部分21の基端部分から光軸AX方向に延びる延設部分22とを有した側面視逆L字型の形状を有しており、アーム部分21と延設部分22との境となる屈曲部分が、ベース部材4に立設された支持脚8の先端で支持されることによってベース部材4上に支持されている。 As shown in FIG. 2A, the lever member 2 has an arm portion 21 and an inverted L-shape in a side view having an arm portion 21 and an extending portion 22 extending from the base end portion of the arm portion 21 in the optical axis AX direction. The bent portion serving as the boundary between the arm portion 21 and the extended portion 22 is supported on the base member 4 by being supported by the tip of the support leg 8 erected on the base member 4. ing.
 支持脚8の先端(以下、レバー支持部8aという)の形状は、光軸AX方向と直交する方向(図2(a)の紙面と直交する方向)に延びる略円柱形状とされている。これにより、レバー部材2が、当該レバー支持部8aを支点として光軸AX方向と直交する軸線回りに揺動可能に支持されている。 The shape of the tip of the support leg 8 (hereinafter referred to as the lever support portion 8a) is a substantially cylindrical shape extending in a direction orthogonal to the optical axis AX direction (a direction orthogonal to the paper surface of FIG. 2A). Thus, the lever member 2 is supported so as to be swingable about an axis orthogonal to the optical axis AX direction with the lever support portion 8a as a fulcrum.
 アーム部分21は平面視で円弧状に形成されている。詳しくは、図1に示すように、延設部分22からからレンズユニット1の両側に二股に分かれて当該レンズユニット1の外周面に近接してそれぞれ均等に延び、全体としてレンズユニット1の片側半分を包囲するように形成されている。アーム部分21の先端(両端)は、それぞれレンズユニット1の各支持部16の位置に達している。そして、延設部分22にSMAアクチュエータ3が架け渡され、この架け渡し位置(変位入力部2aという)に光軸AX方向と直交する方向(第2軸方向:図2(a)の左右方向)の移動力F1(図2(b)参照)が入力されることにより、レバー部材2が揺動する。この揺動に伴いアーム部分21の先端(変位出力部2bという)が光軸AX方向に変位し、当該変位出力部2bが各支持部16に係合してレンズユニット1に光軸AX方向の駆動力が付与されることとなる。 The arm portion 21 is formed in an arc shape in plan view. Specifically, as shown in FIG. 1, the lens unit 1 is bifurcated from the extended portion 22 to both sides of the lens unit 1 and extends evenly in the vicinity of the outer peripheral surface of the lens unit 1. Is formed so as to surround. The tips (both ends) of the arm portion 21 reach the positions of the support portions 16 of the lens unit 1, respectively. Then, the SMA actuator 3 is bridged over the extended portion 22, and a direction perpendicular to the optical axis AX direction (second axis direction: left-right direction in FIG. 2A) at this bridge position (referred to as the displacement input portion 2a). When the moving force F1 (see FIG. 2B) is input, the lever member 2 swings. Along with this swinging, the tip of the arm portion 21 (referred to as the displacement output portion 2b) is displaced in the optical axis AX direction, and the displacement output portion 2b engages with each support portion 16 to cause the lens unit 1 to move in the optical axis AX direction. A driving force is applied.
 SMAアクチュエータ3は、レバー部材2に対して移動力F1(図2(b)参照)を付与するもので、例えばNi-Ti合金等のSMAワイヤで構成され、断面がほぼ円形の線状アクチュエータである。なお、この明細書では、SMAアクチュエータ3およびそれを構成するSMAワイヤを単に「SMA3」とも略称する。 The SMA actuator 3 applies a moving force F1 (see FIG. 2 (b)) to the lever member 2, and is composed of, for example, an SMA wire such as a Ni—Ti alloy, and is a linear actuator having a substantially circular cross section. is there. In this specification, the SMA actuator 3 and the SMA wire constituting the SMA actuator 3 are also simply referred to as “SMA3”.
 このSMAアクチュエータ3は、低温で弾性係数が低い状態(マルテンサイト相)において所定の張力を与えられることで伸長し、この伸長状態において熱が与えられると相変態して弾性係数が高い状態(オーステナイト相:母相)に移行し、伸長状態から元の長さに戻る(形状回復する)という性質を有している。 The SMA actuator 3 expands when given a predetermined tension in a state where the elastic modulus is low (martensite phase) at a low temperature. When heat is applied in this extended state, the SMA actuator 3 undergoes phase transformation and has a high elastic modulus (austenite). Phase: parent phase) and return to its original length from its extended state (recover shape).
 当実施形態では、SMAアクチュエータ3を通電加熱することで、上述の相変態(詳細は後述)を行わせる構成が採用されている。すなわち、SMAアクチュエータ3は所定の抵抗値を有する導体であることから、当該SMAアクチュエータ3自身に通電することでジュール熱を発生させ、該ジュール熱に基づく自己発熱によりマルテンサイト相からオーステナイト相へ変態させる構成とされている。このため、SMAアクチュエータ3の両端には、通電加熱用の第1電極30aおよび第2電極30bが固着されている。これら電極30a,30bはベース部材4に設けられる所定の電極固定部に固定されている。 In the present embodiment, a configuration is adopted in which the SMA actuator 3 is energized and heated to perform the above-described phase transformation (details will be described later). That is, since the SMA actuator 3 is a conductor having a predetermined resistance value, Joule heat is generated by energizing the SMA actuator 3 itself, and transformation from the martensite phase to the austenite phase is performed by self-heating based on the Joule heat. It is supposed to be configured. For this reason, the first electrode 30 a and the second electrode 30 b for energization heating are fixed to both ends of the SMA actuator 3. These electrodes 30 a and 30 b are fixed to predetermined electrode fixing portions provided on the base member 4.
 SMAアクチュエータ3は、図1に示すように、レバー部材2の延設部分22に係合する部分を折り返し地点として、電極30aおよび30bの間に架け渡されている。かかる構成により、SMAアクチュエータ3が電極30a,30bを介して通電加熱され、作動(収縮)すると、レバー部材2に対して移動力F1(図2(b)参照)が付与され、この移動力F1によりレバー部材2が揺動することとなる。 As shown in FIG. 1, the SMA actuator 3 is bridged between the electrodes 30a and 30b with a portion engaging with the extending portion 22 of the lever member 2 as a turning point. With this configuration, when the SMA actuator 3 is energized and heated via the electrodes 30a and 30b and is operated (shrinks), a movement force F1 (see FIG. 2B) is applied to the lever member 2, and this movement force F1. As a result, the lever member 2 swings.
 なお、電極30a,30bは、ベース部材4のうちレンズユニット1の支持部16の近傍にそれぞれ配置されている。SMAアクチュエータ3のうち各電極30a,30bから折り返し地点までのそれぞれの長さは等しく設定されており、これによって変位入力部2a両側のSMAアクチュエータ3の伸縮量が等しくなってSMAアクチュエータ3作動時のレバー部材2とSMAアクチュエータ3との擦れが防止される。また、延設部分22にはV溝21a(上記変位入力部2aに相当する)が形成されており、当該V溝21aに嵌り込むようにSMAアクチュエータ3が架け渡されることにより、レバー部材2に対してSMAアクチュエータ3が安定的に懸架されている。 The electrodes 30a and 30b are arranged in the vicinity of the support portion 16 of the lens unit 1 in the base member 4, respectively. The lengths of the SMA actuator 3 from the electrodes 30a and 30b to the turn-back point are set to be equal to each other, so that the amount of expansion / contraction of the SMA actuator 3 on both sides of the displacement input portion 2a becomes equal. Rubbing between the lever member 2 and the SMA actuator 3 is prevented. Further, a V-groove 21a (corresponding to the displacement input portion 2a) is formed in the extended portion 22, and the SMA actuator 3 is bridged so as to be fitted into the V-groove 21a, whereby the lever member 2 is On the other hand, the SMA actuator 3 is stably suspended.
 上記のレンズ移動装置では、通電加熱が行われていないSMAアクチュエータ3の停止(伸長)時には、バイアスバネ7の押圧力によりレンズユニット1がベース部材4側に押圧され、これによってレンズユニット1がホームポジションに保持される(図2(a)参照)。一方、SMAアクチュエータ3が作動(収縮)すると、この作動によりレバー部材2の変位入力部2aに移動力F1が付与されてレバー部材2が揺動し、この揺動により変位出力部2bが光軸AX方向に移動することとなる(図2(b)参照)。その結果、レンズユニット1に対物側への駆動力が付与され、レンズユニット1がバイアスバネ7の押圧力に抗して移動する。この際、SMAアクチュエータ3への通電電流が制御されて移動力F1の力量が調整されることで、レンズユニット1の変位量が調整されることとなる。 In the lens moving device described above, when the SMA actuator 3 that is not energized and heated is stopped (expanded), the lens unit 1 is pressed toward the base member 4 by the pressing force of the bias spring 7, whereby the lens unit 1 is moved to the home. The position is held (see FIG. 2A). On the other hand, when the SMA actuator 3 is actuated (contracted), the actuating force applies a moving force F1 to the displacement input portion 2a of the lever member 2 to cause the lever member 2 to oscillate, and this oscillation causes the displacement output portion 2b to move to the optical axis. It moves in the AX direction (see FIG. 2B). As a result, a driving force toward the objective side is applied to the lens unit 1, and the lens unit 1 moves against the pressing force of the bias spring 7. At this time, the amount of displacement of the lens unit 1 is adjusted by controlling the energizing current to the SMA actuator 3 and adjusting the amount of the moving force F1.
 そして、SMAアクチュエータ3への通電が停止(若しくは電圧が所定値まで低下)され、SMAアクチュエータ3が冷却されてマルテンサイト相に復帰すると、前記移動力F1が消失し、バイアスバネ7の押圧力により、レンズユニット1が光軸AX方向に沿ってホームポジションに復帰する。このように、SMAアクチュエータ3への通電ON-OFFによって、レンズユニット1を光軸AX方向に沿って変位させることができ、また、SMAアクチュエータ3a,3bへの通電電流を制御して移動力F1の力量を調整することで、レンズユニット1の変位量を調整できるようになる。 When the energization to the SMA actuator 3 is stopped (or the voltage is reduced to a predetermined value) and the SMA actuator 3 is cooled and returned to the martensite phase, the moving force F1 disappears, and the pressing force of the bias spring 7 The lens unit 1 returns to the home position along the optical axis AX direction. In this way, the lens unit 1 can be displaced along the optical axis AX direction by turning on and off the SMA actuator 3, and the moving force F1 can be controlled by controlling the current supplied to the SMA actuators 3a and 3b. The amount of displacement of the lens unit 1 can be adjusted by adjusting the amount of force.
 このように、上記レンズ駆動ユニットによると、SMAアクチュエータ3の作動に応じ、レンズユニット1を光軸AX方向に沿って良好に移動させることができる。 Thus, according to the lens driving unit, the lens unit 1 can be favorably moved along the optical axis AX in accordance with the operation of the SMA actuator 3.
 また、この実施形態のレンズ駆動ユニット100では、SMAアクチュエータ3自身またはその近傍の温度を検出するための温度センサ107が、SMAアクチュエータ3に対向してベース部材4に取付られている。この温度センサ107によって得られた温度情報の利用法については後述する。 In the lens driving unit 100 of this embodiment, the temperature sensor 107 for detecting the temperature of the SMA actuator 3 itself or in the vicinity thereof is attached to the base member 4 so as to face the SMA actuator 3. A method of using the temperature information obtained by the temperature sensor 107 will be described later.
  <1-1.SMAの一般的性質と前提事情>
 この実施形態におけるSMAアクチュエータ制御装置101の詳細を説明する準備として、この実施形態の前提となるSMAの物理特性の一般的性質と、それに伴って生じる事情を説明しておく。
<1-1. General properties and assumptions of SMA>
As a preparation for explaining the details of the SMA actuator control apparatus 101 in this embodiment, the general properties of the physical characteristics of the SMA that are the premise of this embodiment and the circumstances that accompany it will be described.
 図3から図6は、断面がほぼ円形となっている線状SMAの物理特性の一般的性質を示す図である。これらのうち、図3は、線径(すなわち断面の直径)が異なる場合の駆動応答の特性を説明する図であり、図3(a)は定電流駆動を行う場合の駆動応答性を示し、図3(b)はステップ駆動(サーボ)における駆動応答性を示す。 3 to 6 are diagrams showing general properties of physical properties of the linear SMA having a substantially circular cross section. Among these, FIG. 3 is a diagram for explaining the characteristics of the drive response when the wire diameters (that is, the diameters of the cross sections) are different, and FIG. 3A shows the drive response when performing constant current drive. FIG. 3B shows drive response in step drive (servo).
 SMAアクチュエータを定電流駆動する場合には、電流印加開始時から、連続的に一定の電流を通電し、通電によって発生する熱により、SMA自身の温度が時間とともに上昇する。しかし、図3(a)に示すように、線径が異なる場合、例えば、線径D1<線径D2<線径D3の関係があるような3つの線径D1,D2,D3を考えた場合には、電流ゼロの状態から一定電流の通電を開始したときの応答性は線径が小さいほど高く、線径D1,線径D2,線径D3の順で線径が大きくなるに従って変位応答性が下がる。このように、電流値は一定であっても、線径が異なるとSMAの体積、表面積、および電気抵抗値が異なるので、応答性は異なる。 When the SMA actuator is driven at a constant current, a constant current is continuously supplied from the start of current application, and the temperature of the SMA itself increases with time due to heat generated by the energization. However, as shown in FIG. 3A, when the wire diameters are different, for example, when three wire diameters D1, D2 and D3 having a relationship of wire diameter D1 <wire diameter D2 <wire diameter D3 are considered. The response when starting to supply a constant current from the zero current state is higher as the wire diameter is smaller, and the displacement responsiveness is increased as the wire diameter increases in the order of the wire diameter D1, the wire diameter D2, and the wire diameter D3. Go down. Thus, even if the current value is constant, the responsiveness differs because the volume, surface area, and electrical resistance value of SMA differ when the wire diameter is different.
 より定量的に、SMA全体の発熱量を一定とした場合における、SMAの温度変化の線径依存性を考えると、まず、SMAの体積(熱容量)は線径Dの2乗に比例して大きくなる。また、SMAから外部への放熱量はSMAの表面積に比例して大きくなるが、表面積は線径Dに比例する。さらに、発生するジュール熱は(電流Iの2乗)×(抵抗R)であるが、抵抗Rは線径Dの2乗に比例して小さくなる。 Considering the wire diameter dependence of the SMA temperature change when the calorific value of the entire SMA is constant, first, the volume (heat capacity) of the SMA increases in proportion to the square of the wire diameter D. Become. The amount of heat released from the SMA to the outside increases in proportion to the surface area of the SMA, but the surface area is proportional to the wire diameter D. Further, the generated Joule heat is (the square of current I) × (resistance R), but the resistance R becomes smaller in proportion to the square of the wire diameter D.
 したがって、通電による温度上昇を規定する(ジュール熱/熱容量)は線径Dの4乗に反比例し、表面からの放熱は線径Dに比例する。すると、SMAに流す電流が同一値であっても、線径Dが小さいと、通電による温度上昇の効果が大きくなり、放熱を大きく上回る。すなわち、線径Dが小さいほど、ジュール熱は大きくかつ熱容量が小さくなって温度上昇を生じやすい一方で、表面積が減少するためにSMAに蓄積される熱が放熱しにくくなる。その結果、SMAの線径が小さい(すなわち線材が細い)ほど、温度変化に要する時間が短くなり応答速度が速くなる。これらの性質が図3(a)に示されている。 Therefore, the temperature rise due to energization (joule heat / heat capacity) is inversely proportional to the fourth power of the wire diameter D, and the heat radiation from the surface is proportional to the wire diameter D. Then, even if the currents flowing through the SMA are the same value, if the wire diameter D is small, the effect of the temperature increase due to energization becomes large, greatly exceeding the heat dissipation. That is, the smaller the wire diameter D, the greater the Joule heat and the smaller the heat capacity, and the more likely the temperature rises. On the other hand, the heat accumulated in the SMA is less likely to dissipate because the surface area decreases. As a result, the smaller the SMA wire diameter (that is, the thinner the wire), the shorter the time required for temperature change and the faster the response speed. These properties are shown in FIG.
 また、定電流駆動を行うと、駆動対象物(レンズ)の変位が静定するまでに長時間がかかり、また周囲温度などの条件により変位も変化してしまうため、サーボ制御により高速にステップ駆動することが好ましい。周知のように、サーボ制御とは、現在の変位に関する情報を取得しつつ通電量をフィードバック制御して目標の変位に移動させる方法である。ここでSMAの変形に関する情報取得のためには、変位センサを設けておくという方法もあるが、この発明の実施形態では、SMA自身の抵抗値がSMAの変形量(伸縮量)と相関していることを利用して、SMAの抵抗値を検出し、その抵抗値をSMAの変位情報として用いる。 In addition, when constant current drive is performed, it takes a long time for the displacement of the driven object (lens) to settle, and the displacement also changes depending on conditions such as the ambient temperature. It is preferable to do. As is well known, the servo control is a method in which the amount of energization is feedback controlled and information is moved to a target displacement while acquiring information on the current displacement. Here, there is a method of providing a displacement sensor in order to obtain information on the deformation of the SMA. However, in the embodiment of the present invention, the resistance value of the SMA itself correlates with the deformation amount (expansion / contraction amount) of the SMA. The resistance value of SMA is detected by using this, and the resistance value is used as displacement information of SMA.
 これについては、
 DR相関:「線径-抵抗値」の間の相関(線径が小さいほど抵抗値が大きい)、
 RT相関:「抵抗値-温度」の間の相関(SMAが収縮する温度範囲で、温度上昇に伴い抵抗値が小さくなる)、
 TX相関:「温度-SMAの伸縮量」の間の相関(温度が高いほど伸縮量が大きい)、
のうち、RT相関とTX相関とを組み合わせれば、図6のような「抵抗値-SMA伸縮量(レンズ変位)」の相関を特定できるため、SMAの抵抗値を測定することによってSMAの伸縮量(SMAの伸縮によるレンズ変位)を知得するようにしている。
About this,
DR correlation: Correlation between “wire diameter-resistance value” (resistance value increases as wire diameter decreases),
RT correlation: Correlation between "resistance value-temperature" (resistance value decreases with increasing temperature in the temperature range where SMA contracts),
TX correlation: Correlation between “temperature-SMA expansion / contraction amount” (the higher the temperature, the larger the expansion / contraction amount),
Among them, if RT correlation and TX correlation are combined, the correlation of “resistance value−SMA expansion / contraction amount (lens displacement)” as shown in FIG. 6 can be specified. Therefore, by measuring the resistance value of SMA, the expansion / contraction of SMA The amount (lens displacement due to expansion and contraction of SMA) is obtained.
 フィードバック制御によるSMAへの通電量は、目標変位と現在変位とを比較して決定される。簡易な制御方法である比例制御の場合には、目標変位と現在変位との差に比例するように通電量を決定する。つまり、目標変位と現在変位との差分量にある定数(ゲイン)を乗じて、通電量とする演算を行う。 The amount of current supplied to the SMA by feedback control is determined by comparing the target displacement with the current displacement. In the case of proportional control, which is a simple control method, the energization amount is determined so as to be proportional to the difference between the target displacement and the current displacement. That is, the energization amount is calculated by multiplying the difference amount between the target displacement and the current displacement by a constant (gain).
 したがって、アクチュエータの応答性を最適にするためには、SMA3の応答性を考慮して最適なゲインを設定することが重要である。一般にはゲインが低すぎると変位速度が遅くなり、目標変位に達するまでに長い時間がかかってしまう。また、ゲインが高すぎると、変位速度は速くなるが、フィードバックループの位相遅れに起因して過度応答でオーバーシュートが発生し、やはり目標変位に静定するまでに長い時間がかかることになる。したがって、このゲイン設定を行う上で、SMAの線径による応答性変化が問題となる。 Therefore, in order to optimize the response of the actuator, it is important to set an optimum gain in consideration of the response of SMA3. In general, if the gain is too low, the displacement speed becomes slow, and it takes a long time to reach the target displacement. If the gain is too high, the displacement speed increases, but overshoot occurs due to excessive response due to the phase delay of the feedback loop, and it takes a long time to settle to the target displacement. Therefore, a change in response due to the SMA wire diameter becomes a problem when performing this gain setting.
 図3(b)には目標変位P1に静定している状態から目標変位P2にステップ駆動させるときの応答特性を示している。図3(a)と同様に図3(b)においても、線径Dが異なる線径D1<線径D2<線径D3の3つのケースを考える。この場合、線径D2での応答が最適になるようにゲイン設定したとしても、より太い線径D3では応答が遅くなってしまい、またより細い線径D1では応答性が上がりすぎてオーバーシュートが発生してしまう。 FIG. 3 (b) shows response characteristics when the target displacement P2 is step-driven from a state where the target displacement P1 is settled. Similar to FIG. 3A, in FIG. 3B, three cases of different wire diameters D1 <wire diameter D1 <wire diameter D2 <wire diameter D3 are considered. In this case, even if the gain is set so that the response at the wire diameter D2 is optimized, the response becomes slow at the thicker wire diameter D3, and the response becomes too high at the thinner wire diameter D1, resulting in overshoot. Will occur.
 図4は、SMA線材の温度-抵抗値および温度-伸縮量の関係を表す図である。これらは既述したRT相関およびTX相関に相当する。Ni-Ti系SMAに200MPa程度の張力を与えて引き伸ばした状態で、温度を変化させたときの一般的な特性曲線を示している。温度が低温領域から高温に変化していく過程では、As点以下では一般金属のように抵抗値が大きくなり、As点付近で結晶相がオーステナイト相への変態を開始することにより、歪みが変化すなわち線材の長さが収縮していく。さらに温度を上げると、Af点付近でほぼ完全にオーステナイト相に変態完了する事により収縮しなくなる。またAs~Afの過程では、結晶相変化と変形により、抵抗値は減少する。さらにAfを超える温度領域では、抵抗値は一般金属のように温度上昇に伴い大きくなる。 FIG. 4 is a diagram showing the relationship between the temperature-resistance value and the temperature-stretching amount of the SMA wire. These correspond to the RT correlation and TX correlation described above. A general characteristic curve is shown when the temperature is changed in a state where Ni-Ti SMA is stretched by applying a tension of about 200 MPa. In the process where the temperature changes from a low temperature region to a high temperature, the resistance value increases like the general metal below the As point, and the strain changes as the crystal phase starts to transform to the austenite phase near the As point. That is, the length of the wire contracts. When the temperature is further increased, the transformation does not shrink due to the complete transformation to the austenite phase near the Af point. In the process from As to Af, the resistance value decreases due to the crystal phase change and deformation. Further, in a temperature region exceeding Af, the resistance value increases with increasing temperature like a general metal.
 次に、高温領域から低温に変化していく過程では、Ms点より高温では抵抗値と歪みとは温度上昇過程と同じ軌跡を逆にたどるが、Ms点付近で結晶相がマルテンサイト相に変態を開始することにより、張力によって伸ばされて歪みが元に戻り始める。さらに温度を下げると、Mf点付近でほぼ完全にマルテンサイト相に変態完了することにより、もとの引き伸ばされた状態に戻る。またMs~Mfの過程では、抵抗値は増加し、Mfよりも低い温度領域では温度上昇時と同じ軌跡を逆にたどる。なお、変態温度はNi-Tiの組成比によって変化するが、通電アクチュエータとして使用する場合、例えばAs:80℃、Af:85℃、Ms:65℃、Mf:60℃程度のものが使用される。 Next, in the process of changing from the high temperature region to the low temperature, the resistance value and strain follow the same trajectory as the temperature increasing process at a temperature higher than the Ms point, but the crystal phase transforms into a martensite phase near the Ms point. The strain is stretched by the tension and starts to return to its original state. When the temperature is further lowered, transformation to the martensite phase is completed almost completely near the Mf point, and the original stretched state is restored. Further, in the process of Ms to Mf, the resistance value increases, and in the temperature region lower than Mf, the same trajectory as when the temperature rises is reversed. Although the transformation temperature varies depending on the composition ratio of Ni-Ti, when used as an energized actuator, for example, those with As: 80 ° C, Af: 85 ° C, Ms: 65 ° C, Mf: 60 ° C are used. .
 図5は、実施形態のレンズ駆動ユニット100においてAFレンズ駆動に利用されるSMAの温度-抵抗値および温度-レンズ変位の関係を表す図である。図5では、図4の特性曲線の高温側を含まない曲線を示しており、実際に製品として使われる範囲を示す。低温領域から温度上昇する過程では、オーステナイト相への変態が始まる付近で抵抗値は最大(以下、「最大抵抗値Rmax」と称する)となる。ここから線材は収縮を開始するが、線の弛みや各部の弾性変形などがあるので、レンズはすぐには動き出さない。そして、温度が上がりアクチュエータ変位が変化し始める抵抗値を「変位抵抗値Rinf」と称する。 FIG. 5 is a diagram illustrating the relationship between the temperature-resistance value and the temperature-lens displacement of the SMA used for driving the AF lens in the lens driving unit 100 of the embodiment. FIG. 5 shows a curve that does not include the high temperature side of the characteristic curve of FIG. 4, and shows a range that is actually used as a product. In the process of increasing the temperature from the low temperature region, the resistance value becomes maximum (hereinafter referred to as “maximum resistance value Rmax”) in the vicinity of the transformation to the austenite phase. The wire starts to shrink from here, but the lens does not move immediately because of the slack of the wire and the elastic deformation of each part. The resistance value at which the temperature increases and the actuator displacement starts to change is referred to as “displacement resistance value Rinf”.
 続いて、レンズが無限端からマクロ方向に繰り出し始める。さらに温度上昇に伴い、マクロ方向にレンズが移動するに伴い抵抗値は減少していく。そして、マクロ端に達するときの抵抗値を「マクロ端抵抗値Rmcr」と称する。逆に温度低下する過程では、無限方向にレンズが移動するに伴い抵抗値は増加していく。 Next, the lens starts to extend in the macro direction from the infinite end. As the temperature rises, the resistance value decreases as the lens moves in the macro direction. The resistance value when reaching the macro end is referred to as “macro end resistance value Rmcr”. On the contrary, in the process of lowering the temperature, the resistance value increases as the lens moves in an infinite direction.
 また、通電前の完全に放熱した状態での抵抗値(「放熱抵抗値Rstart」と称する)は、周囲温度(環境温度ないしは室温)により変化する。したがって、放熱状態での抵抗値をもとに線径を算出する場合には、周囲温度による補正を行うことが望ましい。 Also, the resistance value (referred to as “radiation resistance value Rstart”) in a completely radiated state before energization varies depending on the ambient temperature (environment temperature or room temperature). Therefore, when calculating the wire diameter based on the resistance value in the heat dissipation state, it is desirable to perform correction based on the ambient temperature.
 図6は、レンズ駆動システム100に用いるSMAの抵抗値-レンズ変位の特性曲線である。ここでは温度上昇過程と温度低下過程では同じ軌跡となりヒステリシスが無くなっているが、例えばNi-TiのNiを数%だけCuに置き換えたNi-Ti-Cu系のSMAではこのヒステリシスを非常に小さくできることが知られている。図6に示すように、レンズの可動範囲におけるレンズ変位に伴う抵抗値Rは、「変位抵抗値Rinf<抵抗値R<マクロ端抵抗値Rmcr」の範囲であり、当該範囲で、SMAの抵抗値-レンズ変位は略線形な特性を持つ。 FIG. 6 is a characteristic curve of SMA resistance value-lens displacement used in the lens driving system 100. Here, the temperature rise process and the temperature decrease process have the same trajectory and the hysteresis disappears. For example, in Ni-Ti-Cu SMA in which Ni in Ni-Ti is replaced with Cu by a few percent, this hysteresis can be made very small. It has been known. As shown in FIG. 6, the resistance value R accompanying the lens displacement in the movable range of the lens is a range of “displacement resistance value Rinf <resistance value R <macro-edge resistance value Rmcr”, and in this range, the resistance value of the SMA. -Lens displacement has a substantially linear characteristic.
 以上の背景の下、線径情報を間接的(第1実施形態)あるいは直接的(第2実施形態)に用いて、通電パラメータ(サーボ制御の場合、典型的にはフィードバックゲイン)を線径に応じて可変に設定することで、線径バラツキがあっても最適な制御を実現することが、本発明の技術的思想に対応する各実施形態の特徴的事項である。 Based on the above background, the wire diameter information is used indirectly (first embodiment) or directly (second embodiment), and the energization parameter (typically feedback gain in the case of servo control) is used as the wire diameter. It is a characteristic matter of each embodiment corresponding to the technical idea of the present invention to realize the optimum control even if there is a variation in the wire diameter by setting the variable accordingly.
 以下では、それぞれの実施形態の詳細について分説する。 In the following, the details of each embodiment will be described.
 <2.第1実施形態>
  <2-1.SMAアクチュエータ制御装置101の概略>
 以上説明した本発明の技術的思想に基づくSMAアクチュエータ制御装置は、線材状のSMA3の温度変化による形状復元力を利用してアクチュエータを制御する。具体的には、SMA3への通電をPWM(パルス幅変調)方式によって制御し、所定の通電基準条件を満足させるためのSMA3への通電パラメータの値を、SMA3の線径Dに応じて可変に設定する。その設定された通電パラメータを基準として、アクチュエータへの作動指令値に応じて制御信号を変化させ、SMA3への通電制御を行う。
<2. First Embodiment>
<2-1. Outline of SMA Actuator Control Device 101>
The SMA actuator control device based on the technical idea of the present invention described above controls the actuator using the shape restoring force due to the temperature change of the wire-like SMA 3. Specifically, energization to the SMA 3 is controlled by a PWM (pulse width modulation) method, and the value of the energization parameter to the SMA 3 for satisfying a predetermined energization reference condition can be varied according to the wire diameter D of the SMA 3. Set. Based on the set energization parameter, the control signal is changed according to the operation command value to the actuator, and energization control to the SMA 3 is performed.
 図7は、第1実施形態に係るSMAアクチュエータ制御装置101の構成を示すブロック図であり、このSMAアクチュエータ制御装置101は、レンズ駆動システム100のうち、図1および図2に示した機構系を制御するための制御系に相当する。図7に示されるように、電源電圧Vを供給する電源ラインPLと接地ラインGLとの間に、電源ラインPL側から、可変電流源106により、SMAアクチュエータ3に通電できるようになっている。ここで、SMAアクチュエータ3は、図1~図2に示したレンズ駆動ユニット100のSMAアクチュエータ3に相当する。 FIG. 7 is a block diagram showing the configuration of the SMA actuator control apparatus 101 according to the first embodiment. The SMA actuator control apparatus 101 includes the mechanism system shown in FIGS. 1 and 2 in the lens driving system 100. It corresponds to a control system for controlling. As shown in FIG. 7, the SMA actuator 3 can be energized by the variable current source 106 from the power supply line PL side between the power supply line PL that supplies the power supply voltage V and the ground line GL. Here, the SMA actuator 3 corresponds to the SMA actuator 3 of the lens driving unit 100 shown in FIGS.
 SMAアクチュエータ3の両端は抵抗値検出部102に接続され、抵抗値検出部102が、オームの法則により、既知の電流値IとSMAアクチュエータ3の両端電圧Vとから抵抗値RSMAを検出する。電流値Iが既知であれば両端電圧Vは抵抗値RSMAに対して一対一の関係にある代用指標となるため、両端電圧Vを検出することは、抵抗値RSMAを検出することと物理的あるいは数学的に等価である。すなわち、抵抗値検出部102が検知する物理量は、絶対的な抵抗値RSMAに限らず、抵抗値RSMAの代用指標となるような他の量であってもよい。より一般的には、抵抗値SMAと一対一の関係にあることにより抵抗値SMAを表現する値(抵抗表現値)を検出すればよいことになる。このため、本発明の抵抗値検出部102が検知する「抵抗値」は、抵抗値そのものの他、電圧等の抵抗表現値をも包含した意味で用いる。 Both ends of the SMA actuator 3 is connected to the resistance value detecting section 102, the resistance value detecting section 102, Ohm's law by, detecting the resistance value R SMA from the voltage V across the known current value I and the SMA actuator 3. Since the current value I becomes a substitute index in the one-to-one relationship with the voltage V across if known resistance value R SMA, to detect the voltage V across, it a physical detecting the resistance value R SMA Or mathematically equivalent. That is, the physical quantity detected by the resistance value detection unit 102 is not limited to the absolute resistance value RSMA , but may be another quantity that serves as a substitute index for the resistance value RSMA . More generally, a value representing the resistance value SMA (resistance expression value) may be detected by having a one-to-one relationship with the resistance value SMA. For this reason, the “resistance value” detected by the resistance value detection unit 102 of the present invention is used in a sense including not only the resistance value itself but also a resistance expression value such as a voltage.
 抵抗値検出部102により検出されたSMAアクチュエータの抵抗値RSMAは、比較部103の一つの入力端子に入力され、比較部103のもう一つの入力端子にはコントローラ104からの目標抵抗値Rpが入力される。ここでは、上述したSMAの抵抗値-レンズ変位の関係(図6参照)を利用して、変位センサを設ける代わりに抵抗値Rを検出する。この検出によって得た実測抵抗値と目標抵抗値との比較によって、間接的に、レンズ変位現在値とレンズ変位目標値との比較が行われる。すなわち、比較部103では、実測抵抗値RSMAと目標抵抗値Rpとの入力値を比較した結果を通電制御演算部105に出力する。そして、通電制御演算部105の出力結果(実測抵抗値RSMAと目標抵抗値Rpとの差)に伴い、PWM駆動を行うための可変電流源106のON/OFF制御が可能となっている。 Resistance R SMA of the SMA actuator detected by the resistance value detecting section 102 is input to one input terminal of the comparator 103, the other input terminal of the comparator 103 target resistance Rp from the controller 104 Entered. Here, the resistance value R is detected instead of providing the displacement sensor by utilizing the above-described relationship between the SMA resistance value and the lens displacement (see FIG. 6). The comparison between the actual resistance value obtained by this detection and the target resistance value indirectly compares the current lens displacement value with the target lens displacement value. That is, the comparison unit 103 outputs the result of comparing the input values of the actually measured resistance value RSMA and the target resistance value Rp to the energization control calculation unit 105. The ON / OFF control of the variable current source 106 for performing the PWM drive is possible according to the output result of the energization control calculation unit 105 (difference between the actually measured resistance value RSMA and the target resistance value Rp).
 抵抗値検出部102が検出する量が抵抗値RSMAのそのものに限らず、一般的に抵抗表現値を含む「抵抗値」でよいことに対応して、目標抵抗値Rpもまた、一般的には、目標抵抗値Rpと一対一の関係にあることにより目標抵抗値Rpを表現する値(目標抵抗表現値を含む「目標抵抗値」)であってよい。したがって、比較部103の各入力端子に入力される信号のうちの一方は、抵抗値検出部102から出力される「抵抗値」の信号であり、他方は「目標抵抗値」の信号ということになる。 Corresponding to the fact that the amount detected by the resistance value detection unit 102 is not limited to the resistance value RSMA itself, but generally may be a “resistance value” including a resistance expression value, the target resistance value Rp is also generally May be a value expressing the target resistance value Rp by having a one-to-one relationship with the target resistance value Rp (a “target resistance value” including the target resistance expression value). Therefore, one of the signals input to each input terminal of the comparison unit 103 is a “resistance value” signal output from the resistance value detection unit 102, and the other is a “target resistance value” signal. Become.
  <2-2.SMAへの駆動電流制御>
 続いて、SMAの通電波形について説明する。この実施形態では、PWM制御によってレンズの変位駆動を行うが、一般に、PWM波形は、パルスのピーク値(パルス振幅)と、デューティ比(パルス列の1周期あたりのON時間の割合)との2つのパラメータによって定まる。この実施形態でのレンズの変位駆動はデューティ比を変化させ、それによってSMAへの平均通電量を増減させることによって実現するが、そのようなパルス列を発生させる際の電流値(パルス振幅値)を、線径に応じて事前に設定する。
<2-2. Driving current control to SMA>
Next, the energization waveform of SMA will be described. In this embodiment, the lens is driven by PWM control. Generally, a PWM waveform has two values, a peak value of a pulse (pulse amplitude) and a duty ratio (ratio of ON time per cycle of a pulse train). It depends on the parameters. The lens displacement drive in this embodiment is realized by changing the duty ratio and thereby increasing or decreasing the average energization amount to the SMA. The current value (pulse amplitude value) at the time of generating such a pulse train is obtained. Set in advance according to the wire diameter.
 すなわち、電源オン時における初期設定として、線径に応じた「電流設定」をいったん行っておき、以後は、AF動作のためのレンズの目標変位に応じた「デューティ比制御」を行う。便宜的に、後者から先に順次説明する。 That is, as the initial setting when the power is turned on, “current setting” according to the wire diameter is once performed, and thereafter “duty ratio control” according to the target displacement of the lens for the AF operation is performed. For convenience, the latter will be described in order.
 1.デューティ比制御
 図8のPWM波形の例において、放熱状態Aのデューティ比DA、加熱状態Bのデューティ比DBの2つの状態について、「デューティ比DA<デューティ比DB」の関係にある。また、可変電流源を一定の電流出力になるように設定しており、印加電流Ipは一定である。したがって、時間平均電流(通電量)はデューティ比により決定され、通電による加熱量は(状態A)<(状態B)であるため、SMA温度は(状態A)<(状態B)となる。
1. Duty ratio control In the example of the PWM waveform of FIG. 8, the duty ratio DA in the heat dissipation state A and the duty ratio DB in the heating state B are in a relationship of “duty ratio DA <duty ratio DB”. Further, the variable current source is set to have a constant current output, and the applied current Ip is constant. Therefore, the time average current (energization amount) is determined by the duty ratio, and the heating amount by energization is (state A) <(state B), so the SMA temperature is (state A) <(state B).
 SMA温度がアクチュエータの可動範囲であれば、SMA抵抗値RSMAは(状態A)>(状態B)であり、電流Ipが一定であることにより、SMA端子電圧は図8中に示すように「電圧VA>電圧VB」となる。電流Ipは可変電流源に設定された既知の値であるから、この端子電圧VA,VBから、オームの法則によりSMA抵抗値RSMAを、放熱状態Aや加熱状態Bなど任意の状態で検出することができる。 If the SMA temperature is within the movable range of the actuator, the SMA resistance value RSMA is (state A)> (state B), and the current Ip is constant, so that the SMA terminal voltage is “ Voltage VA> voltage VB ”. Since the current Ip is a known value set in the variable current source, the SMA resistance value RSMA is detected from the terminal voltages VA and VB in any state such as the heat dissipation state A and the heating state B by Ohm's law. be able to.
 このようにして、SMAの抵抗値RSMAを検出し目標抵抗値Rpと比較してデューティ比による通電量を増減させるフィードバック制御を行なって、アクチュエータを目標位置に変位制御する。 In this way, the resistance value RSMA of the SMA is detected and compared with the target resistance value Rp, feedback control is performed to increase or decrease the energization amount based on the duty ratio, thereby controlling the displacement of the actuator to the target position.
 ただし、ここにおける「電流Ipが一定」とは、「AF制御でのレンズの目標変位(指令値)には依存せずに一定」という意味であり、「電流Ipは線径Dに応じて可変に設定される」という下記の内容とは矛盾しない。 However, “the current Ip is constant” here means “constant without depending on the target displacement (command value) of the lens in the AF control”, and “the current Ip is variable according to the wire diameter D”. This is consistent with the following content:
 2.電流値設定(検査通電による初期設定)
 一方、上記のデューティ比制御を行う際の電流Ipを線径Dに応じて事前に定めるにあたっては、デューティ比は一定にして電流調整信号SI(図7参照)を調整する。この電流調整信号SIは電流Ipの値を指定する信号である。
2. Current value setting (initial setting by inspection energization)
On the other hand, when the current Ip for performing the duty ratio control is determined in advance according to the wire diameter D, the current adjustment signal SI (see FIG. 7) is adjusted with the duty ratio being constant. The current adjustment signal SI is a signal that specifies the value of the current Ip.
 SMA3への単位時間あたりの平均通電量(電流換算)は、積:Ip×Dp(Dpはデューティ比)であるから、電流Ipの値とデューティ比Dpとのいずれを変更しても、平均通電量を変化させることができるが、この実施形態では目標変位への駆動制御をデューティ比制御で行う一方で、線径に応じて電流Ipの値すなわちパルス振幅を調整する。 Since the average energization amount (current conversion) per unit time to the SMA 3 is the product: Ip × Dp (Dp is the duty ratio), the average energization is performed regardless of which of the current Ip value and the duty ratio Dp is changed. In this embodiment, the drive control to the target displacement is performed by duty ratio control, while the value of the current Ip, that is, the pulse amplitude is adjusted according to the wire diameter.
 一方、この実施形態において線径Dに応じた電流Ipの設定を行うにあたっては、そのレンズ駆動ユニット100の製品に固有の線径Dに関する情報(線径情報)が必要となる。この発明において解決すべきは、線径Dのばらつきに応じた適切な制御パラメータの設定であるから、線径情報としては「線径Dの仕様値(設計値)」を用いることはできず、個々のレンズ駆動ユニット100の製造過程において、当該ユニットに固有のSMA線径Dを実測して得たデータを使用するか、あるいは、ユーザがレンズ駆動ユニット100を使用する際に、当該レンズ駆動ユニット100の内部で自動的に線径Dの情報を反映した自動設定がなされるように構成するかの、2つの態様がある。 On the other hand, when setting the current Ip according to the wire diameter D in this embodiment, information (wire diameter information) related to the wire diameter D unique to the product of the lens driving unit 100 is required. What should be solved in the present invention is the setting of an appropriate control parameter according to the variation of the wire diameter D, so the “specification value (design value) of the wire diameter D” cannot be used as the wire diameter information. In the manufacturing process of each lens driving unit 100, data obtained by actually measuring the SMA wire diameter D inherent to the unit is used, or when the user uses the lens driving unit 100, the lens driving unit 100 There are two modes of the configuration in which the automatic setting reflecting the information of the wire diameter D is automatically performed within the 100.
 この第1実施形態は後者を採用しており、後に詳述するように、線径Dと特定の関係(相関)を持つ物理量をレンズ駆動ユニット内で自動測定し、その測定結果に基づいて「線径Dに応じた電流Ipの設定」を行う。 This first embodiment employs the latter, and as will be described in detail later, a physical quantity having a specific relationship (correlation) with the wire diameter D is automatically measured in the lens driving unit, and based on the measurement result, “ “Set current Ip according to wire diameter D”.
 そこで、この第1実施形態での図7のコントローラ104が内蔵するメモリ108には、後述の図9の物理量の相互関係に基づいてあらかじめ決定された変換テーブルあるいは変換式(以下「変換情報」と総称)が記憶されている。そして、線径に対応した物理量としてのSMA3の抵抗値RSMAを検出し、それをSMA3への通電量にフィードバックするという制御回路が構成されている。変換情報の意義と具体的な利用方法については、後に説明する。 Therefore, in the memory 108 built in the controller 104 in FIG. 7 in the first embodiment, a conversion table or a conversion formula (hereinafter referred to as “conversion information”) determined in advance based on the mutual relationship of physical quantities in FIG. (Generic name) is stored. The control circuit is configured to detect the resistance value RSMA of the SMA 3 as a physical quantity corresponding to the wire diameter, and to feed it back to the energization amount to the SMA 3 . The significance and specific usage of the conversion information will be described later.
 また、温度センサ107は、SMA3またはその周辺の温度(環境温度)を測定するが、この温度センサ107で検出した温度の値は、後述する温度補償時に利用される。 The temperature sensor 107 measures the temperature (environment temperature) of the SMA 3 or its surroundings, and the temperature value detected by the temperature sensor 107 is used for temperature compensation described later.
  <2-3.SMA3の線径とその物理特性との相関>
 図9は、SMA3の線径Dとその物理特性との相関について説明するブロック図である。ここで、SMA3の線径を「線径D」、温度センサ107によって検知されたSMA3の温度を「温度T」、SMA3の抵抗値を「抵抗R」、通電基準条件としてのSMA3の電圧を「電圧Vp」、SMA3の端子電圧が電圧VpとなるようなSMA3への電流を「電流Ip」とすると、これらのファクタの物理的関係は図9のように示される。
<2-3. Correlation between SMA3 wire diameter and its physical properties>
FIG. 9 is a block diagram for explaining the correlation between the wire diameter D of the SMA 3 and its physical characteristics. Here, the wire diameter of the SMA 3 is “wire diameter D”, the temperature of the SMA 3 detected by the temperature sensor 107 is “temperature T”, the resistance value of the SMA 3 is “resistance R”, and the voltage of the SMA 3 as the energization reference condition is “ Assuming that the current to the SMA 3 at which the voltage Vp ”and the terminal voltage of the SMA 3 become the voltage Vp is“ current Ip ”, the physical relationship between these factors is shown in FIG.
 PWM制御のフィードバックループのゲインは、電流Ipに依存する。すなわち、目標変位と現在変位との差に応じてPWM波形のデューティ比を変化させたとき、電流Ipが大きいほどSMA3の発熱量変化が大きく、これはフィードバックループのゲインが大きいことに相当する。したがって、線径Dに応じてゲインを調整するということは、電流Ipの大きさを線径Dに応じて可変に設定するということを意味する。 The gain of the feedback loop of PWM control depends on the current Ip. That is, when the duty ratio of the PWM waveform is changed in accordance with the difference between the target displacement and the current displacement, the larger the current Ip, the larger the amount of heat generation of the SMA 3 is, which corresponds to the larger gain of the feedback loop. Therefore, adjusting the gain according to the wire diameter D means that the magnitude of the current Ip is variably set according to the wire diameter D.
 具体的には、SMA3の端子電圧Vが所定値Vpとなるように、個々のSMAアクチュエータ制御装置101における電流Ipの値を決定することによって、線径Dの影響をPWM制御のフィードバックループのゲインに自動的に取り込むことができる。 Specifically, by determining the value of the current Ip in each SMA actuator control device 101 so that the terminal voltage V of the SMA 3 becomes a predetermined value Vp, the influence of the wire diameter D can be set to the gain of the feedback loop of the PWM control. Can be imported automatically.
 たとえば線径Dが小さいときには、図3のうちステップ駆動のグラフに示したように、応答が過敏になる傾向にあるが、線径Dが小さいほど抵抗Rは大きくなっている。したがって、SMA3の端子電圧Vが所定値Vpとなるような電流値Ipは、線径Dが小さい場合には、線径Dが大きい場合よりも小さい電流値として決定される。これにより、線径Dが小さいときにはゲインが小さめになり、過敏な応答が抑制される。線形Dが大きい場合はこの逆となる。 For example, when the wire diameter D is small, as shown in the step drive graph in FIG. 3, the response tends to be hypersensitive, but the resistance R increases as the wire diameter D decreases. Therefore, the current value Ip at which the terminal voltage V of the SMA 3 becomes the predetermined value Vp is determined as a smaller current value when the wire diameter D is small than when the wire diameter D is large. As a result, when the wire diameter D is small, the gain becomes small, and a sensitive response is suppressed. The reverse is true when the linear D is large.
 次に温度Tの影響を考える。SMA3の抵抗率ρを、温度に依存した関数であるため抵抗率ρ(T)と書き、SMA3の形状ファクタを、線径Dに依存した関数であるため形状ファクタF(D)と書けば、図9で示されるように、SMAの抵抗値Rは、抵抗率ρ(T)および形状ファクタF(D)を用いて、下記の式(1)で表現可能である。 Next, consider the effect of temperature T. If the resistivity ρ of SMA3 is a function dependent on temperature, it is written as resistivity ρ (T), and if the shape factor of SMA3 is a function dependent on the wire diameter D, it is written as shape factor F (D). As shown in FIG. 9, the resistance value R of the SMA can be expressed by the following equation (1) using the resistivity ρ (T) and the shape factor F (D).
 R=ρ(T)/F(D)・・・(1)
 ここで言う「形状ファクタ」とは、一般には、SMAの幾何学的形状やサイズに応じて変化するファクタであるが、この実施形態では断面が略円形の線状SMA3を用いるため、その主たる変数はSMAの線径Dである。
R = ρ (T) / F (D) (1)
The “shape factor” mentioned here is a factor that generally changes according to the geometric shape and size of the SMA, but in this embodiment, the linear SMA 3 having a substantially circular cross section is used. Is the wire diameter D of SMA.
 式(1)で示されるように、抵抗Rは、線径Dが大きければ小さく、線径Dが小さければ大きくなる関係にあるだけでなく、抵抗率ρすなわち温度Tによる制約も受けることになる。したがって、抵抗値検出部102により検出される抵抗Rは、線径Dだけでなく温度Tの値も反映したものとなる。 As shown in the equation (1), the resistance R is not only small when the wire diameter D is large and large when the wire diameter D is small, but is also restricted by the resistivity ρ, that is, the temperature T. . Therefore, the resistance R detected by the resistance value detection unit 102 reflects not only the wire diameter D but also the value of the temperature T.
 したがって、電流値Ipを定めるにあたっては、温度Tの影響も考慮することが好ましい。具体的には、当該SMAアクチュエータ制御装置101に固有の電流値Ipを定めるプロセスにおいては、当該電流値Ipを決定する際の温度の情報も加味するような温度補償を行う。その具体的な手法については後述する。 Therefore, it is preferable to consider the influence of the temperature T in determining the current value Ip. Specifically, in the process of determining the current value Ip unique to the SMA actuator control apparatus 101, temperature compensation is performed in consideration of temperature information when determining the current value Ip. The specific method will be described later.
 以上の原理によって、定めた電流I=Ip(通電パラメータ)を可変電流源106に設定するように電流調整信号SIがコントローラ104で生成され、実際のPWM制御が行われる。 Based on the above principle, the current adjustment signal SI is generated by the controller 104 so as to set the determined current I = Ip (energization parameter) in the variable current source 106, and actual PWM control is performed.
  <2-4.SMAアクチュエータ制御装置101の基本動作>
 以下では、レンズ駆動ユニット100が携帯電話に組み込まれている場合を例として、レンズ駆動ユニット100中のSMAアクチュエータ制御装置101の動作を、図10のフローチャートを参照して説明する。以下の機能は、コントローラ104内のマイクロコンピュータに事前にインストールされているプログラムの実行によって実現されるが、これら機能は専用のハードウエア構成で実現されても良い。
<2-4. Basic Operation of SMA Actuator Control Device 101>
Hereinafter, the operation of the SMA actuator control device 101 in the lens driving unit 100 will be described with reference to the flowchart of FIG. 10, taking the case where the lens driving unit 100 is incorporated in a mobile phone as an example. The following functions are realized by executing a program installed in advance in the microcomputer in the controller 104, but these functions may be realized by a dedicated hardware configuration.
 まず、ユーザが携帯電話の電源またはカメラモードをONとする初期操作に応答して、SMAアクチュエータ制御装置101への電源供給がONの状態になり、本動作フローが開始されてステップS1に進む。 First, in response to an initial operation in which the user turns on the power supply of the mobile phone or the camera mode, the power supply to the SMA actuator control device 101 is turned on, this operation flow is started, and the process proceeds to step S1.
 電源ONの後、まずSMA3への「検査通電」を行う。ここで言う「検査通電」とは、SMA3の線径Dに応じてPWMパルス列の電流値Ipを決定するために、SMA3の線径Dに関連する情報を取得するための通電処理である。具体的には、ステップS1において、電流調整信号SI(図7)に初期電流値I0を設定するとともに、通電制御演算部105に最小デューティ比D0を設定する。PWM制御ではパルス周期(周波数)は固定されているため、最小デューティ比D0を設定するということは、最小パルス幅Pw0を設定することと等価である。 After the power is turned on, “inspection energization” is first performed on the SMA 3. The “inspection energization” referred to here is an energization process for acquiring information related to the wire diameter D of the SMA 3 in order to determine the current value Ip of the PWM pulse train in accordance with the wire diameter D of the SMA 3. Specifically, in step S1, an initial current value I0 is set in the current adjustment signal SI (FIG. 7), and a minimum duty ratio D0 is set in the energization control calculation unit 105. Since the pulse cycle (frequency) is fixed in PWM control, setting the minimum duty ratio D0 is equivalent to setting the minimum pulse width Pw0.
 これらの初期電流値I0および最小デューティ比D0の値はあらかじめメモリ108に記憶されており、個々のSMAアクチュエータ制御装置101の線径Dには依存しない共通の値である。この最小デューティ波形設定は、最小デューティ比D0をたとえば、ON/OFF期間比に換算して2~3%程度に相当する範囲の値とすることにより、パルスの繰返し周期内で非常に短い時間だけ電流をONにするような波形設定である。初期電流値I0もまた、SMA3をPWM制御によって実駆動させる際の電流範囲(電流Ipとして設定される設計範囲)よりも小さな電流値に設定される。 The initial current value I0 and the minimum duty ratio D0 are stored in the memory 108 in advance, and are common values that do not depend on the wire diameter D of each SMA actuator controller 101. This minimum duty waveform is set by setting the minimum duty ratio D0 to a value in a range corresponding to about 2 to 3%, for example, by converting it to an ON / OFF period ratio, so that only a very short time is required within the pulse repetition period. The waveform is set to turn on the current. The initial current value I0 is also set to a current value smaller than the current range (design range set as the current Ip) when the SMA 3 is actually driven by PWM control.
 このように初期電流値I0および最小デューティ比D0を小さな値とするのは、検査通電においてはSMA3の発熱を小さいものとし、図5の温度-抵抗値特性曲線のうち、抵抗値が温度に対して単調増加するような低温領域RLの中でSMA3を動作させることを意図している。これは、低温領域RLでは温度-抵抗値特性曲線がヒステリシスを持たずに、リニアな特性曲線となっているために、線径情報を得るための後述する繰返しループの収束性が高いためである。またこれは、検査通電による携帯電話の電力消費を抑制するという利点もある。 The reason why the initial current value I0 and the minimum duty ratio D0 are made small in this way is that the heat generation of the SMA 3 is small in the energization of inspection, and the resistance value of the temperature-resistance value characteristic curve of FIG. The SMA 3 is intended to operate in a low temperature region RL that increases monotonically. This is because, in the low temperature region RL, the temperature-resistance value characteristic curve has no hysteresis and is a linear characteristic curve, so that the repetitive loop described later for obtaining the wire diameter information has high convergence. . This also has the advantage of suppressing the power consumption of the mobile phone due to the energization of inspection.
 このステップS1で設定された最小デューティ比D0(したがって最小パルス幅Pw0)は、実際の撮影のためのPWM駆動が開始される前まで(ステップS7の工程まで)は、常に一定とされる。 The minimum duty ratio D0 (and therefore the minimum pulse width Pw0) set in step S1 is always constant before the PWM drive for actual photographing is started (up to the step S7).
 ステップS2では、ステップS1で設定された初期電流値I0および最小デューティ比D0を持つ電流波形がSMA3へ供給される。 In step S2, a current waveform having the initial current value I0 and the minimum duty ratio D0 set in step S1 is supplied to SMA3.
 ステップS3では、SMA3の目標電圧Vpを決定する。詳細は以下の通りである。 In step S3, the target voltage Vp of SMA3 is determined. Details are as follows.
 後記のステップS4以下では、抵抗値検出部102で検出したSMA3の端子電圧Vが所定電圧Vpと一致するような電流値Ipを求める。これはSMA3の抵抗Rの値に応じて電流値Ipを特定することと等価である。ところが、SMA3の抵抗Rは温度Tの影響も受けることから、電圧Vpとしてどのような電圧値を使用するかという選択において、検査通電時における温度Tの影響を考慮するような温度補償を行う。 In step S4 and later described below, a current value Ip is obtained such that the terminal voltage V of the SMA 3 detected by the resistance value detection unit 102 matches the predetermined voltage Vp. This is equivalent to specifying the current value Ip according to the value of the resistance R of the SMA 3. However, since the resistance R of the SMA 3 is also affected by the temperature T, temperature compensation is performed in consideration of the influence of the temperature T during the energization of the inspection in selecting what voltage value is used as the voltage Vp.
 具体的には、温度Tの種々の値(T=T1,T2,T3,…)のそれぞれについて、SMA3の抵抗値Rと線径Dとの関係がほぼ同じになるようなSMA3の目標電圧Vp(Vp=V1,V2,V3…)の値をあらかじめ実験的に求めておき、その相関データをテーブル形式(図13参照)でメモリ108に記憶させておく。以下、このようなテーブルを「温度/目標電圧テーブル」と呼ぶ。これは、既述した(1)式において、温度Tが異なると、抵抗Rとの線径Dとの関係が定量的に異なってくるため、その違いをテーブル形式で表現したものであると言える。 Specifically, for each of various values of temperature T (T = T1, T2, T3,...), The target voltage Vp of SMA3 such that the relationship between the resistance value R of SMA3 and the wire diameter D is substantially the same. The value of (Vp = V1, V2, V3...) Is experimentally obtained in advance, and the correlation data is stored in the memory 108 in a table format (see FIG. 13). Hereinafter, such a table is referred to as a “temperature / target voltage table”. This is because the relationship between the resistance R and the wire diameter D is quantitatively different when the temperature T is different in the above-described equation (1), and the difference is expressed in a table format. .
 温度/目標電圧テーブルでの数値関係を近似的な数式によって表現する場合には、その変換式(近似関数)を特定する情報をメモリ108に記憶させておき、この変換式の温度変数に温度Tの値を代入して目標電圧Vpの値を得ればよい。以下では、そのような変換式と温度/目標電圧テーブルとを「T/V対応関係情報」と総称する。 When the numerical relationship in the temperature / target voltage table is expressed by an approximate expression, information specifying the conversion expression (approximation function) is stored in the memory 108, and the temperature variable of the conversion expression is the temperature T.sub.T. And the value of the target voltage Vp may be obtained. Hereinafter, such a conversion formula and the temperature / target voltage table are collectively referred to as “T / V correspondence information”.
 そして、温度センサ107によって検知した温度Tに対応する目標電圧Vpの値を温度/目標電圧テーブルから読出し、それを目標電圧Vpの値とする(図10のステップS3)。 Then, the value of the target voltage Vp corresponding to the temperature T detected by the temperature sensor 107 is read from the temperature / target voltage table, and is set as the value of the target voltage Vp (step S3 in FIG. 10).
 検査通電においては、SMA3に微小電流I0を流すだけであるから、SMA3の温度は環境温度とほぼ等しい値を維持し、温度センサ107によって検出した温度TはSMA3の温度および環境温度の双方を近似的に与える。また、検査通電の期間中は、SMA3もほぼ完全放熱状態の抵抗値Rを維持する。したがって、検査通電の期間中にSMA3の温度が急変することもなく、上記の温度補償によって、SMA3の抵抗値RはSMA3の線径Dと良い相関を示すことになる。 In the energization of the inspection, only the minute current I0 is allowed to flow through the SMA 3. Therefore, the temperature of the SMA 3 is maintained approximately equal to the environmental temperature, and the temperature T detected by the temperature sensor 107 approximates both the temperature of the SMA 3 and the environmental temperature. Give it. Further, during the period of energization of inspection, the SMA 3 also maintains the resistance value R in the almost complete heat dissipation state. Therefore, the temperature of the SMA 3 does not change suddenly during the energization of the inspection, and the resistance R of the SMA 3 shows a good correlation with the wire diameter D of the SMA 3 by the above temperature compensation.
 このようにして、PWM制御における通電基準条件としての目標電圧Vpの値が、温度補償を含んだ形で定まることになる。 In this way, the value of the target voltage Vp as the energization reference condition in PWM control is determined in a form including temperature compensation.
 次のステップS4~S6は、このようにして定まった通電基準条件(目標電圧Vp)に基づいて、通電パラメータ(最適電流Ip)の値を決定するプロセスである。ステップS2で示したように、SMA3への通電は、初期電流値I0と最小デューティ比D0とで行われるが、このうち、初期電流値I0は初期値としての設定であるが、最小デューティ比D0はステップS4~S6の期間にわたって不変とされる。 The next steps S4 to S6 are processes for determining the value of the energization parameter (optimum current Ip) based on the energization reference condition (target voltage Vp) thus determined. As shown in step S2, energization to the SMA 3 is performed with the initial current value I0 and the minimum duty ratio D0. Of these, the initial current value I0 is set as an initial value, but the minimum duty ratio D0 is set. Is unchanged over the period of steps S4 to S6.
 まずステップS4では、抵抗値検出部102により、SMA端子電圧Vが検出される。 First, in step S4, the resistance value detection unit 102 detects the SMA terminal voltage V.
 ステップS5では、ステップS4で検出されたSMA端子電圧Vが、ステップS3で決定された目標電圧Vpの値より小さいか否かがコントローラ104によって判定される。SMA端子電圧Vが目標電圧Vp(判定基準値)よりも小さい場合は、ステップS6に進み、SMA端子電圧Vが目標電圧Vp以上の値を示す場合は、ステップS7に進む。 In step S5, the controller 104 determines whether or not the SMA terminal voltage V detected in step S4 is smaller than the value of the target voltage Vp determined in step S3. If the SMA terminal voltage V is smaller than the target voltage Vp (determination reference value), the process proceeds to step S6. If the SMA terminal voltage V indicates a value equal to or higher than the target voltage Vp, the process proceeds to step S7.
 ステップS6では、ステップS3で印加された電流よりも所定増加幅だけ大きな電流値が設定され、ステップS4へ戻ることによって、SMA3への検査通電が継続される。ここでの電流の所定増加幅を十分小さく設定しておけば、ステップS6を通る都度、電流値は小刻みに上昇する。 In step S6, a current value larger than the current applied in step S3 by a predetermined increment is set, and by returning to step S4, inspection energization to SMA3 is continued. If the predetermined increase width of the current here is set to be sufficiently small, the current value increases in small increments every time step S6 is passed.
 そして、ステップS5でSMA端子電圧Vが目標電圧Vp以上の値になったと判定されたときには、実質的に、SMA端子電圧Vが通電基準条件(電圧V=目標電圧Vp)をほぼ満足する状態となり、そのときの通電パラメータの値(電流Ip)を、アクチュエータの実駆動におけるPWM電流値として設定する(ステップS7)。 When it is determined in step S5 that the SMA terminal voltage V is equal to or higher than the target voltage Vp, the SMA terminal voltage V substantially satisfies the energization reference condition (voltage V = target voltage Vp). Then, the value of the energization parameter (current Ip) at that time is set as the PWM current value in actual driving of the actuator (step S7).
 このようにステップS1~ステップS5までの検査通電より、抵抗値検出部102によって検出されたSMA3の抵抗値Rに基づいて、通電パラメータ(電流Ip)の値が決定される。そのため、SMA3の抵抗値RがSMAの線径Dと相関していることによって、通電パラメータ(電流Ip)の値が、SMA3の線径Dを反映した値として決定されることを意味する(図9参照)。換言すれば、ステップS1~ステップS5までの検査通電より、線径Dのバラツキに応じて、PWM電流値Ipが決定される。 As described above, the value of the energization parameter (current Ip) is determined on the basis of the resistance value R of the SMA 3 detected by the resistance value detection unit 102 through the inspection energization from step S1 to step S5. Therefore, when the resistance value R of the SMA 3 is correlated with the wire diameter D of the SMA, it means that the value of the energization parameter (current Ip) is determined as a value reflecting the wire diameter D of the SMA 3 (FIG. 9). In other words, the PWM current value Ip is determined according to the variation in the wire diameter D from the inspection energization from step S1 to step S5.
 ステップS8では、この電流値Ipを可変電流源106に設定するとともに、レンズ変位の作動指令値に応じて変化する制御信号が通電制御演算部105に与えられて、SMAアクチュエータ3へのPWM駆動通電が開始される。PWMパルス列のデューティ比はSMAアクチュエータ3への作動指令値に応じて変化するが、電流値Ipは一定に維持される。ステップS9では、このようなサーボ制御が上位のマイクロコンピュータ(図示せず)の指令に基づいて継続する。 In step S8, the current value Ip is set in the variable current source 106, and a control signal that changes in accordance with the lens displacement operation command value is given to the energization control calculation unit 105, and the PWM drive energization of the SMA actuator 3 is performed. Is started. The duty ratio of the PWM pulse train changes according to the operation command value to the SMA actuator 3, but the current value Ip is kept constant. In step S9, such servo control is continued based on a command from a host microcomputer (not shown).
 そして、ステップS10では、PWM電流駆動を継続する場合は、ステップS9に戻り、PWM電流駆動を中断する場合は、本動作フローが終了する。 In step S10, if the PWM current driving is continued, the process returns to step S9, and if the PWM current driving is interrupted, the operation flow is ended.
 以上の構成および動作を機能実現部の集合として一般的に表現すれば、以下のようになる。 The above configuration and operation can be generally expressed as a set of function implementation units as follows.
 まず、可変電流源106が、SMA3への通電を行う通電部として機能する。 First, the variable current source 106 functions as an energization unit that energizes the SMA 3.
 コントローラ104におけるステップS1~S7(図10)のプログラムを実行することよって、図7の各要素102~108の集合体が、所定の通電基準条件を満足させるためのSMA3への通電電流の値をSMA3の線径Dに応じて決定し、その通電電流の値をメモリ108に設定する電流設定部として機能する。 By executing the program of steps S1 to S7 (FIG. 10) in the controller 104, the assembly of the elements 102 to 108 in FIG. 7 sets the value of the energization current to the SMA 3 for satisfying a predetermined energization standard condition. It is determined according to the wire diameter D of the SMA 3 and functions as a current setting unit that sets the value of the energization current in the memory 108.
 メモリ108に設定されるその通電電流の値は、SMA3の線径Dに応じて可変であって、その通電電流の値は、実制御における電流調整信号SIを生成する基礎となる。 The value of the energization current set in the memory 108 is variable according to the wire diameter D of the SMA 3, and the value of the energization current is a basis for generating the current adjustment signal SI in actual control.
 図7の要素102~106および108の集合体は、実制御の段階においては、上記のようにして設定された通電電流を基準として、アクチュエータへの作動指令値に応じて変化する制御信号(図7の電流調整信号SIおよびON/OFF信号)を、通電部としての可変電流源106に与えて、SMAへの通電制御を行う通電制御部として機能する。 The assembly of the elements 102 to 106 and 108 in FIG. 7 is a control signal (FIG. 7) that changes in accordance with the operation command value to the actuator with reference to the energizing current set as described above in the actual control stage. 7, the current adjustment signal SI and the ON / OFF signal) is supplied to the variable current source 106 serving as an energization unit, and functions as an energization control unit that controls energization of the SMA.
 より具体的には、通電電流の値が決定された後のアクチュエータ実制御では、SMA3の抵抗を表現する値としての抵抗値を検出する抵抗値検出部として抵抗値検出部102が機能し、この抵抗値検出部により検出された抵抗値と、目標抵抗値を表現する値としての目標抵抗値とを比較する比較部として比較部103が機能する。 More specifically, in the actuator actual control after the value of the energization current is determined, the resistance value detection unit 102 functions as a resistance value detection unit that detects a resistance value as a value representing the resistance of the SMA 3. The comparison unit 103 functions as a comparison unit that compares the resistance value detected by the resistance value detection unit with the target resistance value as a value representing the target resistance value.
 通電制御部は、SMAを所望の形状に変形させるにあたって、抵抗値の信号と、SMAの作動指令値に対応する目標抵抗値の信号との差が小さくなるように、SMAへの平均通電電流を制御するフィードバック制御が、比較部103の出力信号に基づいて実行されることになる。 When the SMA is deformed into a desired shape, the energization control unit sets the average energization current to the SMA so that the difference between the resistance value signal and the target resistance value signal corresponding to the SMA operation command value is small. The feedback control to be controlled is executed based on the output signal of the comparison unit 103.
 特にこの実施形態では、電流設定部としての機能段階において、コントローラ104は、図10のステップS1およびS2のプログラムを実行し、通電制御演算部105をも使用しつつ可変電流源106(通電部)を制御して、SMA3への検査通電を行う検査通電制御部として機能する。 In particular, in this embodiment, in the functional stage as the current setting unit, the controller 104 executes the program of steps S1 and S2 in FIG. 10 and uses the energization control calculation unit 105 while also using the variable current source 106 (energization unit). To function as a test energization control unit that performs test energization to the SMA 3.
 コントローラ104は、図10のステップS6に基づく繰返しおよびステップS5およびステップS7のプログラムを実行して要素102~106および108を動作させ、比較部103から得られたSMA3への検査通電の結果に基づいて、通電電流の値を決定する検査処理部として機能する。 The controller 104 repeats step S6 of FIG. 10 and executes the program of steps S5 and S7 to operate the elements 102 to 106 and 108, and based on the result of the inspection energization to the SMA 3 obtained from the comparison unit 103. Thus, it functions as an inspection processing unit that determines the value of the energization current.
 上記の通電制御部は、アクチュエータの実駆動において、検査通電で決定された通電電流の値を用いる。 The above energization control unit uses the value of the energization current determined by the inspection energization in the actual driving of the actuator.
 上記の検査処理部は、検査通電によって検出されたSMAの抵抗値に基づいて通電電流の値を決定する部となっており、SMA3の抵抗値が前記形状記憶合金の線径と相関していることによって、通電電流の値が、SMA3の線径Dを反映した値として決定される。 The inspection processing unit is a unit that determines the value of the energization current based on the resistance value of the SMA detected by the inspection energization, and the resistance value of the SMA 3 correlates with the wire diameter of the shape memory alloy. Thus, the value of the energization current is determined as a value reflecting the wire diameter D of the SMA 3.
 SMA3またはその周囲の温度を特定する温度特定部として温度センサ107が使用される。そして、コントローラ104がステップS3で目標電圧Vpを決定するプログラムを実行することにより、温度特定部によって特定された温度に応じて通電基準条件を変化させ、通電電流の値の決定の際の温度補償を行う温度補償部として機能する。 The temperature sensor 107 is used as a temperature specifying unit that specifies the temperature of the SMA 3 or its surroundings. Then, the controller 104 executes a program for determining the target voltage Vp in step S3, thereby changing the energization reference condition according to the temperature specified by the temperature specifying unit, and temperature compensation when determining the value of the energization current. It functions as a temperature compensation unit that performs
 以上のように、第1実施形態に係るSMAアクチュエータ制御装置101によれば、電流設定部が線径Dに応じて可変に通電パラメータ(電流Ip)を設定することにより、通電制御部において線径Dに応じた通電制御が可能になるため、SMAの線径Dがばらついても、安定した最適制御によってアクチュエータの応答性が向上し、静定も高速化する。 As described above, according to the SMA actuator control apparatus 101 according to the first embodiment, the current setting unit variably sets the energization parameter (current Ip) according to the wire diameter D, so that the wire diameter is changed in the energization control unit. Since energization control according to D is possible, even if the wire diameter D of the SMA varies, the responsiveness of the actuator is improved by stable optimum control, and the static stabilization is also speeded up.
 また、起動直後などの適宜の時期に検査通電制御部が実行する検査通電の結果に基づいて、検査処理部によって通電パラメータを内部的に決めることができる。このため、装置の製造過程において事前に線径Dを測定してメモリ108内に記憶させておく処理を省くことができる。 Also, the energization parameter can be determined internally by the inspection processing unit based on the result of the inspection energization executed by the inspection energization control unit at an appropriate time such as immediately after startup. For this reason, the process of measuring the wire diameter D in advance and storing it in the memory 108 in the manufacturing process of the apparatus can be omitted.
 T/V対応関係情報によって温度補償部による温度補償も可能になるため、検査通電時の温度にかかわらず、電流設定部はより適切に通電パラメータを決定できる。 Since temperature compensation by the temperature compensation unit is also possible based on the T / V correspondence information, the current setting unit can more appropriately determine the energization parameter regardless of the temperature during the energization of the inspection.
 <3.第2実施形態>
  <3-1.SMAアクチュエータ制御装置101Aの概要および構成>
 図11はこの発明の第2実施形態に係るSMAアクチュエータ制御装置101Aのブロック図である。このSMAアクチュエータ制御装置101Aもまた、図1および図2に示したレンズ駆動ユニット100の機構部と組み合わせて使用され、携帯電話などに組み込まれることができる。
<3. Second Embodiment>
<3-1. Outline and Configuration of SMA Actuator Control Device 101A>
FIG. 11 is a block diagram of an SMA actuator control apparatus 101A according to the second embodiment of the present invention. This SMA actuator control device 101A is also used in combination with the mechanism part of the lens driving unit 100 shown in FIGS. 1 and 2, and can be incorporated in a mobile phone or the like.
 この第2実施形態は、電流設定部が、線径情報記憶部によりSMAの線径Dに対応した線径情報の値をあらかじめ記憶し、電流値決定部により当該線径情報の値に基づいて、通電パラメータの値を決定する点で、第1実施形態と異なる。また、第2実施形態においては、第1実施形態と比較して、ハードウエア的には図7の構成と同一であり、機能的にもほぼ同様である。したがって、第2実施形態に係る図11のSMAアクチュエータ制御装置101Aのうち、第1実施形態に係るSMAアクチュエータ制御装置101と同様な部分については同様な符号を付して、下記の説明を省略するとともに、主に第1実施形態に係るSMAアクチュエータ制御装置101と異なる点についてのみ説明する。 In the second embodiment, the current setting unit stores in advance the value of the wire diameter information corresponding to the wire diameter D of the SMA by the wire diameter information storage unit, and based on the value of the wire diameter information by the current value determination unit. This is different from the first embodiment in that the value of the energization parameter is determined. Further, in the second embodiment, compared with the first embodiment, the hardware is the same as the configuration of FIG. 7, and the functions are almost the same. Therefore, in the SMA actuator control apparatus 101A of FIG. 11 according to the second embodiment, the same parts as those of the SMA actuator control apparatus 101 according to the first embodiment are denoted by the same reference numerals and the following description is omitted. In addition, only differences from the SMA actuator control apparatus 101 according to the first embodiment will be mainly described.
 図11を参照して、コントローラ104は、メモリ108Aを内蔵している。メモリ108Aには、線径情報として、
 (1) 製造工場などで事前に測定された線径Dの値、および、
 (2) 図14に例示するように、線径Dと通電パラメータIpとの値の対応関係を表現しており、線径Dを通電パラメータIpに変換する際に使用可能なテーブルあるいは変換式(以下「D/I対応関係情報」と総称する)があらかじめメモリ108に記憶されている。
Referring to FIG. 11, controller 104 includes a memory 108A. In the memory 108A, as wire diameter information,
(1) The value of the wire diameter D measured in advance at the manufacturing factory, and
(2) As illustrated in FIG. 14, the correspondence relationship between the value of the wire diameter D and the energization parameter Ip is expressed, and a table or conversion formula (when converting the wire diameter D into the energization parameter Ip ( (Hereinafter collectively referred to as “D / I correspondence information”) is stored in the memory 108 in advance.
 これらの線径情報のうち、線径Dの値は当該SMAアクチュエータ制御装置101に固有のものである。一方、D/I対応関係情報は、各SMAアクチュエータ制御装置101に共通の情報である。すなわち、線径Dは制御装置101の製品ごとに異なるが、線径Dの値に応じてどのような電流値Ipを設定するかというD/I対応関係情報は、各制御装置101に共通のものとして準備されて記憶される。 Among these pieces of wire diameter information, the value of the wire diameter D is unique to the SMA actuator control device 101. On the other hand, the D / I correspondence information is information common to each SMA actuator control device 101. That is, although the wire diameter D varies depending on the product of the control device 101, the D / I correspondence information on what current value Ip is set according to the value of the wire diameter D is common to each control device 101. Prepared and stored as a thing.
 これに対して、SMAアクチュエータ制御装置101の製造工場で線径Dを測定し、それに応じて制御装置101に固有の通電パラメータの値(電流値Ip)を工場で決定して、その製品に固有の電流値Ipだけを記憶させておくという方法もあるが、この第2実施形態のように共通のD/I対応関係情報と個別の線径Dと記憶させておくようにすれば、たとえば、より精度が高い新たなD/I対応関係情報が開発されたときに、当該新たなD/I対応関係情報をファームウエアとしてメモリ108Aに差し替え記憶させるようなバージョンアップも可能になる。 On the other hand, the wire diameter D is measured at the manufacturing factory of the SMA actuator control device 101, and the value of the energization parameter (current value Ip) specific to the control device 101 is determined at the factory accordingly. There is a method of storing only the current value Ip, but if the common D / I correspondence information and the individual wire diameter D are stored as in the second embodiment, for example, When new D / I correspondence information with higher accuracy is developed, the new D / I correspondence information can be upgraded and stored in the memory 108A as firmware.
  <3-2.SMAアクチュエータ制御装置101Aの基本動作>
 図12は、SMAアクチュエータ制御装置101Aにおける処理の動作を示すフローチャートである。以下、処理の動作について図12のフローチャートに沿って説明する。
<3-2. Basic Operation of SMA Actuator Control Device 101A>
FIG. 12 is a flowchart showing processing operations in the SMA actuator control apparatus 101A. Hereinafter, the processing operation will be described with reference to the flowchart of FIG.
 ユーザが携帯電話のカメラモードをONとする操作に応答して、SMAアクチュエータ制御装置101への電源供給がONの状態になり、本動作フローが開始される。 In response to the user turning on the camera mode of the mobile phone, the power supply to the SMA actuator control device 101 is turned on, and this operation flow is started.
 ステップST1では、SMAのあらかじめ測定された線径Dに対応した線径情報の値をメモリ108Aから読み出して取得する。 In step ST1, the value of the wire diameter information corresponding to the wire diameter D measured in advance of SMA is read from the memory 108A and acquired.
 ステップST2では、D/I対応関係情報を用いて、ステップST1で取得した線径Dの値を、通電パラメータIpの値へと変換する。この変換部によって、あらかじめ記憶されたSMA3の線径Dから通電パラメータ(最適電流Ip)への変換が直接行われることになる。 In step ST2, the value of the wire diameter D acquired in step ST1 is converted into the value of the energization parameter Ip using the D / I correspondence information. The conversion unit directly converts the wire diameter D of the SMA 3 stored in advance into the energization parameter (optimum current Ip).
 以後のステップST3~ST5は、第1実施形態におけるステップS8~S10と同様である。 Subsequent steps ST3 to ST5 are the same as steps S8 to S10 in the first embodiment.
 この第2実施形態に係る機能実現部のうち第1実施形態での機能実現部と異なる部分は以下のようになる。 Of the function realization unit according to the second embodiment, the part different from the function realization unit in the first embodiment is as follows.
 電流設定部は、SMA3の線径Dに対応した線径情報の値を記憶する線径情報記憶部としてメモリ108を備える。 The current setting unit includes a memory 108 as a wire diameter information storage unit that stores a value of wire diameter information corresponding to the wire diameter D of the SMA 3.
 コントローラ104は、図12のステップST1およびST2のプログラムステップを実行することにより、線径情報の値に基づいて、通電電流の値を決定する電流値決定部として機能する。 The controller 104 functions as a current value determination unit that determines the value of the energization current based on the value of the wire diameter information by executing the program steps of steps ST1 and ST2 of FIG.
 そして、コントローラ104は、メモリ108にあらかじめ記憶させておいた図14のテーブルを用いて、線径の値を通電電流の値へと変換する変換部として機能し、これが電流値決定部としての機能の一部をなす。 Then, the controller 104 functions as a conversion unit that converts the value of the wire diameter into the value of the energization current using the table of FIG. 14 stored in advance in the memory 108, which functions as a current value determination unit. Part of
 以上のように、第2実施形態に係るSMAアクチュエータ制御装置101Aにおいても、線径Dに応じて可変に通電パラメータ(電流Ip)を設定することにより、線径Dに応じた通電制御が可能になるため、SMAの線径Dがばらついても、安定した最適制御によってアクチュエータの応答性が向上し、静定も高速化する。 As described above, also in the SMA actuator control apparatus 101A according to the second embodiment, the energization control according to the wire diameter D can be performed by setting the energization parameter (current Ip) variably according to the wire diameter D. Therefore, even if the wire diameter D of the SMA varies, the responsiveness of the actuator is improved by the stable optimum control, and the stabilization speed is increased.
 また、この第2実施形態においては、線径情報として製造工場などで測定された線径Dを線径情報としてあらかじめ装置内に記憶させておくため、アクチュエータ駆動時にはそれを読み出して利用することが可能となり、通電パラメータの決定のための内部処理を簡略化して制御時間の短縮を図ることが可能となる。 In the second embodiment, since the wire diameter D measured at the manufacturing factory or the like is stored in advance in the apparatus as the wire diameter information, it can be read and used when the actuator is driven. It is possible to shorten the control time by simplifying the internal processing for determining the energization parameter.
 逆に、第2実施形態と比較すると、第1実施形態では、SMAアクチュエータ制御装置101ごとに線径Dをあらかじめ実測して記憶させておく必要がないため、SMAアクチュエータ制御装置101の製造工程は、第2実施形態のSMAアクチュエータ制御装置101Aよりも簡単になる。 On the contrary, compared with the second embodiment, in the first embodiment, it is not necessary to measure and store the wire diameter D in advance for each SMA actuator control device 101. Therefore, the manufacturing process of the SMA actuator control device 101 is as follows. This is simpler than the SMA actuator control apparatus 101A of the second embodiment.
 <4.変形例>
  <4-1. 第1変形例>
 以上、本発明の実施形態について説明してきたが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。
<4. Modification>
<4-1. First Modification>
As mentioned above, although embodiment of this invention has been described, this invention is not limited to the said embodiment, A various deformation | transformation is possible.
 第1実施形態において既述した温度補償部による温度補償は、温度特定部に温度センサを設けなくても実現できる。そこでは、SMA3またはその周囲の温度Tの実測を、SMA3の抵抗値Rの実測で代用する。 The temperature compensation by the temperature compensation unit described in the first embodiment can be realized without providing a temperature sensor in the temperature specifying unit. In this case, the actual measurement of the temperature SMA3 or its surrounding temperature T is substituted with the actual measurement of the resistance value R of the SMA3.
 たとえば図15に示すように温度Tの値の種々の組に応じて、それらに対応するSMA3の抵抗値Rをあらかじめ実験的に決定しておき、SMAアクチュエータ制御装置内101のメモリ108にテーブル形式または変換式として記憶させておく(以下「T/R対応関係情報」)。 For example, as shown in FIG. 15, the resistance value R of the SMA 3 corresponding to each set of values of the temperature T is experimentally determined in advance, and the table 108 is stored in the memory 108 of the SMA actuator controller 101. Alternatively, it is stored as a conversion formula (hereinafter “T / R correspondence information”).
 抵抗Rは温度Tと線径Dとに依存するが、第1実施形態のような態様では線径D自身の値は記憶していないため、T/R対応関係情報を作成する際における線径Dとしては、たとえばSMA3の設計値としての線径を仮定しておく。そして、SMAアクチュエータ制御装置101の起動時に、SMA3に所定の微小電流を流し、そのときのSMA端子電圧Vを検出して、SMA3の抵抗Rの値をR=V/Iによって算出する。そしてT/R対応関係情報を用いて、当該抵抗Rの値に対応する温度Tの値を推定する。 Although the resistance R depends on the temperature T and the wire diameter D, since the value of the wire diameter D itself is not stored in the aspect as in the first embodiment, the wire diameter when the T / R correspondence information is created. As D, for example, a wire diameter as a design value of SMA3 is assumed. Then, when the SMA actuator control device 101 is activated, a predetermined minute current is passed through the SMA 3, the SMA terminal voltage V at that time is detected, and the value of the resistance R of the SMA 3 is calculated by R = V / I. And the value of the temperature T corresponding to the value of the resistance R is estimated using the T / R correspondence information.
 図13の第1実施形態と同様に、温度Tごとの抵抗値Rの値を第1実施形態と同様にメモリに記憶させておくことにより、電流設定部は、特定された温度Tに応じて抵抗値Rを選択し、抵抗値Rに相当する電流Ipを検査通電制御部による検査通電によって決定する。 Similar to the first embodiment of FIG. 13, the current setting unit can store the resistance value R for each temperature T in the memory in the same manner as in the first embodiment, so that the current setting unit responds to the specified temperature T. The resistance value R is selected, and the current Ip corresponding to the resistance value R is determined by inspection energization by the inspection energization control unit.
 すなわち、この変形例では、抵抗値検出部がSMA3の抵抗値Rを温度Tの代用指標として検出し、温度補償部がその抵抗値Rを用いて通電基準条件を変更することにより、通電パラメータの値の決定の際の温度補償を行っていることになる。 That is, in this modification, the resistance value detection unit detects the resistance value R of the SMA 3 as a substitute index of the temperature T, and the temperature compensation unit changes the energization reference condition using the resistance value R, thereby This means that temperature compensation is performed when determining the value.
 換言すれば、この変形例では、通電電流の値の決定の際の温度補償を行う際に使用される温度特定部が、抵抗値検出部102を、SMA3の抵抗値を温度の代用指標として検出する抵抗値検出部として機能させていることになる。 In other words, in this modification, the temperature specifying unit used when performing the temperature compensation when determining the value of the energization current detects the resistance value detection unit 102 and the resistance value of the SMA 3 as a temperature substitute index. It is functioning as a resistance value detection unit.
 以上により、温度センサを用いない温度補償も可能である。 Thus, temperature compensation without using a temperature sensor is also possible.
  <4-2. 第2変形例>
 第2実施形態では、線径情報記憶部により、線径D自身の値を記憶させておいたが、線径Dを反映する他の物理量の値であってもよい。たとえば装置の製造工場にてSMA3の抵抗Rをあらかじめ測定しておき、それを線径Dの代用指標としてもよい。このときには、線径情報記憶部により、抵抗Rの種々の値にそれぞれ対応する適切な電流Ipの値を列挙した対応テーブル(図16)をあらかじめ作成してメモリ108Aに記憶させておき、電流値決定部における変換部により、この対応テーブルを用いて、通電パラメータとしての電流Ipの値に変換する。
<4-2. Second Modification>
In the second embodiment, the value of the wire diameter D itself is stored by the wire diameter information storage unit, but may be a value of another physical quantity that reflects the wire diameter D. For example, the resistance R of the SMA 3 may be measured in advance at a device manufacturing factory and used as a substitute index for the wire diameter D. At this time, a correspondence table (FIG. 16) listing appropriate current values Ip corresponding to various values of the resistance R is created in advance by the wire diameter information storage unit and stored in the memory 108A. The conversion unit in the determination unit uses the correspondence table to convert the current Ip as the energization parameter.
 この場合には、コントローラ104は、メモリ108にあらかじめ記憶させておいた図16のテーブルを用いつつ、SMA3の抵抗値を通電電流の値に変換するプログラムステップにおいて、この変換を行う変換部として機能し、これが電流値決定部の一部を構成する。 In this case, the controller 104 functions as a conversion unit that performs this conversion in the program step for converting the resistance value of the SMA 3 into the value of the energizing current while using the table of FIG. 16 stored in the memory 108 in advance. This constitutes a part of the current value determination unit.
 これにあたっては温度補償も可能である。すなわち、線径情報記憶部により、装置の製造工場にてSMA3の抵抗Rをあらかじめ測定したときのSMA3またはその周囲の温度Tも測定しておく。そして、抵抗Rと温度Tのその値をメモリ108Aに記憶させておく。 In this case, temperature compensation is also possible. That is, the wire diameter information storage unit also measures the SMA 3 or the temperature T around it when the resistance R of the SMA 3 is measured in advance at the device manufacturing factory. Then, the values of the resistance R and the temperature T are stored in the memory 108A.
 この場合には、メモリ105Aに、図17で示すような、抵抗Rと温度Tとのそれぞれの値の組に対応して適切な電流Ipの値を列挙した対応テーブル(一般には「TR/I対応関係情報」)をあらかじめ作成して記憶させておく。そして、抵抗Rと温度Tとに対応した電流Ipの値を読出して、通電パラメータとして設定する。ここでは、抵抗Rを測定した際の温度Tの情報が得られているため、抵抗Rが線径Dの代用指標となっている。 In this case, in the memory 105A, as shown in FIG. 17, a correspondence table (generally “TR / I” which lists values of appropriate currents Ip corresponding to respective sets of values of the resistance R and the temperature T). Correspondence information ") is created and stored in advance. Then, the value of the current Ip corresponding to the resistance R and the temperature T is read and set as an energization parameter. Here, since the information of the temperature T at the time of measuring the resistance R is obtained, the resistance R is a substitute index of the wire diameter D.
 機能実現部として見たときには、コントローラ104は、線径情報記憶部によってメモリ108にあらかじめ記憶させておいた図17のテーブルを用いつつ、電流値決定部における変換部によって抵抗値と温度との組を通電電流の値に変換することにより、通電電流の値を決定する際の温度補償を行う部として機能している。 When viewed as a function implementation unit, the controller 104 uses the table of FIG. 17 stored in advance in the memory 108 by the wire diameter information storage unit, and sets the resistance value and temperature by the conversion unit in the current value determination unit. Is converted into a value of the energizing current, thereby functioning as a part for performing temperature compensation when determining the value of the energizing current.
  <4-3. 他の変形例>
 上記各実施形態では、通電制御部が、SMAの線径Dに応じた通電電流の調整を電流値Ip(すなわちパルス振幅)の調整によって行ったが、これに限られず、SMAの通電におけるパルス幅(デューティ比)の調整によって行っても良い。
<4-3. Other variations>
In each of the above embodiments, the energization control unit adjusts the energization current according to the wire diameter D of the SMA by adjusting the current value Ip (that is, the pulse amplitude). It may be performed by adjusting (duty ratio).
 上記実施形態においては、PWM制御を用いたサーボ制御(フィードバック制御)の例を用いて説明しているが、それに限らず、SMAに連続電流(非パルス型の電流)を与えてSMAを発熱させる方式や、オープン制御方式の場合にもこの発明を適用可能である。このうち、連続電流方式の場合には、PWM制御の場合のようなデューティ比の概念がないため、上記実施形態での電流値Ipに相当する連続電流の値(連続電流基準値)をSMAの線径Dに応じて調整する。 In the above embodiment, the servo control (feedback control) using the PWM control is described as an example. However, the present invention is not limited to this, and a continuous current (non-pulse type current) is applied to the SMA to generate heat. The present invention can also be applied to the case of the system and the open control system. Among these, in the case of the continuous current method, since there is no concept of the duty ratio as in the case of PWM control, the continuous current value (continuous current reference value) corresponding to the current value Ip in the above embodiment is set to SMA. Adjust according to the wire diameter D.
 上記実施形態における電流設定部は、線径Dのみに基づいて通電電流Ipを決定しているが、制御への影響は小さいものの、他のばらつき要因として、SMA初期張力やバイアスバネ力などのような弾性特性のばらつきもある。よって、線形Dに加えて、これらの弾性特性(より一般的には、SMAの応答性を規定する種々の力学的特性量を含む特性量)に関する個体ごとのばらつき値に応じて、SMAへの通電電流を決定しても良い。 The current setting unit in the above embodiment determines the energization current Ip based only on the wire diameter D. Although the influence on the control is small, other variation factors such as SMA initial tension and bias spring force There are also variations in elastic properties. Therefore, in addition to the linear D, depending on the variation value for each individual regarding these elastic characteristics (more generally, characteristic quantities including various mechanical characteristic quantities that define the responsiveness of the SMA), The energization current may be determined.
 第1実施形態における検査通電制御部による検査通電は、SMAアクチュエータ制御装置101を組み込んだカメラユニットを初めて起動させるときの初期設定時のみに行ってもよく、カメラユニットの毎回の起動時に実行してもよい。また、メンテナンスモードにおいて、任意の時期に所定の操作に応答しても実行できるようにしてもよい。 The inspection energization by the inspection energization control unit in the first embodiment may be performed only at the initial setting when the camera unit incorporating the SMA actuator control device 101 is activated for the first time, or is performed at each activation of the camera unit. Also good. Further, in the maintenance mode, it may be executed even in response to a predetermined operation at an arbitrary time.
 この発明のSMAアクチュエータ制御装置は、レンズ駆動ユニットだけでなく、微小ミラーや微小プリズムなどの種々の光学部品の駆動ユニットに適用できえる。 The SMA actuator control device of the present invention can be applied not only to a lens drive unit but also to a drive unit of various optical components such as a minute mirror and a minute prism.
 第1実施形態における目標電圧Vpの決定方法は、上記の方法に限られない。例えば、線径Dの値に対応して、適切な抵抗Rと温度Tとを列挙した対応テーブル、あるいは、変換式(以下、「D/RT対応関係情報」と称する)、および、線径Dを目標電圧Vpに変換する際に使用可能なテーブル、あるいは、変換式(以下、「D/Vp対応関係情報」と称する)をメモリ108にあらかじめ作成して記憶させておく。そして、温度特定部によって特定されたSMAの温度Tと検査通電により抵抗値検出部によって検出された抵抗Rとに基づいて、D/RT対応関係情報から線径Dを推定し、推定された線径DをD/Vp対応関係情報から、目標電圧Vpが決定されるようにしてもよい。 The method for determining the target voltage Vp in the first embodiment is not limited to the above method. For example, a correspondence table listing appropriate resistances R and temperatures T corresponding to the value of the wire diameter D, or a conversion formula (hereinafter referred to as “D / RT correspondence information”), and a wire diameter D A table or conversion equation (hereinafter referred to as “D / Vp correspondence information”) that can be used when converting the voltage to the target voltage Vp is created and stored in the memory 108 in advance. Then, based on the temperature T of the SMA specified by the temperature specifying unit and the resistance R detected by the resistance value detecting unit by inspection energization, the wire diameter D is estimated from the D / RT correspondence information, and the estimated line The target voltage Vp may be determined from the diameter D from the D / Vp correspondence information.
 1 レンズユニット
 2 レバー部材
 2a 変位入力部
 2b 変位出力部
 3 形状記憶合金(SMA)アクチュエータ
 4 ベース部材
 6a,6b 平行板バネ
 8 支持脚
 8a レバー支持部
 10 撮像レンズ
 100 レンズ駆動ユニット
 101,101A SMAアクチュエータ制御装置
 102 抵抗値検出部
 103 比較部
 104 コントローラ
 105 通電制御演算部
 106 可変電流源
 107 温度センサ
DESCRIPTION OF SYMBOLS 1 Lens unit 2 Lever member 2a Displacement input part 2b Displacement output part 3 Shape memory alloy (SMA) actuator 4 Base member 6a, 6b Parallel leaf spring 8 Support leg 8a Lever support part 10 Imaging lens 100 Lens drive unit 101, 101A SMA actuator Control device 102 Resistance value detection unit 103 Comparison unit 104 Controller 105 Energization control calculation unit 106 Variable current source 107 Temperature sensor

Claims (14)

  1.  線材状の形状記憶合金の温度変化による形状復元力を利用したアクチュエータを制御する形状記憶合金アクチュエータ制御装置であって、
     前記形状記憶合金への通電を行う通電部と、
     所定の通電基準条件を満足させるための前記形状記憶合金への通電電流の値を、前記形状記憶合金の線径に応じて可変に設定する電流設定部と、
     前記通電電流を基準として、前記アクチュエータへの作動指令値に応じて変化する制御信号を前記通電部に与えて、前記形状記憶合金への通電制御を行う通電制御部と、
    を備えることを特徴とする形状記憶合金アクチュエータ制御装置。
    A shape memory alloy actuator controller for controlling an actuator using a shape restoring force due to a temperature change of a wire shape memory alloy,
    An energization section for energizing the shape memory alloy;
    A current setting unit that variably sets a value of an energization current to the shape memory alloy for satisfying a predetermined energization reference condition according to a wire diameter of the shape memory alloy;
    An energization control unit that controls the energization of the shape memory alloy by giving the energization unit a control signal that changes according to an operation command value to the actuator with respect to the energization current;
    A shape memory alloy actuator control device comprising:
  2.  請求項1に記載の形状記憶合金アクチュエータ制御装置であって、
     前記電流設定部が、
     前記通電部を制御して前記形状記憶合金への検査通電を行う検査通電制御部と、
     前記形状記憶合金への検査通電の結果に基づいて、前記通電電流の値を決定する検査処理部、
    を備え、
     前記通電制御部は、前記アクチュエータの実駆動において、前記検査通電で決定された前記通電電流の値を用いることを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 1,
    The current setting unit is
    An inspection energization control unit that controls the energization unit to perform inspection energization to the shape memory alloy;
    Based on the result of the inspection energization to the shape memory alloy, an inspection processing unit that determines the value of the energization current,
    With
    The shape memory alloy actuator control device, wherein the energization control unit uses the value of the energization current determined by the inspection energization in actual driving of the actuator.
  3.  請求項2に記載の形状記憶合金アクチュエータ制御装置であって、
     前記検査通電は、前記アクチュエータの実駆動における電流範囲よりも小さな電流を前記形状記憶合金に流して行われ、
     前記検査処理部は、当該小さな電流での通電結果に基づいて前記通電電流の値を決定することを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 2,
    The inspection energization is performed by flowing a current smaller than the current range in actual driving of the actuator through the shape memory alloy,
    The shape memory alloy actuator control device, wherein the inspection processing unit determines the value of the energization current based on the energization result with the small current.
  4.  請求項2または請求項3に記載の形状記憶合金アクチュエータ制御装置であって、
     前記検査処理部は、前記検査通電によって検出された前記形状記憶合金の抵抗値に基づいて前記通電電流の値を決定する部であり、
     前記形状記憶合金の抵抗値が前記形状記憶合金の線径と相関していることによって、前記通電電流の値が、前記形状記憶合金の線径を反映した値として決定されることを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 2 or 3,
    The inspection processing unit is a unit that determines a value of the energization current based on a resistance value of the shape memory alloy detected by the inspection energization,
    The resistance value of the shape memory alloy is correlated with the wire diameter of the shape memory alloy, whereby the value of the energizing current is determined as a value reflecting the wire diameter of the shape memory alloy. Shape memory alloy actuator controller.
  5.  請求項2ないし請求項4の何れかに記載の形状記憶合金アクチュエータ制御装置であって、
     前記形状記憶合金またはその周囲の温度を特定する温度特定部と、
     前記温度特定部によって特定された温度に応じて前記通電基準条件を変化させることにより、前記通電電流の値の決定の際の温度補償を行う温度補償部と、
    をさらに備えることを特徴とする形状記憶合金アクチュエータ制御装置。
    A shape memory alloy actuator control device according to any one of claims 2 to 4,
    A temperature specifying part for specifying the shape memory alloy or its surrounding temperature;
    A temperature compensation unit that performs temperature compensation when determining the value of the energization current by changing the energization reference condition according to the temperature identified by the temperature identification unit;
    The shape memory alloy actuator control device further comprising:
  6.  請求項5に記載の形状記憶合金アクチュエータ制御装置であって、
     前記温度特定部が、
     前記形状記憶合金の付近に配置された温度センサ、
    を備え、
     前記温度補償部は、前記温度センサによって検知された温度に応じて、前記温度補償を行うことを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 5,
    The temperature specifying unit is
    A temperature sensor disposed in the vicinity of the shape memory alloy;
    With
    The shape memory alloy actuator controller according to claim 1, wherein the temperature compensation unit performs the temperature compensation according to a temperature detected by the temperature sensor.
  7.  請求項5に記載の形状記憶合金アクチュエータ制御装置であって、
     前記温度特定部が、
     前記形状記憶合金の抵抗値を前記温度の代用指標として検出する抵抗値検出部、
    を備え、
     前記抵抗値を前記温度の代用指標として用いて前記通電基準条件を変更することにより、前記通電電流の値の決定の際の温度補償を行うことを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 5,
    The temperature specifying unit is
    A resistance value detecting unit for detecting a resistance value of the shape memory alloy as a substitute index of the temperature;
    With
    A shape memory alloy actuator control device that performs temperature compensation when determining the value of the energization current by changing the energization reference condition using the resistance value as a substitute index of the temperature.
  8.  請求項1に記載の形状記憶合金アクチュエータ制御装置であって、
     前記電流設定部が、
     前記形状記憶合金の線径に対応した線径情報の値を記憶する線径情報記憶部と、
     前記線径情報の値に基づいて、前記通電電流の値を決定する電流値決定部と、
    を備えることを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 1,
    The current setting unit is
    A wire diameter information storage unit for storing a value of wire diameter information corresponding to the wire diameter of the shape memory alloy;
    Based on the value of the wire diameter information, a current value determination unit that determines the value of the energization current;
    A shape memory alloy actuator control device comprising:
  9.  請求項8に記載の形状記憶合金アクチュエータ制御装置であって、
     前記線径情報は、あらかじめ測定された前記形状記憶合金の線径であり、
     前記電流値決定部は、
     前記線径情報記憶部に記憶された前記線径の値を前記通電電流の値へと変換する変換部、
    を備えることを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 8,
    The wire diameter information is a wire diameter of the shape memory alloy measured in advance,
    The current value determining unit
    A conversion unit for converting the value of the wire diameter stored in the wire diameter information storage unit into the value of the energization current;
    A shape memory alloy actuator control device comprising:
  10.  請求項8に記載の形状記憶合金アクチュエータ制御装置であって、
     前記線径情報記憶部は、前記形状記憶合金の抵抗値を記憶し、
     前記電流値決定部は、
     前記抵抗値を前記通電電流の値に変換する変換部、
    を備え、
     前記変換部の変換結果に基づいて前記通電電流の値を決定することを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 8,
    The wire diameter information storage unit stores a resistance value of the shape memory alloy,
    The current value determining unit
    A conversion unit that converts the resistance value into a value of the energization current;
    With
    A shape memory alloy actuator control device that determines the value of the energization current based on a conversion result of the conversion unit.
  11.  請求項10に記載の形状記憶合金アクチュエータ制御装置であって、
     前記線径情報記憶部は、前記形状記憶合金の前記抵抗値を測定した際の温度を前記抵抗値とともに記憶し、
     前記変換部は、前記抵抗値と前記温度との組を前記通電電流の値に変換することにより、前記通電電流の値を決定する際の温度補償を行うことを特徴とする形状記憶合金アクチュエータ制御装置。
    The shape memory alloy actuator control device according to claim 10,
    The wire diameter information storage unit stores the temperature when the resistance value of the shape memory alloy is measured together with the resistance value,
    A shape memory alloy actuator control characterized in that the conversion unit performs temperature compensation when determining the value of the energizing current by converting the set of the resistance value and the temperature into the value of the energizing current. apparatus.
  12.  請求項1ないし請求項11の何れかに記載の形状記憶合金アクチュエータ制御装置であって、
     前記形状記憶合金の抵抗を表現する値としての抵抗値を検出する抵抗値検出部と、
     前記抵抗値検出部により検出された抵抗値と、目標抵抗値を表現する値としての目標抵抗値とを比較する比較部と、
    を備え、
     前記通電制御部は、
     前記形状記憶合金を所望の形状に変形させる際に、前記抵抗値検出部で得られる前記抵抗値の信号と、前記目標抵抗値の信号との差が小さくなるように、前記形状記憶合金への平均通電電流を制御することを特徴とする形状記憶合金アクチュエータ制御装置。
    A shape memory alloy actuator control device according to any one of claims 1 to 11,
    A resistance value detection unit for detecting a resistance value as a value representing the resistance of the shape memory alloy;
    A comparison unit that compares the resistance value detected by the resistance value detection unit with a target resistance value as a value representing the target resistance value;
    With
    The energization control unit
    When the shape memory alloy is deformed into a desired shape, the shape memory alloy is reduced so that a difference between the resistance value signal obtained by the resistance value detection unit and the target resistance value signal is reduced. A shape memory alloy actuator controller that controls an average energization current.
  13.  請求項1ないし請求項12の何れかに記載の形状記憶合金アクチュエータ制御装置であって、
     前記通電制御部は、PWM方式によって前記形状記憶合金の通電制御を行い、前記形状記憶合金へのパルス振幅およびパルス幅の少なくとも何れかを変化させることを特徴とする形状記憶合金アクチュエータ制御装置。
    A shape memory alloy actuator control device according to any one of claims 1 to 12,
    The shape memory alloy actuator control device, wherein the power supply control unit performs current control of the shape memory alloy by a PWM method, and changes at least one of a pulse amplitude and a pulse width to the shape memory alloy.
  14.  線材状の形状記憶合金の温度変化による形状復元力を利用して所定の光学部品の駆動を行うアクチュエータと、
     請求項1ないし請求項13のいずれかに記載の形状記憶合金アクチュエータ制御装置と、
    を備えることを特徴とする光学部品駆動ユニット。
    An actuator that drives a predetermined optical component using a shape restoring force due to a temperature change of a wire-shaped shape memory alloy;
    A shape memory alloy actuator control device according to any one of claims 1 to 13,
    An optical component driving unit comprising:
PCT/JP2011/062802 2010-07-09 2011-06-03 Shape-memory alloy actuator control device and optical component drive unit WO2012005072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-156630 2010-07-09
JP2010156630 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012005072A1 true WO2012005072A1 (en) 2012-01-12

Family

ID=45441058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062802 WO2012005072A1 (en) 2010-07-09 2011-06-03 Shape-memory alloy actuator control device and optical component drive unit

Country Status (1)

Country Link
WO (1) WO2012005072A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103749A1 (en) * 2014-12-25 2016-06-30 Smk株式会社 Impact-generating actuator, touch panel, and drive method
CN110244448A (en) * 2019-06-01 2019-09-17 瑞声科技(新加坡)有限公司 A kind of prism apparatus and periscope type lens mould group applied to periscope type lens mould group

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329146A (en) * 2005-05-30 2006-12-07 Konica Minolta Holdings Inc Driving device
JP2008274898A (en) * 2007-05-07 2008-11-13 Konica Minolta Opto Inc Drive unit and movable module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329146A (en) * 2005-05-30 2006-12-07 Konica Minolta Holdings Inc Driving device
JP2008274898A (en) * 2007-05-07 2008-11-13 Konica Minolta Opto Inc Drive unit and movable module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103749A1 (en) * 2014-12-25 2016-06-30 Smk株式会社 Impact-generating actuator, touch panel, and drive method
CN110244448A (en) * 2019-06-01 2019-09-17 瑞声科技(新加坡)有限公司 A kind of prism apparatus and periscope type lens mould group applied to periscope type lens mould group

Similar Documents

Publication Publication Date Title
JP5548211B2 (en) Control of shape memory alloy actuator device
JP5221672B2 (en) Control of shape memory alloy working structure
JP4591632B2 (en) Shape memory alloy actuator driving apparatus and method, and imaging apparatus using the same
JP5039794B2 (en) Shape memory alloy drive unit
JP4946675B2 (en) Shape memory alloy drive device, imaging device using the same, and shape memory alloy drive method
US8395855B2 (en) Shape memory alloy actuation apparatus
JP2008286011A (en) Driving device and lens driving device
WO2008129290A1 (en) Control circuits for an sma actuator
JP4916415B2 (en) Shape memory element actuator control apparatus and control method
WO2011111686A1 (en) Driving mechanism, driving device, and method of manufacturing driving device
WO2012005072A1 (en) Shape-memory alloy actuator control device and optical component drive unit
WO2011145463A1 (en) Apparatus and method for driving actuator
JP5115490B2 (en) Drive device for shape memory alloy actuator and imaging device using the same
WO2012093567A1 (en) Shape-memory alloy actuator control device and optical component drive unit
JP2012159046A (en) Actuator drive device, and lens drive apparatus
WO2011108209A1 (en) Position control device, position control method, driving device and imaging device
JP2012227998A (en) Manufacturing method and manufacturing apparatus
JP2009108729A (en) Control method and control device for shape memory alloy actuator
JP2009098416A (en) Shape memory alloy actuator and electronic equipment furnished with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP