WO2011108209A1 - Position control device, position control method, driving device and imaging device - Google Patents

Position control device, position control method, driving device and imaging device Download PDF

Info

Publication number
WO2011108209A1
WO2011108209A1 PCT/JP2011/000910 JP2011000910W WO2011108209A1 WO 2011108209 A1 WO2011108209 A1 WO 2011108209A1 JP 2011000910 W JP2011000910 W JP 2011000910W WO 2011108209 A1 WO2011108209 A1 WO 2011108209A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance value
shape memory
memory alloy
position control
sma
Prior art date
Application number
PCT/JP2011/000910
Other languages
French (fr)
Japanese (ja)
Inventor
泰啓 本多
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012502989A priority Critical patent/JPWO2011108209A1/en
Publication of WO2011108209A1 publication Critical patent/WO2011108209A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Definitions

  • the present invention relates to a position control apparatus and a position control method for controlling the position of a movable part that is preferably used for, for example, a shape memory alloy actuator that moves a movable part using a shape memory alloy in a bias application method. Then, the present invention relates to a drive device and an imaging device that include this position control device.
  • the autofocus type that is a fixed focus type is required to have high performance
  • the zoom function is also required to be an optical zoom instead of or in addition to the digital zoom.
  • an actuator for moving the lens in the direction of the optical axis is required for both autofocus and optical zoom.
  • shape memory alloy Shape Memory Alloy
  • SMA shape memory alloy
  • This shape memory alloy has a crystal structure called an austenite phase (high temperature phase) on the higher temperature side than the transformation temperature, and a crystal structure called martensite phase (low temperature phase) on the lower temperature side.
  • a general metal material does not return to the shape before deformation when a predetermined external force is applied.
  • SMA does not return to its martensite phase when it is deformed by applying a predetermined external force in a martensitic phase state. It transforms from the site phase to the austenite phase, and its shape recovers to its original shape before deformation.
  • the resistance value of the SMA also increases, and the resistance value reaches the maximum resistance value Rmax at a predetermined temperature TRmax.
  • the resistance value becomes the minimum resistance value Rmin at a predetermined temperature TRmin, and thereafter, the resistance value starts to increase again and the resistance value increases (TRmax ⁇ TRmin, Rmax> Rmin).
  • the resistance value of the SMA is substantially proportional to the temperature.
  • An actuator (shape memory alloy actuator) using SMA drives a driven body by utilizing this characteristic.
  • a bias applying type actuator using SMA generates a contraction force by energizing and heating the SMA and uses the contraction force as a driving force for the lens, and is generally easy to reduce in size and weight.
  • the electrical resistance value of the SMA wire processed into a linear shape is approximately proportional to the length of the SMA wire in the temperature range from the predetermined temperature TRmin to the predetermined temperature TRmax, the SMA wire is controlled by controlling the resistance value. It is possible to control the position of a driven body such as a lens without changing the length of the lens and the need for a position sensor or the like.
  • the position control device disclosed in Patent Document 1 includes an actuator that operates based on a displacement of a shape memory alloy body, a drive unit that heats and cools the shape memory alloy body, and a deviation between the displacement of the actuator and a target value of the displacement.
  • a means for operating the driving means based on the above a resistance detecting means for detecting the resistance value R of the shape memory alloy body, and a maximum resistance value Rmax and a minimum resistance value Rmin of the shape memory alloy body before starting position control.
  • Patent Document 2 discloses a technique for controlling the SMA actuator by detecting the maximum resistance value Rmax of the SMA and decreasing the resistance value of the SMA from the maximum resistance value Rmax to the target resistance value. .
  • the control system includes a detection circuit for detecting the maximum resistance value Rmax and the minimum resistance value Rmin, a determination algorithm, a false detection avoidance circuit, and the like. There is a possibility that the configuration of the above becomes complicated.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a position control device and a position control method capable of position control based on the resistance value of SMA with a simpler configuration. is there. Another object of the present invention is to provide a driving device and an imaging device including these position control device and this shape memory alloy actuator.
  • the position of the movable part to be moved is controlled by using the shape memory alloy.
  • the resistance value of the shape memory alloy is detected as an initial resistance value, and the target resistance value corresponding to the target displacement position of the movable part is set to a value smaller than the initial resistance value. Is done. Therefore, such a position control device, a position control method, a driving device, and an imaging device can control the position of the movable portion based on the resistance value of the shape memory alloy with a simpler configuration.
  • FIG. 1 is a front view (viewed from the lens opening surface) of the autofocus lens driving mechanism 1 in the imaging apparatus according to the embodiment.
  • FIG. 2 is a side view for explaining the operation.
  • FIG. 2A shows a case where the SMA is expanded
  • FIG. 2B shows a case where the SMA is contracted.
  • the imaging apparatus includes a shape memory alloy actuator 11 that moves a movable part using a shape memory alloy, a lens 2 that moves according to the movement of the movable part, and a movable part.
  • a position control device 31 (see FIG. 3) that controls the position, and an image sensor 25 (imaging device) that connects to the position control device 31 and captures an optical image of a subject formed by an imaging optical system including a lens (see FIG. 3). 3).
  • the drive mechanism 1 for the autofocus lens in the imaging apparatus performs focusing by displacing the lens 2 in the axis AX direction (front-rear direction).
  • the lens 2 is attached to the lens driving frame 3 and constitutes a lens barrel 4.
  • the lens barrel 4 is mounted on the base portion 6, and the front and rear ends of the lens driving frame 3 are integrated with the base portion 6 by a pair of link members 7 via a lateral surface outer wall (not shown). It is supported by the upper base 8 and can be displaced in a parallel state in the direction of the axis AX.
  • a bias spring 10 is interposed between the front end of the lens driving frame 3 and the front cover 9.
  • the shape memory alloy (SMA) actuator 11 includes an arm portion 12, a lever 13, and a support leg 14, and an SMA 15 made of a shape memory alloy (SMA) wire.
  • the arm part 12, the lever 13, and the support leg 14 correspond to an example of a movable part.
  • the arm portion 12 is formed in a substantially “ ⁇ ” shape (substantially “C” shape, substantially “V” shape) when viewed from the front (lens opening) side, and the protruding portions 5 are hooked at both ends thereof.
  • the central portion is fixed to one end of the lever 13.
  • a central portion of the lever 13 is supported by a fulcrum 14a of the support leg 14 so as to be swingable and displaceable.
  • a notch 13a is formed at the other end, and an SMA 15 is wound around the notch 13a. Since the SMA 15 is wound around the notch 13a in this way, the displacement of the SMA 15 is prevented even when the lens barrel 4 is displaced in the axis AX direction. Both ends of the SMA 15 are stretched by a pair of electrodes 16 erected on the base portion 6. The SMA 15 is installed in a state in which it is subjected to a tensile deformation rather than the memory shape by an appropriate bias force due to the biasing force of the bias spring 10.
  • the SMA 15 while the SMA 15 is not energized between the electrodes 16, the SMA 15 expands by naturally radiating heat to the surroundings, becomes a martensite phase (low temperature phase), the tension of the SMA 15 decreases, and the elastic force of the bias spring 10
  • the lens 2 provided in the lens barrel 4 is in the home position (infinite end) pressed against the base portion 6 and can cope with an impact or the like.
  • energization is performed between the electrodes 16 in pulses, and as the duty increases (the energization amount increases), the SMA 15 contracts by generating Joule heat, and tension is generated in the SMA 15.
  • the lever 13 swings in the direction of the arrow 18 against the elastic force of the bias spring 10 and is provided in the lens barrel 4 via the arm portion 12 and the protruding portion 5.
  • the lens 2 thus pushed is pushed in the direction of the front cover 9 of the arrow 19, and in the state where the duty is highest, the SMA 15 becomes an austenite phase (high temperature phase), and the sweep end which is the maximum extension position of the lens 2 Reach (macro edge).
  • the SMA 15 is deformed in the shrinking direction and its resistance value is decreased due to the crystal phase transformation of the SMA 15.
  • the lens barrel 4 starts to move from the infinite end when the stress of the SMA 15 due to contraction increases and exceeds the stress of the bias spring.
  • the vicinity of the bending point is supported by the fulcrum 14a, and the distance from the arm portion 12 to the point where the protruding portion 5 is engaged is 13 is formed to be longer than the distance to the point where the SMA 15 is engaged, so that the displacement of the SMA 15 can be enlarged and the lens barrel 4 can be displaced.
  • FIG. 3 is a block diagram illustrating an electrical configuration of the position control device according to the embodiment.
  • the position control device 31 includes a drive circuit 27 that energizes the SMA 15, a resistance value detection unit 32 that detects the resistance value of the SMA 15, and a target of the movable unit (the arm unit 12, the lever 13, and the support leg 14).
  • a control unit 21 that sets a target resistance value corresponding to the displacement position and controls the amount of current (e.g., current value) applied to the shape memory alloy by the drive circuit 27 so that the resistance value matches the target resistance value; Prepare.
  • the position control device 31 uses the resistance value of the SMA 15 as a parameter related to the expansion and contraction of the SMA 15, that is, a parameter for detecting the position of the lens barrel 4.
  • the control unit 21 controls the energization current value for the SMA 15 by causing the resistance value detection unit 32 to detect the resistance value of the SMA 15 as an initial resistance value and setting the target resistance value to a value smaller than the initial resistance value at startup. Then, the first control (initial control) for starting the transformation of the SMA 15 from the low temperature phase to the high temperature phase is performed.
  • a mode in which a photographing mode is selected at the time of start-up of an electronic device provided with the position control device 31 or at an electronic device provided with an imaging device that drives the lens 2 by the position control device 31 For example, at the time of activation, or at the time of activation of the lens immediately before driving the lens in the zoom operation or autofocus operation in the photographing mode.
  • this is an example of performing a preparatory operation for controlling the position of the movable part, and the first control energizes the SMA 15 of the position control device 31 to move the movable part to the actual target position.
  • This is a control as a preparatory operation before the operation.
  • control unit 21 sets a value obtained by adding the optimum differential resistance value stored in advance to the initial resistance value as a target resistance value, controls the energization current value for the SMA 15, and sets the reference for starting the movable unit.
  • the second control reference position control for moving to the position (infinite end) is performed.
  • the controller 21 is set by the controller 34 that sets the target resistance value, and the resistance value (detected resistance value) between the electrodes 16 of the SMA 15 detected by the resistance value detector 32.
  • a comparison unit 33 that compares the target resistance value and sets a drive current value corresponding to the comparison result, and a drive control calculation unit 26 that outputs the drive current value set by the comparison unit 33 to the drive circuit 27 as a drive signal.
  • the detection result of the image sensor 25 is also input to the controller 34.
  • the controller 34 determines the focus point when the contrast is high and an edge is detected from the output of the image sensor 25. Therefore, the controller 34 is also a detection unit that detects that the lens barrel 4 has reached the target displacement position.
  • the resistance value between the electrodes 16 of the SMA 15 is detected by the resistance value detection unit 32, and the detection result and the target resistance value given from the controller 34 are compared by the comparison unit 33, and the drive current value corresponding to the comparison result Is set, and the drive current value is output to the drive control calculation unit 26.
  • the comparison unit 33 increases the drive current value (increases the temperature) when determining that the detected resistance value> the target resistance value, and determines that the detected resistance value ⁇ the target resistance value.
  • the control unit 21 controls the resistance value of the SMA 15 to match the target resistance value by using such a simple algorithm by using the range of the linear characteristic of the SMA 15.
  • the controller 34 incorporates a storage unit.
  • This storage unit is a constant used in initial control and reference position control, and as shown in FIG. 6, the resistance value of the SMA 15 is approximately proportional to the lens displacement in the range of the lens displacement from the infinite end to the macro end.
  • the relational expression to be stored is stored in advance.
  • the drive control calculation unit 26 creates a drive signal having a duty corresponding to the drive current value, and controls the energization current value to the SMA 15 via the drive circuit 27 that energizes the SMA 15.
  • the drive circuit 27 includes a switching element such as a transistor, for example.
  • the resistance value detection unit 32 can obtain the resistance value from the known constant current value during the ON duty period and the voltage between the electrodes 16 of the SMA 15.
  • the resistance value detection unit 32 itself causes a known search current to flow, and the resistance value is calculated from the voltage between the electrodes 16 of the SMA 15. Can be sought.
  • the servo control of the position control device 31 is as follows.
  • the resistance value detection unit 32 detects the initial resistance value Rstart, and the controller 34 stores the first value stored in advance from the initial resistance value Rstart.
  • a value obtained by subtracting the predetermined value is set as a target resistance value in initial control (hereinafter referred to as a first target value Rtgt1), and the position control device 31 starts the first control (hereinafter referred to as initial control).
  • the target resistance value Rtgt1 is set to a value smaller than the initial resistance value Rstart, and the SMA 15 starts to transform from the low temperature phase to the high temperature phase.
  • the device 31 can control the position of the SMA 15 by utilizing the property that the resistance value of the SMA 15 changes linearly with respect to the displacement without detecting the maximum resistance value Rmax of the SMA 15.
  • FIG. 4 is a graph showing the temperature-resistance value characteristics of SMA.
  • the horizontal axis indicates the temperature of the SMA, and the vertical axis indicates the electrical resistance of the SMA.
  • An example of this is Ni—Ti or Ni—Ti—Cu.
  • the SMA 15 used in the present embodiment has a crystalline phase called a martensite phase (low temperature phase) at a temperature below a certain level, and the wire is elongated.
  • a specific temperature As point
  • the resistance value decreases according to the amount of displacement in the contraction direction.
  • the SMA 15 generally has hysteresis as shown in FIG. 4 in the temperature-resistance characteristic, and there is a relationship of Mf point ⁇ As point and Ms point ⁇ Af point.
  • FIG. 5 is a graph showing the temperature-resistance value characteristics of the SMA in the SMA actuator according to the embodiment.
  • the horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
  • the resistance value of the SMA 15 changes from the initial resistance value Rstart at the start of energization to the maximum resistance value Rmax at the As point as the temperature rises due to energization, and the lens 2 starts to move from the infinite end to the macro end. It is used within a range in which the resistance value at the time (hereinafter, infinite end resistance value Rinf) is changed to the resistance value (hereinafter, macro resistance value Rmcr) when the lens 2 is at the macro end. Since the lens 2 is not extended beyond the macro end by the mechanism shown in FIGS. 1 and 2, the curve in FIG. 4 is shown as the operation of the lens 2 from the infinite end to the macro end in FIG.
  • FIG. 6 is a graph showing the displacement-resistance value characteristics of SMA in the SMA actuator according to the embodiment.
  • the horizontal axis indicates the displacement of the lens, and the vertical axis indicates the resistance value of SMA.
  • the displacement of the lens 2 decreases in the process of changing in order from the macro resistance value Rmcr to the infinite end resistance value Rinf (the barrel 4 moves toward the infinite end direction), and the infinite end resistance value Rinf to maximum In the process of sequentially changing from the resistance value Rmax to the initial resistance value Rstart, the displacement of the lens 2 is zero.
  • the displacement-resistance characteristic curve of the lens 2 in FIG. 6 it is assumed that there is almost no hysteresis in the temperature increasing process and the temperature decreasing process. This is because the hysteresis becomes very small and can be ignored by appropriately processing the Ni-Ti-Cu SMA 15.
  • the performance of displacement control using the resistance value as an index can be improved. Furthermore, if a wire material having a sufficiently high temperature at the As point is used with respect to the upper limit of the operating temperature range of the SMA 15, the SMA 15 does not transform from the low temperature phase with respect to the ambient temperature. Therefore, there is no need to consider hysteresis.
  • FIG. 7 is a graph for explaining control by a conventional position control device.
  • FIG. 7A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA.
  • the horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
  • FIG. 7B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens.
  • the horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
  • the initial resistance value Rstart is smaller than the first target value Rtgt1, the property that the resistance value of the SMA 15 linearly changes in its displacement cannot be used without detecting the maximum resistance value Rmax of the SMA 15.
  • the first target value Rtgt1 is set to the infinite end resistance value Rinf.
  • the SMA 15 is in the state P0 (initial resistance value Rstart) in FIG. 7 and the initial resistance value Rstart ⁇ the first target value Rtgt1.
  • the temperature of the SMA 15 is not raised again (it is in a state of being completely radiated naturally), so that the temperature does not further drop and does not move from the state P0. Defects occur.
  • the initial resistance value Rstart at the time of activation is a value smaller than the first target value Rtgt1, an operation failure occurs in which the SMA 15 does not move from the state at the time of activation.
  • the operation is performed as described below so that such a malfunction does not occur.
  • FIG. 8 is a graph for explaining control by the position control apparatus according to the embodiment.
  • FIG. 8A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA.
  • the horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
  • FIG. 8B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens.
  • the horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA.
  • a resistance value smaller than the initial resistance value Rstart is set as the first target value Rtgt1, and initial control is started.
  • the initial resistance value Rstart> the first target value Rtgt1 the energization amount to the SMA 15 increases and the temperature rise of the SMA 15 starts. 8A and 8B, the temperature of the SMA 15 rises from the state P0 to the state P1, and the displacement of the SMA 15 changes from the infinite end to the displacement X1.
  • FIG. 9 is a graph for explaining the initial control by the position control device according to the embodiment.
  • FIG. 9A is a schematic graph showing an example of the operation of the SMA according to the present embodiment.
  • the horizontal axis represents time, and the vertical axis represents SMA electrical resistance.
  • FIG. 9B is a schematic graph showing the displacement of the lens according to the present embodiment.
  • the horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA.
  • the controller 34 sets the first target value Rtgt1 based on the initial resistance value Rstart detected at the time of activation (hereinafter, time t0).
  • time t0 the time of activation
  • the energization amount to the SMA 15 is increased to raise the temperature.
  • the resistance value of the SMA 15 increases to the maximum resistance value Rmax and decreases from the maximum resistance value Rmax.
  • the resistance value of the SMA 15 becomes the infinite end resistance value Rinf at time tinf, the lens barrel 4 starts to move from the infinite end, and the displacement increases.
  • the temperature of the SMA 15 is further increased from the time tinf until the resistance value reaches the first target value Rtgt1, and the state P1 of FIG. 8 is reached at the time t1, and the displacement becomes X1. And after it will be in the state P1, the position control apparatus 31 will maintain the energization amount to SMA15.
  • FIG. 10 is a graph for explaining the reference position control by the position control device according to the present embodiment.
  • FIG. 10A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA.
  • the horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
  • FIG. 10B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens.
  • the horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA.
  • the state P1 ' is a state at the start of the reference position control, but is the same state as the state P1 as long as the state after the initial control is maintained.
  • the target resistance value in the reference position control (hereinafter referred to as the second target value Rtgt2) is larger than the first target value Rtgt1 (state P1 ′).
  • the lens 2 can be moved to the reference position (infinite end) even if the endless end, which is the reference position to wait for moving to the target displacement position, has been exceeded.
  • the second target value Rtgt2 is a value obtained by adding the differential resistance value Rbak stored in advance to the initial resistance value Rstart. Further, it is assumed that the infinite end resistance value Rinf ⁇ the second target value Rtgt2 ⁇ the maximum resistance value Rmax. As shown in FIG. 10, since the detected resistance value is the first target value Rtgt1 in the state P1 ′, the detected resistance value ⁇ the second target value Rtgt2, and the amount of current supplied to the SMA 15 is reduced to start the temperature decrease. . Accordingly, the temperature of the SMA 15 decreases from the state P1 'to the state P2 along the path indicated by the wavy arrow in FIG. 10, and the displacement of the lens 2 becomes an infinite end in the state P2.
  • the lens 2 can be moved to the reference position even if the position of the lens 2 has gone too far from the reference position, which is a position that should be on standby for moving to the target displacement position. .
  • FIG. 11 is a graph for explaining the initial control and the reference position control by the position control device according to the present embodiment.
  • FIG. 11A is a schematic graph showing an example of the operation of the SMA according to the present embodiment.
  • the horizontal axis represents time, and the vertical axis represents SMA electrical resistance.
  • FIG. 11B is a schematic graph showing the operation of the lens according to the present embodiment.
  • the horizontal axis indicates time, and the vertical axis indicates lens displacement.
  • the position control device 31 sets the second target value Rtgt2 from time t1 'and starts servo control, and detects the resistance value in the state P1'. Since the detected resistance value is smaller than the second target value Rtgt2, the energization amount is decreased to lower the temperature (increase the resistance value), reach the infinite end resistance value Rinf at time tinf, and the displacement of the lens 2 is The lens 2 becomes infinite and stops. Further, the temperature is lowered until the resistance value increases to the second target value Rtgt2, and the state P2 of FIG. 10 is reached at time t2, but the displacement in the state P2 is an infinite end. And after it will be in the state P2, that state is maintained. The above is the control operation from the state P1 'to the reference position control end state P2.
  • FIG. 12 is a flowchart for explaining the initial control and the reference position control by the position control device according to the present embodiment. The flow is executed when the position control device 31 is activated. Steps S1 to S3 are initial control, and steps S4 to S5 are reference position control.
  • step S1 the resistance value detection unit 32 detects the initial resistance value Rstart, and in step S2, the controller 24 sets the first target value Rtgt1 to a value obtained by subtracting a previously stored value ⁇ from the initial resistance value Rstart.
  • the predetermined value ⁇ may be a value that is larger than the detection error of the resistance value, and may be a very small value.
  • step S ⁇ b> 3 the control unit 21 starts servo control, and ends servo control when the first target value Rtgt ⁇ b> 1 reaches “initial resistance value Rstart ⁇ ”.
  • step S4 the controller 24 sets the second target value Rtgt2 to a value obtained by adding the differential resistance value Rbak stored in advance to the initial resistance value Rstart. A method for selecting the differential resistance value Rbak will be described later.
  • step S5 the control unit 21 starts servo control, and ends servo control when the second target value Rtgt2 reaches “initial resistance value Rstart + differential resistance value Rbak”.
  • FIG. 13 is a graph showing the ambient temperature-resistance value characteristics of SMA.
  • the horizontal axis indicates the ambient temperature of the SMA, and the vertical axis indicates the electrical resistance of the SMA.
  • Tmin, Tmax, and Tinf are the lower limit temperature, upper limit temperature, and infinite end temperature of the operating temperature range, respectively, and the corresponding lower limit resistance value, upper limit resistance value, and infinite end resistance value of SMA are R (Tmin), R (Tmax), and Rinf. Therefore, the initial resistance value Rstart is lower limit temperature resistance value R (Tmin) ⁇ initial resistance value Rstart ⁇ upper limit temperature resistance value R (Tmax).
  • the differential resistance value Rbak may be selected so as to satisfy both of the following conditions.
  • the infinite end resistance value Rinf In the range from the lower limit temperature Tmin to the temperature Tinf where the ambient temperature is the same as the resistance value at the infinite end, the initial resistance value Rstart ⁇ the infinite end resistance value Rinf.
  • the second target value Rtgt2 does not exceed the maximum resistance value Rmax, so that it is guaranteed that the SMA 15 does not return to the low temperature phase.
  • the initial resistance value Rstart> the infinite end resistance value Rinf in a temperature range (in a high temperature environment) higher than the temperature Tinf where the ambient temperature becomes the same as the resistance value at the infinite end, the initial resistance value Rstart> the infinite end resistance value Rinf, and the SMA 15 is in the initial state as will be described later. Since the process returns to P0, the autofocus lens can be scanned from the infinite end, so that the problem of malfunction does not occur.
  • the differential resistance value Rbak value is a set value having a sufficient margin in consideration of solid variations of the infinite end resistance value Rinf ⁇ R (Tmin) and the maximum resistance value Rmax ⁇ infinite end resistance value Rinf. . Further, the differential resistance value Rbak value may be a value considering the detection error of the resistance value.
  • FIG. 14 is a graph for explaining the initial control by the position control device according to the present embodiment in a high-temperature environment.
  • FIG. 14A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA.
  • the horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
  • FIG. 14B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens.
  • the horizontal axis shows the displacement of the lens
  • the vertical axis shows the electrical resistance of SMA.
  • the SMA 15 changes from the initial state P0 to the state P1 along a path indicated by a broken-line arrow in the drawing. However, in the state P1, the displacement of the lens 2 remains at the infinite end, and the lens 2 does not start to move.
  • FIG. 15 is a graph for explaining the reference position control by the position control device according to the present embodiment in a high temperature environment.
  • FIG. 15A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA.
  • the horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
  • FIG. 15B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens.
  • the horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA.
  • the state P1 ' is a state at the start of the reference position control, but is the same as P1 if the initial control end state is maintained.
  • Second target value Rtgt2 initial resistance value Rstart + differential resistance value Rbak. Further, it is assumed that the initial resistance value Rstart ⁇ the maximum resistance value Rmax ⁇ the second target value Rtgt2.
  • the energization amount is decreased and the temperature decrease is started. Therefore, the temperature decreases from the state P1 'to the state P2 along the path indicated by the broken-line arrow in the figure, and returns to the vicinity of the initial P0. The displacement of the lens 2 remains at the infinite end.
  • FIG. 16 is a graph for explaining the initial control and the reference position control by the position control device according to the present embodiment under a high temperature environment.
  • FIG. 16A is a schematic graph showing an example of the operation of the SMA according to the embodiment of the present invention.
  • the horizontal axis represents time, and the vertical axis represents SMA electrical resistance.
  • FIG. 16B is a schematic graph showing the operation of the lens according to the embodiment of the present invention.
  • the horizontal axis indicates time, and the vertical axis indicates lens displacement.
  • the SMA 15 reaches the first target value Rtgt1 at the time t1 via the maximum resistance value Rmax due to the temperature rise due to the increase in energization.
  • Time t1 corresponds to the state P1.
  • the position control device sets the second target value Rtgt2 at time t1 'and starts servo control. Due to the temperature drop due to the decrease in energization, the position controller again passes through the maximum resistance value Rmax and reaches the initial resistance value Rstart at time t2.
  • Time t2 corresponds to state P2. Through this process, the displacement of the lens 2 remains at the infinite end, and the lens 2 does not move from the infinite end.
  • the target value is then reduced stepwise, and if it becomes smaller than the initial resistance value Rstart, servo control is performed so that the detected resistance value becomes the target value due to increased energization.
  • the displacement remains 0 because it has not yet reached the infinite end. Furthermore, if the target resistance value is decreased stepwise, the displacement increases stepwise from the infinite end toward the macro end.
  • the controller 34 further stores the relationship between the initial resistance value Rstart and the ambient temperature as shown in FIG. 13 and the relationship between the ambient temperature and the differential resistance value Rbak, and the resistance value of the SMA 15.
  • the ambient temperature is obtained from the initial resistance value Rstart based on the relationship between the ambient temperature and the ambient temperature
  • the differential resistance value Rbak is obtained based on the relationship between the obtained ambient temperature and the differential resistance value Rbak
  • the obtained differential resistance value Rbak may be performed using.
  • the differential resistance value Rbak may be a value greater than the resistance value detection error.
  • the differential resistance value may satisfy the expressions (1) and (2).
  • the temperature detector 23 further detects the ambient temperature of the SMA 15, and the controller 34 preliminarily shows the relationship between the ambient temperature and the differential resistance value Rbak.
  • the differential resistance value Rbak is obtained from the ambient temperature detected by the temperature detection unit 23 based on the relationship between the ambient temperature and the differential resistance value Rbak, and the reference position control is performed using the obtained differential resistance value Rbak.
  • the temperature detection unit 23 includes a temperature sensor such as a thermistor, a thermocouple, and a thin film resistor.
  • a temperature sensor such as a thermistor, a thermocouple, and a thin film resistor.
  • the lever 13 is provided at a portion of the notch 13a around which the SMA 15 is wound.
  • the value of the differential resistance value Rbak can be changed depending on the detected ambient temperature of the SMA 15, and the movement start delay in the autofocus scanning operation is less.
  • a position control device is used for a shape memory alloy actuator that moves a movable portion using a shape memory alloy, and is a position control device that controls the position of the movable portion, and energizes the shape memory alloy.
  • a drive unit to perform, a resistance value detection unit to detect a resistance value of the shape memory alloy, and a target resistance value corresponding to a target displacement position of the movable unit, so that the resistance value matches the target resistance value
  • a control unit that controls the amount of current applied to the shape memory alloy by the drive unit, and the control unit provides the resistance value detection unit with the shape memory alloy as a preparatory operation for controlling the position of the movable unit.
  • the resistance value of the shape memory alloy is detected as an initial resistance value, and the target resistance value is set to a value smaller than the initial resistance value. Performing a first control to start the transformation to the high temperature phase.
  • the target resistance value is set to a value smaller than the initial resistance value, and the shape memory alloy starts to transform from the low temperature phase to the high temperature phase.
  • the position of the shape memory alloy can be controlled by utilizing the property that the resistance value of the shape memory alloy changes linearly with the displacement without detecting the maximum resistance value Rmax of the shape memory alloy.
  • the above-described position control device preferably further includes a storage unit that stores a predetermined differential resistance value that is set in advance, and the control unit is configured to perform the target resistance after the first control.
  • the value is set to a value obtained by adding the differential resistance value to the initial resistance value, and second control is performed to control the energization amount for the shape memory alloy, thereby moving the movable portion to a reference position.
  • the position control device moves the movable part to the reference position even if the position of the movable part has exceeded the reference position, which is a position to be on standby for moving to the target displacement position. Can be made.
  • the above-described position control device preferably further includes a temperature detection unit that detects an ambient temperature of the shape memory alloy actuator, and the storage unit includes the ambient temperature and the differential resistance value.
  • the control unit obtains the differential resistance value from the ambient temperature detected by the temperature detection unit based on the relationship between the ambient temperature and the differential resistance value. Second control is performed with the differential resistance value.
  • the optimum differential resistance value corresponding to the ambient temperature can be set, so that the position control device can move the movable part to the target displacement position in a shorter time.
  • the storage unit includes a relationship between the resistance value of the shape memory alloy actuator and the ambient temperature, and the relationship between the ambient temperature and the differential resistance value. Further storing a relationship, the control unit obtains the ambient temperature from the initial resistance value based on the relationship between the resistance value of the shape memory alloy and the ambient temperature, from the obtained ambient temperature, the ambient temperature and the The differential resistance value is obtained based on the relationship with the differential resistance value, and second control is performed using the obtained differential resistance value.
  • the position control device can move the movable unit to the target displacement position in a shorter time. Can be moved to.
  • a position control method is a position control method for controlling a position of the movable part, which is used for a shape memory alloy actuator that moves a movable part using a shape memory alloy, the movable part Detecting the resistance value of the shape memory alloy as an initial resistance value, and setting the target resistance value corresponding to the target displacement position of the movable part to a value smaller than the initial resistance value. And a step of starting the transformation of the shape memory alloy from a low temperature phase to a high temperature phase by controlling the amount of current applied to the shape memory alloy with the set target resistance value.
  • the target resistance value is set to a value smaller than the initial resistance value, and the shape memory alloy starts to transform from the low temperature phase to the high temperature phase.
  • the position of the shape memory alloy can be controlled by utilizing the property that the resistance value of the shape memory alloy changes linearly with the displacement without detecting the maximum resistance value Rmax of the shape memory alloy.
  • the target resistance value is set to the initial resistance value after the step of storing a predetermined differential resistance value determined in advance and the step of starting the transformation.
  • the position of the movable portion is set to the reference position. Can be moved to.
  • a driving device includes a shape memory alloy actuator that moves a movable portion using a shape memory alloy, and a position control device that controls a position of the movable portion, and the position control device includes: One of the position control devices described above.
  • a driving device including any one of the above-described position control devices is provided, and a driving device capable of controlling the position of the movable portion based on the resistance value of the shape memory alloy without including a position sensor is provided. Is done.
  • An imaging apparatus includes a shape memory alloy actuator that moves a movable portion using a shape memory alloy, a lens that moves according to the movement of the movable portion, and an imaging optical system that includes the lens.
  • An image pickup device that picks up an optical image of the imaged subject, and a position control device that controls the position of the movable portion, and the position control device is one of the above-described position control devices, and the lens The first control is performed as a preparatory operation for moving.
  • an imaging device including any of the above-described position control devices is provided, and an imaging device capable of controlling the lens position based on the resistance value of the shape memory alloy without including a position sensor. Provided.
  • a position control device a position control method, a drive device, and an imaging device can be provided.

Abstract

Disclosed are a position control device, a position control method, a driving device and an imaging device in which the position of a movable part displaced by use of a shape memory alloy is controlled. The standard operation for controlling the position of said movable part involves detecting as the initial resistance value the resistance value of the aforementioned shape memory alloy (S1), and setting the target resistance value corresponding to the target displacement position of the aforementioned movable part to a value less than the aforementioned initial resistance value (S2). Consequently, the position control device, position control method, driving device and imaging device are capable of controlling the position of a movable part on the basis of the resistance value of a shape memory alloy by a simple configuration.

Description

位置制御装置、位置制御方法、駆動装置および撮像装置POSITION CONTROL DEVICE, POSITION CONTROL METHOD, DRIVE DEVICE, AND IMAGING DEVICE
 本発明は、例えばバイアス付与方式で形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータに好適に使用され、この可動部の位置を制御する位置制御装置および位置制御方法に関する。そして、この位置制御装置を備える駆動装置および撮像装置に関する。 The present invention relates to a position control apparatus and a position control method for controlling the position of a movable part that is preferably used for, for example, a shape memory alloy actuator that moves a movable part using a shape memory alloy in a bias application method. Then, the present invention relates to a drive device and an imaging device that include this position control device.
 近年、カメラ付き携帯電話機等に搭載される撮像素子の画素数が飛躍的に増大する等の、高画質化が進んでいる。これに合わせて、撮像光学系を構成するレンズユニットの高性能化も求められている。より具体的には、固定焦点式であったものがオートフォーカス式に高性能化が要求され、またズーム機能についても、デジタルズームに代えて、若しくは追加して、光学式ズームが要求されている。ここで、オートフォーカスや光学式ズームのいずれにおいても、レンズを光軸方向に移動させるアクチュエータが必要となる。 In recent years, image quality has been improved, such as a dramatic increase in the number of pixels in an image sensor mounted on a mobile phone with a camera. In accordance with this, there is a demand for higher performance of the lens unit constituting the imaging optical system. More specifically, the autofocus type that is a fixed focus type is required to have high performance, and the zoom function is also required to be an optical zoom instead of or in addition to the digital zoom. Here, an actuator for moving the lens in the direction of the optical axis is required for both autofocus and optical zoom.
 そこで、かかるアクチュエータとして、形状記憶合金(Shape Memory
Alloy、以下、「SMA」という場合がある)を用いたものが知られている。この形状記憶合金は、変態温度よりも高温側では、オーステナイト相(高温相)と呼ばれる結晶構造になっており、低温側では、マルテンサイト相(低温相)と呼ばれる結晶構造になっている。一般の金属材料は、所定の外力が加えられると変形前の形に戻らないが、SMAは、マルテンサイト相の状態で所定の外力が加えられて変形しても、変態温度以上になると、マルテンサイト相からオーステナイト相へ相変態し、変形前の元の形にその形状が回復する。
Therefore, as such an actuator, shape memory alloy (Shape Memory Alloy)
A material using Alloy (hereinafter sometimes referred to as “SMA”) is known. This shape memory alloy has a crystal structure called an austenite phase (high temperature phase) on the higher temperature side than the transformation temperature, and a crystal structure called martensite phase (low temperature phase) on the lower temperature side. A general metal material does not return to the shape before deformation when a predetermined external force is applied. However, SMA does not return to its martensite phase when it is deformed by applying a predetermined external force in a martensitic phase state. It transforms from the site phase to the austenite phase, and its shape recovers to its original shape before deformation.
 より具体的には、バイアス付与方式において、SMAは、その温度の上昇に従って、抵抗値も上昇し、所定温度TRmaxで抵抗値が最大抵抗値Rmaxとなり、その後、降下に転じて抵抗値が降下し、所定温度TRminで抵抗値が最小抵抗値Rminとなり、その後、再び上昇に転じて抵抗値が上昇する特性を有している(TRmax<TRmin、Rmax>Rmin)。特に、最大抵抗値Rmaxから最小抵抗値Rminまでの範囲では、SMAの抵抗値は、その温度に略比例している。 More specifically, in the bias application method, as the temperature increases, the resistance value of the SMA also increases, and the resistance value reaches the maximum resistance value Rmax at a predetermined temperature TRmax. The resistance value becomes the minimum resistance value Rmin at a predetermined temperature TRmin, and thereafter, the resistance value starts to increase again and the resistance value increases (TRmax <TRmin, Rmax> Rmin). In particular, in the range from the maximum resistance value Rmax to the minimum resistance value Rmin, the resistance value of the SMA is substantially proportional to the temperature.
 SMAを用いたアクチュエータ(形状記憶合金アクチュエータ)は、この特性を利用することによって、被駆動体を駆動するものである。SMAを用いたバイアス付与方式のアクチュエータは、SMAを通電加熱する等によって緊縮力を発生させ、該緊縮力をレンズの駆動力として用いるものであって、一般に、小型化および軽量化が容易であり、しかも比較的大きな力量が得られるという利点をもつ。例えば、線状に加工したSMA線材の電気抵抗値が、所定温度TRminから所定温度TRmaxまでの温度範囲では、SMA線材の長さに略比例することから、抵抗値を制御することで、SMA線材の長さを変化させて、位置センサ等を必要とせずに、レンズなどの被駆動体の位置制御を行うことができる。 An actuator (shape memory alloy actuator) using SMA drives a driven body by utilizing this characteristic. A bias applying type actuator using SMA generates a contraction force by energizing and heating the SMA and uses the contraction force as a driving force for the lens, and is generally easy to reduce in size and weight. In addition, there is an advantage that a relatively large ability can be obtained. For example, since the electrical resistance value of the SMA wire processed into a linear shape is approximately proportional to the length of the SMA wire in the temperature range from the predetermined temperature TRmin to the predetermined temperature TRmax, the SMA wire is controlled by controlling the resistance value. It is possible to control the position of a driven body such as a lens without changing the length of the lens and the need for a position sensor or the like.
 しかしながら、上述のように、SMAの結晶相が変態する所定温度TRmaxから所定温度TRminまでの領域と、その他の領域(所定温度TRminより高い温度領域、または、所定温度TRmaxより低い温度領域)とで、SMAの抵抗値の温度に対する変化方向が異なるため、単純なアルゴリズムでは位置制御を行うことができない。このような事情に鑑みて、例えば、特許文献1および特許文献2に記載の技術が提案されている。 However, as described above, in the region from the predetermined temperature TRmax to the predetermined temperature TRmin where the crystal phase of SMA transforms, and other regions (a temperature region higher than the predetermined temperature TRmin or a temperature region lower than the predetermined temperature TRmax). Since the change direction of the SMA resistance value with respect to temperature is different, position control cannot be performed with a simple algorithm. In view of such circumstances, for example, techniques described in Patent Document 1 and Patent Document 2 have been proposed.
 特許文献1に開示の位置制御装置は、形状記憶合金体の変位に基づいて動作するアクチュエータと、前記形状記憶合金体を加熱冷却する駆動手段と、前記アクチュエータの変位と変位の目標値との偏差に基づき前記駆動手段を作動させる比較手段と、前記形状記憶合金体の抵抗値Rを検出する抵抗検出手段と、位置制御開始前に前記形状記憶合金体の最大抵抗値Rmaxおよび最小抵抗値Rminを求め記憶する記憶手段と、前記抵抗検出手段の出力と前記記憶手段に記憶された情報とにより前記アクチュエータの変位を算出する変位算出手段とを備えて構成されている。この構成によって、形状記憶合金の抵抗値が最大抵抗値Rmaxと最小抵抗値Rminとの間の値をとるように制御することができる。 The position control device disclosed in Patent Document 1 includes an actuator that operates based on a displacement of a shape memory alloy body, a drive unit that heats and cools the shape memory alloy body, and a deviation between the displacement of the actuator and a target value of the displacement. A means for operating the driving means based on the above, a resistance detecting means for detecting the resistance value R of the shape memory alloy body, and a maximum resistance value Rmax and a minimum resistance value Rmin of the shape memory alloy body before starting position control. Storage means for obtaining and storing, and displacement calculation means for calculating the displacement of the actuator based on the output of the resistance detection means and information stored in the storage means. With this configuration, the resistance value of the shape memory alloy can be controlled to take a value between the maximum resistance value Rmax and the minimum resistance value Rmin.
 そして、特許文献2には、SMAの最大抵抗値Rmaxを検出し、SMAの抵抗値を最大抵抗値Rmaxから目標とする抵抗値まで減少させることで、SMAアクチュエータを制御する技術が開示されている。 Patent Document 2 discloses a technique for controlling the SMA actuator by detecting the maximum resistance value Rmax of the SMA and decreasing the resistance value of the SMA from the maximum resistance value Rmax to the target resistance value. .
 しかしながら、特許文献1および特許文献2に記載の形状記憶合金アクチュエータの制御装置では、最大抵抗値Rmaxや最小抵抗値Rminを検出するための検出回路、判定アルゴリズムおよび誤検出回避回路等で、制御系の構成が複雑になるという虞がある。 However, in the shape memory alloy actuator control device described in Patent Literature 1 and Patent Literature 2, the control system includes a detection circuit for detecting the maximum resistance value Rmax and the minimum resistance value Rmin, a determination algorithm, a false detection avoidance circuit, and the like. There is a possibility that the configuration of the above becomes complicated.
特許第2769351号公報Japanese Patent No. 2769351 国際公開第2008/099156号パンフレットInternational Publication No. 2008/099156 Pamphlet
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、より簡易な構成でSMAの抵抗値に基づいて位置制御が可能な位置制御装置および位置制御方法を提供することである。本発明の他の目的は、これら位置制御装置とこの形状記憶合金アクチュエータとを備える駆動装置および撮像装置を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a position control device and a position control method capable of position control based on the resistance value of SMA with a simpler configuration. is there. Another object of the present invention is to provide a driving device and an imaging device including these position control device and this shape memory alloy actuator.
 本発明にかかる位置制御装置および位置制御方法ならびに駆動装置および撮像装置では、形状記憶合金を用いることによって移動される可動部の位置が制御される。その可動部の位置を制御する準備動作として、前記形状記憶合金の抵抗値が初期抵抗値として検出され、前記可動部の目標変位位置に対応した目標抵抗値が前記初期抵抗値より小さい値に設定される。このため、このような位置制御装置および位置制御方法ならびに駆動装置および撮像装置は、より簡易な構成で形状記憶合金の抵抗値に基づいて可動部の位置を制御することができる。 In the position control device, the position control method, the drive device, and the imaging device according to the present invention, the position of the movable part to be moved is controlled by using the shape memory alloy. As a preparatory operation for controlling the position of the movable part, the resistance value of the shape memory alloy is detected as an initial resistance value, and the target resistance value corresponding to the target displacement position of the movable part is set to a value smaller than the initial resistance value. Is done. Therefore, such a position control device, a position control method, a driving device, and an imaging device can control the position of the movable portion based on the resistance value of the shape memory alloy with a simpler configuration.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態にかかる撮像装置におけるオートフォーカスレンズ駆動機構の正面図である。It is a front view of the autofocus lens drive mechanism in the imaging device according to the embodiment. 図1の動作を説明するための側面図である。It is a side view for demonstrating the operation | movement of FIG. 実施形態にかかる駆動装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the drive device concerning embodiment. SMAの温度―抵抗値特性を示すグラフである。It is a graph which shows the temperature-resistance value characteristic of SMA. 実施形態にかかるSMAアクチュエータにおける、SMAの温度―抵抗値特性を示すグラフである。It is a graph which shows the temperature-resistance value characteristic of SMA in the SMA actuator concerning embodiment. 実施の形態にかかるSMAアクチュエータにおける、SMAの変位―抵抗値特性を示すグラフである。It is a graph which shows the displacement-resistance value characteristic of SMA in the SMA actuator concerning embodiment. 従来の位置制御装置による制御を説明するためのグラフである。It is a graph for demonstrating control by the conventional position control apparatus. 実施形態にかかる位置制御装置による制御を説明するためのグラフである。It is a graph for demonstrating control by the position control apparatus concerning embodiment. 実施形態にかかる位置制御装置による初期制御を説明するためのグラフである。It is a graph for demonstrating the initial control by the position control apparatus concerning embodiment. 実施形態にかかる位置制御装置による基準位置制御を説明するためのグラフである。It is a graph for demonstrating the reference position control by the position control apparatus concerning embodiment. 実施形態にかかる位置制御装置による初期制御と基準位置制御とを説明するためのグラフである。It is a graph for demonstrating the initial control and the reference | standard position control by the position control apparatus concerning embodiment. 実施形態にかかる位置制御装置による初期制御と基準位置制御とを説明するためのフローチャートである。It is a flowchart for demonstrating the initial control and reference | standard position control by the position control apparatus concerning embodiment. SMAの周囲温度―抵抗値特性を示すグラフである。It is a graph which shows the ambient temperature-resistance value characteristic of SMA. 高温環境下での、実施形態にかかる位置制御装置による初期制御を説明するためのグラフである。It is a graph for demonstrating the initial control by the position control apparatus concerning embodiment in high temperature environment. 高温環境下での、実施形態にかかる位置制御装置による基準位置制御を説明するためのグラフである。It is a graph for demonstrating the reference position control by the position control apparatus concerning embodiment in high temperature environment. 高温環境下での、実施形態にかかる位置制御装置による初期制御と基準位置制御とを説明するためのグラフである。It is a graph for demonstrating the initial control and the reference | standard position control by the position control apparatus concerning embodiment in high temperature environment.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 図1は、実施の一形態にかかる撮像装置におけるオートフォーカスレンズ駆動機構1の正面図(レンズ開口面から見た図)である。図2は、その動作を説明するための側面図である。図2(A)は、SMAが伸長している場合、図2(B)は、SMAが収縮している場合を示す。 FIG. 1 is a front view (viewed from the lens opening surface) of the autofocus lens driving mechanism 1 in the imaging apparatus according to the embodiment. FIG. 2 is a side view for explaining the operation. FIG. 2A shows a case where the SMA is expanded, and FIG. 2B shows a case where the SMA is contracted.
 図1および図2において、本実施形態にかかる撮像装置は、形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータ11と、可動部の移動に応じて移動するレンズ2と、可動部の位置を制御する位置制御装置31(図3参照)と、位置制御装置31と接続し、レンズを含む撮像光学系によって結像された被写体の光学像を撮像する画像センサ25(撮像素子)(図3参照)とを備える。 1 and 2, the imaging apparatus according to the present embodiment includes a shape memory alloy actuator 11 that moves a movable part using a shape memory alloy, a lens 2 that moves according to the movement of the movable part, and a movable part. A position control device 31 (see FIG. 3) that controls the position, and an image sensor 25 (imaging device) that connects to the position control device 31 and captures an optical image of a subject formed by an imaging optical system including a lens (see FIG. 3). 3).
 実施の一形態にかかる撮像装置におけるオートフォーカスレンズの駆動機構1は、レンズ2を、その軸線AX方向(前後方向)に変位させることで、フォーカス合せを行う。レンズ2は、レンズ駆動枠3に取付けられて、鏡筒4を構成している。鏡筒4の外周面において、前端には径方向に突出した一対の突出部5が形成されており、その突出部5が形状記憶合金アクチュエータ11のアーム部12に引っ掛けられて、鏡筒4(レンズ2)が軸線AX方向(前後方向)に変位される。 The drive mechanism 1 for the autofocus lens in the imaging apparatus according to the embodiment performs focusing by displacing the lens 2 in the axis AX direction (front-rear direction). The lens 2 is attached to the lens driving frame 3 and constitutes a lens barrel 4. On the outer peripheral surface of the lens barrel 4, a pair of projecting portions 5 projecting in the radial direction is formed at the front end, and the projecting portions 5 are hooked on the arm portion 12 of the shape memory alloy actuator 11, and the lens barrel 4 ( The lens 2) is displaced in the axis AX direction (front-rear direction).
 鏡筒4は、ベース部6上に搭載され、レンズ駆動枠3の前後端が、一対のリンク部材7によって、ベース部6と、図示しない横面外壁を介してベース部6と一体になっている上ベース8とに支持され、軸線AX方向に、平行状態で変位可能となっている。レンズ駆動枠3の前端には、前カバー9との間にバイアスばね10が介在されている。 The lens barrel 4 is mounted on the base portion 6, and the front and rear ends of the lens driving frame 3 are integrated with the base portion 6 by a pair of link members 7 via a lateral surface outer wall (not shown). It is supported by the upper base 8 and can be displaced in a parallel state in the direction of the axis AX. A bias spring 10 is interposed between the front end of the lens driving frame 3 and the front cover 9.
 形状記憶合金(SMA)アクチュエータ11は、アーム部12、レバー13および支持脚14と、形状記憶合金(SMA)の線材から成るSMA15とを備える。本実施形態では、アーム部12、レバー13および支持脚14が可動部の一例に相当する。アーム部12は、正面(レンズ開口)側から見て、略“く”字状(略“C”字状、略”V“字状)に形成されており、その両端に突出部5が引っ掛けられ、中央部がレバー13の一端に固着されている。レバー13の中央部は、支持脚14の支点14aによって揺動変位自在に支持されており、他端には、切欠き13aが形成され、その切欠き13aにSMA15が巻掛けられている。このように切欠き13aにSMA15が巻掛けられることで、鏡筒4の軸線AX方向の変位に対しても、SMA15のずれが防止されている。SMA15の両端は、ベース部6に立設された一対の電極16によって張架されている。SMA15は、バイアスばね10の付勢力による、適切なバイアス力によって記憶形状よりも引っ張り変形を与えた状態で架設されている。 The shape memory alloy (SMA) actuator 11 includes an arm portion 12, a lever 13, and a support leg 14, and an SMA 15 made of a shape memory alloy (SMA) wire. In this embodiment, the arm part 12, the lever 13, and the support leg 14 correspond to an example of a movable part. The arm portion 12 is formed in a substantially “<” shape (substantially “C” shape, substantially “V” shape) when viewed from the front (lens opening) side, and the protruding portions 5 are hooked at both ends thereof. The central portion is fixed to one end of the lever 13. A central portion of the lever 13 is supported by a fulcrum 14a of the support leg 14 so as to be swingable and displaceable. A notch 13a is formed at the other end, and an SMA 15 is wound around the notch 13a. Since the SMA 15 is wound around the notch 13a in this way, the displacement of the SMA 15 is prevented even when the lens barrel 4 is displaced in the axis AX direction. Both ends of the SMA 15 are stretched by a pair of electrodes 16 erected on the base portion 6. The SMA 15 is installed in a state in which it is subjected to a tensile deformation rather than the memory shape by an appropriate bias force due to the biasing force of the bias spring 10.
 したがって、電極16間に通電されていない間は、SMA15は、周囲に自然放熱して伸長し、マルテンサイト相(低温相)となって該SMA15の張力が低下し、バイアスばね10の弾発力によって、図2(A)で示すように、鏡筒4に設けられたレンズ2は、ベース部6に押付けられたホームポジション(無限端)にあり、衝撃等に対応できるようになっている。これに対して、電極16間に、通電がパルスで行われ、そのデューティが高くなる(通電量が多くなる)程、SMA15は、ジュール熱を発して収縮し、該SMA15に張力が発生し、バイアスばね10の弾発力に抗して、図2(B)で示すように、レバー13が矢符18方向に揺動し、アーム部12および突出部5を介して、鏡筒4に設けられたレンズ2は、矢符19の前カバー9方向に押出されて行き、最もデューティが高い状態で、SMA15は、オーステナイト相(高温相)となって、レンズ2の最大繰り出し位置である掃引端(マクロ端)に到達する。温度を上昇させると、SMA15の結晶相変態により、SMA15は、収縮方向に変形するとともに、その抵抗値が減少する。鏡筒4は、収縮によるSMA15の応力が増加しバイアスばねによる応力を超えた時点で、無限端から動き出す。 Therefore, while the SMA 15 is not energized between the electrodes 16, the SMA 15 expands by naturally radiating heat to the surroundings, becomes a martensite phase (low temperature phase), the tension of the SMA 15 decreases, and the elastic force of the bias spring 10 Thus, as shown in FIG. 2A, the lens 2 provided in the lens barrel 4 is in the home position (infinite end) pressed against the base portion 6 and can cope with an impact or the like. On the other hand, energization is performed between the electrodes 16 in pulses, and as the duty increases (the energization amount increases), the SMA 15 contracts by generating Joule heat, and tension is generated in the SMA 15. As shown in FIG. 2B, the lever 13 swings in the direction of the arrow 18 against the elastic force of the bias spring 10 and is provided in the lens barrel 4 via the arm portion 12 and the protruding portion 5. The lens 2 thus pushed is pushed in the direction of the front cover 9 of the arrow 19, and in the state where the duty is highest, the SMA 15 becomes an austenite phase (high temperature phase), and the sweep end which is the maximum extension position of the lens 2 Reach (macro edge). When the temperature is increased, the SMA 15 is deformed in the shrinking direction and its resistance value is decreased due to the crystal phase transformation of the SMA 15. The lens barrel 4 starts to move from the infinite end when the stress of the SMA 15 due to contraction increases and exceeds the stress of the bias spring.
 また、側面視(図2)でL字状となるレバー13およびアーム部12において、屈曲点付近が支点14aによって支持され、アーム部12において突出部5が係合する点までの距離が、レバー13においてSMA15が係合する点までの距離よりも長く形成されることで、SMA15の変位を拡大して鏡筒4を変位させることができる。 Further, in the lever 13 and the arm portion 12 that are L-shaped in a side view (FIG. 2), the vicinity of the bending point is supported by the fulcrum 14a, and the distance from the arm portion 12 to the point where the protruding portion 5 is engaged is 13 is formed to be longer than the distance to the point where the SMA 15 is engaged, so that the displacement of the SMA 15 can be enlarged and the lens barrel 4 can be displaced.
 図3は、実施形態にかかる位置制御装置の電気的構成を示すブロック図である。図3において、位置制御装置31は、SMA15に通電を行う駆動回路27と、SMA15の抵抗値を検出する抵抗値検出部32と、可動部(アーム部12、レバー13および支持脚14)の目標変位位置に対応した目標抵抗値を設定し、抵抗値が目標抵抗値に一致するように、駆動回路27による形状記憶合金への通電量(例えば、通電電流値)を制御する制御部21とを備える。位置制御装置31は、SMA15の伸縮に関するパラメータ、すなわち鏡筒4の位置を検出するパラメータとして、SMA15の抵抗値を用いる。 FIG. 3 is a block diagram illustrating an electrical configuration of the position control device according to the embodiment. In FIG. 3, the position control device 31 includes a drive circuit 27 that energizes the SMA 15, a resistance value detection unit 32 that detects the resistance value of the SMA 15, and a target of the movable unit (the arm unit 12, the lever 13, and the support leg 14). A control unit 21 that sets a target resistance value corresponding to the displacement position and controls the amount of current (e.g., current value) applied to the shape memory alloy by the drive circuit 27 so that the resistance value matches the target resistance value; Prepare. The position control device 31 uses the resistance value of the SMA 15 as a parameter related to the expansion and contraction of the SMA 15, that is, a parameter for detecting the position of the lens barrel 4.
 制御部21は、起動時に、抵抗値検出部32にSMA15の抵抗値を初期抵抗値として検出させ、目標抵抗値を初期抵抗値より小さい値に設定することで、SMA15に対する通電電流値を制御して、SMA15を低温相から高温相へと変態開始させる第一制御(初期制御)を行う。前記起動時は、この位置制御装置31を備えた電子機器の電源を投入した機器起動時や、この位置制御装置31によりレンズ2を駆動する撮像装置を備えた電子機器において撮影モードを選択したモード起動時や、前記撮影モードでのズーム動作やオートフォーカス動作におけるレンズを駆動する直前のレンズ起動時等である。したがって、起動時は、前記可動部の位置を制御する準備動作を行う場合の一例であり、前記第一制御は、位置制御装置31のSMA15に通電して実際の目標位置に前記可動部を移動させる前の準備動作としての制御である。 The control unit 21 controls the energization current value for the SMA 15 by causing the resistance value detection unit 32 to detect the resistance value of the SMA 15 as an initial resistance value and setting the target resistance value to a value smaller than the initial resistance value at startup. Then, the first control (initial control) for starting the transformation of the SMA 15 from the low temperature phase to the high temperature phase is performed. At the time of starting, a mode in which a photographing mode is selected at the time of start-up of an electronic device provided with the position control device 31 or at an electronic device provided with an imaging device that drives the lens 2 by the position control device 31 For example, at the time of activation, or at the time of activation of the lens immediately before driving the lens in the zoom operation or autofocus operation in the photographing mode. Therefore, at the time of start-up, this is an example of performing a preparatory operation for controlling the position of the movable part, and the first control energizes the SMA 15 of the position control device 31 to move the movable part to the actual target position. This is a control as a preparatory operation before the operation.
 制御部21は、初期制御後に、予め記憶した最適な差分抵抗値を初期抵抗値に加算した値を目標抵抗値に設定し、SMA15に対する通電電流値を制御して、可動部を起動時の基準位置(無限端)に移動させる第二制御(基準位置制御)を行う。 After the initial control, the control unit 21 sets a value obtained by adding the optimum differential resistance value stored in advance to the initial resistance value as a target resistance value, controls the energization current value for the SMA 15, and sets the reference for starting the movable unit. The second control (reference position control) for moving to the position (infinite end) is performed.
 制御部21は、より具体的には、目標抵抗値を設定するコントローラ34と、抵抗値検出部32で検出されたSMA15の電極16間の抵抗値(検出抵抗値)とコントローラ34で設定された目標抵抗値とを比較し、比較結果に対応して駆動電流値を設定する比較部33と、比較部33で設定された駆動電流値を駆動信号として駆動回路27に出力する駆動制御演算部26とを備える。 More specifically, the controller 21 is set by the controller 34 that sets the target resistance value, and the resistance value (detected resistance value) between the electrodes 16 of the SMA 15 detected by the resistance value detector 32. A comparison unit 33 that compares the target resistance value and sets a drive current value corresponding to the comparison result, and a drive control calculation unit 26 that outputs the drive current value set by the comparison unit 33 to the drive circuit 27 as a drive signal. With.
 コントローラ34にはまた、画像センサ25の検出結果が入力されており、該コントローラ34は、画像センサ25の出力から、コントラストが高くなってエッジが検出されると、フォーカス点と判定する。したがって、このコントローラ34は、鏡筒4が目標変位位置に到達したことを検出する検出部でもある。 The detection result of the image sensor 25 is also input to the controller 34. The controller 34 determines the focus point when the contrast is high and an edge is detected from the output of the image sensor 25. Therefore, the controller 34 is also a detection unit that detects that the lens barrel 4 has reached the target displacement position.
 SMA15の電極16間の抵抗値が抵抗値検出部32で検出され、その検出結果と、コントローラ34から与えられる目標抵抗値とが比較部33で比較され、その比較結果に対応して駆動電流値が設定され、駆動電流値が駆動制御演算部26へ出力される。 The resistance value between the electrodes 16 of the SMA 15 is detected by the resistance value detection unit 32, and the detection result and the target resistance value given from the controller 34 are compared by the comparison unit 33, and the drive current value corresponding to the comparison result Is set, and the drive current value is output to the drive control calculation unit 26.
 より具体的には、比較部33は、検出した抵抗値>目標抵抗値と判断した場合、駆動電流値を増加させ(温度を上昇させ)、検出した抵抗値<目標抵抗値と判断した場合、駆動電流値を減少させ(温度を低下させ)、検出抵抗値=目標抵抗値であると判断した場合、駆動電流値を変化させない(温度を維持する)。本実施の形態では、SMA15の線形特性の範囲を利用することで、このような簡単なアルゴリズムによって、制御部21は、SMA15の抵抗値を目標抵抗値に一致するように制御する。 More specifically, the comparison unit 33 increases the drive current value (increases the temperature) when determining that the detected resistance value> the target resistance value, and determines that the detected resistance value <the target resistance value. When the drive current value is decreased (temperature is decreased) and it is determined that the detected resistance value = the target resistance value, the drive current value is not changed (the temperature is maintained). In the present embodiment, the control unit 21 controls the resistance value of the SMA 15 to match the target resistance value by using such a simple algorithm by using the range of the linear characteristic of the SMA 15.
 さらに、コントローラ34は、記憶部を内蔵する。この記憶部は、初期制御および基準位置制御で用いられる定数、および、図6に示すような、レンズの変位が無限端からマクロ端までの範囲で、SMA15の抵抗値がレンズの変位に略比例する関係式を、予め記憶する。 Furthermore, the controller 34 incorporates a storage unit. This storage unit is a constant used in initial control and reference position control, and as shown in FIG. 6, the resistance value of the SMA 15 is approximately proportional to the lens displacement in the range of the lens displacement from the infinite end to the macro end. The relational expression to be stored is stored in advance.
 駆動制御演算部26は、駆動電流値に対応したデューティの駆動信号を作成し、SMA15に通電する駆動回路27を介してSMA15への通電電流値を制御する。駆動回路27は、例えばトランジスタ等のスイッチング素子を備え、その制御端子に駆動制御演算部26から駆動信号が入力されることで、そのスイッチングが動作され、駆動回路27からSMA15に流れる駆動電流は、目標位置に応じて、デューティが変化される。このため、抵抗値検出部32は、ONデューティの期間の既知の定電流値と、SMA15の電極16間の電圧とから、抵抗値を求めることができる。或いは、駆動回路27がOFFして駆動電流が流れていないOFFデューティの期間に、該抵抗値検出部32自身が既知の探索電流を流し、それによるSMA15の電極16間の電圧から、抵抗値を求めることができる。 The drive control calculation unit 26 creates a drive signal having a duty corresponding to the drive current value, and controls the energization current value to the SMA 15 via the drive circuit 27 that energizes the SMA 15. The drive circuit 27 includes a switching element such as a transistor, for example. When a drive signal is input to the control terminal from the drive control calculation unit 26, the switching is operated, and the drive current flowing from the drive circuit 27 to the SMA 15 is The duty is changed according to the target position. Therefore, the resistance value detection unit 32 can obtain the resistance value from the known constant current value during the ON duty period and the voltage between the electrodes 16 of the SMA 15. Alternatively, during the OFF duty period in which the drive circuit 27 is OFF and no drive current flows, the resistance value detection unit 32 itself causes a known search current to flow, and the resistance value is calculated from the voltage between the electrodes 16 of the SMA 15. Can be sought.
 以上まとめると、位置制御装置31のサーボ制御は、以下の通りである。 In summary, the servo control of the position control device 31 is as follows.
<サーボ制御>
検出抵抗値>目標値の場合、SMA15への通電量増加(温度上昇)
検出抵抗値<目標値の場合、SMA15への通電量減少(温度低下)
検出抵抗値=目標値の場合、SMA15へ通電量変化せず(温度維持)
<Servo control>
When detection resistance value> target value, increase in energization amount to SMA 15 (temperature rise)
When detection resistance value <target value, decrease in energization amount to SMA 15 (temperature decrease)
When the detected resistance value is equal to the target value, the energization amount does not change to the SMA 15 (temperature maintenance)
 以下、図4ないし図16を用いて、位置制御装置31の動作に関して説明する。 Hereinafter, the operation of the position control device 31 will be described with reference to FIGS. 4 to 16.
 位置制御装置31が起動される(例えば電源投入後等の通電開始時)と、抵抗値検出部32が初期抵抗値Rstartを検出し、コントローラ34が、初期抵抗値Rstartから予め記憶された第一所定値を減算した値を初期制御での目標抵抗値(以下、第一目標値Rtgt1)として設定し、位置制御装置31は、第一制御(以下、初期制御)を開始する。 When the position control device 31 is activated (for example, at the start of energization after power-on or the like), the resistance value detection unit 32 detects the initial resistance value Rstart, and the controller 34 stores the first value stored in advance from the initial resistance value Rstart. A value obtained by subtracting the predetermined value is set as a target resistance value in initial control (hereinafter referred to as a first target value Rtgt1), and the position control device 31 starts the first control (hereinafter referred to as initial control).
 このような構成によれば、可動部の位置を制御する準備動作として、目標抵抗値Rtgt1が初期抵抗値Rstartより小さい値に設定され、SMA15を低温相から高温相に変態開始させるので、位置制御装置31は、SMA15の最大抵抗値Rmaxを検出することなく、SMA15の抵抗値がその変位に対し線形的に変化する性質を利用し、SMA15の位置制御を行うことができる。 According to such a configuration, as the preparatory operation for controlling the position of the movable part, the target resistance value Rtgt1 is set to a value smaller than the initial resistance value Rstart, and the SMA 15 starts to transform from the low temperature phase to the high temperature phase. The device 31 can control the position of the SMA 15 by utilizing the property that the resistance value of the SMA 15 changes linearly with respect to the displacement without detecting the maximum resistance value Rmax of the SMA 15.
 図4は、SMAの温度―抵抗値特性を示すグラフである。横軸は、SMAの温度を示し、その縦軸は、SMAの電気抵抗を示す。この例は、Ni―TiまたはNi―Ti―Cuである。 FIG. 4 is a graph showing the temperature-resistance value characteristics of SMA. The horizontal axis indicates the temperature of the SMA, and the vertical axis indicates the electrical resistance of the SMA. An example of this is Ni—Ti or Ni—Ti—Cu.
 図4の実線で示すように、本実施の形態で用いられるSMA15は、一定以下の温度では、マルテンサイト相(低温相)と呼ばれる結晶相となっており、線材は、伸長している。温度を上げてゆくと、ヒステリシスループの一方を辿り、特定の温度(As点)から急に収縮をしてゆき、収縮方向の変位量に応じて抵抗値が減少する。特定の温度(Af点)よりも温度を上げると線材の収縮は、終わり、オーステナイト相(高温相)と呼ばれる結晶相になる(温度上昇過程)。この状態から温度を下げてゆくと、ヒステリシスループの他方を辿り、特定の温度(Ms点)から急に伸長してゆき、収縮方向の変位量が減少する。特定の温度(Mf点)よりも温度を下げると伸長は、終わり、マルテンサイト相に戻る(温度低下過程)。そして、SMA15は、一般に温度-抵抗値特性にこれらの図4で示すようなヒステリシスを有し、Mf点<As点、Ms点<Af点の関係がある。 As shown by the solid line in FIG. 4, the SMA 15 used in the present embodiment has a crystalline phase called a martensite phase (low temperature phase) at a temperature below a certain level, and the wire is elongated. As the temperature is increased, one of the hysteresis loops is traced, and abrupt contraction starts from a specific temperature (As point), and the resistance value decreases according to the amount of displacement in the contraction direction. When the temperature is raised above a specific temperature (Af point), the contraction of the wire ends and a crystalline phase called an austenite phase (high temperature phase) is reached (temperature rise process). When the temperature is lowered from this state, the other side of the hysteresis loop is followed, and the temperature suddenly extends from a specific temperature (Ms point), and the amount of displacement in the contraction direction decreases. When the temperature is lowered below a specific temperature (Mf point), the elongation ends and returns to the martensite phase (temperature lowering process). The SMA 15 generally has hysteresis as shown in FIG. 4 in the temperature-resistance characteristic, and there is a relationship of Mf point <As point and Ms point <Af point.
 図5は、実施形態にかかるSMAアクチュエータにおける、SMAの温度―抵抗値特性を示すグラフである。横軸は、SMAの温度を示し、縦軸は、SMAの電気抵抗を示す。 FIG. 5 is a graph showing the temperature-resistance value characteristics of the SMA in the SMA actuator according to the embodiment. The horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
 そして、本実施の形態では、SMA15は、その抵抗値が通電開始における初期抵抗値Rstartから、通電による温度の上昇によって、As点で最大抵抗値Rmaxとなり、レンズ2が無限端からマクロ端へ動き出す時点での抵抗値(以下、無限端抵抗値Rinf)を経て、レンズ2がマクロ端にある場合の抵抗値(以下、マクロ抵抗値Rmcr)まで変化する範囲で使用されている。図1および図2に示す機構により、レンズ2がマクロ端以上に繰り出されないので、図5では図4の曲線を無限端からマクロ端までのレンズ2の動作として示している。 In the present embodiment, the resistance value of the SMA 15 changes from the initial resistance value Rstart at the start of energization to the maximum resistance value Rmax at the As point as the temperature rises due to energization, and the lens 2 starts to move from the infinite end to the macro end. It is used within a range in which the resistance value at the time (hereinafter, infinite end resistance value Rinf) is changed to the resistance value (hereinafter, macro resistance value Rmcr) when the lens 2 is at the macro end. Since the lens 2 is not extended beyond the macro end by the mechanism shown in FIGS. 1 and 2, the curve in FIG. 4 is shown as the operation of the lens 2 from the infinite end to the macro end in FIG.
 図6は、実施形態にかかるSMAアクチュエータにおける、SMAの変位―抵抗値特性を示すグラフである。横軸は、レンズの変位を示し、その縦軸は、SMAの抵抗値を示す。 FIG. 6 is a graph showing the displacement-resistance value characteristics of SMA in the SMA actuator according to the embodiment. The horizontal axis indicates the displacement of the lens, and the vertical axis indicates the resistance value of SMA.
 図5の動作を変位と抵抗値との関係で示すと、図6に示すように、温度上昇過程では、抵抗値が初期抵抗値Rstart~最大抵抗値Rmax~無限端抵抗値Rinfと順に変化する過程では、レンズ2の変位は、変位ゼロで(鏡筒4は動かない)、無限端抵抗値Rinf~マクロ抵抗値Rmcrと順に変化する過程では、抵抗値の減少に伴ってレンズ2の変位は、増加する(鏡筒4はマクロ端方向へと動く)。温度低下過程では、マクロ抵抗値Rmcr~無限端抵抗値Rinfと順に変化する過程で、レンズ2の変位は、減少し(鏡筒4は無限端方向へと動く)、無限端抵抗値Rinf~最大抵抗値Rmax~初期抵抗値Rstartと順に変化する過程で、レンズ2の変位はゼロである。なお、図6のレンズ2の変位―抵抗値特性曲線では、温度上昇過程と温度低下過程のヒステリシスがほぼないと仮定している。これは、Ni―Ti―CuのSMA15に適切な処理をすることにより、ヒステリシスが非常に小さくなり、ヒステリシスを無視できることによる。このように、SMA15に適切な処理をすることによって、抵抗値を指標とした変位制御の性能を向上させることができる。さらに、SMA15の使用温度範囲の上限値に対して、As点の温度が十分に高い線材を使用すれば、周囲温度に対し、SMA15は、低温相から変態することはない。したがって、ヒステリシスを考慮する必要はない。 When the operation of FIG. 5 is represented by the relationship between the displacement and the resistance value, as shown in FIG. 6, in the temperature rising process, the resistance value changes in order from the initial resistance value Rstart to the maximum resistance value Rmax to the infinite end resistance value Rinf. In the process, the displacement of the lens 2 is zero (the lens barrel 4 does not move), and in the process of sequentially changing from the infinite end resistance value Rinf to the macro resistance value Rmcr, the displacement of the lens 2 is reduced as the resistance value decreases. , Increase (the barrel 4 moves toward the macro end). In the temperature lowering process, the displacement of the lens 2 decreases in the process of changing in order from the macro resistance value Rmcr to the infinite end resistance value Rinf (the barrel 4 moves toward the infinite end direction), and the infinite end resistance value Rinf to maximum In the process of sequentially changing from the resistance value Rmax to the initial resistance value Rstart, the displacement of the lens 2 is zero. In the displacement-resistance characteristic curve of the lens 2 in FIG. 6, it is assumed that there is almost no hysteresis in the temperature increasing process and the temperature decreasing process. This is because the hysteresis becomes very small and can be ignored by appropriately processing the Ni-Ti-Cu SMA 15. Thus, by performing an appropriate process on the SMA 15, the performance of displacement control using the resistance value as an index can be improved. Furthermore, if a wire material having a sufficiently high temperature at the As point is used with respect to the upper limit of the operating temperature range of the SMA 15, the SMA 15 does not transform from the low temperature phase with respect to the ambient temperature. Therefore, there is no need to consider hysteresis.
 図7は、従来の位置制御装置による制御を説明するためのグラフである。図7(A)は、SMAの温度変化に伴う電気抵抗の変化について説明する模式的なグラフである。横軸はSMAの温度を示し、縦軸は、SMAの電気抵抗を示す。図7(B)は、SMAの電気抵抗とレンズの変位との関係について説明する模式的なグラフである。横軸は、SMAの温度を示し、縦軸は、SMAの電気抵抗を示す。 FIG. 7 is a graph for explaining control by a conventional position control device. FIG. 7A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA. The horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA. FIG. 7B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens. The horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA.
 ここで、従来の位置制御について説明する。初期抵抗値Rstartが第一目標値Rtgt1より小さい値であれば、SMA15の最大抵抗値Rmaxを検出することなく、SMA15の抵抗値がその変位に線形的に変化する性質を利用することはできない。以下にその理由を述べる。たとえば、第一目標値Rtgt1が無限端抵抗値Rinfとする。この場合、起動時には、SMA15は,図7の状態P0(初期抵抗値Rstart)にあり、初期抵抗値Rstart<第一目標値Rtgt1であるので、位置制御装置は、通電量を減少してSMA15の温度を低下させようとするが、通電開始時は、またSMA15を温度上昇させていない(完全に自然放熱された状態である)ので、さらに温度低下することはなく、状態P0から動かないという動作不良が発生する。このように、起動時の初期抵抗値Rstartが第一目標値Rtgt1より小さい値である場合では、SMA15が起動時の状態から動かないという動作不良が発生する。 Here, conventional position control will be described. If the initial resistance value Rstart is smaller than the first target value Rtgt1, the property that the resistance value of the SMA 15 linearly changes in its displacement cannot be used without detecting the maximum resistance value Rmax of the SMA 15. The reason is described below. For example, the first target value Rtgt1 is set to the infinite end resistance value Rinf. In this case, at the time of start-up, the SMA 15 is in the state P0 (initial resistance value Rstart) in FIG. 7 and the initial resistance value Rstart <the first target value Rtgt1. Trying to lower the temperature, but at the start of energization, the temperature of the SMA 15 is not raised again (it is in a state of being completely radiated naturally), so that the temperature does not further drop and does not move from the state P0. Defects occur. Thus, when the initial resistance value Rstart at the time of activation is a value smaller than the first target value Rtgt1, an operation failure occurs in which the SMA 15 does not move from the state at the time of activation.
 そこで、本実施の形態では、第一目標値Rtgt1を、初期抵抗値Rstartより小さい値と設定することで、以下に説明するように動作し、このような動作不良が発生しないようにしている。 Therefore, in the present embodiment, by setting the first target value Rtgt1 to be a value smaller than the initial resistance value Rstart, the operation is performed as described below so that such a malfunction does not occur.
 図8は、実施形態にかかる位置制御装置による制御を説明するためのグラフである。図8(A)は、SMAの温度変化に伴う電気抵抗の変化について説明する模式的なグラフである。横軸は、SMAの温度を示し、縦軸は、SMAの電気抵抗を示す。図8(B)は、SMAの電気抵抗とレンズの変位との関係について説明する模式的なグラフである。横軸は、レンズの変位を示し、縦軸は、SMAの電気抵抗を示す。 FIG. 8 is a graph for explaining control by the position control apparatus according to the embodiment. FIG. 8A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA. The horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA. FIG. 8B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens. The horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA.
 本実施の形態において、起動時には、初期抵抗値Rstartよりも小さい抵抗値を、第一目標値Rtgt1として設定し初期制御を開始する。この設定によれば、初期抵抗値Rstart>第一目標値Rtgt1であるから、SMA15への通電量が増加し、SMA15の温度上昇が開始する。したがって、図8(A)および図8(B)に破線矢印で示した経路に沿って、SMA15は、状態P0から状態P1まで温度上昇し、SMA15の変位は、無限端から変位X1まで変化する。 In this embodiment, at the time of start-up, a resistance value smaller than the initial resistance value Rstart is set as the first target value Rtgt1, and initial control is started. According to this setting, since the initial resistance value Rstart> the first target value Rtgt1, the energization amount to the SMA 15 increases and the temperature rise of the SMA 15 starts. 8A and 8B, the temperature of the SMA 15 rises from the state P0 to the state P1, and the displacement of the SMA 15 changes from the infinite end to the displacement X1. .
 図9は、実施形態にかかる位置制御装置による初期制御を説明するためのグラフである。図9(A)は、本実施形態にかかるSMAの動作の一例を示す模式的なグラフである。横軸は、時間を示し、縦軸は、SMAの電気抵抗を示す。図9(B)は、本実施形態にかかるレンズの変位を示す模式的なグラフである。横軸は、レンズの変位を示し、縦軸は、SMAの電気抵抗を示す。 FIG. 9 is a graph for explaining the initial control by the position control device according to the embodiment. FIG. 9A is a schematic graph showing an example of the operation of the SMA according to the present embodiment. The horizontal axis represents time, and the vertical axis represents SMA electrical resistance. FIG. 9B is a schematic graph showing the displacement of the lens according to the present embodiment. The horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA.
 コントローラ34は、起動時(以下、時刻t0)に検出した初期抵抗値Rstartに基づいて、第一目標値Rtgt1を設定する。本実施の形態によれば、初期抵抗値Rstart>第一目標値Rtgt1であるので、SMA15への通電量を増加して温度を上昇させる。温度の上昇に伴って、SMA15の抵抗値は、最大抵抗値Rmaxまで増加し、最大抵抗値Rmaxから減少する。SMA15の抵抗値は、時刻tinfにて無限端抵抗値Rinfとなり、鏡筒4は、無限端から動き始め、変位は、増加する。時刻tinfからさらに抵抗値が第一目標値Rtgt1になるまでSMA15を温度上昇させ、時刻t1で図8の状態P1になり、変位は、X1となる。そして状態P1になった後は、位置制御装置31は、SMA15への通電量を維持する。 The controller 34 sets the first target value Rtgt1 based on the initial resistance value Rstart detected at the time of activation (hereinafter, time t0). According to the present embodiment, since the initial resistance value Rstart> the first target value Rtgt1, the energization amount to the SMA 15 is increased to raise the temperature. As the temperature rises, the resistance value of the SMA 15 increases to the maximum resistance value Rmax and decreases from the maximum resistance value Rmax. The resistance value of the SMA 15 becomes the infinite end resistance value Rinf at time tinf, the lens barrel 4 starts to move from the infinite end, and the displacement increases. The temperature of the SMA 15 is further increased from the time tinf until the resistance value reaches the first target value Rtgt1, and the state P1 of FIG. 8 is reached at the time t1, and the displacement becomes X1. And after it will be in the state P1, the position control apparatus 31 will maintain the energization amount to SMA15.
 図10は、本実施形態にかかる位置制御装置による基準位置制御を説明するためのグラフである。図10(A)は、SMAの温度変化に伴う電気抵抗の変化について説明する模式的なグラフである。横軸は、SMAの温度を示し、縦軸は、SMAの電気抵抗を示す。図10(B)は、SMAの電気抵抗とレンズの変位との関係について説明する模式的なグラフである。横軸は、レンズの変位を示し、縦軸は、SMAの電気抵抗を示す。状態P1’は、基準位置制御開始時の状態であるが、初期制御後の状態を維持していれば、状態P1と同じ状態である。 FIG. 10 is a graph for explaining the reference position control by the position control device according to the present embodiment. FIG. 10A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA. The horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA. FIG. 10B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens. The horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA. The state P1 'is a state at the start of the reference position control, but is the same state as the state P1 as long as the state after the initial control is maintained.
 本実施の形態において、基準位置制御での目標抵抗値(以下、第二目標値Rtgt2)が、第一目標値Rtgt1(状態P1’)より大きい値であるので、初期制御後に、レンズ2の位置が、目標変位位置に移動するため待機すべき基準位置である無限端を行き過ぎていても、レンズ2を基準位置(無限端)に移動させることができる。 In the present embodiment, the target resistance value in the reference position control (hereinafter referred to as the second target value Rtgt2) is larger than the first target value Rtgt1 (state P1 ′). However, the lens 2 can be moved to the reference position (infinite end) even if the endless end, which is the reference position to wait for moving to the target displacement position, has been exceeded.
 第二目標値Rtgt2は、初期抵抗値Rstartに予め記憶した差分抵抗値Rbakを加算した値である。また、無限端抵抗値Rinf<第二目標値Rtgt2<最大抵抗値Rmaxの関係にあるとする。図10に示すように、状態P1’では検出抵抗値が第一目標値Rtgt1であるので、検出抵抗値<第二目標値Rtgt2となり、SMA15への通電量を減少して温度低下が開始される。従って図10の波線矢印で示した経路で、状態P1’から状態P2までSMA15は温度低下し、レンズ2の変位は状態P2で無限端になる。 The second target value Rtgt2 is a value obtained by adding the differential resistance value Rbak stored in advance to the initial resistance value Rstart. Further, it is assumed that the infinite end resistance value Rinf <the second target value Rtgt2 <the maximum resistance value Rmax. As shown in FIG. 10, since the detected resistance value is the first target value Rtgt1 in the state P1 ′, the detected resistance value <the second target value Rtgt2, and the amount of current supplied to the SMA 15 is reduced to start the temperature decrease. . Accordingly, the temperature of the SMA 15 decreases from the state P1 'to the state P2 along the path indicated by the wavy arrow in FIG. 10, and the displacement of the lens 2 becomes an infinite end in the state P2.
 このような構成によれば、初期制御後に、レンズ2の位置が、目標変位位置に移動するため待機すべき位置である基準位置を行き過ぎていても、レンズ2を基準位置に移動させることができる。 According to such a configuration, even after the initial control, the lens 2 can be moved to the reference position even if the position of the lens 2 has gone too far from the reference position, which is a position that should be on standby for moving to the target displacement position. .
 図11は、本実施形態にかかる位置制御装置による初期制御と基準位置制御とを説明するためのグラフである。図11(A)は、本実施形態にかかるSMAの動作の一例を示す模式的なグラフである。横軸は、時間を示し、縦軸は、SMAの電気抵抗を示す。図11(B)は、本実施形態にかかるレンズの動作を示す模式的なグラフである。横軸は、時間、を示し、縦軸は、レンズの変位を示す。 FIG. 11 is a graph for explaining the initial control and the reference position control by the position control device according to the present embodiment. FIG. 11A is a schematic graph showing an example of the operation of the SMA according to the present embodiment. The horizontal axis represents time, and the vertical axis represents SMA electrical resistance. FIG. 11B is a schematic graph showing the operation of the lens according to the present embodiment. The horizontal axis indicates time, and the vertical axis indicates lens displacement.
 位置制御装置31は、時刻t1’から第二目標値Rtgt2を設定してサーボ制御を開始し、状態P1’で抵抗値を検出する。検出した抵抗値は、第二目標値Rtgt2より小さいので、通電量を減少して温度低下させ(抵抗値が増加)、時刻tinfにて無限端抵抗値Rinfに達して、レンズ2の変位は、無限端となり、レンズ2は、停止する。さらに抵抗値が第二目標値Rtgt2に増加するまで温度低下させ、時刻t2で図10の状態P2になるが、状態P2での変位は、無限端である。そして状態P2になった後はその状態を維持する。以上が、状態P1’から基準位置制御の終了状態P2までの制御動作である。 The position control device 31 sets the second target value Rtgt2 from time t1 'and starts servo control, and detects the resistance value in the state P1'. Since the detected resistance value is smaller than the second target value Rtgt2, the energization amount is decreased to lower the temperature (increase the resistance value), reach the infinite end resistance value Rinf at time tinf, and the displacement of the lens 2 is The lens 2 becomes infinite and stops. Further, the temperature is lowered until the resistance value increases to the second target value Rtgt2, and the state P2 of FIG. 10 is reached at time t2, but the displacement in the state P2 is an infinite end. And after it will be in the state P2, that state is maintained. The above is the control operation from the state P1 'to the reference position control end state P2.
 状態P2では、無限端よりも大きな抵抗値となるので、その後目標抵抗値を段階的に小さくしていけば、変位が無限端からマクロ端方向に段階的に増大する動作となる。このように動作させながら、画像センサ25から入力される画像のコントラストを順次評価していくことで、いわゆるオートフォーカスの走査動作を行わせることができる。 In the state P2, since the resistance value is larger than that at the infinite end, if the target resistance value is decreased stepwise thereafter, the displacement increases gradually from the infinite end toward the macro end. By sequentially evaluating the contrast of the image input from the image sensor 25 while operating in this manner, a so-called autofocus scanning operation can be performed.
 図12は、本実施形態にかかる位置制御装置による初期制御と基準位置制御とを説明するためのフローチャートである。位置制御装置31の起動時にフローは、実行され、ステップS1~ステップS3が初期制御であり、ステップS4~ステップS5が基準位置制御である。 FIG. 12 is a flowchart for explaining the initial control and the reference position control by the position control device according to the present embodiment. The flow is executed when the position control device 31 is activated. Steps S1 to S3 are initial control, and steps S4 to S5 are reference position control.
 ステップS1で抵抗値検出部32は、初期抵抗値Rstartを検出し、ステップS2でコントローラ24は、第一目標値Rtgt1を初期抵抗値Rstartから予め記憶された値αを減算した値に設定する。所定値αは、抵抗値の検出誤差よりも大きい値であればよく、非常に小さい値でかまわない。ステップS3で制御部21は、サーボ制御を開始させ、第一目標値Rtgt1が“初期抵抗値Rstart―α”に達するとサーボ制御を終了する。 In step S1, the resistance value detection unit 32 detects the initial resistance value Rstart, and in step S2, the controller 24 sets the first target value Rtgt1 to a value obtained by subtracting a previously stored value α from the initial resistance value Rstart. The predetermined value α may be a value that is larger than the detection error of the resistance value, and may be a very small value. In step S <b> 3, the control unit 21 starts servo control, and ends servo control when the first target value Rtgt <b> 1 reaches “initial resistance value Rstart−α”.
 続いて、ステップS4で、コントローラ24は、第二目標値Rtgt2を初期抵抗値Rstartに予め記憶された差分抵抗値Rbakを加算した値に設定する。差分抵抗値Rbakの選択方法については後述する。ステップS5で制御部21は、サーボ制御を開始させ、第二目標値Rtgt2が“初期抵抗値Rstart+差分抵抗値Rbak”に達するとサーボ制御を終了する。 Subsequently, in step S4, the controller 24 sets the second target value Rtgt2 to a value obtained by adding the differential resistance value Rbak stored in advance to the initial resistance value Rstart. A method for selecting the differential resistance value Rbak will be described later. In step S5, the control unit 21 starts servo control, and ends servo control when the second target value Rtgt2 reaches “initial resistance value Rstart + differential resistance value Rbak”.
 以下、差分抵抗値Rbakの選択方法について述べる。図13は、SMAの周囲温度―抵抗値特性を示すグラフである。横軸は、SMAの周囲温度を示し、縦軸は、SMAの電気抵抗を示す。図中で、Tmin、Tmax、Tinfは、それぞれ使用温度範囲の下限温度、上限温度、無限端温度であり、これに対応するSMAの下限抵抗値、上限抵抗値、無限端抵抗値は、それぞれR(Tmin)、R(Tmax)、Rinfである。したがって、初期抵抗値Rstartは、下限温度抵抗値R(Tmin)<初期抵抗値Rstart<上限温度抵抗値R(Tmax)である。 Hereinafter, a method for selecting the differential resistance value Rbak will be described. FIG. 13 is a graph showing the ambient temperature-resistance value characteristics of SMA. The horizontal axis indicates the ambient temperature of the SMA, and the vertical axis indicates the electrical resistance of the SMA. In the figure, Tmin, Tmax, and Tinf are the lower limit temperature, upper limit temperature, and infinite end temperature of the operating temperature range, respectively, and the corresponding lower limit resistance value, upper limit resistance value, and infinite end resistance value of SMA are R (Tmin), R (Tmax), and Rinf. Therefore, the initial resistance value Rstart is lower limit temperature resistance value R (Tmin) <initial resistance value Rstart <upper limit temperature resistance value R (Tmax).
 差分抵抗値Rbakは、以下の条件を共に満たすものを選択すればよい。 The differential resistance value Rbak may be selected so as to satisfy both of the following conditions.
 差分抵抗値Rbak>無限端抵抗値Rinf-R(Tmin) ・・・(1)
 差分抵抗値Rbak<最大抵抗値Rmax-無限端抵抗値Rinf ・・・(2)
Differential resistance value Rbak> Infinite end resistance value Rinf−R (Tmin) (1)
Differential resistance value Rbak <maximum resistance value Rmax−infinite end resistance value Rinf (2)
 (1)式は、差分抵抗値Rbakの温度範囲の下限で、レンズの変位が無限端に戻ることを保証する条件である。より具体的には、下限温度抵抗値R(Tmin)<初期抵抗値Rstart、および、第二目標値Rtgt2=初期抵抗値Rstart+差分抵抗値Rbakを用いて式変形することにより、(1)式は、第二目標値Rtgt2>無限端抵抗値Rinf-下限温度抵抗値R(Tmin)+初期抵抗値Rstart、つまり第二目標値Rtgt2>無限端抵抗値Rinfとなる。すなわち、(1)式を満たすような差分抵抗値Rbakを選択することによって、レンズの変位が無限端に戻ることが保証される。 (1) is a condition that guarantees that the lens displacement returns to the infinite end at the lower limit of the temperature range of the differential resistance value Rbak. More specifically, the equation (1) is obtained by modifying the equation using the lower limit temperature resistance value R (Tmin) <initial resistance value Rstart and the second target value Rtgt2 = initial resistance value Rstart + differential resistance value Rbak. Second target value Rtgt2> Infinite end resistance value Rinf−Lower limit temperature resistance value R (Tmin) + Initial resistance value Rstart, that is, second target value Rtgt2> Infinite end resistance value Rinf. That is, by selecting the differential resistance value Rbak that satisfies the equation (1), it is guaranteed that the displacement of the lens returns to the infinite end.
 (2)式は、差分抵抗値Rbakの温度範囲上限で、SMA15が低温相に戻らないことを保証する条件である。より具体的には、第二目標値Rtgt2=初期抵抗値Rstart+差分抵抗値Rbakを用いて式変形することにより、(2)式は、第二目標値Rtgt2<最大抵抗値Rmax+初期抵抗値Rstart-無限端抵抗値Rinfとなる。周囲温度が下限温度Tminから無限端の抵抗値と同じになる温度Tinfまでの範囲では、初期抵抗値Rstart<無限端抵抗値Rinfである。すなわち、(2)式を満たすような差分抵抗値Rbakを選択することによって、第二目標値Rtgt2が最大抵抗値Rmaxを超えないので、SMA15が低温相に戻らないことが保証される。一方、周囲温度が無限端の抵抗値と同じになる温度Tinfより大きい温度範囲(高温環境下)では、初期抵抗値Rstart>無限端抵抗値Rinfであり、後述するようにSMA15は、初期の状態P0に戻ることから、無限端からオートフォーカスレンズの走査は可能であるので、動作不良の問題は発生しない。 Equation (2) is a condition that guarantees that the SMA 15 does not return to the low temperature phase at the upper limit of the temperature range of the differential resistance value Rbak. More specifically, by changing the equation using the second target value Rtgt2 = the initial resistance value Rstart + the differential resistance value Rbak, the equation (2) becomes the second target value Rtgt2 <the maximum resistance value Rmax + the initial resistance value Rstart−. The infinite end resistance value Rinf. In the range from the lower limit temperature Tmin to the temperature Tinf where the ambient temperature is the same as the resistance value at the infinite end, the initial resistance value Rstart <the infinite end resistance value Rinf. That is, by selecting the differential resistance value Rbak that satisfies the equation (2), the second target value Rtgt2 does not exceed the maximum resistance value Rmax, so that it is guaranteed that the SMA 15 does not return to the low temperature phase. On the other hand, in a temperature range (in a high temperature environment) higher than the temperature Tinf where the ambient temperature becomes the same as the resistance value at the infinite end, the initial resistance value Rstart> the infinite end resistance value Rinf, and the SMA 15 is in the initial state as will be described later. Since the process returns to P0, the autofocus lens can be scanned from the infinite end, so that the problem of malfunction does not occur.
 実際の設計では、差分抵抗値Rbak値は、無限端抵抗値Rinf-R(Tmin)、最大抵抗値Rmax-無限端抵抗値Rinfの固体バラツキを考慮して、十分にマージンのある設定値である。また、差分抵抗値Rbak値は、抵抗値の検出誤差について考慮した値であればよい。 In actual design, the differential resistance value Rbak value is a set value having a sufficient margin in consideration of solid variations of the infinite end resistance value Rinf−R (Tmin) and the maximum resistance value Rmax−infinite end resistance value Rinf. . Further, the differential resistance value Rbak value may be a value considering the detection error of the resistance value.
 以下、図14ないし図16を用いて、高温環境下での、位置制御装置31による初期制御と基準位置制御とを説明する。 Hereinafter, the initial control and the reference position control by the position control device 31 in a high temperature environment will be described with reference to FIGS.
 図14は、高温環境下での、本実施形態にかかる位置制御装置による初期制御を説明するためのグラフである。図14(A)は、SMAの温度変化に伴う電気抵抗の変化について説明する模式的なグラフである。横軸は、SMAの温度を示し、縦軸は、SMAの電気抵抗を示す。図14(B)は、SMAの電気抵抗とレンズの変位との関係について説明する模式的なグラフである。横軸は、レンズの変位を示し、縦軸は、SMAの電気抵抗を示す。 FIG. 14 is a graph for explaining the initial control by the position control device according to the present embodiment in a high-temperature environment. FIG. 14A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA. The horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA. FIG. 14B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens. The horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA.
 上述のように、初期抵抗値Rstart>無限端抵抗値Rinfである。よって、初期制御の第一目標値Rtgt1は、初期抵抗値Rstartより小さいが、無限端抵抗値Rinfよりも大きい。初期制御によって、図中の破線矢印で示す経路で、SMA15は、初期状態P0から状態P1に変化する。しかしながら、状態P1ではレンズ2の変位は、無限端のままであり、レンズ2は、動き出さない。 As described above, the initial resistance value Rstart> the infinite end resistance value Rinf. Therefore, the first target value Rtgt1 for the initial control is smaller than the initial resistance value Rstart, but larger than the infinite end resistance value Rinf. By the initial control, the SMA 15 changes from the initial state P0 to the state P1 along a path indicated by a broken-line arrow in the drawing. However, in the state P1, the displacement of the lens 2 remains at the infinite end, and the lens 2 does not start to move.
 図15は、高温環境下での、本実施の形態にかかる位置制御装置による基準位置制御を説明するためのグラフである。図15(A)は、SMAの温度変化に伴う電気抵抗の変化について説明する模式的なグラフである。横軸は、SMAの温度を示し、縦軸は、SMAの電気抵抗を示す。図15(B)は、SMAの電気抵抗とレンズの変位との関係について説明する模式的なグラフである。横軸は、レンズの変位を示し、縦軸は、SMAの電気抵抗を示す。状態P1’は、基準位置制御開始時の状態であるが、初期制御の終了状態を維持していれば、P1と同じ状態になっている。 FIG. 15 is a graph for explaining the reference position control by the position control device according to the present embodiment in a high temperature environment. FIG. 15A is a schematic graph for explaining a change in electrical resistance accompanying a temperature change of SMA. The horizontal axis indicates the temperature of SMA, and the vertical axis indicates the electrical resistance of SMA. FIG. 15B is a schematic graph for explaining the relationship between the electrical resistance of the SMA and the displacement of the lens. The horizontal axis shows the displacement of the lens, and the vertical axis shows the electrical resistance of SMA. The state P1 'is a state at the start of the reference position control, but is the same as P1 if the initial control end state is maintained.
 基準位置制御では、コントローラ34は、第二目標値Rtgt2を設定する。第二目標値Rtgt2=初期抵抗値Rstart+差分抵抗値Rbakである。また、初期抵抗値Rstart<最大抵抗値Rmax<第二目標値Rtgt2の関係にあるとする。 In the reference position control, the controller 34 sets the second target value Rtgt2. Second target value Rtgt2 = initial resistance value Rstart + differential resistance value Rbak. Further, it is assumed that the initial resistance value Rstart <the maximum resistance value Rmax <the second target value Rtgt2.
 状態P1’では、検出抵抗値<第二目標値Rtgt2であるので、通電量を減少して温度低下が開始される。したがって図中の破線矢印で示した経路で、状態P1’から状態P2まで温度低下し、初期のP0近くに戻る。レンズ2の変位は、無限端のままである。 In the state P1 ', since the detection resistance value <the second target value Rtgt2, the energization amount is decreased and the temperature decrease is started. Therefore, the temperature decreases from the state P1 'to the state P2 along the path indicated by the broken-line arrow in the figure, and returns to the vicinity of the initial P0. The displacement of the lens 2 remains at the infinite end.
 図16は、高温環境下での、本実施形態にかかる位置制御装置による初期制御と基準位置制御とを説明するためのグラフである。図16(A)は、本発明の実施の形態にかかるSMAの動作の一例を示す模式的なグラフである。横軸は、時間を示し、縦軸は、SMAの電気抵抗を示す。図16(B)は、本発明の実施の形態にかかるレンズの動作を示す模式的なグラフである。横軸は、時間を示し、縦軸は、レンズの変位を示す。 FIG. 16 is a graph for explaining the initial control and the reference position control by the position control device according to the present embodiment under a high temperature environment. FIG. 16A is a schematic graph showing an example of the operation of the SMA according to the embodiment of the present invention. The horizontal axis represents time, and the vertical axis represents SMA electrical resistance. FIG. 16B is a schematic graph showing the operation of the lens according to the embodiment of the present invention. The horizontal axis indicates time, and the vertical axis indicates lens displacement.
 位置制御装置31が時刻t0で第一目標値Rtgt1を設定してサーボ制御を開始すると、SMA15は、通電増加による温度上昇により、最大抵抗値Rmaxを経て時刻t1で第一目標値Rtgt1に達する。なお、時刻t1は、状態P1の状態に対応する。次に位置制御装置が時刻t1’で第二目標値Rtgt2を設定してサーボ制御を開始し、通電減少による温度低下により、再び最大抵抗値Rmaxを経て時刻t2で初期抵抗値Rstartに達する。時刻t2は、状態P2に対応する。この過程を通して、レンズ2の変位は、無限端のままで、レンズ2は、無限端から動いていない。 When the position control device 31 sets the first target value Rtgt1 at the time t0 and starts the servo control, the SMA 15 reaches the first target value Rtgt1 at the time t1 via the maximum resistance value Rmax due to the temperature rise due to the increase in energization. Time t1 corresponds to the state P1. Next, the position control device sets the second target value Rtgt2 at time t1 'and starts servo control. Due to the temperature drop due to the decrease in energization, the position controller again passes through the maximum resistance value Rmax and reaches the initial resistance value Rstart at time t2. Time t2 corresponds to state P2. Through this process, the displacement of the lens 2 remains at the infinite end, and the lens 2 does not move from the infinite end.
 状態P2では、無限端よりも大きな抵抗値となるので、その後目標値を段階的に小さくし、初期抵抗値Rstartより小さくなれば、通電増加により検出抵抗値が目標値になるようにサーボ制御される。時刻t2では、まだ無限端まで達していないので、変位は、0のままである。さらに、目標抵抗値を段階的に小さくしていけば、変位が無限端からマクロ端方向に段階的に増大する動作となる。 In the state P2, since the resistance value is larger than that at the infinite end, the target value is then reduced stepwise, and if it becomes smaller than the initial resistance value Rstart, servo control is performed so that the detected resistance value becomes the target value due to increased energization. The At time t2, the displacement remains 0 because it has not yet reached the infinite end. Furthermore, if the target resistance value is decreased stepwise, the displacement increases stepwise from the infinite end toward the macro end.
 このように、周囲温度にかかわらず、(1)式および(2)式をみたすような差分抵抗値Rbakを選択することで、基準位置制御後にはレンズ2の変位が無限端にあるので、オートフォーカス動作が可能になる。 Thus, by selecting the differential resistance value Rbak that satisfies the equations (1) and (2) regardless of the ambient temperature, the displacement of the lens 2 is at the infinite end after the reference position control. Focus operation becomes possible.
 この他の実施の形態において、コントローラ34は、図13に示すような初期抵抗値Rstartと周囲温度との関係、および、周囲温度と差分抵抗値Rbakとの関係をさらに記憶し、SMA15の抵抗値と周囲温度との関係に基づいて、初期抵抗値Rstartから周囲温度を求め、求めた周囲温度と差分抵抗値Rbakとの関係とに基づいて、差分抵抗値Rbakを求め、求めた差分抵抗値Rbakを用いて基準位置制御を行ってもよい。 In this other embodiment, the controller 34 further stores the relationship between the initial resistance value Rstart and the ambient temperature as shown in FIG. 13 and the relationship between the ambient temperature and the differential resistance value Rbak, and the resistance value of the SMA 15. The ambient temperature is obtained from the initial resistance value Rstart based on the relationship between the ambient temperature and the ambient temperature, the differential resistance value Rbak is obtained based on the relationship between the obtained ambient temperature and the differential resistance value Rbak, and the obtained differential resistance value Rbak. The reference position control may be performed using.
 このような構成によれば、この求めたSMA15の周囲温度によって、差分抵抗値Rbakの値を変えることが可能となり、オートフォーカス走査動作における動き始めの遅延がより少ない。なお、周囲温度と差分抵抗値Rbakとの関係は、以下の通りである。周囲温度が無限端の抵抗値と同じになる温度Tinfより大きい温度範囲(高温環境下)では、差分抵抗値Rbakは、抵抗値の検出誤差より大きい値であればよい。周囲温度が無限端の抵抗値と同じになる温度Tinfより小さい温度範囲では、(1)式および(2)式を満たすような差分抵抗値であればよい。 According to such a configuration, it becomes possible to change the value of the differential resistance value Rbak according to the obtained ambient temperature of the SMA 15, and the movement start delay in the autofocus scanning operation is less. The relationship between the ambient temperature and the differential resistance value Rbak is as follows. In a temperature range (in a high temperature environment) greater than the temperature Tinf where the ambient temperature is the same as the resistance value at the infinite end (under a high temperature environment), the differential resistance value Rbak may be a value greater than the resistance value detection error. In a temperature range lower than the temperature Tinf where the ambient temperature is the same as the resistance value at the infinite end, the differential resistance value may satisfy the expressions (1) and (2).
 さらに、この他の実施の形態において、図3の破線に示すように、SMA15の周囲温度を検出する温度検出部23をさらに備え、コントローラ34は、周囲温度と差分抵抗値Rbakとの関係を予め記憶し、温度検出部23が検出した周囲温度から、周囲温度と差分抵抗値Rbakとの前記関係に基づいて、差分抵抗値Rbakを求め、求めた差分抵抗値Rbakで基準位置制御を行う。 Furthermore, in this other embodiment, as shown by the broken line in FIG. 3, the temperature detector 23 further detects the ambient temperature of the SMA 15, and the controller 34 preliminarily shows the relationship between the ambient temperature and the differential resistance value Rbak. The differential resistance value Rbak is obtained from the ambient temperature detected by the temperature detection unit 23 based on the relationship between the ambient temperature and the differential resistance value Rbak, and the reference position control is performed using the obtained differential resistance value Rbak.
 温度検出部23は、サーミスタ、熱電対および薄膜抵抗等の温度センサを備え、たとえばレバー13において、このSMA15が巻掛けられる切欠き13aの部分に設けられる。 The temperature detection unit 23 includes a temperature sensor such as a thermistor, a thermocouple, and a thin film resistor. For example, the lever 13 is provided at a portion of the notch 13a around which the SMA 15 is wound.
 このような構成によれば、検出したSMA15の周囲温度によって、差分抵抗値Rbakの値を変えることが可能となり、オートフォーカス走査動作における動き始めの遅延がより少ない。 According to such a configuration, the value of the differential resistance value Rbak can be changed depending on the detected ambient temperature of the SMA 15, and the movement start delay in the autofocus scanning operation is less.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる位置制御装置は、形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータに使用され、前記可動部の位置を制御する位置制御装置であって、前記形状記憶合金に通電を行う駆動部と、前記形状記憶合金の抵抗値を検出する抵抗値検出部と、前記可動部の目標変位位置に対応した目標抵抗値を設定し、前記抵抗値が前記目標抵抗値に一致するように、前記駆動部による前記形状記憶合金への通電量を制御する制御部とを備え、前記制御部は、前記可動部の位置を制御する準備動作として、前記抵抗値検出部に前記形状記憶合金の抵抗値を初期抵抗値として検出させ、前記目標抵抗値を前記初期抵抗値より小さい値に設定することで、前記形状記憶合金に対する前記通電量を制御して、前記形状記憶合金を低温相から高温相へと変態開始させる第一制御を行う。 A position control device according to one aspect is used for a shape memory alloy actuator that moves a movable portion using a shape memory alloy, and is a position control device that controls the position of the movable portion, and energizes the shape memory alloy. A drive unit to perform, a resistance value detection unit to detect a resistance value of the shape memory alloy, and a target resistance value corresponding to a target displacement position of the movable unit, so that the resistance value matches the target resistance value And a control unit that controls the amount of current applied to the shape memory alloy by the drive unit, and the control unit provides the resistance value detection unit with the shape memory alloy as a preparatory operation for controlling the position of the movable unit. The resistance value of the shape memory alloy is detected as an initial resistance value, and the target resistance value is set to a value smaller than the initial resistance value. Performing a first control to start the transformation to the high temperature phase.
 この構成によれば、可動部の位置を制御する準備動作として、目標抵抗値が初期抵抗値より小さい値に設定され、形状記憶合金が低温相から高温相に変態開始されるので、位置制御装置は、形状記憶合金の最大抵抗値Rmaxを検出することなく、形状記憶合金の抵抗値がその変位に線形的に変化する性質を利用し、形状記憶合金の位置制御を行うことができる。 According to this configuration, as the preparatory operation for controlling the position of the movable part, the target resistance value is set to a value smaller than the initial resistance value, and the shape memory alloy starts to transform from the low temperature phase to the high temperature phase. The position of the shape memory alloy can be controlled by utilizing the property that the resistance value of the shape memory alloy changes linearly with the displacement without detecting the maximum resistance value Rmax of the shape memory alloy.
 また、他の一態様では、上述の位置制御装置において、好ましくは、予め定めた所定の差分抵抗値を記憶する記憶部がさらに備えられ、前記制御部は、前記第一制御後に、前記目標抵抗値を、前記初期抵抗値に前記差分抵抗値を加算した値に設定し、前記形状記憶合金に対する前記通電量を制御する第二制御を行うことで、前記可動部を基準位置に移動させる。 In another aspect, the above-described position control device preferably further includes a storage unit that stores a predetermined differential resistance value that is set in advance, and the control unit is configured to perform the target resistance after the first control. The value is set to a value obtained by adding the differential resistance value to the initial resistance value, and second control is performed to control the energization amount for the shape memory alloy, thereby moving the movable portion to a reference position.
 この構成によれば、位置制御装置は、第一制御後に、可動部の位置が、目標変位位置に移動するため待機すべき位置である基準位置を行き過ぎていても、可動部を基準位置に移動させることができる。 According to this configuration, after the first control, the position control device moves the movable part to the reference position even if the position of the movable part has exceeded the reference position, which is a position to be on standby for moving to the target displacement position. Can be made.
 また、他の一態様では、上述の位置制御装置において、好ましくは、前記形状記憶合金アクチュエータの周囲温度を検出する温度検出部がさらに備えられ、前記記憶部は、前記周囲温度と前記差分抵抗値との関係をさらに記憶し、前記制御部は、前記温度検出部が検出した前記周囲温度から、前記周囲温度と前記差分抵抗値との前記関係に基づいて、前記差分抵抗値を求め、求めた前記差分抵抗値で第二制御を行う。 In another aspect, the above-described position control device preferably further includes a temperature detection unit that detects an ambient temperature of the shape memory alloy actuator, and the storage unit includes the ambient temperature and the differential resistance value. The control unit obtains the differential resistance value from the ambient temperature detected by the temperature detection unit based on the relationship between the ambient temperature and the differential resistance value. Second control is performed with the differential resistance value.
 この構成によれば、周囲温度に対応した最適な差分抵抗値を設定することができるので、位置制御装置は、より短時間で可動部を目標変位位置に移動させることができる。 According to this configuration, the optimum differential resistance value corresponding to the ambient temperature can be set, so that the position control device can move the movable part to the target displacement position in a shorter time.
 また、他の一態様では、上述の位置制御装置において、好ましくは、前記記憶部は、前記形状記憶合金アクチュエータの抵抗値と周囲温度との関係、および、前記周囲温度と前記差分抵抗値との関係をさらに記憶し、前記制御部は、前記形状記憶合金の抵抗値と周囲温度との関係に基づいて、前記初期抵抗値から周囲温度を求め、求めた前記周囲温度から、前記周囲温度と前記差分抵抗値との関係とに基づいて、前記差分抵抗値を求め、求めた前記差分抵抗値で第二制御を行う。 In another aspect, in the above-described position control device, preferably, the storage unit includes a relationship between the resistance value of the shape memory alloy actuator and the ambient temperature, and the relationship between the ambient temperature and the differential resistance value. Further storing a relationship, the control unit obtains the ambient temperature from the initial resistance value based on the relationship between the resistance value of the shape memory alloy and the ambient temperature, from the obtained ambient temperature, the ambient temperature and the The differential resistance value is obtained based on the relationship with the differential resistance value, and second control is performed using the obtained differential resistance value.
 この構成によれば、温度検出部を備えることなく、推定された周囲温度に対応した最適な差分抵抗値を設定することができるので、位置制御装置は、より短時間で可動部を目標変位位置に移動させることができる。 According to this configuration, since the optimum differential resistance value corresponding to the estimated ambient temperature can be set without providing the temperature detection unit, the position control device can move the movable unit to the target displacement position in a shorter time. Can be moved to.
 また、他の一態様にかかる位置制御方法は、形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータに使用され、前記可動部の位置を制御する位置制御方法であって、前記可動部の位置を制御する準備として、前記形状記憶合金の抵抗値を初期抵抗値として検出する工程と、前記可動部の目標変位位置に対応した前記目標抵抗値を前記初期抵抗値より小さい値と設定する工程と、この設定された前記目標抵抗値で、前記形状記憶合金に対する前記通電量を制御して、前記形状記憶合金を低温相から高温相へと変態開始させる工程とを備える。 Further, a position control method according to another aspect is a position control method for controlling a position of the movable part, which is used for a shape memory alloy actuator that moves a movable part using a shape memory alloy, the movable part Detecting the resistance value of the shape memory alloy as an initial resistance value, and setting the target resistance value corresponding to the target displacement position of the movable part to a value smaller than the initial resistance value. And a step of starting the transformation of the shape memory alloy from a low temperature phase to a high temperature phase by controlling the amount of current applied to the shape memory alloy with the set target resistance value.
 この構成によれば、可動部の位置を制御する準備動作として、目標抵抗値が初期抵抗値より小さい値に設定され、形状記憶合金が低温相から高温相に変態開始されるので、位置制御装置は、形状記憶合金の最大抵抗値Rmaxを検出することなく、形状記憶合金の抵抗値がその変位に線形的に変化する性質を利用し、形状記憶合金の位置制御を行うことができる。 According to this configuration, as the preparatory operation for controlling the position of the movable part, the target resistance value is set to a value smaller than the initial resistance value, and the shape memory alloy starts to transform from the low temperature phase to the high temperature phase. The position of the shape memory alloy can be controlled by utilizing the property that the resistance value of the shape memory alloy changes linearly with the displacement without detecting the maximum resistance value Rmax of the shape memory alloy.
 また、他の一態様では、上述の位置制御方法において、好ましくは、予め定めた所定の差分抵抗値を記憶する工程と、前記変態開始させる工程後に、前記目標抵抗値を、前記初期抵抗値に前記差分抵抗値を加算した値に設定する工程と、この設定された前記目標抵抗値で、前記形状記憶合金に対する前記通電量を制御して、前記可動部を起動時の基準位置に移動させる工程とをさらに備える。 In another aspect, in the above-described position control method, preferably, the target resistance value is set to the initial resistance value after the step of storing a predetermined differential resistance value determined in advance and the step of starting the transformation. A step of setting the difference resistance value to a value added, and a step of controlling the energization amount to the shape memory alloy with the set target resistance value to move the movable part to a reference position at the time of activation. And further comprising.
 この構成によれば、位置制御方法は、前記変態開始させる工程後に、可動部の位置が、目標変位位置に移動するため待機すべき位置である基準位置を行き過ぎていても、可動部を基準位置に移動させることができる。 According to this configuration, in the position control method, after the step of starting the transformation, even if the position of the movable portion exceeds the reference position that is a position to be on standby for moving to the target displacement position, the position of the movable portion is set to the reference position. Can be moved to.
 また、他の一態様にかかる駆動装置は、形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータと、前記可動部の位置を制御する位置制御装置とを備え、前記位置制御装置は、上述のいずれかの位置制御装置である。 Further, a driving device according to another aspect includes a shape memory alloy actuator that moves a movable portion using a shape memory alloy, and a position control device that controls a position of the movable portion, and the position control device includes: One of the position control devices described above.
 この構成によれば、これら上述のいずれかの位置制御装置を備える駆動装置が提供され、位置センサを備えることなく形状記憶合金の抵抗値に基づいて可動部の位置制御が可能な駆動装置が提供される。 According to this configuration, a driving device including any one of the above-described position control devices is provided, and a driving device capable of controlling the position of the movable portion based on the resistance value of the shape memory alloy without including a position sensor is provided. Is done.
 また、他の一態様にかかる撮像装置は、形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータと、前記可動部の移動に応じて移動するレンズと、前記レンズを含む撮像光学系によって結像された被写体の光学像を撮像する撮像素子と、前記可動部の位置を制御する位置制御装置とを備え、前記位置制御装置は、これら上述の位置制御装置のいずれかであり、前記レンズを移動する準備動作として前記第一制御を行う。 An imaging apparatus according to another aspect includes a shape memory alloy actuator that moves a movable portion using a shape memory alloy, a lens that moves according to the movement of the movable portion, and an imaging optical system that includes the lens. An image pickup device that picks up an optical image of the imaged subject, and a position control device that controls the position of the movable portion, and the position control device is one of the above-described position control devices, and the lens The first control is performed as a preparatory operation for moving.
 このような構成によれば、これら上述のいずれかの位置制御装置を備える撮像装置が提供され、位置センサを備えることなく形状記憶合金の抵抗値に基づいてレンズの位置制御が可能な撮像装置が提供される。 According to such a configuration, an imaging device including any of the above-described position control devices is provided, and an imaging device capable of controlling the lens position based on the resistance value of the shape memory alloy without including a position sensor. Provided.
 この出願は、2010年3月5日に出願された日本国特許出願特願2010-48819を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2010-48819 filed on Mar. 5, 2010, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、位置制御装置、位置制御方法、駆動装置および撮像装置を提供することができる。 According to the present invention, a position control device, a position control method, a drive device, and an imaging device can be provided.

Claims (8)

  1.  形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータに使用され、前記可動部の位置を制御する位置制御装置において、
     前記形状記憶合金に通電を行う駆動部と、
     前記形状記憶合金の抵抗値を検出する抵抗値検出部と、
     前記可動部の目標変位位置に対応した目標抵抗値を設定し、前記抵抗値が前記目標抵抗値に一致するように、前記駆動部による前記形状記憶合金への通電量を制御する制御部とを備え、
     前記制御部は、前記可動部の位置を制御する準備動作として、前記抵抗値検出部に前記形状記憶合金の抵抗値を初期抵抗値として検出させ、前記目標抵抗値を前記初期抵抗値より小さい値に設定することで、前記形状記憶合金に対する前記通電量を制御して、前記形状記憶合金を低温相から高温相へと変態開始させる第一制御を行うこと
     を特徴とする位置制御装置。
    In a position memory device that is used in a shape memory alloy actuator that moves a movable part using a shape memory alloy and controls the position of the movable part,
    A drive unit for energizing the shape memory alloy;
    A resistance value detection unit for detecting the resistance value of the shape memory alloy;
    A control unit configured to set a target resistance value corresponding to a target displacement position of the movable unit, and to control an energization amount to the shape memory alloy by the driving unit so that the resistance value matches the target resistance value; Prepared,
    The control unit causes the resistance value detection unit to detect a resistance value of the shape memory alloy as an initial resistance value as a preparatory operation for controlling the position of the movable part, and the target resistance value is a value smaller than the initial resistance value. The position control device is characterized in that the first control for starting the transformation of the shape memory alloy from the low temperature phase to the high temperature phase is performed by controlling the energization amount to the shape memory alloy.
  2.  予め定めた所定の差分抵抗値を記憶する記憶部をさらに備え、
     前記制御部は、前記第一制御後に、前記目標抵抗値を、前記初期抵抗値に前記差分抵抗値を加算した値に設定し、前記形状記憶合金に対する前記通電量を制御する第二制御を行うことで、前記可動部を基準位置に移動させること
     を特徴とする請求項1に記載の位置制御装置。
    A storage unit for storing a predetermined differential resistance value determined in advance;
    After the first control, the control unit sets the target resistance value to a value obtained by adding the differential resistance value to the initial resistance value, and performs second control for controlling the energization amount to the shape memory alloy. The position control device according to claim 1, wherein the movable unit is moved to a reference position.
  3.  前記形状記憶合金アクチュエータの周囲温度を検出する温度検出部をさらに備え、
     前記記憶部は、前記周囲温度と前記差分抵抗値との関係をさらに記憶し、
     前記制御部は、前記温度検出部によって検出された前記周囲温度から、前記周囲温度と前記差分抵抗値との前記関係に基づいて、前記差分抵抗値を求め、この求めた前記差分抵抗値で第二制御を行うこと
     を特徴とする請求項2に記載の位置制御装置。
    A temperature detection unit for detecting an ambient temperature of the shape memory alloy actuator;
    The storage unit further stores a relationship between the ambient temperature and the differential resistance value,
    The control unit obtains the differential resistance value based on the relationship between the ambient temperature and the differential resistance value from the ambient temperature detected by the temperature detection unit, and calculates the differential resistance value based on the obtained differential resistance value. The position control device according to claim 2, wherein two controls are performed.
  4.  前記記憶部は、前記形状記憶合金アクチュエータの抵抗値と周囲温度との関係、および、前記周囲温度と前記差分抵抗値との関係をさらに記憶し、
     前記制御部は、前記形状記憶合金の抵抗値と周囲温度との関係に基づいて、前記初期抵抗値から周囲温度を求め、この求めた前記周囲温度から、前記周囲温度と前記差分抵抗値との関係とに基づいて、前記差分抵抗値を求め、この求めた前記差分抵抗値で第二制御を行うこと
     を特徴とする請求項2に記載の位置制御装置。
    The storage unit further stores the relationship between the resistance value of the shape memory alloy actuator and the ambient temperature, and the relationship between the ambient temperature and the differential resistance value,
    The control unit obtains the ambient temperature from the initial resistance value based on the relationship between the resistance value of the shape memory alloy and the ambient temperature, and determines the ambient temperature and the differential resistance value from the obtained ambient temperature. The position control device according to claim 2, wherein the differential resistance value is obtained based on the relationship, and the second control is performed using the obtained differential resistance value.
  5.  形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータに使用され、前記可動部の位置を制御する位置制御方法において、
     前記可動部の位置を制御する準備として、前記形状記憶合金の抵抗値を初期抵抗値として検出する工程と、前記可動部の目標変位位置に対応した前記目標抵抗値を前記初期抵抗値より小さい値と設定する工程と、この設定された前記目標抵抗値で、前記形状記憶合金に対する前記通電量を制御して、前記形状記憶合金を低温相から高温相へと変態開始させる工程とを備えること
     を特徴とする位置制御方法。
    In a position control method for controlling the position of the movable part used in a shape memory alloy actuator that moves the movable part using a shape memory alloy,
    As a preparation for controlling the position of the movable part, a step of detecting the resistance value of the shape memory alloy as an initial resistance value, and the target resistance value corresponding to the target displacement position of the movable part is smaller than the initial resistance value. And a step of controlling the amount of current applied to the shape memory alloy with the set target resistance value and starting transformation of the shape memory alloy from a low temperature phase to a high temperature phase. A characteristic position control method.
  6.  予め定めた所定の差分抵抗値を記憶する工程と、
     前記変態開始させる工程後に、前記目標抵抗値を、前記初期抵抗値に前記差分抵抗値を加算した値と設定する工程と、この設定された前記目標抵抗値で、前記形状記憶合金に対する前記通電量を制御して、前記可動部を基準位置に移動させる工程とをさらに備えること
     を特徴とする請求項5に記載の位置制御方法。
    Storing a predetermined differential resistance value determined in advance;
    After the step of starting the transformation, setting the target resistance value as a value obtained by adding the differential resistance value to the initial resistance value, and the energization amount to the shape memory alloy with the set target resistance value The position control method according to claim 5, further comprising: controlling the movable portion to move the movable portion to a reference position.
  7.  形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータと、
     前記可動部の位置を制御する位置制御装置とを備え、
     前記位置制御装置は、請求項1ないし請求項4のいずれか1項に記載の位置制御装置であること
     を特徴とする駆動装置。
    A shape memory alloy actuator that moves the movable part using a shape memory alloy; and
    A position control device for controlling the position of the movable part,
    The drive device according to any one of claims 1 to 4, wherein the position control device is the position control device according to any one of claims 1 to 4.
  8.  形状記憶合金を用いて可動部を移動する形状記憶合金アクチュエータと、
     前記可動部の移動に応じて移動するレンズと、
     前記レンズを含む撮像光学系によって結像された被写体の光学像を撮像する撮像素子と、
     前記可動部の位置を制御する位置制御装置とを備え、
     前記位置制御装置は、請求項1ないし請求項4のいずれか1項に記載の位置制御装置であり、前記レンズを移動する準備動作として前記第一制御を行うこと
     を特徴とする撮像装置。
    A shape memory alloy actuator that moves the movable part using a shape memory alloy; and
    A lens that moves according to the movement of the movable part;
    An image sensor that captures an optical image of a subject imaged by an imaging optical system including the lens;
    A position control device for controlling the position of the movable part,
    The image pickup apparatus according to any one of claims 1 to 4, wherein the position control apparatus performs the first control as a preparatory operation for moving the lens.
PCT/JP2011/000910 2010-03-05 2011-02-18 Position control device, position control method, driving device and imaging device WO2011108209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012502989A JPWO2011108209A1 (en) 2010-03-05 2011-02-18 POSITION CONTROL DEVICE, POSITION CONTROL METHOD, DRIVE DEVICE, AND IMAGING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-048819 2010-03-05
JP2010048819 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108209A1 true WO2011108209A1 (en) 2011-09-09

Family

ID=44541879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000910 WO2011108209A1 (en) 2010-03-05 2011-02-18 Position control device, position control method, driving device and imaging device

Country Status (2)

Country Link
JP (1) JPWO2011108209A1 (en)
WO (1) WO2011108209A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246335A (en) * 2012-05-28 2013-12-09 Konica Minolta Inc Drive mechanism
JP2017096144A (en) * 2015-11-20 2017-06-01 国立大学法人 大分大学 Shape-memory alloy actuator and device and method for controlling the same
CN111050036A (en) * 2018-10-15 2020-04-21 三星电机株式会社 Actuator of camera module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274561A (en) * 1994-03-31 1995-10-20 Olympus Optical Co Ltd Shape-memory-alloy actuator controller
JP2769351B2 (en) * 1989-02-08 1998-06-25 オリンパス光学工業株式会社 Position control device
JP2009127578A (en) * 2007-11-27 2009-06-11 Seiko Instruments Inc Shape memory alloy actuator and electronic apparatus equipped with same
WO2009090958A1 (en) * 2008-01-15 2009-07-23 Konica Minolta Opto, Inc. Actuator drive controller and lens unit driver
WO2009093645A1 (en) * 2008-01-23 2009-07-30 Konica Minolta Opto, Inc. Drive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769351B2 (en) * 1989-02-08 1998-06-25 オリンパス光学工業株式会社 Position control device
JPH07274561A (en) * 1994-03-31 1995-10-20 Olympus Optical Co Ltd Shape-memory-alloy actuator controller
JP2009127578A (en) * 2007-11-27 2009-06-11 Seiko Instruments Inc Shape memory alloy actuator and electronic apparatus equipped with same
WO2009090958A1 (en) * 2008-01-15 2009-07-23 Konica Minolta Opto, Inc. Actuator drive controller and lens unit driver
WO2009093645A1 (en) * 2008-01-23 2009-07-30 Konica Minolta Opto, Inc. Drive device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246335A (en) * 2012-05-28 2013-12-09 Konica Minolta Inc Drive mechanism
JP2017096144A (en) * 2015-11-20 2017-06-01 国立大学法人 大分大学 Shape-memory alloy actuator and device and method for controlling the same
CN111050036A (en) * 2018-10-15 2020-04-21 三星电机株式会社 Actuator of camera module
CN111050036B (en) * 2018-10-15 2023-06-27 三星电机株式会社 Actuator of camera module

Also Published As

Publication number Publication date
JPWO2011108209A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP4591632B2 (en) Shape memory alloy actuator driving apparatus and method, and imaging apparatus using the same
JP5221672B2 (en) Control of shape memory alloy working structure
JP5548211B2 (en) Control of shape memory alloy actuator device
JP4539784B2 (en) Shape memory alloy drive unit
EP1914422A1 (en) Drive device, lens barrel, imaging device, lens drive method, and method of producing shape memory alloy
WO2012042722A1 (en) Drive device
JP2007162612A (en) Drive device manufacturing system and drive device manufacturing method
JP4916415B2 (en) Shape memory element actuator control apparatus and control method
US8692929B2 (en) Lens drive device, image-capturing device, and electronic apparatus with shape memory alloy actuator
WO2011108209A1 (en) Position control device, position control method, driving device and imaging device
JP4918021B2 (en) Shape memory alloy actuator and electronic device including the same
JP4857257B2 (en) Lens control device, lens barrel, imaging device, and optical apparatus
JP5029260B2 (en) Drive device
KR101317085B1 (en) Lens drive device, image-capturing device, and electronic apparatus
JP5326681B2 (en) LENS DRIVE DEVICE AND IMAGING DEVICE
JP5115490B2 (en) Drive device for shape memory alloy actuator and imaging device using the same
JP4811536B2 (en) Drive unit, movable module, and autofocus control method
WO2012093567A1 (en) Shape-memory alloy actuator control device and optical component drive unit
JP2006337533A (en) Method for manufacturing driving device and driving device
WO2012005072A1 (en) Shape-memory alloy actuator control device and optical component drive unit
JP2009108729A (en) Control method and control device for shape memory alloy actuator
JP2010169841A (en) Image capturing apparatus
JP2009098416A (en) Shape memory alloy actuator and electronic equipment furnished with the same
JP5381184B2 (en) Imaging device
JP2010049157A (en) Stress adjuster for shape memory alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012502989

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750323

Country of ref document: EP

Kind code of ref document: A1