WO2015133515A1 - Lens unit and imaging device - Google Patents

Lens unit and imaging device Download PDF

Info

Publication number
WO2015133515A1
WO2015133515A1 PCT/JP2015/056334 JP2015056334W WO2015133515A1 WO 2015133515 A1 WO2015133515 A1 WO 2015133515A1 JP 2015056334 W JP2015056334 W JP 2015056334W WO 2015133515 A1 WO2015133515 A1 WO 2015133515A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
optical component
lens unit
optical
actuator
Prior art date
Application number
PCT/JP2015/056334
Other languages
French (fr)
Japanese (ja)
Inventor
篤広 野田
達夫 ▲高▼部
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015133515A1 publication Critical patent/WO2015133515A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element

Definitions

  • the present invention relates to a lens unit that holds an optical element and an imaging device including the lens unit.
  • a lens unit that holds an optical element such as an optical lens has not only a holding function for holding the optical element at a design position in order to make the optical element function, but also a diaphragm function that controls the amount of transmitted light, and Various functions such as an autofocus function for automatically focusing are provided, and a zooming function for changing the focal length as necessary is further provided.
  • the autofocus function is executed by moving the optical element for focusing along the optical axis direction of the lens unit
  • the zooming function is the optical element for zooming. It is executed by moving along the optical axis direction of the lens unit. Therefore, the lens unit includes a moving mechanism for moving the optical element for the auto focus function and the zoom function.
  • Patent Document 1 discloses an optical head provided with a rectilinear guide mechanism that is cantilevered by a parallel spring.
  • the rectilinear guide mechanism disclosed in Patent Document 1 extends along the X direction (second direction) perpendicular to the Z direction in parallel to the Z direction (first direction), which is the optical axis direction, with a distance from each other.
  • a parallel spring composed of a pair of first and second springs is fixedly connected to one end of the movable body in the Y direction perpendicular to the Z direction and the X direction.
  • the rectilinear guide mechanism uses a pair of first and second springs having a smaller wire diameter and lower rigidity than the parallel springs arranged at one end in the Y direction at the other end in the Y direction of the moving body. They are fixedly connected by extending along the X direction in parallel with a distance in the Z direction.
  • the linear guide mechanism is configured such that when the moving body moves in the Z direction by the actuator, the moving body can be rotated around an axis extending in the X direction to adjust the inclination of the moving body in the Y direction.
  • the elastic deformation portion 1005 of the first spring 1003 in the + Z direction is larger than that of the two springs 1004, and the elastic deformation portion 1006 of the second spring 1004 in the -Z direction has a larger amount of tension than the first spring 1003 in the + Z direction.
  • the optical component 1000 passes through the middle point O of the optical component connecting portion with the optical component 1001 of each of the first and second springs as shown in FIG. 10C and in the Y direction.
  • the spring applying moment M10 about the central axis 15 extending in the direction is received.
  • the optical component moves while maintaining almost the posture, but when the application moment M10 occurs.
  • FIG. 11A there is a slight tilt ⁇ in which the optical axis AX1 of the optical element 1001 is inclined with respect to the optical axis AX2 of the lens unit.
  • the optical image formed at the imaging position is deteriorated. End up. That is, the optical image is deteriorated. Conventionally, this degree of inclination is negligible for image performance.
  • the lens unit including an array lens 1002 in which a plurality of imaging optical systems (single eyes) are arranged in a two-dimensional array.
  • the distance from the array lens 1002 to the light receiving surface 1011 of the image sensor is tilted.
  • the individual eye will differ, so even if the tilt is so small that it can be ignored with a monocular lens, it cannot be ignored depending on the individual eye. Deterioration increases. That is, in the monocular optical element 1001 shown in FIG.
  • the optical performance degradation occurs only in the periphery of the image, but in the array lens 1002 shown in FIG. 11B, the optical performance of the single eye located around the array lens 1002 is The image is almost completely lowered, and the entire image is deteriorated. For this reason, the tilt becomes a serious problem particularly in the case of a lens unit including an array lens.
  • the tilt amount becomes significant especially when there is a portion with low rigidity in the linear direction of the spring. This is because if two springs generate a compressive force on one side and a tensile force on the other along the linear direction, but there is a portion with low rigidity, the portion changes in the length direction.
  • FIG. 10A when the first spring 1003 and the second spring 1004 have a bent portion 1007, the tilt is more likely to occur. Therefore, it is desired to correct such tilt.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to suppress a spring applying moment applied to the optical component by the first spring and the second spring when the optical component moves in the optical axis direction. It is possible to provide a lens unit and an imaging apparatus that can suppress the occurrence of tilt of optical components.
  • a lens unit and an imaging apparatus include an actuator for moving an optical component elastically supported by an elastic support member in a first direction, and the elastic support member includes an optical component coupling portion coupled to the optical component.
  • a supported portion supported by a support member is provided at one end portion at the other end portion, and the actuator applies a force in the first direction to the optical component and elastically supports the force in the first direction.
  • the optical component is configured to apply a counter moment opposite to the spring applying moment applied to the optical component by the member. Therefore, the lens unit and the imaging apparatus according to the present invention can suppress the spring application moment applied to the moving body by the first spring and the second spring when the optical component moves in the optical axis direction, and the tilt of the optical component can be reduced. Can be suppressed.
  • FIG. 1 is a diagram illustrating a configuration of an imaging apparatus according to the first embodiment.
  • 1A is a plan view
  • FIG. 1B is a side view of a part of FIG. 1A in section
  • FIG. 1C is an optical component moving along the Z direction (first direction) which is the optical axis direction.
  • FIG. 2 is a side view, partly in cross section, for explaining the operation of the imaging device in FIG.
  • the + X direction is a direction from the other end along the X direction (second direction) orthogonal to the Z direction in the array lens 1 to the one end
  • the ⁇ X direction is in the array lens 1. This is a direction from one end to the other end along the X direction.
  • the + Y direction is a direction from the other end along the Y direction (third direction) orthogonal to the X direction and the Z direction in the array lens 1, and the ⁇ Y direction is along the Y direction in the array lens 1.
  • the + Z direction is a direction in which the array lens 1 moves away from the imaging unit 7, and the ⁇ Z direction is a direction in which the array lens 1 approaches the imaging unit 7.
  • the imaging apparatus I captures an optical image of an object (subject) formed on the light receiving surface of the imaging element by the imaging optical system by the imaging element, and an electrical image signal (or a signal corresponding to the optical image) (or Image data).
  • the imaging apparatus I may generate a still image signal (or image data) and / or a moving image signal (or image data).
  • a and / or B means at least one of A and B.
  • the imaging apparatus Ia in the first embodiment includes a lens unit LUa and an imaging unit 7, for example, as shown in FIG.
  • the lens unit LUa is a lens unit of a first aspect that forms an optical image of an object on a light receiving surface of an image sensor 71 (to be described later) in the imaging unit 7, and includes, for example, an array lens (optical component) 1 and an elastic support member. 2, a support member 3, and a drive unit 4.
  • the array lens 1 includes a lens main body (optical component main body) 11 that has a rectangular shape (including a square) in plan view, and a protrusion 12.
  • the lens main body 11 has a plurality of images arranged in a two-dimensional matrix in two directions that are linearly independent, more specifically, two directions that are orthogonal to each other in the X direction (second direction) and the Y direction (third direction).
  • An optical system 111 is provided.
  • Each of the plurality of imaging optical systems 111 is a component including one or more optical lenses along the optical axis in order to form an optical image of an object on the light receiving surface of the imaging element 71.
  • the plurality of imaging optical systems 111 are arranged so that the optical axes are substantially parallel to each other.
  • the image sensor 71 that captures each optical image of the object via the plurality of imaging optical systems 111 generates an image signal in which substantially the same subject is captured although the parallax is different.
  • the array lens 1 includes 16 imaging optical systems 111-11 to 111-44 arranged in a two-dimensional matrix in 4 rows and 4 columns. Note that the number of the imaging optical systems 111 is not limited to this, and all the imaging optical systems 111 are not necessarily parallel with respect to the optical axis.
  • the lens body 11 has a first connected portion 13 connected to a first spring 21 of the elastic support member 2 to be described later on the end surface in the + Z direction in the thickness direction (Z direction) at one end thereof.
  • a second connected portion 14 connected to a second spring 22 of the elastic support member 2 to be described later is provided on each end face in the direction.
  • the array lens 1 is used as an optical component.
  • the optical component is not limited to the configuration constituted by the array lens 1, and for example, one or a plurality of optical lenses are arranged along the optical axis. It may be a component including a monocular imaging optical system. Further, in the present embodiment, the optical component is configured by only the array lens 1, but may be configured to include, for example, a lens and a lens holding member that holds the lens.
  • the protrusion 12 has a quadrangular prism shape, and protrudes from the end surface of one end of the lens body 11 in the opposite direction (+ X direction) to the other end of the lens body 11.
  • the lens body 11 is connected to the end surface of one end.
  • the protrusion 12 includes a pressed operation portion 12a that is pressed by an actuator 41 of the drive unit 4 described later at a corner portion in the ⁇ Z direction at the protruding tip.
  • the support member 3 is formed of a rectangular cylindrical body having a rectangular through-opening (light beam transmission aperture) for transmitting each light beam of the optical image transmitted through the array lens 1. More specifically, the support member 3 is opposed to the first side wall 31 in the ⁇ X direction and the third side wall 33 in the + X direction, which are arranged in parallel to each other with a gap in the X direction, in parallel with a gap in the Y direction.
  • the second side wall 32 in the ⁇ Y direction and the fourth side wall 34 in the + Y direction are provided.
  • Actuator support portions 35 that support the actuators 41 are provided at the corners of the third side wall 33 and the fourth side wall 34 of the support member 3.
  • the actuator support portion 35 is formed on an inclined surface inclined with respect to the X direction and the Z direction.
  • the elastic support member 2 includes a pair of two springs 21 and 22 (two opposed to each other in the Z direction) made of leaf springs elongated in one direction.
  • the pair of springs 21 and 22 are constituted by parallel springs arranged so as to be parallel to each other in the long direction.
  • the elastic support member 2 functions as a pair of two parallel springs.
  • the driving force by the driving unit 4 acting on the array lens 1 and the first and second springs 21 and 22 are used.
  • the elastic support member 2 is composed of a pair of first and second springs 21 and 22 so as to elastically support the array lens 1 in a cantilevered manner from both sides in the Y direction. It is configured.
  • Each set of the first and second springs 21 and 22 includes an optical component connecting portion 23 at one end thereof, and each optical component connecting portion 23 is connected to the connected portion 13 of the lens body 11. , 14 are fixedly connected.
  • Each of the first and second springs 21 and 22 includes a supported portion 24 at the other end, and the supported portion 24 is fixedly supported by the first side wall 31 of the support member 3.
  • the first and second springs 21 and 22 are arranged in parallel with a distance in the Z direction in the initial state, and the lens body 11 is cantilevered at the other end. I support it.
  • the other end of the lens main body 11 supported by the first and second springs 21 and 22 extends from the one end of the lens main body 11 along the ⁇ X direction, and the first and second springs 21 and 22 are extended. Between the optical component connecting portion 23 and the supported portion 24 in the longitudinal direction (X direction).
  • the drive unit 4 is a device for moving the array lens 1 along the axial direction of a predetermined axis.
  • the predetermined axis is, for example, the optical axis of the lens unit LUa, the optical axis of the image sensor 71, or the like.
  • the drive unit 4 includes, for example, a predetermined actuator 41 and a control drive circuit (not shown) for driving the actuator 41 while controlling the actuator 41.
  • the actuator 41 is, for example, a SMA actuator provided with a shape memory alloy (Shape Memory Alloy, hereinafter abbreviated as “SMA”) that is long in one direction (band, ribbon, tape).
  • SMA shape Memory Alloy
  • an SMA actuator 41 is used, and the drive unit 4 includes a control drive circuit (not shown) for controlling and driving the SMA actuator 41 by energizing and heating.
  • SMA has a crystal structure called an austenite phase (parent phase) at a temperature higher than the transformation temperature, and a crystal structure called a martensite phase at a low temperature.
  • a general metal material does not return to its original shape when a predetermined external force is applied.
  • SMA does not return to the shape of martensite when it is deformed by applying a predetermined external force in the martensitic phase state, but when the temperature exceeds the transformation temperature.
  • the phase transforms from the site phase to the austenite phase, and the shape recovers to its original shape before deformation.
  • the SMA actuator 41 using SMA generates a driving force by utilizing this characteristic. By the way, an actuator that repeats the operation for increasing and decreasing temperature is required to have bidirectionality corresponding to this temperature change.
  • SMA Although some SMAs have bi-directionality, SMA usually recovers its shape to a memorized shape due to heating, but it remains in its memorized shape even after cooling, and has only one direction. For this reason, in one aspect of the SMA actuator, a bias applying member that applies an external force (bias) that deforms the SMA in the other direction different from the one direction after the shape recovery is necessary.
  • the support member 2 functions as the bias applying member.
  • the SMA actuator 41 has a predetermined shape stored in advance, and applies a driving force to the optical component by being heated.
  • the SMA actuator 41 is formed of Ni—Ti alloy, Cu—Al—Ni alloy, Cu—Zn alloy, Cu—Zn—Al alloy, Ni—Al alloy, or the like.
  • the Ni—Ti alloy is excellent in strength, toughness, corrosion resistance, and wear resistance, and is suitable for the SMA actuator 41.
  • the SMA actuator 41 includes a pressing operation portion 41a for pressing the pressed operation portion 12a of the array lens 1 at one end thereof.
  • the other end of the SMA actuator 41 is fixedly supported by the actuator support 35 of the support member 3.
  • the pressing operation portion 41a of the SMA actuator 41 is inclined so as to face the direction inclined with respect to the X direction and the Z direction.
  • the inclined surface is formed so that the normal line passes between a central axis 15 formed in the array lens 1 described later and the second connected portion 14 of the array lens 1, and the shape of the SMA actuator 41 is restored.
  • the pressed operation portion 12a of the array lens 1 so that an action line P of the pressing force is formed between a center axis 15 formed in the array lens 1 described later and the second connected portion 14 of the array lens 1.
  • the central axis 15 is an axis that passes through the midpoint O of the first connected portion 13 and the second connected portion 14 of the array lens 1 and extends in the Y direction.
  • the imaging unit 7 captures an optical image of a subject imaged on the light receiving surface by the optical component 1a and outputs an image signal (or image data).
  • the imaging unit 7 includes, for example, an imaging element 71 and an element support member 72.
  • the image sensor 71 is disposed on the image side of the lens unit LUa, and has R (red), G (green), and B (blue) in accordance with the amount of light in the optical image of the object (subject) imaged by the lens unit LUa. This is an element that performs photoelectric conversion to an electrical image signal of each color component and outputs it to an unillustrated image processing circuit that performs predetermined image processing.
  • the imaging unit 7 may include the number of imaging elements 71 corresponding to the number of eyes of the array lens 1 (the number of imaging optical systems 111, which is 16 in the example illustrated in FIG. 1).
  • the imaging unit 7 includes one imaging element 71, and the effective area of the imaging element 71 is divided into a number of divided areas corresponding to the number of eyes of the array lens 1. Each formed optical image is configured to be captured in each divided region.
  • the image sensor 71 is, for example, a CCD (Charge Coupled Device) type image sensor, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, or the like.
  • the image processing circuit (not shown) generates image data by performing predetermined image processing on image signals of R (red), G (green), and B (blue) color components obtained by the image sensor 71.
  • a DSP Digital Signal Processor
  • the predetermined image processing includes, for example, amplification processing and digital conversion processing performed on an analog output signal from the image sensor 71, determination processing of an appropriate black level for the entire image, ⁇ correction processing, white balance adjustment (WB) This is well-known image processing such as (adjustment) processing, contour correction processing, and color unevenness correction processing.
  • the imaging unit 7 may be configured to output an image signal as described above, or may further include the image processing circuit (not shown) and output image data. good.
  • the element support member 72 is a flat member and is a member that supports the image sensor 71.
  • the element support member 72 is a plate-like member whose outer shape is rectangular in plan view.
  • the element support member 72 is fixed to the end surface in the ⁇ Z direction of the support member 3 with, for example, an adhesive, so that the lens unit LUa and the imaging unit 7 are connected, and the lens unit and the imaging unit 7 are connected.
  • the SMA actuator 41 is heated by generating Joule heat due to its own resistance by being supplied with power by a control drive circuit (not shown) and energized.
  • the SMA actuator 41 reaches the transformation temperature, the SMA actuator 41 recovers to the previously stored shape according to the temperature.
  • the pressing operation portion 41 a of the SMA actuator 41 presses the pressed operation portion 12 a of the array lens 1.
  • the pressed array lens 1 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 41a of the SMA actuator 41 as shown in FIG. 1C.
  • the array lens 1 is moved in the + Z direction, the array lens 1 is centered by the first spring 21 and the second spring 22 due to a difference in the amount of deformation between the first spring 21 and the second spring 22.
  • the counterclockwise spring applying moment M10 of FIG. 1C around 15 is received.
  • the pressing operation portion 41a of the SMA actuator 41 is arranged so that an operation line P of a pressing force can be generated between the central shaft 15 and the second connected portion 14 of the array lens 1 in the pressed operation portion 12a of the array lens 1.
  • the array lens 1 receives a countering moment M11 in a direction opposite to the spring applying moment M10, that is, in the clockwise direction around the central axis 15, as shown in FIG. 1C.
  • the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled by the counter moment M11 applied to the array lens 1 by the pressing operation of the SMA actuator 41, As a result, the array lens 1 moves in the + Z direction with a force in the + Z direction component applied.
  • the lens unit LUa and the imaging device Ia in the present embodiment can suppress the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 when moving in the + Z direction.
  • the occurrence of tilt in the X direction can be suppressed.
  • the SMA actuator 41 cools down by natural heat dissipation, and gradually returns to a flat shape by a bias in the ⁇ Z direction by the pair of first springs 21 and second springs 22.
  • the first spring 21 and the second spring 22 are parallel to each other.
  • FIG. 2 is a diagram illustrating a configuration of the imaging apparatus according to the second embodiment.
  • 2A is a plan view
  • FIG. 2B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 2A.
  • the image sensor Ib of the second embodiment will be described with reference to FIG.
  • the imaging device Ib of the second embodiment includes a lens unit LUb and an imaging unit 7.
  • the lens unit LUb includes an array lens 1, an elastic support member 102, A support member 3 and a drive unit 4 are provided.
  • the imaging unit 7, the array lens 1, the support member 3, and the drive unit 4 each have the same configuration as that of the first embodiment.
  • the elastic support member 102 of the second embodiment includes a pair of first and second springs 121 and 122 as in the first embodiment, but each of the first and second springs 121, 122 is constituted by a wire spring (suspension wire) having a circular cross section. Other than that, the same configuration as that of the first embodiment is adopted.
  • This second embodiment also functions in the same manner as the previous first embodiment. More specifically, the array lens 1 that is pressed by the pressing operation portion 41 a of the SMA actuator 41 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 41 a of the SMA actuator 41. When the array lens 1 moves in the + Z direction, the array lens 1 receives a spring applying moment M10 in the counterclockwise direction around the central axis 15 as shown in FIG. 2B by the first spring 121 and the second spring 122.
  • the array lens 1 receives a counterclockwise moment M11 around the central axis 15 opposite to the spring applying moment M10 as shown in FIG. 2A from the SMA actuator 41.
  • the array lens 1 when moving in the + Z direction, the array lens 1 is moved in the + Z direction with only the force of the + Z direction component applied thereto, and the lens unit LUb and the imaging device Ib in the present embodiment are applied to the array lens 1.
  • the spring application moment M10 can be suppressed, and the occurrence of tilt in the X direction of the array lens 1 can be suppressed.
  • FIG. 3 is a diagram illustrating a configuration of the imaging apparatus according to the third embodiment.
  • 3A is a plan view
  • FIG. 3B is a side view with a part in cross-section for explaining the operation of the imaging apparatus of FIG. 3A.
  • the image sensor Ic of the third embodiment will be described with reference to FIG.
  • the imaging element Ic of the third embodiment includes a lens unit LUc and an imaging unit 7 as in the first embodiment, and the lens unit LUc includes the array lens 201, the elastic support member 2, and A support member 3 and a drive unit 4 are provided.
  • the array lens 201 includes a rectangular lens main body 211 and a protrusion 212, as in the first embodiment.
  • the lens body 211 has the same configuration as that of the first embodiment, but the pressed operation portion 212a of the protrusion 212 is formed on an inclined surface inclined with respect to the X direction and the Z direction. Yes.
  • the pressed operation portion 212a is inclined with respect to the X direction and the Z direction so that the normal line passes between the central axis 15 of the array lens 201 and the second connected portion 14 of the array lens 211. Formed on the inclined surface.
  • the actuator support portion 235 of the support member 3 in the third embodiment is formed in a plane parallel to the X direction and the Y direction and facing the + Z direction.
  • the third embodiment has the same configuration as that of the first embodiment.
  • the pressing operation portion 41a of the SMA actuator 41 presses the pressed operation portion 12a of the array lens 1.
  • the pressed array lens 1 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 41a of the SMA actuator 41.
  • the array lens 101 receives a counterclockwise spring applying moment M10 about the central axis 15 as shown in FIG. 3B by the first spring 21 and the second spring 22.
  • the pressed operation portion 112a of the array lens 1 is pushed from the pressing operation portion 41a of the SMA actuator 41 along the normal line formed between the central axis 15 and the second connected portion 14 of the array lens 1. Since the pressure action line P is generated, the array lens 1 receives a counter-moment M11 in a direction opposite to the spring application moment M10, that is, in the clockwise direction around the central axis 15 as shown in FIG. 3B.
  • the spring applying moment M10 applied to the array lens 201 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled by the counter moment M11 applied to the array lens 1 by the pressing operation of the SMA actuator 41, As a result, the array lens 201 moves in the + Z direction in a state where a force in the + Z direction component is applied.
  • the lens unit LUc and the imaging device Ic in the present embodiment can suppress the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 when moving in the + Z direction.
  • the occurrence of tilt in the X direction can be suppressed.
  • FIG. 4 is a diagram illustrating a configuration of the imaging apparatus according to the fourth embodiment.
  • 4A is a plan view
  • FIG. 4B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 4A.
  • an image sensor Id according to the fourth embodiment will be described with reference to FIG.
  • the imaging device Id of the fourth embodiment includes a lens unit LUd and an imaging unit 7 as in the first embodiment, and the lens unit LUd includes the array lens 301, the elastic support member 2, and the lens unit LUd.
  • a support member 3 and a drive unit 4 are provided.
  • the array lens 301 according to the fourth embodiment includes a rectangular lens body 311 and a protrusion 312 as in the first embodiment.
  • the lens body 311 has the same configuration as that of the first embodiment, but the protrusion 312 is formed at the other end of the lens body 311.
  • the protrusion 312 is formed of a quadrangular prism-like shape as in the first embodiment, and the pressed operation portion 312a is formed in a plane parallel to the X direction and the Y direction and facing the ⁇ Z direction. Has been.
  • the support member 3 includes an actuator support portion 335 that supports the actuator 41 at the corners of the first side wall 331 and the fourth side wall 334.
  • the actuator support 335 is formed in a plane parallel to the X direction and the Y direction and facing the + Z direction.
  • the other end portion of the SMA actuator 41 of the drive unit 4 is fixedly supported by the actuator support portion 335 of the support member 3, so that the pressing operation portion 41 a of the SMA actuator 41 faces the + Z direction and is heated. Accordingly, the pressing operation unit 41a moves in the + Z direction, and the pressing operation unit 41a presses the pressed operation unit 312a of the array lens 301 during the movement. At this time, the action line P of the pressing force that presses the pressed operation portion 312a from the pressing operation portion 41a is the midpoint O (center axis 15) of the first connected portion 13 and the second connected portion 14 of the array lens 301. ) From a distance L1. Except for the above, the fourth embodiment has the same configuration as that of the first embodiment.
  • the pressing operation portion 41a of the SMA actuator 41 operates the pressing operation portion 312a of the array lens 301 only in the + Z direction. To do.
  • the pressed array lens 301 moves in the + Z direction by the + Z direction force from the pressing operation portion 41a of the SMA actuator 41.
  • the array lens 301 receives a spring applying moment M10 in the counterclockwise direction around the central axis 15 as shown in FIG. 4B by the first spring 21 and the second spring 22. .
  • the line of action P of the pressing force is formed with the distance L1 from the central axis 15 of the array lens 301 from the pressing operation portion 41a of the SMA actuator 41.
  • the counter moment M11 is received in the opposite direction to the spring applying moment M10, that is, in the clockwise direction around the central axis 15.
  • the spring applying moment M10 applied to the array lens 301 by the first spring 21 and the second spring 22 during the movement in the + Z direction cancels the counter moment M11 applied to the array lens 1 by the pressing operation of the SMA actuator 41.
  • the array lens 301 moves in the + Z direction with a force applied in the + Z direction.
  • the lens unit LUd and the imaging device Id in the present embodiment can suppress the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 when moving in the + Z direction.
  • the occurrence of tilt in the X direction can be suppressed.
  • FIG. 5 is a diagram illustrating a configuration of an imaging apparatus according to the fifth embodiment.
  • 5A is a plan view
  • FIG. 5B is a side view with a part in cross-section for explaining the operation of the imaging device of FIG. 5A.
  • an image sensor Ie according to a fifth embodiment will be described with reference to FIG.
  • the imaging element Ie of the fourth embodiment includes a lens unit LUe and an imaging unit 7 as in the first embodiment, and the lens unit LUe includes the array lens 1 and the elastic support member 402. And a support member 3 and a drive unit 4.
  • the elastic support member 402 of the fifth embodiment includes a pair of first and second springs 421 and 422 as in the first embodiment, but in the fifth embodiment, the first support The spring 421 and the second spring 422 are configured with different rigidity in the Z direction.
  • the first spring 421 and the second spring 422 of the fifth embodiment are constituted by leaf springs.
  • the second spring 422 disposed in the ⁇ Z direction of the first spring 421 is formed so that the plate thickness is thinner than the plate thickness of the first spring 421, and the second spring 422 is deformed more than the first spring 421. It is supposed to be easy. Except for the fifth embodiment, the same configuration as that of the first embodiment is adopted.
  • the array lens 301 pressed from the pressing operation portion 41a of the SMA actuator 41 is moved from the pressing operation portion 41a of the SMA actuator 41, as in the first embodiment. It moves in the + Z direction by the force of the + Z direction component.
  • the array lens 301 receives a spring applying moment M10 in the counterclockwise direction around the central axis 15 as shown in FIG. 5B by the first spring 21 and the second spring 22. .
  • the array lens 301 receives a counter moment M11 in a direction opposite to the spring application moment M10, that is, in the clockwise direction around the central axis 15.
  • the second spring 422 is more easily deformed in the Z direction than the first spring 421 when receiving the counterclockwise moment M11 around the central axis 15. Can be applied.
  • FIG. 6 is a diagram illustrating a configuration of an imaging apparatus according to the sixth embodiment.
  • 6A is a plan view
  • FIG. 6B is a bottom view
  • FIG. 6C is a side view, partly in section, for explaining the operation of the imaging device of FIG. 6A.
  • the imaging device If of the sixth embodiment will be described with reference to FIG.
  • the imaging device If of the sixth embodiment includes a lens unit LUf and an imaging unit 7 as in the fifth embodiment, and the lens unit LUf includes the array lens 1, the elastic support member 502, A support member 3 and a drive unit 4 are provided.
  • the elastic support member 502 of the sixth embodiment includes a pair of first and second springs 521 and 522, and the first spring 521 and the second spring 522 are Z.
  • the first spring 521 and the second spring 522 have different shapes in the Z direction due to different shapes. Yes.
  • the first spring 521 and the second spring 522 of the sixth embodiment are constituted by leaf springs.
  • the first spring 521 is a first spring extending in the Y direction between an optical component connecting portion 523 formed at one end thereof and a supported portion 524 formed at the other end thereof.
  • a bent piece 525 is provided, and the first spring bent piece 525 separates the optical component connecting portion 523 from the supported portion 524 by a distance L2 in the Y direction.
  • the second spring 522 is similar to the first spring 521 between the optical component connecting portion 523 formed at one end thereof and the supported portion 524 formed at the other end.
  • a second spring bent piece 526 extending in the Y direction is provided.
  • the second spring bent piece 526 is formed such that the length in the Y direction is longer than the length of the first spring bent piece 525.
  • the distance L3 in the Y direction between the optical component connecting portion 523 and the supported portion 524 in the second spring 522 is larger than the distance L2 of the first spring 521. Therefore, when the same force in the Z direction is applied to the optical component connecting portions 523 of the first spring 521 and the second spring 522, the second spring 522 is more easily deformed in the Z direction than the first spring 521. It is a thing. Except for the above, the sixth embodiment has the same configuration as that of the first embodiment.
  • the sixth embodiment configured as described above operates in the same manner as the previous fifth embodiment.
  • FIG. 7 is a diagram illustrating a configuration of an imaging apparatus according to the seventh embodiment.
  • 7A is a plan view
  • FIG. 7B is a side view with a part in cross-section for explaining the operation of the imaging device of FIG. 7A.
  • the image sensor Ig of the seventh embodiment will be described with reference to FIG.
  • the imaging element Ig of the seventh embodiment includes a lens unit LUg and an imaging unit 7 as in the first embodiment, and the lens unit LUg includes an array lens 601, an elastic support member 2, and A support member 603 and a drive unit 604 are provided.
  • the pressed operation portion 612a of the protrusion 612 in the array lens 601 of the seventh embodiment is recessed in a dogleg shape (V shape, C shape) as viewed from the side.
  • the support member 603 includes an actuator locking portion 645 that slidably locks an SMA actuator 641 of a driving unit 604 described later on each of the second side wall 32 and the fourth side wall 34.
  • the SMA actuator 641 of the driving unit 604 is composed of a linear one, and is contracted and shortened by being heated.
  • the SMA actuator 641 includes a pressing operation unit 641a at an intermediate portion in the longitudinal direction.
  • the SMA actuator 641 is brought into contact with the pressed operation portion 612a of the array lens 601 so as to hang the pressing operation portion 641a, and the actuator engaging portions of the second side wall 32 and the fourth side wall 34 of the support member 603, respectively. Both end portions are connected to the first side wall 31 of the support member 603 so as to be locked to 645.
  • the operation unit 642 from the pressed operation unit 612a to the actuator locking unit 645 in the SMA actuator 641 is in the direction inclined with respect to the X direction and the Z direction in a side view as shown in FIG. 7B. It extends in an inclined manner so as to pass between the central axis 15 of the lens 601 and the second connected portion 14.
  • the seventh embodiment has the same configuration as that of the first embodiment.
  • the SMA actuator 41 when the SMA actuator 41 is heated and reaches the transformation temperature, the SMA actuator 641 contracts, and the press operation unit 641a is moved in the X direction and the Z direction by the operation unit 642 along with the contraction.
  • the pressed operation portion 612a of the array lens 601 is pressed in a direction inclined with respect to it.
  • the pressed array lens 601 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 641a of the SMA actuator 641.
  • the array lens 601 receives a counterclockwise spring applying moment M10 about the central axis 15 as shown in FIG. 7B by the first spring 21 and the second spring 22. .
  • the pressed operation portion 612a of the array lens 601 is such that the action line P of the pressing force passes between the central axis 15 and the second connected portion 14 of the array lens 601 from the pressing operation portion 641a of the SMA actuator 641.
  • the array lens 601 receives a countering moment M11 in a direction opposite to the spring application moment M10, that is, in the clockwise direction around the central axis 15, as shown in FIG. 7B.
  • the spring applying moment M10 applied to the array lens 601 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled by the counter moment M11 applied to the array lens 601 by the pressing operation of the SMA actuator 641.
  • the array lens 601 moves in the + Z direction with a force in the + Z direction component applied.
  • the lens unit LUg and the imaging device Ig in the present embodiment can suppress the spring applying moment M10 applied to the array lens 601 by the first spring 21 and the second spring 22 when moving in the + Z direction.
  • the occurrence of tilt in the X direction can be suppressed.
  • FIG. 8 is a diagram illustrating a configuration of an imaging apparatus according to the eighth embodiment.
  • FIG. 8A is a plan view
  • FIG. 8B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 8A.
  • an image sensor Ih according to an eighth embodiment will be described with reference to FIG.
  • the imaging device Ih according to the eighth embodiment includes the lens unit LUh and the imaging unit 7 as in the first embodiment, and the lens unit LUh includes the array lens 701, the elastic support member 2, and the lens unit LUh.
  • a support member 703 and a drive unit 704 are provided.
  • the array lens 701 includes a substantially rectangular lens body 711 and a pressed operation portion 712a as in the first embodiment.
  • the lens main body 711 includes a magnet holding portion that holds a magnet 747 that forms part of an actuator 741 described later, and this magnet holding portion forms a pressed operation portion 712a.
  • the actuator 741 of the drive unit 704 includes a coil 746 and a magnet 747 in the eighth embodiment.
  • the coil 746 is fixedly held by a coil holding portion 731 a provided on the first side wall 31 of the support member 703.
  • the magnet 747 is disposed at the other end of the lens body 711 at a distance L4 from the central axis 15 of the array lens 701 so that the facing surface 747a to the coil 746 is parallel to the Z direction.
  • the magnet 747 (the other end of the lens main body 711) receives a force in the + Z direction with the supply of electric power.
  • the magnet 747 when power is supplied to the coil 746 from a control drive circuit (not shown), the magnet 747 receives a force in the Z direction, and the array lens 701 holding the magnet 747 It receives the force of the + Z direction component from 747 and moves in the + Z direction.
  • the array lens 701 moves in the + Z direction, the array lens 701 receives a counterclockwise spring applying moment M10 about the central axis 15 as shown in FIG. 8B by the first spring 21 and the second spring 22. .
  • the array lens 701 receives a countering moment M11 in a direction opposite to the spring applying moment M10 as shown in FIG. 8B from the magnet 747, that is, in the clockwise direction around the central axis 15. Therefore, the spring applying moment M10 applied to the array lens 701 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled out by the counter moment M11 applied to the array lens 701 by the driving force of the actuator 741. As a result, the array lens 701 moves in the + Z direction with a force in the + Z direction component applied.
  • FIG. 9 is a diagram illustrating a configuration of a modified example of the imaging apparatus according to the eighth embodiment.
  • FIG. 9A is a plan view
  • FIG. 9B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 9A.
  • the coil 746 is held on the second side wall 32 and the fourth side wall 34 of the support member 703 respectively, while the magnet 747 is separated from the central axis 15 of the array lens 701 by a distance L5.
  • the opposing surfaces 747a facing the coil 746 are arranged on both end surfaces of the portion 711 in the Y direction so as to be parallel to the Z direction, and the magnet 747 receives a force in the + Z direction as power is supplied to the coil 746. It may be.
  • the first spring and the second spring have constant rigidity over the entire length.
  • the first spring and the second spring are not limited to this form and can be appropriately changed.
  • a part of one or both of the first spring and the second spring may have a part having higher or lower rigidity than the other part along the X direction, and the spring applying moment M10 may be difficult to occur.
  • a lens unit includes an optical component including one or a plurality of optical lenses, an elastic support member that elastically supports the optical component, a support member that supports the elastic support member, and the optical component in an optical axis direction.
  • the elastic support members extend along a second direction perpendicular to the first direction with a distance from each other in the first direction.
  • the first and second springs each include an optical component connecting portion connected to the optical component at one end thereof, and a support supported by the support member at the other end.
  • Each of which includes a support portion, and the actuator applies a force in the first direction to the optical component, and the first and second springs apply the force in the first direction to the optical component.
  • the spring imparting moments vignetting is configured to impart a counter moment opposite to the optical component.
  • the actuator is configured to apply a counter moment to the optical component opposite to the spring applying moment applied to the optical component by the first and second springs when the force in the first direction is applied.
  • the spring applying moment applied to the optical component by the first and second springs can be suppressed. This makes it difficult for the optical component to tilt when moving in the first direction.
  • the first and second springs are leaf springs or suspension wires.
  • first and second springs are leaf springs or suspension wires
  • a spring applying moment may be applied to the optical component by the first and second springs as the first direction force is applied from the actuator.
  • the spring application moment can be reduced by changing the shape of the leaf spring or the suspension wire and the counter application moment can be easily applied, and the spring application moment can be efficiently suppressed.
  • the first and second springs can be easily manufactured.
  • the optical component includes an optical component main body including the optical lens, and a pressed operation unit that is pressed by the actuator
  • the optical component main body includes:
  • the first and second springs each include a connected portion connected to the optical component connecting portion, and the spring applying moment passes through a midpoint between the connected portions of the optical component main body portion and the first spring is provided.
  • a moment about a central axis extending in a third direction orthogonal to the direction and the second direction, and the pressed operation portion is applied to an action line of a pressing force applied from the actuator to the pressed operation portion and the central axis. It is characterized by being pressed so that a distance is possible.
  • the pressed operation portion is pressed by the actuator from the side opposite to the first and second springs, the actuator can be arranged without interfering with the first and second springs, and the arrangement of the actuator becomes easy.
  • the force in the first direction is a force in a direction from the second spring toward the first spring
  • the actuator has a line of action of the pressing force on the central axis.
  • the pressed operation portion is pressed so as to pass between the second spring and the optical component connecting portion of the second spring.
  • the first and second springs are applied in accordance with the force of the first direction component applied to the pressed operation part and the force of the first direction component.
  • a counter moment opposite to the spring applying moment applied to the optical component can be easily applied to the optical component.
  • the force in the first direction is a force in a direction from the second spring toward the first spring
  • the pressed operation portion is an inclined surface
  • the inclination The surface is inclined with respect to the first direction and the second direction so that a normal line of the inclined surface passes between the central axis and the optical component connecting portion of the second spring.
  • the first and second springs are applied in accordance with the force of the first direction component applied to the pressed operation part and the force of the first direction component.
  • the pressed operation portion is formed between the optical component connecting portion and the supported portion of the first spring in the second direction.
  • the actuator can be arranged between the optical component connecting portion and the supported portion of the first spring in the second direction, and the apparatus can be miniaturized.
  • the actuator applies a force in the second direction.
  • the first spring and the second spring are configured such that elastic deformation amounts in the first direction due to a pressing force applied from the actuator via the optical component are different from each other. Has been.
  • the first and second springs are applied in accordance with the force of the first direction component applied to the pressed operation part and the force of the first direction component.
  • a counter-moment that is opposite to the spring-applying moment applied to the optical component can be applied to the optical component more easily and reliably.
  • the first spring and the second spring have a part having rigidity different from that of the other part along the second direction.
  • the amount of bending deformation in the first direction can be made different between the first spring and the second spring, and the spring applying moment can be reduced.
  • the spring application moment can be efficiently suppressed.
  • An imaging device includes an imaging device that converts an optical image into an electrical signal, a lens unit that includes one or a plurality of optical lenses, and that forms an optical image on a light receiving surface of the imaging device.
  • the lens unit is any one of the lens units described above.
  • the imaging apparatus can suppress the occurrence of tilt of the optical component.
  • a lens unit and an imaging device can be provided.

Abstract

This lens unit and imaging device are provided with an actuator for moving an optical component, which is elastically supported by an elastic support member, in a first direction, said lens unit and imaging device being configured such that the elastic support member is provided at one end with an optical component linking portion that is linked to the optical component and at the other end with a supported portion that is supported by the support member, and the actuator imparts force to the optical component in the first direction and imparts, to the optical component, an opposing moment that is in the opposite direction to the spring-imparted moment applied to the optical component by the elastic support member in conjunction with the imparting of force in the first direction.

Description

レンズユニットおよび撮像装置Lens unit and imaging device
 本発明は、光学素子を保持するレンズユニットおよび前記レンズユニットを備えた撮像装置に関する。 The present invention relates to a lens unit that holds an optical element and an imaging device including the lens unit.
 例えば光学レンズ等の光学素子を保持するレンズユニットは、前記光学素子を機能させるために、前記光学素子を設計位置に保持する保持機能を備えるだけでなく、透過光量を制御する絞り機能、および、ピントを自動的に合わるためのオートフォーカス機能等の諸機能を備え、また、必要に応じて、焦点距離を可変する変倍機能をさらに備えている。これら諸機能のうち、オートフォーカス機能は、ピント合わせのための光学素子をレンズユニットの光軸方向に沿って移動させることによって実行され、また、変倍機能は、変倍のための光学素子をレンズユニットの光軸方向に沿って移動させることによって実行される。したがって、これらオートフォーカス機能や変倍機能のために、レンズユニットは、当該光学素子を移動させる移動機構を備えている。 For example, a lens unit that holds an optical element such as an optical lens has not only a holding function for holding the optical element at a design position in order to make the optical element function, but also a diaphragm function that controls the amount of transmitted light, and Various functions such as an autofocus function for automatically focusing are provided, and a zooming function for changing the focal length as necessary is further provided. Among these functions, the autofocus function is executed by moving the optical element for focusing along the optical axis direction of the lens unit, and the zooming function is the optical element for zooming. It is executed by moving along the optical axis direction of the lens unit. Therefore, the lens unit includes a moving mechanism for moving the optical element for the auto focus function and the zoom function.
 このような移動機構の一つに、光学素子を保持するとともにアクチュエータによって駆動される移動体を、互いに平行に配置された第1および第2ばねからなる平行ばねで片持ち支持する直進ガイド機構があり、このような直進ガイド機構を備えた装置が従来から知られている。例えば、特許文献1に平行ばねで片持ち支持する直進ガイド機構を備えた光学ヘッドが開示されている。 As one of such moving mechanisms, there is a linear guide mechanism that cantilever-supports a moving body that holds an optical element and is driven by an actuator with a parallel spring including first and second springs arranged in parallel to each other. There has been known a device having such a straight guide mechanism. For example, Patent Document 1 discloses an optical head provided with a rectilinear guide mechanism that is cantilevered by a parallel spring.
 この特許文献1に開示された直進ガイド機構は、光軸方向であるZ方向(第1方向)に互いに距離をもって平行に前記Z方向と直交するX方向(第2方向)に沿って延ばされた一対の第1および第2ばねからなる平行ばねを、移動体におけるZ方向およびX方向に直交するY方向の一方端部に固定的に連結する。直進ガイド機構は、移動体におけるY方向の他方端部に、前記Y方向の一方端部に配した平行ばねよりも線径が細く剛性の小さい一対の第1および第2ばねを用いてそれらを互いにZ方向に距離をもって平行にX方向に沿って延ばして固定的に連結する。そして、直進ガイド機構は、アクチュエータによって移動体がZ方向に移動する際に、X方向に延びる軸回りに移動体を回転させて移動体のY方向の傾きを調整できるように構成されている。 The rectilinear guide mechanism disclosed in Patent Document 1 extends along the X direction (second direction) perpendicular to the Z direction in parallel to the Z direction (first direction), which is the optical axis direction, with a distance from each other. A parallel spring composed of a pair of first and second springs is fixedly connected to one end of the movable body in the Y direction perpendicular to the Z direction and the X direction. The rectilinear guide mechanism uses a pair of first and second springs having a smaller wire diameter and lower rigidity than the parallel springs arranged at one end in the Y direction at the other end in the Y direction of the moving body. They are fixedly connected by extending along the X direction in parallel with a distance in the Z direction. The linear guide mechanism is configured such that when the moving body moves in the Z direction by the actuator, the moving body can be rotated around an axis extending in the X direction to adjust the inclination of the moving body in the Y direction.
 ところで、例えば光学部品1000がアクチュエータ1010に+Z方向に押圧されて+Z方向に移動する場合、図10Bに示すように、例えば+Z方向の第1ばね1003の弾性変形部1005は、-Z方向の第2ばね1004よりも圧縮量が大きく、-Z方向の第2ばね1004の弾性変形部1006は、+Z方向の第1ばね1003よりも引張量が大きい。その結果、例えば第1ばねと第2ばねによって光学部品1000は、図10Cに示すように、第1および第2ばねそれぞれの光学部品1001との光学部品連結部の中点Oを通り且つY方向に延びる中心軸15回りのばね付与モーメントM10を受ける。 By the way, for example, when the optical component 1000 is pressed in the + Z direction by the actuator 1010 and moves in the + Z direction, as shown in FIG. 10B, for example, the elastic deformation portion 1005 of the first spring 1003 in the + Z direction The amount of compression is larger than that of the two springs 1004, and the elastic deformation portion 1006 of the second spring 1004 in the -Z direction has a larger amount of tension than the first spring 1003 in the + Z direction. As a result, for example, by the first spring and the second spring, the optical component 1000 passes through the middle point O of the optical component connecting portion with the optical component 1001 of each of the first and second springs as shown in FIG. 10C and in the Y direction. The spring applying moment M10 about the central axis 15 extending in the direction is received.
 このようなばね付与モーメントM10に対して2つのばねは、線方向(X方向)の剛性により位置を保持するため、光学部品は、ほぼ姿勢を保ったまま移動するが、付与モーメントM10が生じると、図11Aに示すように、光学素子1001の光軸AX1がレンズユニットの光軸AX2に対し傾くチルトβがわずかに生じてしまい、この結果、結像位置に形成される光学像が劣化してしまう。すなわち、光学像の画像が劣化してしまう。従来であればこの程度の傾きは、画像性能にとって無視できる程度であったが、特に、複数の撮像光学系(個眼)を2次元アレイ状に配列したアレイレンズ1002を備えたレンズユニットの場合では、図11Bに示すように、アレイレンズ1002から撮像素子の受光面1011(実線はチルトが0の場合の受光面を示し、破線はチルトが有る場合の受光面を示す)までの距離がチルトによって個眼の配列位置に応じて個眼ごとに異なることになるため、チルトが単眼のレンズでは無視できるような微少量であっても、個眼によっては無視できずに、光学像の画像の劣化が大きくなる。すなわち、図11Aに示す単眼の光学素子1001では、光学性能の低下は、画像周辺のみで生じるが、図11Bに示すアレイレンズ1002では、アレイレンズ1002の周辺に位置する個眼の光学性能は、略完全に低下してしまい、その画像全体が劣化してしまう。このため、特にアレイレンズを備えたレンズユニットの場合では、上記チルトは、重大な問題となる。上記チルトは、特にばねの線方向に剛性が弱い部分がある場合チルト量は、顕著となる。2つのばねに線方向に沿って一方には圧縮、一方には引張の力が発生するが剛性が弱い部分があるとその部分で長さ方向に変化するためである。さらに、図10Aに示すように、第1ばね1003および第2ばね1004が曲げ部1007を有する場合、上記チルトが、より生じ易くなる。したがって、このようなチルトを補正することが望まれる。 Since the two springs maintain their positions with respect to such a spring application moment M10 by the rigidity in the linear direction (X direction), the optical component moves while maintaining almost the posture, but when the application moment M10 occurs. As shown in FIG. 11A, there is a slight tilt β in which the optical axis AX1 of the optical element 1001 is inclined with respect to the optical axis AX2 of the lens unit. As a result, the optical image formed at the imaging position is deteriorated. End up. That is, the optical image is deteriorated. Conventionally, this degree of inclination is negligible for image performance. In particular, in the case of a lens unit including an array lens 1002 in which a plurality of imaging optical systems (single eyes) are arranged in a two-dimensional array. Then, as shown in FIG. 11B, the distance from the array lens 1002 to the light receiving surface 1011 of the image sensor (the solid line indicates the light receiving surface when the tilt is 0, and the broken line indicates the light receiving surface when there is a tilt) is tilted. Depending on the arrangement position of the individual eye, the individual eye will differ, so even if the tilt is so small that it can be ignored with a monocular lens, it cannot be ignored depending on the individual eye. Deterioration increases. That is, in the monocular optical element 1001 shown in FIG. 11A, the optical performance degradation occurs only in the periphery of the image, but in the array lens 1002 shown in FIG. 11B, the optical performance of the single eye located around the array lens 1002 is The image is almost completely lowered, and the entire image is deteriorated. For this reason, the tilt becomes a serious problem particularly in the case of a lens unit including an array lens. The tilt amount becomes significant especially when there is a portion with low rigidity in the linear direction of the spring. This is because if two springs generate a compressive force on one side and a tensile force on the other along the linear direction, but there is a portion with low rigidity, the portion changes in the length direction. Furthermore, as shown in FIG. 10A, when the first spring 1003 and the second spring 1004 have a bent portion 1007, the tilt is more likely to occur. Therefore, it is desired to correct such tilt.
 しかしながら、上記特許文献1に開示された直進ガイド機構では、上記のように生じるばね付与モーメントを抑えることができず、その結果、光学部品が光軸方向に移動する際に上記のようなチルトが生じてしまう。 However, the linear guide mechanism disclosed in Patent Document 1 cannot suppress the spring application moment generated as described above, and as a result, when the optical component moves in the optical axis direction, the tilt as described above occurs. It will occur.
特開2003-228864号公報JP 2003-228864 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、光学部品が光軸方向に移動する際に第1ばねと第2ばねとによって光学部品にかかるばね付与モーメントを抑えることができ、光学部品のチルトの発生を抑え得るレンズユニットおよび撮像装置の提供することである。 The present invention has been made in view of the above-described circumstances, and an object thereof is to suppress a spring applying moment applied to the optical component by the first spring and the second spring when the optical component moves in the optical axis direction. It is possible to provide a lens unit and an imaging apparatus that can suppress the occurrence of tilt of optical components.
 本発明にかかるレンズユニットおよび撮像装置は、弾性支持部材で弾性支持された光学部品を第1方向に移動させるためのアクチュエータを備え、弾性支持部材は、光学部品と連結された光学部品連結部を一方端部に、支持部材に支持された被支持部を他方端部に、それぞれ備え、アクチュエータは、光学部品に第1方向の力を付与するとともに、第1方向の力の付与に伴い弾性支持部材によって光学部品にかけられるばね付与モーメントとは反対向きの対抗モーメントを光学部品に付与するように構成されている。したがって、本発明にかかるレンズユニットおよび撮像装置は、光学部品が光軸方向に移動する際に第1ばねと第2ばねとによって移動体にかかるばね付与モーメントを抑えることができ、光学部品のチルトの発生を抑え得る。 A lens unit and an imaging apparatus according to the present invention include an actuator for moving an optical component elastically supported by an elastic support member in a first direction, and the elastic support member includes an optical component coupling portion coupled to the optical component. A supported portion supported by a support member is provided at one end portion at the other end portion, and the actuator applies a force in the first direction to the optical component and elastically supports the force in the first direction. The optical component is configured to apply a counter moment opposite to the spring applying moment applied to the optical component by the member. Therefore, the lens unit and the imaging apparatus according to the present invention can suppress the spring application moment applied to the moving body by the first spring and the second spring when the optical component moves in the optical axis direction, and the tilt of the optical component can be reduced. Can be suppressed.
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
第1実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 1st Embodiment. 第2実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 2nd Embodiment. 第3実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 3rd Embodiment. 第4実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 4th Embodiment. 第5実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 5th Embodiment. 第6実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 6th Embodiment. 第7実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 7th Embodiment. 第8実施形態における撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device in 8th Embodiment. 第8実施形態における撮像装置の変形例の構成を示す図である。It is a figure which shows the structure of the modification of the imaging device in 8th Embodiment. Z方向に光学部品が移動する際の従来例の説明図である。It is explanatory drawing of the prior art example when an optical component moves to a Z direction. 単眼の場合におけるチルトの影響と、複眼の場合におけるチルトの影響とを比較説明するための図である。It is a figure for comparing and explaining the influence of the tilt in the case of a single eye and the influence of the tilt in the case of a compound eye.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
 (第1実施形態)
 図1は、第1実施形態における撮像装置の構成を示す図である。図1Aは、平面図であり、図1Bは、図1Aの一部を断面にした側面図であり、図1Cは、光軸方向であるZ方向(第1方向)に沿って光学部品が移動する場合に、図1Aの撮像装置の動作を説明するための一部を断面にした側面図である。なお、以下の説明において、+X方向は、アレイレンズ1におけるZ方向に直交するX方向(第2方向)に沿った他方端から一方端に向かう方向であり、-X方向は、アレイレンズ1におけるX方向に沿った一方端から他方端に向かう方向である。+Y方向は、アレイレンズ1におけるX方向およびZ方向に直交するY方向(第3方向)に沿った他方端から一方端に向かう方向であり、-Y方向は、アレイレンズ1におけるY方向に沿った一方端から他方端に向かう方向である。+Z方向は、アレイレンズ1が撮像部7から離れる方向であり、-Z方向は、アレイレンズ1が撮像部7に近づく方向である。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of an imaging apparatus according to the first embodiment. 1A is a plan view, FIG. 1B is a side view of a part of FIG. 1A in section, and FIG. 1C is an optical component moving along the Z direction (first direction) which is the optical axis direction. FIG. 2 is a side view, partly in cross section, for explaining the operation of the imaging device in FIG. In the following description, the + X direction is a direction from the other end along the X direction (second direction) orthogonal to the Z direction in the array lens 1 to the one end, and the −X direction is in the array lens 1. This is a direction from one end to the other end along the X direction. The + Y direction is a direction from the other end along the Y direction (third direction) orthogonal to the X direction and the Z direction in the array lens 1, and the −Y direction is along the Y direction in the array lens 1. The direction from the one end to the other end. The + Z direction is a direction in which the array lens 1 moves away from the imaging unit 7, and the −Z direction is a direction in which the array lens 1 approaches the imaging unit 7.
 実施形態における撮像装置Iは、撮像光学系によって撮像素子の受光面上に結像する物体(被写体)の光学像を前記撮像素子によって撮像し、前記光学像に応じた電気的な画像信号(または画像データ)を生成する装置である。撮像装置Iは、静止画の画像信号(または画像データ)を生成して良く、および/または、動画の画像信号(または画像データ)を生成して良い。なお、Aおよび/またはBは、AおよびBのうちの少なくとも一方を意味する。 The imaging apparatus I according to the embodiment captures an optical image of an object (subject) formed on the light receiving surface of the imaging element by the imaging optical system by the imaging element, and an electrical image signal (or a signal corresponding to the optical image) (or Image data). The imaging apparatus I may generate a still image signal (or image data) and / or a moving image signal (or image data). A and / or B means at least one of A and B.
 このような撮像装置Iの各実施形態を以下に説明するが、まず、第1実施形態における撮像装置Iaは、例えば、図1に示すように、レンズユニットLUaと、撮像部7とを備える。レンズユニットLUaは、撮像部7における後述の撮像素子71の受光面上に物体の光学像を結像する第1態様のレンズユニットであり、例えば、アレイレンズ(光学部品)1と、弾性支持部材2と、支持部材3と、駆動部4とを備えている。 Embodiments of such an imaging apparatus I will be described below. First, the imaging apparatus Ia in the first embodiment includes a lens unit LUa and an imaging unit 7, for example, as shown in FIG. The lens unit LUa is a lens unit of a first aspect that forms an optical image of an object on a light receiving surface of an image sensor 71 (to be described later) in the imaging unit 7, and includes, for example, an array lens (optical component) 1 and an elastic support member. 2, a support member 3, and a drive unit 4.
 アレイレンズ1は、平面視にて矩形形状(正方形を含む)を呈するレンズ本体部(光学部品本体部)11と、突部12とを備えている。 The array lens 1 includes a lens main body (optical component main body) 11 that has a rectangular shape (including a square) in plan view, and a protrusion 12.
 レンズ本体部11は、線形独立な2方向、より具体的には互いに直交するX方向(第2方向)およびY方向(第3方向)の2方向に2次元マトリクス状に配列された複数の撮像光学系111を備える。 The lens main body 11 has a plurality of images arranged in a two-dimensional matrix in two directions that are linearly independent, more specifically, two directions that are orthogonal to each other in the X direction (second direction) and the Y direction (third direction). An optical system 111 is provided.
 これら複数の撮像光学系111は、それぞれ、物体の光学像を撮像素子71の受光面上に結像するために、1または複数の光学レンズを光軸に沿って含む部品である。複数の撮像光学系111は、この図1に示す例では、各光軸が互いに略平行となるように、配列される。 Each of the plurality of imaging optical systems 111 is a component including one or more optical lenses along the optical axis in order to form an optical image of an object on the light receiving surface of the imaging element 71. In the example shown in FIG. 1, the plurality of imaging optical systems 111 are arranged so that the optical axes are substantially parallel to each other.
 したがって、複数の撮像光学系111を介して物体の各光学像を撮像する撮像素子71は、視差だけ異なるが略同じ被写体を写した画像信号を生成することになる。図1に示す例では、アレイレンズ1は、4行4列に2次元マトリクス状に配列された16個の撮像光学系111-11~111-44を備える。なお、撮像光学系111の個数は、これに限定されるものではなく、また、光軸に関し、必ずしも全ての撮像光学系111が平行である必要はない。 Therefore, the image sensor 71 that captures each optical image of the object via the plurality of imaging optical systems 111 generates an image signal in which substantially the same subject is captured although the parallax is different. In the example shown in FIG. 1, the array lens 1 includes 16 imaging optical systems 111-11 to 111-44 arranged in a two-dimensional matrix in 4 rows and 4 columns. Note that the number of the imaging optical systems 111 is not limited to this, and all the imaging optical systems 111 are not necessarily parallel with respect to the optical axis.
 レンズ本体部11は、その一方端部における厚さ方向(Z方向)の+Z方向の端面に、後述の弾性支持部材2の第1ばね21に連結された第1被連結部13を、-Z方向の端面に、後述の弾性支持部材2の第2ばね22に連結された第2被連結部14を、それぞれ備えている。 The lens body 11 has a first connected portion 13 connected to a first spring 21 of the elastic support member 2 to be described later on the end surface in the + Z direction in the thickness direction (Z direction) at one end thereof. A second connected portion 14 connected to a second spring 22 of the elastic support member 2 to be described later is provided on each end face in the direction.
 なお、本実施形態では、光学部品としてアレイレンズ1が用いられたが、光学部品は、アレイレンズ1から構成される形態に限らず、例えば光軸に沿って1または複数の光学レンズを配置した単眼の撮像光学系を含む部品であってもよい。また、本実施形態では、光学部品は、アレイレンズ1のみから構成されたが、例えばレンズと、レンズを保持したレンズ保持部材とを備えて構成されてもよい。 In the present embodiment, the array lens 1 is used as an optical component. However, the optical component is not limited to the configuration constituted by the array lens 1, and for example, one or a plurality of optical lenses are arranged along the optical axis. It may be a component including a monocular imaging optical system. Further, in the present embodiment, the optical component is configured by only the array lens 1, but may be configured to include, for example, a lens and a lens holding member that holds the lens.
 突部12は、この実施形態では、四角柱状を呈しており、レンズ本体部11の一方端部の端面から、レンズ本体部11の他方端部とは反対方向(+X方向)に突出するように、レンズ本体部11の一方端部の端面に連結されている。 In this embodiment, the protrusion 12 has a quadrangular prism shape, and protrudes from the end surface of one end of the lens body 11 in the opposite direction (+ X direction) to the other end of the lens body 11. The lens body 11 is connected to the end surface of one end.
 この突部12は、突出先端における-Z方向の角部に、後述の駆動部4のアクチュエータ41に押圧操作される被押圧操作部12aを備えている。 The protrusion 12 includes a pressed operation portion 12a that is pressed by an actuator 41 of the drive unit 4 described later at a corner portion in the −Z direction at the protruding tip.
 支持部材3は、この実施形態では、アレイレンズ1を透過した光学像の各光束を透過させるための矩形形状の貫通開口(光束透過開口)を有する四角筒状体からなる。より詳しくは、支持部材3は、X方向に間隔を持って平行に対向配置された-X方向の第1側壁31および+X方向の第3側壁33と、Y方向に間隔を持って平行に対向配置された-Y方向の第2側壁32および+Y方向の第4側壁34とを備えている。 In this embodiment, the support member 3 is formed of a rectangular cylindrical body having a rectangular through-opening (light beam transmission aperture) for transmitting each light beam of the optical image transmitted through the array lens 1. More specifically, the support member 3 is opposed to the first side wall 31 in the −X direction and the third side wall 33 in the + X direction, which are arranged in parallel to each other with a gap in the X direction, in parallel with a gap in the Y direction. The second side wall 32 in the −Y direction and the fourth side wall 34 in the + Y direction are provided.
 支持部材3における第3側壁33と第4側壁34との隅部に、アクチュエータ41を支持したアクチュエータ支持部35を備えている。アクチュエータ支持部35は、X方向およびZ方向に対して傾斜した傾斜面に形成されている。 Actuator support portions 35 that support the actuators 41 are provided at the corners of the third side wall 33 and the fourth side wall 34 of the support member 3. The actuator support portion 35 is formed on an inclined surface inclined with respect to the X direction and the Z direction.
 弾性支持部材2は、この第1実施形態では、一方向に長尺な板ばねからなる1対(Z方向に対向配置された2個)の第1および第2ばね21、22を備え、これら1対のばね21、22がその長尺な方向で互いに平行となるように配置された平行ばねから構成される。 In the first embodiment, the elastic support member 2 includes a pair of two springs 21 and 22 (two opposed to each other in the Z direction) made of leaf springs elongated in one direction. The pair of springs 21 and 22 are constituted by parallel springs arranged so as to be parallel to each other in the long direction.
 このように弾性支持部材2は、平行な2個の1対のばねで機能するが、本実施形態では、アレイレンズ1に作用する駆動部4による駆動力および第1および第2ばね21、22による付勢力の各力のバランスを考慮して、アレイレンズ1をY方向の両側から片持ちで弾性支持するように、弾性支持部材2は、1組の第1および第2ばね21、22で構成されている。 As described above, the elastic support member 2 functions as a pair of two parallel springs. In the present embodiment, the driving force by the driving unit 4 acting on the array lens 1 and the first and second springs 21 and 22 are used. The elastic support member 2 is composed of a pair of first and second springs 21 and 22 so as to elastically support the array lens 1 in a cantilevered manner from both sides in the Y direction. It is configured.
 これらの1組の各第1および第2ばね21、22は、それぞれ、その一方端部に、光学部品連結部23を備え、各光学部品連結部23が、レンズ本体部11の被連結部13、14に固定的に連結されている。 Each set of the first and second springs 21 and 22 includes an optical component connecting portion 23 at one end thereof, and each optical component connecting portion 23 is connected to the connected portion 13 of the lens body 11. , 14 are fixedly connected.
 各第1および第2ばね21、22は、その他方端部に、被支持部24を備え、被支持部24が支持部材3の第1側壁31に固定的に支持されている。 Each of the first and second springs 21 and 22 includes a supported portion 24 at the other end, and the supported portion 24 is fixedly supported by the first side wall 31 of the support member 3.
 この状態で、第1および第2ばね21、22は、図1Bに示すように、初期状態で、互いにZ方向に距離を持って平行に配置され、レンズ本体部11を他方端部で片持ち支持している。第1および第2ばね21、22に支持されたレンズ本体部11の他方端は、レンズ本体部11の一方端から-X方向に沿って延ばされて、第1および第2ばね21、22の長手方向(X方向)における光学部品連結部23と被支持部24との間に配置されている。 In this state, as shown in FIG. 1B, the first and second springs 21 and 22 are arranged in parallel with a distance in the Z direction in the initial state, and the lens body 11 is cantilevered at the other end. I support it. The other end of the lens main body 11 supported by the first and second springs 21 and 22 extends from the one end of the lens main body 11 along the −X direction, and the first and second springs 21 and 22 are extended. Between the optical component connecting portion 23 and the supported portion 24 in the longitudinal direction (X direction).
 駆動部4は、所定の軸の軸方向に沿ってアレイレンズ1を移動させるための装置である。前記所定の軸は、例えば、レンズユニットLUaの光軸や撮像素子71の光軸等である。駆動部4は、例えば、所定のアクチュエータ41と、前記アクチュエータ41を制御しつつ駆動するための図略の制御駆動回路とを備える。 The drive unit 4 is a device for moving the array lens 1 along the axial direction of a predetermined axis. The predetermined axis is, for example, the optical axis of the lens unit LUa, the optical axis of the image sensor 71, or the like. The drive unit 4 includes, for example, a predetermined actuator 41 and a control drive circuit (not shown) for driving the actuator 41 while controlling the actuator 41.
 アクチュエータ41は、例えば、一方向に長尺な板状(帯状、リボン状、テープ状)の形状記憶合金(Shape Memory Alloy、以下、「SMA」と略記する。)を備えたSMAアクチュエータ、一方向に長尺な板状のバイメタルを備えたバイメタルアクチュエータ、および、一方向に長尺な板状のモノモルフ(ユニモルフ)を備えたモノモルフアクチュエータ等である。本実施形態では、SMAアクチュエータ41が用いられ、駆動部4は、SMAアクチュエータ41を通電加熱することによって制御しつつ駆動するための図略の制御駆動回路を備えている。 The actuator 41 is, for example, a SMA actuator provided with a shape memory alloy (Shape Memory Alloy, hereinafter abbreviated as “SMA”) that is long in one direction (band, ribbon, tape). A bimetal actuator having a long plate-like bimetal, a monomorph actuator having a plate-like monomorph (unimorph) long in one direction, and the like. In the present embodiment, an SMA actuator 41 is used, and the drive unit 4 includes a control drive circuit (not shown) for controlling and driving the SMA actuator 41 by energizing and heating.
 SMAは、変態温度よりも高温側では、オーステナイト相(母相)と呼ばれる結晶構造になり、低温側では、マルテンサイト相と呼ばれる結晶構造になる。一般の金属材料は、所定の外力が加えられると変形前の形に戻らないが、SMAは、マルテンサイト相の状態で所定の外力が加えられて変形しても、変態温度以上になると、マルテンサイト相からオーステナイト相へ相変態し、変形前の元の形に形状が回復する。SMAを用いたSMAアクチュエータ41は、この特性を利用するによって駆動力を生じる。ところで、昇温および降温に対して動作を繰り返すアクチュエータは、この温度転換に対応した二方向性が要求される。二方向性を有するSMAも存在するものの、通常、SMAは、加熱に因り記憶形状に形状回復するが、冷却しても回復した記憶形状のままであり、一方向性しかない。このため、SMAアクチュエータの一態様では、形状回復後に前記一方向とは異なる他方向へSMAを変形する外力(バイアス)を与えるバイアス付与部材が必要であり、本実施形態のSMAアクチュエータ41では、弾性支持部材2が前記バイアス付与部材として機能している。 SMA has a crystal structure called an austenite phase (parent phase) at a temperature higher than the transformation temperature, and a crystal structure called a martensite phase at a low temperature. A general metal material does not return to its original shape when a predetermined external force is applied. However, SMA does not return to the shape of martensite when it is deformed by applying a predetermined external force in the martensitic phase state, but when the temperature exceeds the transformation temperature. The phase transforms from the site phase to the austenite phase, and the shape recovers to its original shape before deformation. The SMA actuator 41 using SMA generates a driving force by utilizing this characteristic. By the way, an actuator that repeats the operation for increasing and decreasing temperature is required to have bidirectionality corresponding to this temperature change. Although some SMAs have bi-directionality, SMA usually recovers its shape to a memorized shape due to heating, but it remains in its memorized shape even after cooling, and has only one direction. For this reason, in one aspect of the SMA actuator, a bias applying member that applies an external force (bias) that deforms the SMA in the other direction different from the one direction after the shape recovery is necessary. The support member 2 functions as the bias applying member.
 SMAアクチュエータ41は、予め所定の形状が記憶されており、加熱されることによって駆動力を光学部品に与える。SMAアクチュエータ41は、Ni-Ti合金、Cu-Al-Ni合金、Cu-Zn合金、Cu-Zn-Al合金およびNi-Al合金等で形成される。Ni-Ti合金は、強度、靱性、耐食性および耐摩耗性に優れており、SMAアクチュエータ41に好適である。 The SMA actuator 41 has a predetermined shape stored in advance, and applies a driving force to the optical component by being heated. The SMA actuator 41 is formed of Ni—Ti alloy, Cu—Al—Ni alloy, Cu—Zn alloy, Cu—Zn—Al alloy, Ni—Al alloy, or the like. The Ni—Ti alloy is excellent in strength, toughness, corrosion resistance, and wear resistance, and is suitable for the SMA actuator 41.
 このSMAアクチュエータ41は、その一方端部に、アレイレンズ1の被押圧操作部12aを押圧操作する押圧操作部41aを備えている。 The SMA actuator 41 includes a pressing operation portion 41a for pressing the pressed operation portion 12a of the array lens 1 at one end thereof.
 そして、SMAアクチュエータ41は、その他方端部が支持部材3のアクチュエータ支持部35に固定的に支持されている。この支持された状態で、SMAアクチュエータ41の押圧操作部41aは、X方向およびZ方向に対して傾斜した方向を向いて傾斜面になっている。この傾斜面は、その法線が後述のアレイレンズ1に形成される中心軸15とアレイレンズ1の第2被連結部14との間を通るように形成されており、SMAアクチュエータ41の形状回復に伴って、後述のアレイレンズ1に形成される中心軸15とアレイレンズ1の第2被連結部14との間に押圧力の作用線Pができるようにアレイレンズ1の被押圧操作部12aを押圧操作する。この中心軸15は、アレイレンズ1の第1被連結部13と第2被連結部14との中点Oを通り、且つY方向に延びる軸である。 The other end of the SMA actuator 41 is fixedly supported by the actuator support 35 of the support member 3. In this supported state, the pressing operation portion 41a of the SMA actuator 41 is inclined so as to face the direction inclined with respect to the X direction and the Z direction. The inclined surface is formed so that the normal line passes between a central axis 15 formed in the array lens 1 described later and the second connected portion 14 of the array lens 1, and the shape of the SMA actuator 41 is restored. Accordingly, the pressed operation portion 12a of the array lens 1 so that an action line P of the pressing force is formed between a center axis 15 formed in the array lens 1 described later and the second connected portion 14 of the array lens 1. Is pressed. The central axis 15 is an axis that passes through the midpoint O of the first connected portion 13 and the second connected portion 14 of the array lens 1 and extends in the Y direction.
 撮像部7は、光学部品1aによって受光面に結像された被写体の光学像を撮像して画像信号(または画像データ)を出力するものである。撮像部7は、例えば、撮像素子71と、素子支持部材72とを備える。 The imaging unit 7 captures an optical image of a subject imaged on the light receiving surface by the optical component 1a and outputs an image signal (or image data). The imaging unit 7 includes, for example, an imaging element 71 and an element support member 72.
 撮像素子71は、レンズユニットLUaの像側に配置され、レンズユニットLUaによって結像された物体(被写体)の光学像における光量に応じてR(赤)、G(緑)、B(青)の各色成分の電気的な画像信号に光電変換して、所定の画像処理を行う図略の画像処理回路へ出力する素子である。本実施形態では、撮像部7は、アレイレンズ1の個眼数(撮像光学系111の個数、図1に示す例では16個)に応じた個数の撮像素子71を備えても良いが、本実施形態では、撮像部7は、1個の撮像素子71を備え、撮像素子71の有効領域がアレイレンズ1の個眼数に応じた個数の分割領域に分けられ、アレイレンズ1の各個眼によって結像された各光学像を各分割領域で撮像するように構成されている。 The image sensor 71 is disposed on the image side of the lens unit LUa, and has R (red), G (green), and B (blue) in accordance with the amount of light in the optical image of the object (subject) imaged by the lens unit LUa. This is an element that performs photoelectric conversion to an electrical image signal of each color component and outputs it to an unillustrated image processing circuit that performs predetermined image processing. In the present embodiment, the imaging unit 7 may include the number of imaging elements 71 corresponding to the number of eyes of the array lens 1 (the number of imaging optical systems 111, which is 16 in the example illustrated in FIG. 1). In the embodiment, the imaging unit 7 includes one imaging element 71, and the effective area of the imaging element 71 is divided into a number of divided areas corresponding to the number of eyes of the array lens 1. Each formed optical image is configured to be captured in each divided region.
 撮像素子71は、例えば、CCD(Charge Coupled Device)型のイメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)型のイメージセンサ等である。前記図略の画像処理回路は、撮像素子71で得られたR(赤)、G(緑)、B(青)の各色成分の画像信号に対し、所定の画像処理を行って画像データを生成する回路であり、例えば、DSP(Digital Signal Processor)およびその周辺回路を備える。前記所定の画像処理は、例えば、撮像素子71からのアナログ出力信号に対して行う増幅処理およびデジタル変換処理、画像全体に対して適正な黒レベルの決定処理、γ補正処理、ホワイトバランス調整(WB調整)処理、輪郭補正処理および色ムラ補正処理等の周知の画像処理である。なお、撮像部7は、上述のように、画像信号を出力するように構成されても良く、また、この前記図略の画像処理回路をさらに備え、画像データを出力するように構成されても良い。 The image sensor 71 is, for example, a CCD (Charge Coupled Device) type image sensor, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, or the like. The image processing circuit (not shown) generates image data by performing predetermined image processing on image signals of R (red), G (green), and B (blue) color components obtained by the image sensor 71. For example, a DSP (Digital Signal Processor) and its peripheral circuits. The predetermined image processing includes, for example, amplification processing and digital conversion processing performed on an analog output signal from the image sensor 71, determination processing of an appropriate black level for the entire image, γ correction processing, white balance adjustment (WB) This is well-known image processing such as (adjustment) processing, contour correction processing, and color unevenness correction processing. The imaging unit 7 may be configured to output an image signal as described above, or may further include the image processing circuit (not shown) and output image data. good.
 素子支持部材72は、平板状の部材であり、撮像素子71を支持する部材である。素子支持部材72は、本実施形態では、外形が平面視にて矩形形状である板状の部材である。 The element support member 72 is a flat member and is a member that supports the image sensor 71. In the present embodiment, the element support member 72 is a plate-like member whose outer shape is rectangular in plan view.
 そして、素子支持部材72は、支持部材3における-Z方向の端面に、例えば接着剤等によって固定されることで、レンズユニットLUaと撮像部7とが連結され、前記レンズユニットと撮像部7の撮像素子71とは、レンズユニットLUaのアレイレンズ1の結像面の位置に、撮像素子71の受光面の位置が一致するように互いに配置される(結像面=受光面)。すなわち、レンズユニットLUaのアレイレンズ1が撮像素子71の受光面上に物体の光学像を形成可能とされている。 The element support member 72 is fixed to the end surface in the −Z direction of the support member 3 with, for example, an adhesive, so that the lens unit LUa and the imaging unit 7 are connected, and the lens unit and the imaging unit 7 are connected. The image pickup device 71 is disposed so that the position of the light receiving surface of the image pickup device 71 coincides with the position of the image forming surface of the array lens 1 of the lens unit LUa (image forming surface = light receiving surface). That is, the array lens 1 of the lens unit LUa can form an optical image of an object on the light receiving surface of the image sensor 71.
 次に、この第1実施形態の撮像素子の動作について説明する。SMAアクチュエータ41が、例えば前記図略の制御駆動回路によって電力が供給されて通電されることによって自己の抵抗に因りジュール熱を発生し、加熱される。そして、SMAアクチュエータ41は、変態温度に達すると、温度に応じて前記予め記憶されている形状に回復する。これによってSMAアクチュエータ41の押圧操作部41aがアレイレンズ1の被押圧操作部12aを押圧操作する。 Next, the operation of the image sensor of the first embodiment will be described. The SMA actuator 41 is heated by generating Joule heat due to its own resistance by being supplied with power by a control drive circuit (not shown) and energized. When the SMA actuator 41 reaches the transformation temperature, the SMA actuator 41 recovers to the previously stored shape according to the temperature. As a result, the pressing operation portion 41 a of the SMA actuator 41 presses the pressed operation portion 12 a of the array lens 1.
 押圧操作されたアレイレンズ1は、図1Cに示すようにSMAアクチュエータ41の押圧操作部41aからの+Z方向成分の力によって+Z方向に移動する。このアレイレンズ1の+Z方向への移動に際して、第1ばね21と第2ばね22との互いの撓み変形量の違い等によってアレイレンズ1は、第1ばね21と第2ばね22とによって中心軸15回りの図1Cの反時計方向のばね付与モーメントM10を受ける。 The pressed array lens 1 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 41a of the SMA actuator 41 as shown in FIG. 1C. When the array lens 1 is moved in the + Z direction, the array lens 1 is centered by the first spring 21 and the second spring 22 due to a difference in the amount of deformation between the first spring 21 and the second spring 22. The counterclockwise spring applying moment M10 of FIG. 1C around 15 is received.
 一方、SMAアクチュエータ41の押圧操作部41aがアレイレンズ1の被押圧操作部12aを中心軸15とアレイレンズ1の第2被連結部14との間に押圧力の作用線Pができるようにアレイレンズ1の被押圧操作部12aを押圧操作するため、アレイレンズ1は、図1Cに示すようにばね付与モーメントM10と反対向き、即ち、中心軸15回りの時計方向の対抗モーメントM11を受ける。 On the other hand, the pressing operation portion 41a of the SMA actuator 41 is arranged so that an operation line P of a pressing force can be generated between the central shaft 15 and the second connected portion 14 of the array lens 1 in the pressed operation portion 12a of the array lens 1. In order to press the pressed operation portion 12a of the lens 1, the array lens 1 receives a countering moment M11 in a direction opposite to the spring applying moment M10, that is, in the clockwise direction around the central axis 15, as shown in FIG. 1C.
 したがって、+Z方向への移動に際して第1ばね21と第2ばね22とによってアレイレンズ1にかかるばね付与モーメントM10が、SMAアクチュエータ41の押圧操作によってアレイレンズ1にかかる対抗モーメントM11によって相殺され、その結果、アレイレンズ1には、+Z方向成分の力がかかった状態で+Z方向に移動する。 Accordingly, the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled by the counter moment M11 applied to the array lens 1 by the pressing operation of the SMA actuator 41, As a result, the array lens 1 moves in the + Z direction with a force in the + Z direction component applied.
 よって、本実施形態におけるレンズユニットLUaおよび撮像装置Iaは、+Z方向に移動する際に第1ばね21と第2ばね22によってアレイレンズ1にかかるばね付与モーメントM10を抑えることができ、アレイレンズ1のX方向のチルトの発生を抑え得る。 Therefore, the lens unit LUa and the imaging device Ia in the present embodiment can suppress the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 when moving in the + Z direction. The occurrence of tilt in the X direction can be suppressed.
 一方、電力の供給が停止されると、SMAアクチュエータ41は、自然放熱によって降温し、1組の第1ばね21と第2ばね22による-Z方向のバイアスによって平坦な形状に徐々に戻り、第1ばね21と第2ばね22とが平行になる。このようにアレイレンズ1が-Z方向に移動して、レンズユニットLUaおよび撮像装置Iaは、図1Bの状態に戻る。 On the other hand, when the supply of electric power is stopped, the SMA actuator 41 cools down by natural heat dissipation, and gradually returns to a flat shape by a bias in the −Z direction by the pair of first springs 21 and second springs 22. The first spring 21 and the second spring 22 are parallel to each other. Thus, the array lens 1 moves in the −Z direction, and the lens unit LUa and the imaging device Ia return to the state shown in FIG. 1B.
 (第2実施形態)
 図2は、第2実施形態における撮像装置の構成を示す図である。図2Aは、平面図であり、図2Bは、図2Aの撮像装置の動作を説明するための一部を断面にした側面図である。次に、第2実施形態の撮像素子Ibについて、図2に基づいて説明する。第2実施形態の撮像素子Ibは、先の第1実施形態のものと同様に、レンズユニットLUbと、撮像部7とを備え、レンズユニットLUbは、アレイレンズ1と、弾性支持部材102と、支持部材3と、駆動部4とを備えている。撮像部7、アレイレンズ1、支持部材3、駆動部4は、それぞれ、先の第1実施形態のものと同構成を採っている。
(Second Embodiment)
FIG. 2 is a diagram illustrating a configuration of the imaging apparatus according to the second embodiment. 2A is a plan view, and FIG. 2B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 2A. Next, the image sensor Ib of the second embodiment will be described with reference to FIG. Similar to the first embodiment, the imaging device Ib of the second embodiment includes a lens unit LUb and an imaging unit 7. The lens unit LUb includes an array lens 1, an elastic support member 102, A support member 3 and a drive unit 4 are provided. The imaging unit 7, the array lens 1, the support member 3, and the drive unit 4 each have the same configuration as that of the first embodiment.
 第2実施形態の弾性支持部材102は、先の第1実施形態のものと同様に、1組の第1および第2ばね121、122を備えているが、各第1および第2ばね121、122は、断面円形状の線ばね(サスペンションワイヤ)から構成されている。それ以外は、先の第1実施形態のものと同構成を採っている。 The elastic support member 102 of the second embodiment includes a pair of first and second springs 121 and 122 as in the first embodiment, but each of the first and second springs 121, 122 is constituted by a wire spring (suspension wire) having a circular cross section. Other than that, the same configuration as that of the first embodiment is adopted.
 この第2実施形態においても先の第1実施形態のものと同様に機能する。より詳しくは、SMAアクチュエータ41の押圧操作部41aで押圧操作されたアレイレンズ1は、SMAアクチュエータ41の押圧操作部41aからの+Z方向成分の力によって+Z方向に移動する。このアレイレンズ1の+Z方向への移動に際して、アレイレンズ1は、第1ばね121と第2ばね122とによって図2Bに示すように中心軸15回りの反時計方向のばね付与モーメントM10を受ける。 This second embodiment also functions in the same manner as the previous first embodiment. More specifically, the array lens 1 that is pressed by the pressing operation portion 41 a of the SMA actuator 41 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 41 a of the SMA actuator 41. When the array lens 1 moves in the + Z direction, the array lens 1 receives a spring applying moment M10 in the counterclockwise direction around the central axis 15 as shown in FIG. 2B by the first spring 121 and the second spring 122.
 一方、アレイレンズ1は、SMAアクチュエータ41から、図2Aに示すようにばね付与モーメントM10と反対向きの、中心軸15回りの時計方向の対抗モーメントM11を受ける。 On the other hand, the array lens 1 receives a counterclockwise moment M11 around the central axis 15 opposite to the spring applying moment M10 as shown in FIG. 2A from the SMA actuator 41.
 したがって、+Z方向への移動に際して、アレイレンズ1には、+Z方向成分の力のみがかかった状態で+Z方向に移動し、本実施形態におけるレンズユニットLUbおよび撮像装置Ibは、アレイレンズ1にかかるばね付与モーメントM10を抑えることができ、アレイレンズ1のX方向のチルトの発生を抑え得る。 Therefore, when moving in the + Z direction, the array lens 1 is moved in the + Z direction with only the force of the + Z direction component applied thereto, and the lens unit LUb and the imaging device Ib in the present embodiment are applied to the array lens 1. The spring application moment M10 can be suppressed, and the occurrence of tilt in the X direction of the array lens 1 can be suppressed.
 (第3実施形態)
 図3は、第3実施形態における撮像装置の構成を示す図である。図3Aは、平面図であり、図3Bは、図3Aの撮像装置の動作を説明するための一部を断面にした側面図である。次に、第3実施形態の撮像素子Icについて、図3に基づいて説明する。第3実施形態の撮像素子Icは、先の第1実施形態のものと同様に、レンズユニットLUcと、撮像部7とを備え、レンズユニットLUcは、アレイレンズ201と、弾性支持部材2と、支持部材3と、駆動部4とを備えている。
(Third embodiment)
FIG. 3 is a diagram illustrating a configuration of the imaging apparatus according to the third embodiment. 3A is a plan view, and FIG. 3B is a side view with a part in cross-section for explaining the operation of the imaging apparatus of FIG. 3A. Next, the image sensor Ic of the third embodiment will be described with reference to FIG. The imaging element Ic of the third embodiment includes a lens unit LUc and an imaging unit 7 as in the first embodiment, and the lens unit LUc includes the array lens 201, the elastic support member 2, and A support member 3 and a drive unit 4 are provided.
 アレイレンズ201は、先の第1実施形態と同様に、矩形状のレンズ本体部211と、突部212とを備えている。レンズ本体部211は、先の第1実施形態のものと同構成を採っているが、突部212の被押圧操作部212aは、X方向およびZ方向に対して傾斜した傾斜面に形成されている。 The array lens 201 includes a rectangular lens main body 211 and a protrusion 212, as in the first embodiment. The lens body 211 has the same configuration as that of the first embodiment, but the pressed operation portion 212a of the protrusion 212 is formed on an inclined surface inclined with respect to the X direction and the Z direction. Yes.
 より詳しくは、被押圧操作部212aは、その法線がアレイレンズ201の中心軸15とアレイレンズ211の第2被連結部14との間を通るように、X方向およびZ方向に対して傾斜した傾斜面に形成されている。 More specifically, the pressed operation portion 212a is inclined with respect to the X direction and the Z direction so that the normal line passes between the central axis 15 of the array lens 201 and the second connected portion 14 of the array lens 211. Formed on the inclined surface.
 第3実施形態における支持部材3のアクチュエータ支持部235は、X方向およびY方向に平行で+Z方向を向いた平面に形成されている。 The actuator support portion 235 of the support member 3 in the third embodiment is formed in a plane parallel to the X direction and the Y direction and facing the + Z direction.
 駆動部4のSMAアクチュエータ41は、その他方端部が支持部材3のアクチュエータ支持部235に固定的に支持され、これにより、SMAアクチュエータ41の押圧操作部41aが+Z方向を向いており、加熱および冷却に伴って押圧操作部41aがZ方向に移動するようになっている。第3実施形態の上記以外は、先の第1実施形態のものと同構成を採っている。 The other end of the SMA actuator 41 of the drive unit 4 is fixedly supported by the actuator support 235 of the support member 3, whereby the pressing operation unit 41 a of the SMA actuator 41 faces the + Z direction, and heating and The pressing operation part 41a moves in the Z direction with cooling. Except for the above, the third embodiment has the same configuration as that of the first embodiment.
 このように構成された第3実施形態では、SMAアクチュエータ41が加熱され、変態温度に達すると、SMAアクチュエータ41の押圧操作部41aがアレイレンズ1の被押圧操作部12aを押圧操作する。 In the third embodiment configured as described above, when the SMA actuator 41 is heated and reaches the transformation temperature, the pressing operation portion 41a of the SMA actuator 41 presses the pressed operation portion 12a of the array lens 1.
 押圧操作されたアレイレンズ1は、SMAアクチュエータ41の押圧操作部41aからの+Z方向成分の力によって+Z方向に移動する。このアレイレンズ1の+Z方向への移動に際して、アレイレンズ101は、第1ばね21と第2ばね22とによって図3Bに示すように中心軸15回りの反時計方向のばね付与モーメントM10を受ける。 The pressed array lens 1 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 41a of the SMA actuator 41. When the array lens 1 moves in the + Z direction, the array lens 101 receives a counterclockwise spring applying moment M10 about the central axis 15 as shown in FIG. 3B by the first spring 21 and the second spring 22.
 一方、アレイレンズ1の被押圧操作部112aは、SMAアクチュエータ41の押圧操作部41aから、中心軸15とアレイレンズ1の第2被連結部14との間に形成された法線に沿って押圧力の作用線Pができるため、アレイレンズ1は、図3Bに示すようにばね付与モーメントM10と反対向き、すなわち、中心軸15回りの時計方向の対抗モーメントM11を受ける。 On the other hand, the pressed operation portion 112a of the array lens 1 is pushed from the pressing operation portion 41a of the SMA actuator 41 along the normal line formed between the central axis 15 and the second connected portion 14 of the array lens 1. Since the pressure action line P is generated, the array lens 1 receives a counter-moment M11 in a direction opposite to the spring application moment M10, that is, in the clockwise direction around the central axis 15 as shown in FIG. 3B.
 したがって、+Z方向への移動に際して第1ばね21と第2ばね22とによってアレイレンズ201にかかるばね付与モーメントM10が、SMAアクチュエータ41の押圧操作によってアレイレンズ1にかかる対抗モーメントM11によって相殺され、その結果、アレイレンズ201には、+Z方向成分の力がかかった状態で+Z方向に移動する。 Accordingly, the spring applying moment M10 applied to the array lens 201 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled by the counter moment M11 applied to the array lens 1 by the pressing operation of the SMA actuator 41, As a result, the array lens 201 moves in the + Z direction in a state where a force in the + Z direction component is applied.
 よって、本実施形態におけるレンズユニットLUcおよび撮像装置Icは、+Z方向に移動する際に第1ばね21と第2ばね22によってアレイレンズ1にかかるばね付与モーメントM10を抑えることができ、アレイレンズ1のX方向のチルトの発生を抑え得る。 Therefore, the lens unit LUc and the imaging device Ic in the present embodiment can suppress the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 when moving in the + Z direction. The occurrence of tilt in the X direction can be suppressed.
 (第4実施形態)
 図4は、第4実施形態における撮像装置の構成を示す図である。図4Aは、平面図であり、図4Bは、図4Aの撮像装置の動作を説明するための一部を断面にした側面図である。次に、第4実施形態の撮像素子Idについて、図4に基づいて説明する。第4実施形態の撮像素子Idは、先の第1実施形態のものと同様に、レンズユニットLUdと、撮像部7とを備え、レンズユニットLUdは、アレイレンズ301と、弾性支持部材2と、支持部材3と、駆動部4とを備えている。
(Fourth embodiment)
FIG. 4 is a diagram illustrating a configuration of the imaging apparatus according to the fourth embodiment. 4A is a plan view, and FIG. 4B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 4A. Next, an image sensor Id according to the fourth embodiment will be described with reference to FIG. The imaging device Id of the fourth embodiment includes a lens unit LUd and an imaging unit 7 as in the first embodiment, and the lens unit LUd includes the array lens 301, the elastic support member 2, and the lens unit LUd. A support member 3 and a drive unit 4 are provided.
 第4実施形態のアレイレンズ301は、先の第1実施形態と同様に、矩形状のレンズ本体部311と、突部312とを備えている。レンズ本体部311は、先の第1実施形態のものと同構成を採っているが、突部312は、レンズ本体部311の他方端部に形成されている。 The array lens 301 according to the fourth embodiment includes a rectangular lens body 311 and a protrusion 312 as in the first embodiment. The lens body 311 has the same configuration as that of the first embodiment, but the protrusion 312 is formed at the other end of the lens body 311.
 突部312は、先の第1実施形態のものと同様に、四角柱状のものから構成され、被押圧操作部312aは、X方向およびY方向に平行で、-Z方向を向いた平面に形成されている。 The protrusion 312 is formed of a quadrangular prism-like shape as in the first embodiment, and the pressed operation portion 312a is formed in a plane parallel to the X direction and the Y direction and facing the −Z direction. Has been.
 支持部材3は、この第4実施形態では、第1側壁331と第4側壁334との隅部に、アクチュエータ41を支持したアクチュエータ支持部335を備えている。アクチュエータ支持部335は、X方向およびY方向に平行で、+Z方向を向いた平面に形成されている。 In this fourth embodiment, the support member 3 includes an actuator support portion 335 that supports the actuator 41 at the corners of the first side wall 331 and the fourth side wall 334. The actuator support 335 is formed in a plane parallel to the X direction and the Y direction and facing the + Z direction.
 駆動部4のSMAアクチュエータ41は、その他方端部が支持部材3のアクチュエータ支持部335に固定的に支持され、これにより、SMAアクチュエータ41の押圧操作部41aが+Z方向を向いており、加熱に伴って押圧操作部41aが+Z方向に移動し、その移動に際して押圧操作部41aがアレイレンズ301の被押圧操作部312aを押圧操作する。その際、押圧操作部41aから被押圧操作部312aを押圧する押圧力の作用線Pは、アレイレンズ301の第1被連結部13と第2被連結部14との中点O(中心軸15)から距離L1をもって形成される。第4実施形態の上記以外は、先の第1実施形態のものと同構成を採っている。 The other end portion of the SMA actuator 41 of the drive unit 4 is fixedly supported by the actuator support portion 335 of the support member 3, so that the pressing operation portion 41 a of the SMA actuator 41 faces the + Z direction and is heated. Accordingly, the pressing operation unit 41a moves in the + Z direction, and the pressing operation unit 41a presses the pressed operation unit 312a of the array lens 301 during the movement. At this time, the action line P of the pressing force that presses the pressed operation portion 312a from the pressing operation portion 41a is the midpoint O (center axis 15) of the first connected portion 13 and the second connected portion 14 of the array lens 301. ) From a distance L1. Except for the above, the fourth embodiment has the same configuration as that of the first embodiment.
 このように構成された第4実施形態では、SMAアクチュエータ41が加熱され、変態温度に達すると、SMAアクチュエータ41の押圧操作部41aがアレイレンズ301の被押圧操作部312aを+Z方向にのみ押圧操作する。 In the fourth embodiment configured as described above, when the SMA actuator 41 is heated and reaches the transformation temperature, the pressing operation portion 41a of the SMA actuator 41 operates the pressing operation portion 312a of the array lens 301 only in the + Z direction. To do.
 押圧操作されたアレイレンズ301は、SMAアクチュエータ41の押圧操作部41aからの+Z方向の力によって+Z方向に移動する。このアレイレンズ301は、+Z方向への移動に際して、アレイレンズ301は、第1ばね21と第2ばね22とによって図4Bに示すように中心軸15回りの反時計方向のばね付与モーメントM10を受ける。 The pressed array lens 301 moves in the + Z direction by the + Z direction force from the pressing operation portion 41a of the SMA actuator 41. When this array lens 301 moves in the + Z direction, the array lens 301 receives a spring applying moment M10 in the counterclockwise direction around the central axis 15 as shown in FIG. 4B by the first spring 21 and the second spring 22. .
 一方、アレイレンズ1の被押圧操作部112aは、SMAアクチュエータ41の押圧操作部41aから押圧力の作用線Pがアレイレンズ301の中心軸15と距離L1をもって形成されるため、アレイレンズ301は、図4Bに示すようにばね付与モーメントM10と反対向き、すなわち、中心軸15の回りの時計方向の対抗モーメントM11を受ける。 On the other hand, in the pressed operation portion 112a of the array lens 1, the line of action P of the pressing force is formed with the distance L1 from the central axis 15 of the array lens 301 from the pressing operation portion 41a of the SMA actuator 41. As shown in FIG. 4B, the counter moment M11 is received in the opposite direction to the spring applying moment M10, that is, in the clockwise direction around the central axis 15.
 したがって、+Z方向への移動に際して第1ばね21と第2ばね22とによってアレイレンズ301にかかるばね付与モーメントM10が、とSMAアクチュエータ41の押圧操作によってアレイレンズ1にかかる対抗モーメントM11とは相殺され、その結果、アレイレンズ301には、+Z方向の力がかかった状態で+Z方向に移動する。 Therefore, the spring applying moment M10 applied to the array lens 301 by the first spring 21 and the second spring 22 during the movement in the + Z direction cancels the counter moment M11 applied to the array lens 1 by the pressing operation of the SMA actuator 41. As a result, the array lens 301 moves in the + Z direction with a force applied in the + Z direction.
 よって、本実施形態におけるレンズユニットLUdおよび撮像装置Idは、+Z方向に移動する際に第1ばね21と第2ばね22によってアレイレンズ1にかかるばね付与モーメントM10を抑えることができ、アレイレンズ1のX方向のチルトの発生を抑え得る。 Therefore, the lens unit LUd and the imaging device Id in the present embodiment can suppress the spring applying moment M10 applied to the array lens 1 by the first spring 21 and the second spring 22 when moving in the + Z direction. The occurrence of tilt in the X direction can be suppressed.
 (第5実施形態)
 図5は、第5実施形態における撮像装置の構成を示す図である。図5Aは、平面図であり、図5Bは、図5Aの撮像装置の動作を説明するための一部を断面にした側面図である。次に、第5実施形態の撮像素子Ieについて、図5に基づいて説明する。第4実施形態の撮像素子Ieは、先の第1実施形態のものと同様に、レンズユニットLUeと、撮像部7とを備え、また、レンズユニットLUeは、アレイレンズ1と、弾性支持部材402と、支持部材3と、駆動部4とを備えている。
(Fifth embodiment)
FIG. 5 is a diagram illustrating a configuration of an imaging apparatus according to the fifth embodiment. 5A is a plan view, and FIG. 5B is a side view with a part in cross-section for explaining the operation of the imaging device of FIG. 5A. Next, an image sensor Ie according to a fifth embodiment will be described with reference to FIG. The imaging element Ie of the fourth embodiment includes a lens unit LUe and an imaging unit 7 as in the first embodiment, and the lens unit LUe includes the array lens 1 and the elastic support member 402. And a support member 3 and a drive unit 4.
 第5実施形態の弾性支持部材402は、先の第1実施形態のものと同様に、1組の第1および第2ばね421、422を備えているが、この第5実施形態では、第1ばね421と第2ばね422とがZ方向に対する剛性の異なるものから構成されている。 The elastic support member 402 of the fifth embodiment includes a pair of first and second springs 421 and 422 as in the first embodiment, but in the fifth embodiment, the first support The spring 421 and the second spring 422 are configured with different rigidity in the Z direction.
 より詳しくは、この第5実施形態の第1ばね421と第2ばね422とは、板ばねから構成されている。第1ばね421の-Z方向に配設された第2ばね422は、板厚が第1ばね421の板厚よりも薄く形成されており、第2ばね422が第1ばね421よりも変形し易いものとされている。第5実施形態の上記以外は、先の第1実施形態のものと同構成を採っている。 More specifically, the first spring 421 and the second spring 422 of the fifth embodiment are constituted by leaf springs. The second spring 422 disposed in the −Z direction of the first spring 421 is formed so that the plate thickness is thinner than the plate thickness of the first spring 421, and the second spring 422 is deformed more than the first spring 421. It is supposed to be easy. Except for the fifth embodiment, the same configuration as that of the first embodiment is adopted.
 このように構成された第5実施形態では、先の第1実施形態と同様に、SMAアクチュエータ41の押圧操作部41aから押圧操作されたアレイレンズ301は、SMAアクチュエータ41の押圧操作部41aからの+Z方向成分の力によって+Z方向に移動する。このアレイレンズ301は、+Z方向への移動に際して、アレイレンズ301は、第1ばね21と第2ばね22とによって図5Bに示すように中心軸15回りの反時計方向のばね付与モーメントM10を受ける。 In the fifth embodiment configured as described above, the array lens 301 pressed from the pressing operation portion 41a of the SMA actuator 41 is moved from the pressing operation portion 41a of the SMA actuator 41, as in the first embodiment. It moves in the + Z direction by the force of the + Z direction component. When this array lens 301 moves in the + Z direction, the array lens 301 receives a spring applying moment M10 in the counterclockwise direction around the central axis 15 as shown in FIG. 5B by the first spring 21 and the second spring 22. .
 アレイレンズ301は、図5Bに示すようにばね付与モーメントM10と反対向き、すなわち、中心軸15の回りの時計方向の対抗モーメントM11を受ける。 As shown in FIG. 5B, the array lens 301 receives a counter moment M11 in a direction opposite to the spring application moment M10, that is, in the clockwise direction around the central axis 15.
 その中心軸15回りの時計方向の対抗モーメントM11を受ける際、この実施形態では、第2ばね422が第1ばね421よりもZ方向に変形し易いため、アレイレンズ301に、容易に対抗モーメントM11をかけることができる。 In this embodiment, the second spring 422 is more easily deformed in the Z direction than the first spring 421 when receiving the counterclockwise moment M11 around the central axis 15. Can be applied.
 (第6実施形態)
 図6は、第6実施形態における撮像装置の構成を示す図である。図6Aは、平面図であり、図6Bは、底面図であり、図6Cは、図6Aの撮像装置の動作を説明するための一部を断面にした側面図である。次に、第6実施形態の撮像素子Ifについて、図6に基づいて説明する。第6実施形態の撮像素子Ifは、先の第5実施形態のものと同様に、レンズユニットLUfと、撮像部7とを備え、レンズユニットLUfは、アレイレンズ1と、弾性支持部材502と、支持部材3と、駆動部4とを備えている。
(Sixth embodiment)
FIG. 6 is a diagram illustrating a configuration of an imaging apparatus according to the sixth embodiment. 6A is a plan view, FIG. 6B is a bottom view, and FIG. 6C is a side view, partly in section, for explaining the operation of the imaging device of FIG. 6A. Next, the imaging device If of the sixth embodiment will be described with reference to FIG. The imaging device If of the sixth embodiment includes a lens unit LUf and an imaging unit 7 as in the fifth embodiment, and the lens unit LUf includes the array lens 1, the elastic support member 502, A support member 3 and a drive unit 4 are provided.
 第6実施形態の弾性支持部材502は、先の第5実施形態のものと同様に、1組の第1および第2ばね521、522を備え、第1ばね521と第2ばね522とがZ方向に対する剛性の異なるものから構成されているが、第6実施形態では、第1ばね521と第2ばね522とは、互いの形状が異なることによりZ方向に対する互いの剛性が異なるものとされている。 Similar to the fifth embodiment, the elastic support member 502 of the sixth embodiment includes a pair of first and second springs 521 and 522, and the first spring 521 and the second spring 522 are Z. In the sixth embodiment, the first spring 521 and the second spring 522 have different shapes in the Z direction due to different shapes. Yes.
 より詳しくは、この第6実施形態の第1ばね521と第2ばね522とは、板ばねから構成されている。第1ばね521は、図6Aに示すように、その一方端部に形成された光学部品連結部523と他方端部に形成された被支持部524との間に、Y方向に延びる第1ばね屈曲片525を備え、この第1ばね屈曲片525によって、光学部品連結部523と被支持部524とがY方向に距離L2を隔てている。 More specifically, the first spring 521 and the second spring 522 of the sixth embodiment are constituted by leaf springs. As shown in FIG. 6A, the first spring 521 is a first spring extending in the Y direction between an optical component connecting portion 523 formed at one end thereof and a supported portion 524 formed at the other end thereof. A bent piece 525 is provided, and the first spring bent piece 525 separates the optical component connecting portion 523 from the supported portion 524 by a distance L2 in the Y direction.
 第2ばね522は、図6Aに示すように、第1ばね521と同様に、その一方端部に形成された光学部品連結部523と他方端部に形成された被支持部524との間に、Y方向に延びる第2ばね屈曲片526を備えている。この第2ばね屈曲片526は、Y方向の長さが第1ばね屈曲片525のその長さよりも長く形成されている。 As shown in FIG. 6A, the second spring 522 is similar to the first spring 521 between the optical component connecting portion 523 formed at one end thereof and the supported portion 524 formed at the other end. , A second spring bent piece 526 extending in the Y direction is provided. The second spring bent piece 526 is formed such that the length in the Y direction is longer than the length of the first spring bent piece 525.
 これにより、第2ばね522における光学部品連結部523と被支持部524とのY方向の距離L3が第1ばね521のその距離L2よりも大きくなっている。したがって、第1ばね521と第2ばね522とのそれぞれの光学部品連結部523に、Z方向の同じ大きさ力がかかると、第2ばね522が第1ばね521よりもZ方向に変形し易いものになっている。第6実施形態の上記以外は、先の第1実施形態のものと同構成を採っている。 Thereby, the distance L3 in the Y direction between the optical component connecting portion 523 and the supported portion 524 in the second spring 522 is larger than the distance L2 of the first spring 521. Therefore, when the same force in the Z direction is applied to the optical component connecting portions 523 of the first spring 521 and the second spring 522, the second spring 522 is more easily deformed in the Z direction than the first spring 521. It is a thing. Except for the above, the sixth embodiment has the same configuration as that of the first embodiment.
 このように構成された第6実施形態では、先の第5実施形態と同様に動作する。 The sixth embodiment configured as described above operates in the same manner as the previous fifth embodiment.
 (第7実施形態)
 図7は、第7実施形態における撮像装置の構成を示す図である。図7Aは、平面図であり、図7Bは、図7Aの撮像装置の動作を説明するための一部を断面にした側面図である。次に、第7実施形態の撮像素子Igについて、図7に基づいて説明する。第7実施形態の撮像素子Igは、先の第1実施形態のものと同様に、レンズユニットLUgと、撮像部7とを備え、レンズユニットLUgは、アレイレンズ601と、弾性支持部材2と、支持部材603と、駆動部604とを備えている。
(Seventh embodiment)
FIG. 7 is a diagram illustrating a configuration of an imaging apparatus according to the seventh embodiment. 7A is a plan view, and FIG. 7B is a side view with a part in cross-section for explaining the operation of the imaging device of FIG. 7A. Next, the image sensor Ig of the seventh embodiment will be described with reference to FIG. The imaging element Ig of the seventh embodiment includes a lens unit LUg and an imaging unit 7 as in the first embodiment, and the lens unit LUg includes an array lens 601, an elastic support member 2, and A support member 603 and a drive unit 604 are provided.
 第7実施形態のアレイレンズ601における突部612の被押圧操作部612aは、図7Bに示すように、側面視でくの字状(V字状、C字状)に凹設されている。 7B, the pressed operation portion 612a of the protrusion 612 in the array lens 601 of the seventh embodiment is recessed in a dogleg shape (V shape, C shape) as viewed from the side.
 支持部材603は、第2側壁32と第4側壁34とのそれぞれに、後述の駆動部604のSMAアクチュエータ641を摺動自在に係止するアクチュエータ係止部645を備えている。 The support member 603 includes an actuator locking portion 645 that slidably locks an SMA actuator 641 of a driving unit 604 described later on each of the second side wall 32 and the fourth side wall 34.
 駆動部604のSMAアクチュエータ641は、この第6実施形態では、線状を呈するものから構成されており、加熱されることによって縮んで長さが短くなるものである。SMAアクチュエータ641は、長手方向の中間部に押圧操作部641aを備えている。 In the sixth embodiment, the SMA actuator 641 of the driving unit 604 is composed of a linear one, and is contracted and shortened by being heated. The SMA actuator 641 includes a pressing operation unit 641a at an intermediate portion in the longitudinal direction.
 そして、このSMAアクチュエータ641は、アレイレンズ601の被押圧操作部612aに押圧操作部641aを掛けるようにして当接させるとともに支持部材603の第2側壁32および第4側壁34それぞれのアクチュエータ係止部645に係止させるようにして両端部が支持部材603の第1側壁31に連結されている。 The SMA actuator 641 is brought into contact with the pressed operation portion 612a of the array lens 601 so as to hang the pressing operation portion 641a, and the actuator engaging portions of the second side wall 32 and the fourth side wall 34 of the support member 603, respectively. Both end portions are connected to the first side wall 31 of the support member 603 so as to be locked to 645.
 この状態で、SMAアクチュエータ641における被押圧操作部612aからアクチュエータ係止部645までの操作部642が図7Bに示すように、側面視でX方向およびZ方向に対して傾斜した方向であってアレイレンズ601の中心軸15と第2被連結部14との間を通るように傾斜状に延されている。第7実施形態の上記以外は、先の第1実施形態のものと同構成を採っている。 In this state, the operation unit 642 from the pressed operation unit 612a to the actuator locking unit 645 in the SMA actuator 641 is in the direction inclined with respect to the X direction and the Z direction in a side view as shown in FIG. 7B. It extends in an inclined manner so as to pass between the central axis 15 of the lens 601 and the second connected portion 14. Except for the above, the seventh embodiment has the same configuration as that of the first embodiment.
 このように構成された第7実施形態では、SMAアクチュエータ41が加熱され、変態温度に達すると、SMAアクチュエータ641が縮み、その縮みに伴い押圧操作部641aが操作部642によってX方向およびZ方向に対して傾斜した方向にアレイレンズ601の被押圧操作部612aを押圧操作する。 In the seventh embodiment configured as described above, when the SMA actuator 41 is heated and reaches the transformation temperature, the SMA actuator 641 contracts, and the press operation unit 641a is moved in the X direction and the Z direction by the operation unit 642 along with the contraction. On the other hand, the pressed operation portion 612a of the array lens 601 is pressed in a direction inclined with respect to it.
 押圧操作されたアレイレンズ601は、SMAアクチュエータ641の押圧操作部641aからの+Z方向成分の力によって+Z方向に移動する。このアレイレンズ601の+Z方向への移動に際して、アレイレンズ601は、第1ばね21と第2ばね22とによって図7Bに示すように中心軸15の回りの反時計方向のばね付与モーメントM10を受ける。 The pressed array lens 601 moves in the + Z direction by the force of the + Z direction component from the pressing operation portion 641a of the SMA actuator 641. When the array lens 601 moves in the + Z direction, the array lens 601 receives a counterclockwise spring applying moment M10 about the central axis 15 as shown in FIG. 7B by the first spring 21 and the second spring 22. .
 一方、アレイレンズ601の被押圧操作部612aは、SMAアクチュエータ641の押圧操作部641aから、押圧力の作用線Pが中心軸15とアレイレンズ601の第2被連結部14との間を通るように押圧力を受けるため、アレイレンズ601は、図7Bに示すようにばね付与モーメントM10と反対向き、すなわち、中心軸15回りの時計方向の対抗モーメントM11を受ける。 On the other hand, the pressed operation portion 612a of the array lens 601 is such that the action line P of the pressing force passes between the central axis 15 and the second connected portion 14 of the array lens 601 from the pressing operation portion 641a of the SMA actuator 641. 7B, the array lens 601 receives a countering moment M11 in a direction opposite to the spring application moment M10, that is, in the clockwise direction around the central axis 15, as shown in FIG. 7B.
 したがって、+Z方向への移動に際して第1ばね21と第2ばね22とによってアレイレンズ601にかかるばね付与モーメントM10が、とSMAアクチュエータ641の押圧操作によってアレイレンズ601にかかる対抗モーメントM11によって相殺され、その結果、アレイレンズ601には、+Z方向成分の力がかかった状態で+Z方向に移動する。 Accordingly, the spring applying moment M10 applied to the array lens 601 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled by the counter moment M11 applied to the array lens 601 by the pressing operation of the SMA actuator 641. As a result, the array lens 601 moves in the + Z direction with a force in the + Z direction component applied.
 よって、本実施形態におけるレンズユニットLUgおよび撮像装置Igは、+Z方向に移動する際に第1ばね21と第2ばね22によってアレイレンズ601にかかるばね付与モーメントM10を抑えることができ、アレイレンズ601のX方向のチルトの発生を抑え得る。 Therefore, the lens unit LUg and the imaging device Ig in the present embodiment can suppress the spring applying moment M10 applied to the array lens 601 by the first spring 21 and the second spring 22 when moving in the + Z direction. The occurrence of tilt in the X direction can be suppressed.
 (第8実施形態)
 図8は、第8実施形態における撮像装置の構成を示す図である。図8Aは、平面図であり、図8Bは、図8Aの撮像装置の動作を説明するための一部を断面にした側面図である。次に、第8実施形態の撮像素子Ihについて、図8に基づいて説明する。第8実施形態の撮像素子Ihは、先の第1実施形態のものと同様に、レンズユニットLUhと、撮像部7とを備え、レンズユニットLUhは、アレイレンズ701と、弾性支持部材2と、支持部材703と、駆動部704とを備えている。
(Eighth embodiment)
FIG. 8 is a diagram illustrating a configuration of an imaging apparatus according to the eighth embodiment. FIG. 8A is a plan view, and FIG. 8B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 8A. Next, an image sensor Ih according to an eighth embodiment will be described with reference to FIG. The imaging device Ih according to the eighth embodiment includes the lens unit LUh and the imaging unit 7 as in the first embodiment, and the lens unit LUh includes the array lens 701, the elastic support member 2, and the lens unit LUh. A support member 703 and a drive unit 704 are provided.
 第8実施形態のアレイレンズ701は、先の第1実施形態のものと同様に、略矩形状のレンズ本体部711と、被押圧操作部712aとを備えているが、この第8実施形態では、レンズ本体部711は、後述のアクチュエータ741の一部をなす磁石747を保持した磁石保持部を備え、この磁石保持部が被押圧操作部712aをなしている。 The array lens 701 according to the eighth embodiment includes a substantially rectangular lens body 711 and a pressed operation portion 712a as in the first embodiment. In the eighth embodiment, The lens main body 711 includes a magnet holding portion that holds a magnet 747 that forms part of an actuator 741 described later, and this magnet holding portion forms a pressed operation portion 712a.
 駆動部704のアクチュエータ741は、この第8実施形態では、コイル746と、磁石747とを備えている。コイル746は、支持部材703の第1側壁31に設けられたコイル保持部731aに固定的に保持されている。 The actuator 741 of the drive unit 704 includes a coil 746 and a magnet 747 in the eighth embodiment. The coil 746 is fixedly held by a coil holding portion 731 a provided on the first side wall 31 of the support member 703.
 磁石747は、アレイレンズ701の中心軸15と距離L4だけ隔ててレンズ本体部711の他方端部に、コイル746との対向面747aがZ方向と平行になるように配置され、コイル746への電力の供給に伴い磁石747(レンズ本体部711の他方端部)が+Z方向の力を受けるようになっている。 The magnet 747 is disposed at the other end of the lens body 711 at a distance L4 from the central axis 15 of the array lens 701 so that the facing surface 747a to the coil 746 is parallel to the Z direction. The magnet 747 (the other end of the lens main body 711) receives a force in the + Z direction with the supply of electric power.
 このように構成された第8実施形態では、コイル746に図略の制御駆動回路から電力が供給されると、磁石747がZ方向の力を受け、磁石747を保持したアレイレンズ701は、磁石747から+Z方向成分の力を受けて+Z方向に移動する。このアレイレンズ701の+Z方向への移動に際して、アレイレンズ701は、第1ばね21と第2ばね22とによって図8Bに示すように中心軸15の回りの反時計方向のばね付与モーメントM10を受ける。 In the eighth embodiment configured as described above, when power is supplied to the coil 746 from a control drive circuit (not shown), the magnet 747 receives a force in the Z direction, and the array lens 701 holding the magnet 747 It receives the force of the + Z direction component from 747 and moves in the + Z direction. When the array lens 701 moves in the + Z direction, the array lens 701 receives a counterclockwise spring applying moment M10 about the central axis 15 as shown in FIG. 8B by the first spring 21 and the second spring 22. .
 一方、アレイレンズ701は、磁石747から図8Bに示すようにばね付与モーメントM10と反対向き、すなわち、中心軸15の回りの時計方向の対抗モーメントM11を受ける。したがって、+Z方向への移動に際して第1ばね21と第2ばね22とによってアレイレンズ701にかかるばね付与モーメントM10が、アクチュエータ741の駆動力によってアレイレンズ701にかかる対抗モーメントM11とが相殺され、その結果、アレイレンズ701には、+Z方向成分の力がかかった状態で+Z方向に移動する。 On the other hand, the array lens 701 receives a countering moment M11 in a direction opposite to the spring applying moment M10 as shown in FIG. 8B from the magnet 747, that is, in the clockwise direction around the central axis 15. Therefore, the spring applying moment M10 applied to the array lens 701 by the first spring 21 and the second spring 22 during the movement in the + Z direction is canceled out by the counter moment M11 applied to the array lens 701 by the driving force of the actuator 741. As a result, the array lens 701 moves in the + Z direction with a force in the + Z direction component applied.
 なお、アクチュエータ741がコイル746と磁石747とを備えたものから構成される場合、コイル746と磁石747との配設位置は、上記の位置に限らず、適宜変更できる。図9は、第8実施形態における撮像装置の変形例の構成を示す図である。図9Aは、平面図であり、図9Bは、図9Aの撮像装置の動作を説明するための一部を断面にした側面図である。 In addition, when the actuator 741 is comprised from what provided the coil 746 and the magnet 747, the arrangement | positioning position of the coil 746 and the magnet 747 is not restricted to said position, It can change suitably. FIG. 9 is a diagram illustrating a configuration of a modified example of the imaging apparatus according to the eighth embodiment. FIG. 9A is a plan view, and FIG. 9B is a side view, partly in section, for explaining the operation of the imaging device of FIG. 9A.
 例えば図9に示すように、コイル746が支持部材703の第2側壁32と第4側壁34とにそれぞれ保持され、一方、磁石747がアレイレンズ701の中心軸15と距離L5だけ隔ててレンズ本体部711のY方向の両端面に、それぞれ、コイル746との対向面747aがZ方向と平行になるように配置され、コイル746への電力の供給に伴い磁石747が+Z方向の力を受けるようにしてもよい。 For example, as shown in FIG. 9, the coil 746 is held on the second side wall 32 and the fourth side wall 34 of the support member 703 respectively, while the magnet 747 is separated from the central axis 15 of the array lens 701 by a distance L5. The opposing surfaces 747a facing the coil 746 are arranged on both end surfaces of the portion 711 in the Y direction so as to be parallel to the Z direction, and the magnet 747 receives a force in the + Z direction as power is supplied to the coil 746. It may be.
 なお、上記実施形態では、第1ばねおよび第2ばねは、全長にわたって剛性が一定のものを用いたが、この形態のものに限らず、適宜変更できる。例えば第1ばねおよび第2ばねの一方または両方の一部に、他の部分よりも剛性が高いまたは低い部位をX方向に沿って有するものとし、ばね付与モーメントM10が生じ難いものとしてもよい。 In the above embodiment, the first spring and the second spring have constant rigidity over the entire length. However, the first spring and the second spring are not limited to this form and can be appropriately changed. For example, a part of one or both of the first spring and the second spring may have a part having higher or lower rigidity than the other part along the X direction, and the spring applying moment M10 may be difficult to occur.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるレンズユニットは、1または複数の光学レンズを含む光学部品と、前記光学部品を弾性支持する弾性支持部材と、前記弾性支持部材を支持する支持部材と、前記光学部品を光軸方向である第1方向に移動させるためのアクチュエータと、を備え、前記弾性支持部材は、互いに前記第1方向に距離をもって前記第1方向と直交する第2方向に沿って延ばされた第1および第2ばねを備え、前記第1および第2ばねは、それぞれ、その一方端部に、前記光学部品と連結された光学部品連結部を、その他方端部に、前記支持部材に支持された被支持部を、それぞれ備え、前記アクチュエータは、前記光学部品に前記第1方向の力を付与するとともに、前記第1方向の力の付与に伴い前記第1および第2ばねによって前記光学部品にかけられるばね付与モーメントとは反対向きの対抗モーメントを前記光学部品に付与するように構成されている。 A lens unit according to an aspect includes an optical component including one or a plurality of optical lenses, an elastic support member that elastically supports the optical component, a support member that supports the elastic support member, and the optical component in an optical axis direction. The elastic support members extend along a second direction perpendicular to the first direction with a distance from each other in the first direction. The first and second springs each include an optical component connecting portion connected to the optical component at one end thereof, and a support supported by the support member at the other end. Each of which includes a support portion, and the actuator applies a force in the first direction to the optical component, and the first and second springs apply the force in the first direction to the optical component. The spring imparting moments vignetting is configured to impart a counter moment opposite to the optical component.
 これによれば、アクチュエータは、第1方向の力の付与に伴い第1および第2ばねによって光学部品にかけられるばね付与モーメントと反対向きの対抗モーメントを光学部品に付与するように構成されているため、光学部品が第1方向に移動する際に、第1および第2ばねによって光学部品にかけられるばね付与モーメントを抑えることができる。これにより、光学部品が第1方向への移動に際してチルトを生じ難くできる。 According to this, the actuator is configured to apply a counter moment to the optical component opposite to the spring applying moment applied to the optical component by the first and second springs when the force in the first direction is applied. When the optical component moves in the first direction, the spring applying moment applied to the optical component by the first and second springs can be suppressed. This makes it difficult for the optical component to tilt when moving in the first direction.
 他の一態様では、上述のレンズユニットにおいて、前記第1および第2ばねは、板ばねまたはサスペンションワイヤである。 In another aspect, in the lens unit described above, the first and second springs are leaf springs or suspension wires.
 これによれば、第1および第2ばねが板ばねまたはサスペンションワイヤであると、アクチュエータからの第1方向の力の付与に伴い第1および第2ばねによって光学部品にばね付与モーメントがかかる場合が多いが、板ばねまたはサスペンションワイヤの形状等の変更によってばね付与モーメントを小さくできるとともに、対抗付与モーメントをかけ易くでき、ばね付与モーメントを効率よく抑えることができる。第1および第2ばねが容易に製作できる。 According to this, if the first and second springs are leaf springs or suspension wires, a spring applying moment may be applied to the optical component by the first and second springs as the first direction force is applied from the actuator. In many cases, the spring application moment can be reduced by changing the shape of the leaf spring or the suspension wire and the counter application moment can be easily applied, and the spring application moment can be efficiently suppressed. The first and second springs can be easily manufactured.
 他の一態様では、上述のレンズユニットにおいて、前記光学部品は、前記光学レンズを含む光学部品本体部と、前記アクチュエータに押圧操作される被押圧操作部とを備え、前記光学部品本体部は、前記第1および第2ばねのそれぞれの前記光学部品連結部に連結された被連結部を備え、前記ばね付与モーメントは、前記光学部品本体部の被連結部同士の中点を通り且つ前記第1方向および前記第2方向に直交する第3方向に延びる中心軸回りのモーメントであり、前記被押圧操作部は、前記アクチュエータから前記被押圧操作部にかかる押圧力の作用線と前記中心軸とに距離ができるように押圧操作されることを特徴とする。 In another aspect, in the above-described lens unit, the optical component includes an optical component main body including the optical lens, and a pressed operation unit that is pressed by the actuator, and the optical component main body includes: The first and second springs each include a connected portion connected to the optical component connecting portion, and the spring applying moment passes through a midpoint between the connected portions of the optical component main body portion and the first spring is provided. And a moment about a central axis extending in a third direction orthogonal to the direction and the second direction, and the pressed operation portion is applied to an action line of a pressing force applied from the actuator to the pressed operation portion and the central axis. It is characterized by being pressed so that a distance is possible.
 これによれば、アクチュエータによって被押圧操作部が第1および第2ばねと反対側から押圧操作され、アクチュエータが第1および第2ばねに干渉することなく配置でき、アクチュエータの配置が容易になる。 According to this, the pressed operation portion is pressed by the actuator from the side opposite to the first and second springs, the actuator can be arranged without interfering with the first and second springs, and the arrangement of the actuator becomes easy.
 他の一態様では、上述のレンズユニットにおいて、前記第1方向の力は、前記第2ばねから第1ばねに向かう方向の力であり、前記アクチュエータは、前記押圧力の作用線が前記中心軸と前記第2ばねの前記光学部品連結部との間を通るように、前記被押圧操作部を押圧操作する。 In another aspect, in the lens unit described above, the force in the first direction is a force in a direction from the second spring toward the first spring, and the actuator has a line of action of the pressing force on the central axis. The pressed operation portion is pressed so as to pass between the second spring and the optical component connecting portion of the second spring.
 これによれば、アクチュエータによって被押圧操作部の1箇所を押圧操作すれば、被押圧操作部にかかる第1方向成分の力とその第1方向成分の力の付与に伴い第1および第2ばねによって光学部品にかけられるばね付与モーメントとは反対向きの対抗モーメントを容易に光学部品に付与できる。 According to this, if one place of the pressed operation part is pressed by the actuator, the first and second springs are applied in accordance with the force of the first direction component applied to the pressed operation part and the force of the first direction component. Thus, a counter moment opposite to the spring applying moment applied to the optical component can be easily applied to the optical component.
 他の一態様では、上述のレンズユニットにおいて、前記第1方向の力は、前記第2ばねから第1ばねに向かう方向の力であり、前記被押圧操作部は、傾斜面であり、前記傾斜面は、前記傾斜面の法線が前記中心軸と前記第2ばねの前記光学部品連結部との間を通るように、前記第1方向および第2方向に対して傾斜している。 In another aspect, in the lens unit described above, the force in the first direction is a force in a direction from the second spring toward the first spring, the pressed operation portion is an inclined surface, and the inclination The surface is inclined with respect to the first direction and the second direction so that a normal line of the inclined surface passes between the central axis and the optical component connecting portion of the second spring.
 これによれば、アクチュエータによって被押圧操作部の1箇所を押圧操作すれば、被押圧操作部にかかる第1方向成分の力とその第1方向成分の力の付与に伴い第1および第2ばねによって光学部品にかけられるばね付与モーメントとは反対向きの対抗モーメントを、より簡単にかつ確実に付与できる。 According to this, if one place of the pressed operation part is pressed by the actuator, the first and second springs are applied in accordance with the force of the first direction component applied to the pressed operation part and the force of the first direction component. Thus, it is possible to more easily and reliably apply a counter-moment opposite to the spring-applying moment applied to the optical component.
 他の一態様では、上述のレンズユニットにおいて、前記被押圧操作部は、前記第2方向における前記第1ばねの前記光学部品連結部と前記被支持部との間に形成されている。 In another aspect, in the above-described lens unit, the pressed operation portion is formed between the optical component connecting portion and the supported portion of the first spring in the second direction.
 これによれば、アクチュエータを第2方向における第1ばねの光学部品連結部と被支持部との間に配置でき、装置を小型化できる。 According to this, the actuator can be arranged between the optical component connecting portion and the supported portion of the first spring in the second direction, and the apparatus can be miniaturized.
 他の一態様では、上述のレンズユニットにおいて、前記アクチュエータは、前記第2方向に力を付与する。 In another aspect, in the lens unit described above, the actuator applies a force in the second direction.
 これによれば、被押圧操作部がアクチュエータによって第1方向に沿う方向に押圧操作されればばね付与モーメントとは反対向きの対抗モーメントがかけられ、被押圧操作部に対抗モーメントを容易に付与できる。 According to this, if the pressed operation portion is pressed in the direction along the first direction by the actuator, a counter moment opposite to the spring applying moment is applied, and the counter moment can be easily applied to the pressed operation portion. .
 他の一態様では、上述のレンズユニットにおいて、前記第1ばねと第2ばねとは、前記光学部品を介して前記アクチュエータからかかる押圧力による前記第1方向に対する弾性変形量が互いに異なるように構成されている。 In another aspect, in the lens unit described above, the first spring and the second spring are configured such that elastic deformation amounts in the first direction due to a pressing force applied from the actuator via the optical component are different from each other. Has been.
 これによれば、アクチュエータによって被押圧操作部の1箇所を押圧操作すれば、被押圧操作部にかかる第1方向成分の力とその第1方向成分の力の付与に伴い第1および第2ばねによって光学部品にかけられるばね付与モーメントとは反対向きの対抗モーメントを、より簡単にかつ確実に光学部品に付与できる。 According to this, if one place of the pressed operation part is pressed by the actuator, the first and second springs are applied in accordance with the force of the first direction component applied to the pressed operation part and the force of the first direction component. Thus, a counter-moment that is opposite to the spring-applying moment applied to the optical component can be applied to the optical component more easily and reliably.
 他の一態様では、上述のレンズユニットにおいて、前記第1ばねおよび第2ばねは、前記第2方向に沿って、その一部に他の部分と剛性が異なる部位を有する。 In another aspect, in the above-described lens unit, the first spring and the second spring have a part having rigidity different from that of the other part along the second direction.
 これによれば、第1ばねと第2ばねとで第1方向に対する撓み変形量を互いに異なるものにでき、ばね付与モーメントを小さくできる。ばね付与モーメントを効率よく抑えることができる。 According to this, the amount of bending deformation in the first direction can be made different between the first spring and the second spring, and the spring applying moment can be reduced. The spring application moment can be efficiently suppressed.
 他の一態様にかかる撮像装置は、光学像を電気的な信号に変換する撮像素子と、1または複数の光学レンズを備え、光学像を前記撮像素子の受光面上に結像するレンズユニットとを備え、前記レンズユニットは、上述のいずれかのレンズユニットである。 An imaging device according to another aspect includes an imaging device that converts an optical image into an electrical signal, a lens unit that includes one or a plurality of optical lenses, and that forms an optical image on a light receiving surface of the imaging device. The lens unit is any one of the lens units described above.
 これによれば、光学部品が第1方向に移動する際に、第1および第2ばねによって光学部品にかけられるばね付与モーメントを抑えることができ、光学部品のチルトの発生を抑え得る撮像装置にできる。 According to this, when the optical component moves in the first direction, the spring application moment applied to the optical component by the first and second springs can be suppressed, and the imaging apparatus can suppress the occurrence of tilt of the optical component. .
 この出願は、2014年3月7日に出願された日本国特許出願特願2014-44889を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2014-44889 filed on Mar. 7, 2014, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、レンズユニットおよび撮像装置が提供できる。 According to the present invention, a lens unit and an imaging device can be provided.

Claims (10)

  1.  1または複数の光学レンズを含む光学部品と、
     前記光学部品を弾性支持する弾性支持部材と、
     前記弾性支持部材を支持する支持部材と、
     前記光学部品を光軸方向である第1方向に移動させるためのアクチュエータと、を備え、
     前記弾性支持部材は、互いに前記第1方向に距離をもって前記第1方向と直交する第2方向に沿って延ばされた第1および第2ばねを備え、
     前記第1および第2ばねは、それぞれ、その一方端部に、前記光学部品と連結された光学部品連結部を、その他方端部に、前記支持部材に支持された被支持部を、それぞれ備え、
     前記アクチュエータは、前記光学部品に前記第1方向の力を付与するとともに、前記第1方向の力の付与に伴い前記第1および第2ばねによって前記光学部品にかけられるばね付与モーメントとは反対向きの対抗モーメントを前記光学部品に付与するように構成されていること
     を特徴とするレンズユニット。
    An optical component comprising one or more optical lenses;
    An elastic support member for elastically supporting the optical component;
    A support member for supporting the elastic support member;
    An actuator for moving the optical component in a first direction that is an optical axis direction,
    The elastic support member includes first and second springs extending along a second direction perpendicular to the first direction with a distance from each other in the first direction,
    Each of the first and second springs includes an optical component connecting portion connected to the optical component at one end thereof, and a supported portion supported by the support member at the other end. ,
    The actuator applies a force in the first direction to the optical component and has a direction opposite to a spring applying moment applied to the optical component by the first and second springs when the force in the first direction is applied. A lens unit configured to impart a counter moment to the optical component.
  2.  前記第1および第2ばねは、板ばねまたはサスペンションワイヤであること
     を特徴とする請求項1に記載のレンズユニット。
    The lens unit according to claim 1, wherein the first and second springs are leaf springs or suspension wires.
  3.  前記光学部品は、前記光学レンズを含む光学部品本体部と、前記アクチュエータに押圧操作される被押圧操作部とを備え、
     前記光学部品本体部は、前記第1および第2ばねのそれぞれの前記光学部品連結部に連結された被連結部を備え、
     前記ばね付与モーメントは、前記光学部品本体部の被連結部同士の中点を通り且つ前記第1方向および前記第2方向に直交する第3方向に延びる中心軸回りのモーメントであり、
     前記被押圧操作部は、前記アクチュエータから前記被押圧操作部にかかる押圧力の作用線と前記中心軸とに距離ができるように押圧操作されること
     を特徴とする請求項1または請求項2に記載のレンズユニット。
    The optical component includes an optical component main body including the optical lens, and a pressed operation unit that is pressed by the actuator.
    The optical component main body includes a coupled portion coupled to the optical component coupling portion of each of the first and second springs.
    The spring application moment is a moment around a central axis extending in a third direction passing through a midpoint between the connected parts of the optical component main body part and orthogonal to the first direction and the second direction,
    3. The pressing operation portion according to claim 1, wherein the pressing operation portion is pressed so that a distance is formed between a line of action of pressing force applied from the actuator to the pressing operation portion and the central axis. The lens unit described.
  4.  前記第1方向の力は、前記第2ばねから第1ばねに向かう方向の力であり、
     前記アクチュエータは、前記押圧力の作用線が前記中心軸と前記第2ばねの前記光学部品連結部との間を通るように、前記被押圧操作部を押圧操作すること
     を特徴とする請求項3に記載のレンズユニット。
    The force in the first direction is a force in a direction from the second spring toward the first spring,
    The actuator is configured to press the pressed operation portion so that a line of action of the pressing force passes between the central axis and the optical component connecting portion of the second spring. The lens unit described in 1.
  5.  前記第1方向の力は、前記第2ばねから第1ばねに向かう方向の力であり、
     前記被押圧操作部は、傾斜面であり、
     前記傾斜面は、前記傾斜面の法線が前記中心軸と前記第2ばねの前記光学部品連結部との間を通るように、前記第1方向および第2方向に対して傾斜していること
     を特徴とする請求項3または請求項4に記載のレンズユニット。
    The force in the first direction is a force in a direction from the second spring toward the first spring,
    The pressed operation part is an inclined surface,
    The inclined surface is inclined with respect to the first direction and the second direction so that a normal line of the inclined surface passes between the central axis and the optical component connecting portion of the second spring. The lens unit according to claim 3 or 4, wherein
  6.  前記被押圧操作部は、前記第2方向における前記第1ばねの前記光学部品連結部と前記被支持部との間に形成されていること
     を特徴とする請求項3に記載のレンズユニット。
    The lens unit according to claim 3, wherein the pressed operation portion is formed between the optical component connecting portion of the first spring and the supported portion in the second direction.
  7.  前記アクチュエータは、前記第2方向に力を付与すること
     を特徴とする請求項6に記載のレンズユニット。
    The lens unit according to claim 6, wherein the actuator applies a force in the second direction.
  8.  前記第1ばねと第2ばねとは、前記光学部品を介して前記アクチュエータからかかる押圧力による前記第1方向に対する弾性変形量が互いに異なるように構成されていること
     を特徴とする請求項1または請求項2に記載のレンズユニット。
    The said 1st spring and the 2nd spring are comprised so that the elastic deformation amount with respect to the said 1st direction by the pressing force applied from the said actuator via the said optical component may mutually differ. The lens unit according to claim 2.
  9.  前記第1ばねおよび第2ばねは、前記第2方向に沿って、その一部に他の部分と剛性が異なる部位を有すること
     を特徴とする請求項1ないし請求項8のいずれか1項に記載のレンズユニット。
    The said 1st spring and the 2nd spring have a site | part from which another part differs in rigidity along the said 2nd direction in any one of Claim 1 thru | or 8 characterized by these. The lens unit described.
  10.  光学像を電気的な信号に変換する撮像素子と、
     1または複数の光学レンズを備え、光学像を前記撮像素子の受光面上に結像するレンズユニットとを備え、
     前記レンズユニットは、請求項1ないし請求項9のいずれか1項に記載のレンズユニットであること
     を特徴とする撮像装置。
     
    An image sensor that converts an optical image into an electrical signal;
    A lens unit that includes one or a plurality of optical lenses, and that forms an optical image on a light receiving surface of the image sensor;
    10. The imaging apparatus according to claim 1, wherein the lens unit is the lens unit according to claim 1.
PCT/JP2015/056334 2014-03-07 2015-03-04 Lens unit and imaging device WO2015133515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014044889 2014-03-07
JP2014-044889 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133515A1 true WO2015133515A1 (en) 2015-09-11

Family

ID=54055317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056334 WO2015133515A1 (en) 2014-03-07 2015-03-04 Lens unit and imaging device

Country Status (1)

Country Link
WO (1) WO2015133515A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111393A1 (en) * 2017-12-07 2019-06-13 ギガフォトン株式会社 Optical-element moving apparatus, narrow-band laser apparatus, and electronic-device manufacturing method
CN114942555A (en) * 2021-02-09 2022-08-26 日本电产三协株式会社 Optical unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750023A (en) * 1993-08-04 1995-02-21 Matsushita Electric Ind Co Ltd Objective-lens driving device
JPH10275354A (en) * 1997-01-31 1998-10-13 Toshiba Corp Objective lens supporting device and objective lens driving device
JP2002074708A (en) * 2000-06-14 2002-03-15 Sharp Corp Method for correcting inclination of movable member, method for correcting inclination of objective lens for optical disk, and device for driving objective lens for optical disk
JP2007035078A (en) * 2005-07-21 2007-02-08 Ricoh Co Ltd Objective lens drive unit, optical pickup device, and optical disk device
JP2007200459A (en) * 2006-01-26 2007-08-09 Sharp Corp Objective lens driving unit
JP2007220183A (en) * 2006-02-15 2007-08-30 Hitachi Media Electoronics Co Ltd Objective lens driving mechanism
WO2012153600A1 (en) * 2011-05-09 2012-11-15 コニカミノルタアドバンストレイヤー株式会社 Lens-driving device and image pick-up device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750023A (en) * 1993-08-04 1995-02-21 Matsushita Electric Ind Co Ltd Objective-lens driving device
JPH10275354A (en) * 1997-01-31 1998-10-13 Toshiba Corp Objective lens supporting device and objective lens driving device
JP2002074708A (en) * 2000-06-14 2002-03-15 Sharp Corp Method for correcting inclination of movable member, method for correcting inclination of objective lens for optical disk, and device for driving objective lens for optical disk
JP2007035078A (en) * 2005-07-21 2007-02-08 Ricoh Co Ltd Objective lens drive unit, optical pickup device, and optical disk device
JP2007200459A (en) * 2006-01-26 2007-08-09 Sharp Corp Objective lens driving unit
JP2007220183A (en) * 2006-02-15 2007-08-30 Hitachi Media Electoronics Co Ltd Objective lens driving mechanism
WO2012153600A1 (en) * 2011-05-09 2012-11-15 コニカミノルタアドバンストレイヤー株式会社 Lens-driving device and image pick-up device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111393A1 (en) * 2017-12-07 2019-06-13 ギガフォトン株式会社 Optical-element moving apparatus, narrow-band laser apparatus, and electronic-device manufacturing method
CN111566533A (en) * 2017-12-07 2020-08-21 极光先进雷射株式会社 Optical element moving device, narrow band laser device, and method for manufacturing electronic device
US11081853B2 (en) 2017-12-07 2021-08-03 Gigaphoton Inc. Optical element moving apparatus, narrowed-line laser apparatus, and method for manufacturing electronic device
CN114942555A (en) * 2021-02-09 2022-08-26 日本电产三协株式会社 Optical unit
CN114942555B (en) * 2021-02-09 2024-02-13 日本电产三协株式会社 Optical unit

Similar Documents

Publication Publication Date Title
US8588598B2 (en) Shape memory alloy actuation apparatus
EP2394055B1 (en) Shape memory alloy actuation apparatus
US7640741B2 (en) Driving apparatus
JP4264569B2 (en) Imaging device
JP4862703B2 (en) DRIVE DEVICE, DRIVE MECHANISM, AND IMAGING DEVICE
US20070280668A1 (en) Driving device, driving mechanism, and image sensing apparatus
US20110255184A1 (en) Shape memory alloy actuation apparatus
JP2008020813A (en) Lens driving mechanism and imaging apparatus using same
US8824071B2 (en) Lens barrel and camera
WO2015133515A1 (en) Lens unit and imaging device
WO2015005056A1 (en) Imaging device
KR20150000180A (en) Camera module
KR100526250B1 (en) lens moving device and lens module using piezoelectric bending actuator
WO2015137210A1 (en) Lens unit and image pick-up device
US8587866B2 (en) Optical apparatus
JP2009303374A (en) Piezoelectric actuator, lens barrel, optical apparatus
JP2009282375A (en) Lens drive unit, camera module, and mobile terminal
JP2006345630A (en) Driving device, lens unit, and image pickup apparatus
JP5257429B2 (en) Lens barrel and camera
WO2015025734A1 (en) Lens unit, imaging device and multi-lens array
JP2008020811A (en) Lens driving mechanism and imaging apparatus using same
JP2019133113A (en) Lens device
JP2012185209A (en) Imaging device
JP2015200791A (en) Lens unit and imaging apparatus
JP5569488B2 (en) Lens barrel and camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP