JPS59168282A - Heat responsive device utilizing shape memory spring - Google Patents

Heat responsive device utilizing shape memory spring

Info

Publication number
JPS59168282A
JPS59168282A JP4049583A JP4049583A JPS59168282A JP S59168282 A JPS59168282 A JP S59168282A JP 4049583 A JP4049583 A JP 4049583A JP 4049583 A JP4049583 A JP 4049583A JP S59168282 A JPS59168282 A JP S59168282A
Authority
JP
Japan
Prior art keywords
spring
temperature
shape memory
stopper
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4049583A
Other languages
Japanese (ja)
Other versions
JPH0343471B2 (en
Inventor
Akira Ono
明 大野
Yutaka Utsunomiya
裕 宇都宮
Hiroshi Koyama
博 小山
Shigemi Sato
繁美 佐藤
Toshio Hamano
俊雄 浜野
Shigeru Kawaguchi
川口 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP4049583A priority Critical patent/JPS59168282A/en
Publication of JPS59168282A publication Critical patent/JPS59168282A/en
Publication of JPH0343471B2 publication Critical patent/JPH0343471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To permit to be used for an use which is narrow in an operating temperature range by providing a stopper stopping the shape memory spring at a predetermined operating stroke to reduce the temperature hysteresis of the spring. CONSTITUTION:When temperature is low, a load for a weight 3 tries to compress the spring 1, whose spring constant is weakened, to the lower side of the stopper 5; however, the first stopper 5 receives it. Accordingly, the load of the weight 3 is supported by the resilient force of the spring 1 and the first stopper 5. On the other hand, when the temperature is high, the spring 1 tries to expand more than the operating stroke L thereof; however, the second stopper 6 precludes the restoration exceeding the operating stroke L. Accordingly, the temperature hysteresis may be restricted to a small amount.

Description

【発明の詳細な説明】 本発明は形状記憶合金からなる形状記憶ばねを用いた熱
2動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal bidynamic device using a shape memory spring made of a shape memory alloy.

この骸の装置は剖えば熱応動弁などに利用される。すな
わち低温時と高温時とで形状記憶ばねの出力荷重が変化
することを利用して、所定の作動ストロークで被駆動物
たとえば弁体を作動させるようになっている、 従来のこの挿の装置は、第1図に概略を示したようζ二
、コイル状の形状記憶ばねaと、この形状記憶ばねa?
たわませる方向に荷重を与えるウェイト(荷重付与体)
bなどを備えて構成され、低温時には形状記憶ばねaの
出力荷重が小さいため、ばねのたわみ量が大となってウ
ェイ)bが降下し、一方晶温時には形状記憶ばねaの出
力荷重が大となってウェイ)bが上昇するものである。
If this skeleton's device is dissected, it will be used for things like heat-responsive valves. In other words, this conventional insert device operates a driven object, such as a valve body, with a predetermined operating stroke by utilizing the change in the output load of the shape memory spring between low and high temperatures. , As schematically shown in FIG. 1, ζ2, a coiled shape memory spring a, and this shape memory spring a?
A weight that applies a load in the direction of deflection (load applying body)
When the temperature is low, the output load of the shape memory spring a is small, so the amount of deflection of the spring increases and the way b) falls, while at the crystal temperature, the output load of the shape memory spring a is large. Therefore, way) b rises.

すなわち各温度においてばねaの出力荷重と舛カがバラ
ンスしている。
That is, at each temperature, the output load and the spring force of spring a are balanced.

ところで形状記憶合金が温度ヒステリシス(相変態の温
度差)をもっことが従来から知られている。この温度ヒ
ステリシスは、形状記憶合金自体では10℃ないし30
’Cと比較的小さい値であるが、これをばねとして用い
た場合にはひずみが作用することがら温度ヒステリシス
は一層大きくなる。
By the way, it has been known for a long time that shape memory alloys have temperature hysteresis (temperature difference in phase transformation). This temperature hysteresis is 10°C to 30°C for the shape memory alloy itself.
'C, which is a relatively small value, but when used as a spring, the temperature hysteresis becomes even larger due to the effect of strain.

すなわち第1図の装置において荷重(ウェイ)b)の重
さを変化させて4Fヒステリシスな測定すると第2図(
5)、(至)、 (C)に示されるようになる。第2図
(5)は荷重が小さい場合であり、温度ヒステリシスΔ
T1も比較的小さいが、第2図(F3) 、 (C1の
ように荷重を増大させると次第に温度ヒステリシスΔT
teΔT3が大きくなることがわかる。
In other words, when measuring with 4F hysteresis by changing the weight of load (way) b) in the device shown in Fig. 1, the result shown in Fig. 2 (
5), (to), and (C). Figure 2 (5) shows the case where the load is small, and the temperature hysteresis Δ
T1 is also relatively small, but as the load increases as shown in Figure 2 (F3) and (C1), the temperature hysteresis ΔT gradually increases.
It can be seen that teΔT3 becomes large.

更に理解を深めるために従来品について具体的な数字を
あげて以下に説明する。例えば、要求される作動ストロ
ークLが9wI、ばねに加わる荷重(ウェイトbの重さ
)が75gfとした場合の形状記憶ばねaは、−例とし
て線径0.611IJI%コイル平均径8、ld%有効
巻数10、自由高さ24U、密着高さ7,3tamノ’
l’ i−N i合金製のばねであり、相変態温度は、
A s = 25℃、A f = 36 ’C、M s
 = 32℃、Mf=26℃とする。なお上記作動スト
ロークLとは、第3図に示されるように、ばねaが最も
縮んだ時の高さく密着高さHs)と、ばねaが最も伸び
た時の高さとの差L(91!Jl)を意味する。
For further understanding, the conventional product will be explained below with specific figures. For example, when the required operating stroke L is 9 wI and the load applied to the spring (weight of weight b) is 75 gf, the shape memory spring a is - As an example, the wire diameter is 0.611 IJI%, the coil average diameter is 8 ld% Effective number of turns: 10, free height: 24U, contact height: 7.3tam'
It is a spring made of l' i-N i alloy, and the phase transformation temperature is
A s = 25°C, A f = 36'C, M s
= 32°C, Mf = 26°C. As shown in FIG. 3, the above-mentioned operating stroke L is the difference L (91! Jl).

上記のよう(二作勅ストロークを9u、荷重を75gf
とした場合の荷重−たわみ線図は$4図のようになる。
As above (two strokes are 9u, the load is 75gf)
The load-deflection diagram in this case is as shown in the $4 diagram.

すなわち、低温時のたわみ量と高温時のたわみ量の差が
9v1であることを意味している。
That is, it means that the difference between the amount of deflection at low temperature and the amount of deflection at high temperature is 9v1.

ところで上記相変態温度を有する’l’1−Ni形状記
憶はねaを用いた場合の温度ヒステリシスは第5図のよ
うになる。同図截二おいてT、は昇温時の作動開始温度
、T、は昇温時の作動終了温度sTsは降温時の作動開
始温度、T4は降温時の作動終了温度を示す。また、密
着高さHsは?、81である。
By the way, the temperature hysteresis when using the 'l'1-Ni shape memory layer a having the above phase transformation temperature is as shown in FIG. In Fig. 2, T indicates the operation start temperature when the temperature is increased, T is the operation end temperature when the temperature is increased, sTs is the operation start temperature when the temperature is decreased, and T4 is the operation end temperature when the temperature is decreased. Also, what is the adhesion height Hs? , 81.

この第5図からもわかるように、従来の形状記憶ばねa
ではT、とT4の差、つまり温(9)ヒステリシスΔT
が32℃もあり、この値は形状記憶合金自身の温度ヒス
テリシス(A/−M、f=10℃)の値の3倍以上と、
非常に大きなものとなる。その理由は、前記したよう?
−形状記憶合金をはねとして用いた場合には、ひずみが
加わることによって、作動開始温度付近と作動終了温度
付近で、温度が変化してもばね高さのほとんど変化しな
い領域が存在するためである。
As can be seen from Fig. 5, the conventional shape memory spring a
Then, the difference between T and T4, that is, the temperature (9) hysteresis ΔT
is 32℃, which is more than three times the temperature hysteresis (A/-M, f=10℃) of the shape memory alloy itself.
It will be very large. Is the reason as mentioned above?
- When a shape memory alloy is used as a spring, there is a region where the height of the spring hardly changes even if the temperature changes, between the start temperature and the end temperature due to the addition of strain. be.

以上の説明から明らかなよう(−1従来の熱応動装置で
は、温度ヒステリシスΔTが非常に大きい。従って狭い
作動範囲で用いることが不可能な場合があった。しかも
従来は前記したように形状記憶ばねaの出力荷重と外力
(例えばウェイ)bの重さ)がバランスしているために
As is clear from the above explanation (-1) in the conventional thermal response device, the temperature hysteresis ΔT is very large.Therefore, it was sometimes impossible to use it in a narrow operating range. Because the output load of spring a and the external force (for example, the weight of way b) are balanced.

微小の外力変動によって作動位置が変化し易い。The operating position is likely to change due to minute fluctuations in external force.

従って外力変動の多い環境、例えば屋外とか機械振動の
多い装置系、あるいは流体圧変動の多い弁などには不適
当であるなど、用途が制限されるという欠点があった。
Therefore, it is unsuitable for environments where there are many external force fluctuations, such as outdoors, equipment systems where there are many mechanical vibrations, or valves where there are many fluid pressure fluctuations, which limits its use.

本発明は上記事情にもとづきなされたもので。The present invention has been made based on the above circumstances.

、その目的とするところは、温度ヒステリシスを小さく
することができ作動温度範囲の狭い用途にも使用できる
とともに、外力変動に対して作動位置が変化しにくく作
動安定性の高い形状記憶ばねを用いた熱応動装置を提供
することにある。
The purpose of this is to reduce temperature hysteresis so that it can be used in applications with a narrow operating temperature range, and to use a shape memory spring that does not change its operating position due to external force fluctuations and has high operating stability. An object of the present invention is to provide a thermal response device.

すなわち、本発明の要旨とするところは、形状記憶合金
からなる形状記憶ばねと、この形状記憶ばねをたわませ
る方向に荷重を与える荷重付与体たとえばウェイトある
いはバイアスはねと、低温時に上記形状記憶ばねが所定
の作動ストローク以上たわむことを押える第1のストッ
パまたは高温時に上記形状記憶ばねが所定の作動ストロ
ーク以上復元することを押える第2のストッパのうち少
なくともいずれか一方を具備したことを特徴とする形状
記憶ばねを用いた熱応動装置である。
That is, the gist of the present invention is to provide a shape memory spring made of a shape memory alloy, a load applying body such as a weight or a bias spring that applies a load in a direction that causes the shape memory spring to deflect, and a shape memory spring made of a shape memory alloy at low temperatures. It is characterized by comprising at least one of a first stopper that prevents the spring from deflecting beyond a predetermined operating stroke, and a second stopper that prevents the shape memory spring from restoring beyond a predetermined operating stroke at high temperatures. This is a thermal response device using a shape memory spring.

以下に本発明の一実施例について第6図ないし第8図を
参照して説明する。
An embodiment of the present invention will be described below with reference to FIGS. 6 to 8.

第6図囚、 (F3)はそれぞれ熱応動装置の低温時の
状態と高温時の状態を示すものである。M図において1
図中1は形状記憶合金からなるコイル状の形状記憶ばね
を示tいこの形状記憶はね1は、−例として線径Q、f
)[J、コイル平均径3、lfl、有効巻数10.自由
高す30u(7)’I’1−Ni製ばね、あるいは他の
例として線径0,51、コイル平均径6,41171.
有効巻数9.75%自由高さ22.5朋のT i −N
 i製ばねを用いる。
Figure 6 (F3) shows the state of the thermal response device at low temperature and at high temperature, respectively. 1 in M diagram
In the figure, reference numeral 1 indicates a coiled shape memory spring made of a shape memory alloy.
) [J, average coil diameter 3, lfl, effective number of turns 10. Free height 30u(7)'I'1-Ni spring, or as another example, wire diameter 0.51, coil average diameter 6,41171.
T i -N with effective number of turns 9.75% free height 22.5 mm
Use springs manufactured by i.

ただし各寸法1巻数等の具体的な値は、要求される仕様
によって異なるものであり、実施例に限定されろことは
ない。
However, the specific values of each dimension, such as the number of turns per turn, vary depending on the required specifications, and are not limited to the examples.

また上記形状記憶はねIの相変態温度は、−例としてA
 s = 25℃、A、f=36℃、M s =32℃
、Mf=26℃であり、この合金自身の温度ヒステリシ
スはkf−Mf=lo℃である。
Further, the phase transformation temperature of the shape memory spring I is - for example, A
s = 25°C, A, f = 36°C, M s = 32°C
, Mf=26°C, and the temperature hysteresis of this alloy itself is kf−Mf=lo°C.

そしてこの形状記憶はね1は、所定の温度を超える冒温
閲域において最大の伸び(自由高さ)となるように形状
記憶効果をもたせである。
The shape memory spring 1 is designed to have a shape memory effect so that it reaches its maximum elongation (free height) in the temperature range exceeding a predetermined temperature.

また、第6図(5)、(B)において図中2はロッド状
の被IIA動体である。この被駆動体2は、形状記憶は
ね1を挿通していて、その上端側に荷重付与体の一例と
してのウェイト3が収着されているとともに、下端側に
は後述する第2のストッパ6に接離する受54が形成さ
れている。
Further, in FIGS. 6(5) and 6(B), numeral 2 in the drawings indicates a rod-shaped IIA moving body. This driven body 2 has a shape memory spring 1 inserted through it, and a weight 3 as an example of a load applying body is absorbed on the upper end thereof, and a second stopper 6, which will be described later, is attached on the lower end thereof. A receiver 54 that approaches and separates is formed.

そしてこれらウェイト3と受部4との間に第1のストッ
パ5と、その下側に第2のストッパ6とが設けられ、第
2のストッパ6とウェイト3との間に上記形状記憶はね
1が圧縮した状態で設けられている。
A first stopper 5 is provided between the weights 3 and the receiving portion 4, and a second stopper 6 is provided below the first stopper 5, and the shape memory spring is provided between the second stopper 6 and the weight 3. 1 is provided in a compressed state.

上記@lのストッパ5は、第6区間に示されるように低
温時、つまり形状記憶ばねIの出力荷重が小さくてばね
1のたわみ()E縮量)が大きい状態においては、ウェ
イト3の下面を支持してばねIが所定の作動ストローク
L(例えば911113以上たわまないようにするもの
である。
As shown in the 6th section, the stopper 5 of @l is placed on the lower surface of the weight 3 at low temperatures, that is, in a state where the output load of the shape memory spring I is small and the deflection ()E contraction amount of the spring 1 is large. This is to prevent the spring I from deflecting beyond a predetermined operating stroke L (for example, 911113).

一方、第2のストッパ6は、第6図(I3)に示される
ように、高温時、つまり形状記憶ばね1の出力荷重が大
きくなってばねIが伸びる方向に復元する場合に、受部
4が当たることによってばねIが所定の作動ストローク
L(例えば91)以上復元することを押えるようになっ
ている。
On the other hand, as shown in FIG. 6 (I3), the second stopper 6 is activated when the receiving portion 4 By this contact, the spring I is prevented from restoring beyond a predetermined operating stroke L (for example, 91).

換言すると、第6図(5)に示した低温時には。In other words, at the low temperature shown in FIG. 6 (5).

ウェイト3の荷重ははね定数の弱まっているはね1を第
1のストッパ5よりも下側に圧縮しようとするが、第1
のストッパ5がこれを受は止めた状態となる。従ってウ
ェイト3の荷重は。
The load of the weight 3 tries to compress the spring 1 whose spring constant is weaker than the first stopper 5, but the first stopper
The stopper 5 stops receiving this. Therefore, the load on weight 3 is.

ばねIの反発力と第1のストッパ5で支えられることに
なる。一方、第6図(坊の高温時には、ばね1は作動ス
トロークL(9朋)以上伸張しようとするが、第2のス
トッパ6がこれ以上の復元を阻+hLだ状態となる。
It is supported by the repulsive force of the spring I and the first stopper 5. On the other hand, when the spring is at high temperature (see FIG. 6), the spring 1 tries to extend beyond the operating stroke L (9 hours), but the second stopper 6 prevents it from restoring any further.

以上のことを第7図を参照して説明すると、荷重(ウェ
イト3、被駆動体2、受部4等を加えた重み)は75F
lfで一定であるから、低温時のばね特性ではたわみ(
圧縮りが第1のストッパ5で規制されることにより、荷
重の差ΔP、が第1のストッパ5に作用する。逆に高温
時のばね特性では、復元力が第2のストッパ6で規制さ
れることにより、荷重の差ΔP、が受部4に作用する。
To explain the above with reference to Fig. 7, the load (weight including weight 3, driven body 2, receiving part 4, etc.) is 75F.
Since it is constant at lf, the spring characteristic at low temperature is the deflection (
Since the compression is restricted by the first stopper 5, a load difference ΔP acts on the first stopper 5. Conversely, with the spring characteristics at high temperatures, the restoring force is regulated by the second stopper 6, so that a load difference ΔP acts on the receiving portion 4.

従って第6図(8)、(B)の状態では、荷重が多少変
動してもこの荷重変動分を上記ΔP、またはΔP2の範
囲で吸収することが可能となり、外力変動に対して非常
に安定したものとなる。
Therefore, in the states shown in Figure 6 (8) and (B), even if the load fluctuates slightly, it is possible to absorb this load fluctuation within the range of ΔP or ΔP2 above, making it extremely stable against external force fluctuations. It becomes what it is.

また、第8図は上記熱応動装置の温度ヒステリシスを示
している、すなわち、上記のごとく第1・第2のストッ
パ5.6によって作動スト口−りLを規制したことによ
り、同図に実線で示すように昇温時の作動開始温度T、
′は35℃付近、昇温時の作動終了温間T、/は37℃
付近、降温時の作動開始温度11Z/は26℃付近。
In addition, FIG. 8 shows the temperature hysteresis of the above-mentioned thermally responsive device. That is, by regulating the operating stop length L by the first and second stoppers 5.6 as described above, the solid line in the figure shows the temperature hysteresis. As shown in , the operation start temperature T when the temperature is increased,
' is around 35℃, operation end temperature T when temperature rises, / is 37℃
The operating start temperature 11Z/ when the temperature drops is around 26℃.

セして降温時の作動終了温度T4′は23℃付近となり
、温度ヒステリシスΔTは37℃−23”C=14℃と
従来品に仕較して格段に小さくすることができる。つま
りΔT=14℃という値は合金自体の温度ヒステリシス
(A I−M f=10℃)に近く、従って狭い温度範
囲の用途にも充分使甲可能であることを意味する、ちな
みにストッパ5.6を用いない従来品の場合には、同第
8図に破線で示すような作動温度TI 、T、、T3 
、T4となり、温吐ヒステリシスT、−T4は本実施例
のものと比較して2倍以上になる。なお′$8図におい
て密着高さHsは7. B Jl 、作動ストロークL
は9Uである。
The operation end temperature T4' when the temperature is set and lowered is around 23°C, and the temperature hysteresis ΔT is 37°C - 23"C = 14°C, which is much smaller than the conventional product. In other words, ΔT = 14 The value of °C is close to the temperature hysteresis of the alloy itself (A I-M f = 10 °C), which means that it can be used sufficiently for applications in a narrow temperature range. In the case of a product, the operating temperature TI, T, , T3 as shown by the broken line in FIG.
, T4, and the hot ejection hysteresis T, -T4 is more than twice that of the present example. In addition, the adhesion height Hs in Figure '$8 is 7. B Jl, operating stroke L
is 9U.

また、このときのΔLt  (第7図参照)は3aでΔ
P、は14gf=またΔL、は3tl、ΔP。
Also, ΔLt (see Figure 7) at this time is 3a and Δ
P, is 14gf=Also, ΔL, is 3tl, ΔP.

は32gfであった。was 32 gf.

以上の説明から明らかなように、本実施例は従来の熱応
す1装置において温度が変ってもばね高さのほとんど変
化しない領域をカットすることによって、温度ヒステリ
シスを従来の半分以下にできるとともに、外力変動に対
して安定な熱応動装置を得ることができる。従って、屋
外とか機械振動の多い装置系、あるいはガス田、水!E
変動の多い弁などにも適用が6丁能となり。
As is clear from the above description, this embodiment can reduce the temperature hysteresis to less than half that of the conventional device by cutting out the region where the spring height hardly changes even if the temperature changes in a conventional heat-responsive device. , it is possible to obtain a thermally responsive device that is stable against external force fluctuations. Therefore, use outdoors, equipment systems with a lot of mechanical vibration, gas fields, water! E
The 6-tooth function can also be applied to valves that fluctuate frequently.

用途が大幅に拡大する。Applications will expand significantly.

なお第9図は荷重付与体の例としてウェイトの代すにバ
イアスばf′)10を用いた場合である。
In addition, FIG. 9 shows a case where a bias band f') 10 is used instead of a weight as an example of the load applying body.

そしてその荷重−たわみ線図は第10図に示すようなも
のとなる。つまりバイアスばねの場合にはウェイトと寮
なり、たわみの変化に応じて荷重も変化するが作t1′
+原理はウェイトの場合と1様である。すなわち同第1
0図に示されるように低温時には第1のストッパに当た
ってΔP1の押付は力を発生し、一方、高温時には第2
のストッパに当たってΔP、の押付は力を発揮するよう
に、要求ストロークLに対してL+ΔL。
The load-deflection diagram is as shown in FIG. In other words, in the case of a bias spring, there is a weight and a dormer, and the load changes according to the change in deflection, but the operation t1'
+ The principle is the same as in the case of weights. In other words, the first
As shown in Figure 0, when the temperature is low, the pressing of ΔP1 generates a force when it hits the first stopper, while when the temperature is high, the pressing of ΔP1 generates a force.
L + ΔL for the required stroke L so that the pressing force of ΔP is exerted when it hits the stopper of .

+452以上のたわみ?とれるばね形状とすればよい。Deflection of +452 or more? It may be a spring shape that can be bent.

また1本発明は第lのストッパまたは$2のストッパの
/υなくともいずれか一方を備えていれば南門の目的は
達成できる。また形状記憶ばねの具体的形状は種々に変
形して実施可能であり、例えば板ばね、ねじりばね状の
形状記憶ばねとしてもよい。
Further, according to the present invention, the purpose of the south gate can be achieved if at least one of the l-th stopper and the $2 stopper is provided. Further, the specific shape of the shape memory spring can be modified in various ways, such as a shape memory spring in the shape of a plate spring or a torsion spring.

以上説明したように、本発明によれば、温度ヒステリシ
スを従来品と比較して大幅に狭めることが可能となり、
作4す1温度軸囲の狭い用途にも利用できる。また、低
輻賄、高温時のいずれにあってもfi 7]変動に対し
て非゛lδに安定であり。
As explained above, according to the present invention, it is possible to significantly narrow the temperature hysteresis compared to conventional products,
It can also be used in applications with a narrow temperature range. In addition, it is very stable against fluctuations in fi 7 even under low congestion conditions and high temperatures.

外力変動の多い環境にも充分使用できるなど、用途が広
く性能の良い熱c;、* Nh装置を得る上で大きな効
果がある。
It has a great effect on obtaining a versatile and high-performance heat c;, *Nh device that can be used even in environments with many external force fluctuations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱応切装置の概略図、第2図(5)、′
@2図(B)、第2図(Qはそれぞれ外力を変えた場合
の温度ヒステリシスを示す図、第3図は従来の熱応動装
置において低温時と高温時の作動状態を示す概略図、第
4図は従来の熱応動装置における形状記憶ばねの荷重−
たわみ線図、第5図は同じ〈従来例(二おける温度ヒス
テリシスを示す図、第6図(8)および第6図(B)は
それぞれ本発明の一実施例を互いに異なる作動状態で示
す概略図、第7図は同実施例における形状記憶ばねの荷
重−たわみ線図、第8図は一実施例における温度ヒステ
リシスを示す図、第9図は荷重付与体としてバイアスば
ねを用いた場合の概略図、第1O図は第9図の装置にお
ける荷重−たわみ線図である。 1・・・形状記憶ばね、3・・・ウェイト(荷重付与体
)、5・・・第1のストッパ、6・・・第2のストッパ
、10・・・バイアスばね(荷重付与体)6出)頭人代
理人 弁理士  鈴  江  武  彦特許庁長宮  
若杉和夫  殿 1゜事件の表示 特願昭58−40495号 2 発明の名称 形状記憶ばねを用いた熱応動装置 3、補正をする者 事件との関係 特許出願人 (464)  日木発条株式会本土 4、代理人 住所 東京都港区虎ノ門1丁目26番5号 第17森ビ
ル6、補IFの対象 明細書全文 7、補正の内容 明細書の浄書(内容に変更なし)
Figure 1 is a schematic diagram of a conventional thermal cutoff device, Figure 2 (5),'
@Figure 2 (B), Figure 2 (Q is a diagram showing temperature hysteresis when external force is changed, Figure 3 is a schematic diagram showing the operating state at low temperature and high temperature in a conventional thermal response device, Figure 4 shows the load on a shape memory spring in a conventional thermal response device.
The deflection diagrams and FIG. 5 are the same. FIG. Figure 7 is a load-deflection diagram of the shape memory spring in the same example, Figure 8 is a diagram showing temperature hysteresis in one example, and Figure 9 is a schematic diagram when a bias spring is used as a load applying body. Figure 10 is a load-deflection diagram for the device in Figure 9. 1... Shape memory spring, 3... Weight (load applying body), 5... First stopper, 6... ...Second stopper, 10...Bias spring (loading body) 6) Chief agent Patent attorney Suzue Takehiko Patent Office Director General
Kazuo Wakasugi Tono 1゜ Indication Patent Application No. 1987-40495 2 Name of the invention Thermal response device using shape memory spring 3, relationship to the amended person case Patent applicant (464) Nichihatsujo Co., Ltd. Mainland 4. Agent Address: 17th Mori Building, 1-26-5 Toranomon, Minato-ku, Tokyo 6. Full text of the subject specification of supplementary IF 7. Engraving of the amended specification (no changes to the content)

Claims (1)

【特許請求の範囲】[Claims] 形状記憶合金からなる形状記憶ばねと、この形状記憶ば
ねをたわませる方向に荷重を与える荷重付与体と、低温
時に上記形状記憶ばねが所定の作動ストローク以上たわ
むことを押える第1のストッパまたは高温時に上記形状
記憶ばねが所定の作動ストローク以上復元することを押
える第2のストッパのうち少なくともいずれか一方を具
備したことを特徴とする形状記憶ばねを用いた熱応動装
置。
A shape memory spring made of a shape memory alloy, a load applying body that applies a load in a direction to cause the shape memory spring to deflect, and a first stopper that prevents the shape memory spring from deflecting beyond a predetermined operating stroke at low temperatures or at high temperatures. A thermal response device using a shape memory spring, characterized in that the device further comprises at least one of a second stopper that prevents the shape memory spring from restoring beyond a predetermined operating stroke.
JP4049583A 1983-03-11 1983-03-11 Heat responsive device utilizing shape memory spring Granted JPS59168282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4049583A JPS59168282A (en) 1983-03-11 1983-03-11 Heat responsive device utilizing shape memory spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4049583A JPS59168282A (en) 1983-03-11 1983-03-11 Heat responsive device utilizing shape memory spring

Publications (2)

Publication Number Publication Date
JPS59168282A true JPS59168282A (en) 1984-09-21
JPH0343471B2 JPH0343471B2 (en) 1991-07-02

Family

ID=12582149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4049583A Granted JPS59168282A (en) 1983-03-11 1983-03-11 Heat responsive device utilizing shape memory spring

Country Status (1)

Country Link
JP (1) JPS59168282A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013221A1 (en) * 2000-08-10 2002-02-14 Siemens Aktiengesellschaft Electromechanical component
JP2008286011A (en) * 2007-05-15 2008-11-27 Konica Minolta Opto Inc Driving device and lens driving device
JP2009086142A (en) * 2007-09-28 2009-04-23 Konica Minolta Opto Inc Driving device and lens driving device
WO2013182359A3 (en) * 2012-06-06 2014-07-03 Pierburg Gmbh Actuator for operating a control element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107863U (en) * 1980-12-19 1982-07-03
JPS59162375A (en) * 1983-03-07 1984-09-13 Matsushita Electric Ind Co Ltd Heat sensitive actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107863U (en) * 1980-12-19 1982-07-03
JPS59162375A (en) * 1983-03-07 1984-09-13 Matsushita Electric Ind Co Ltd Heat sensitive actuator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013221A1 (en) * 2000-08-10 2002-02-14 Siemens Aktiengesellschaft Electromechanical component
DE10039203C2 (en) * 2000-08-10 2003-03-20 Siemens Ag Using the limitation of the movement path of an actuator made of a shape memory alloy in an electromechanical component
JP2008286011A (en) * 2007-05-15 2008-11-27 Konica Minolta Opto Inc Driving device and lens driving device
JP2009086142A (en) * 2007-09-28 2009-04-23 Konica Minolta Opto Inc Driving device and lens driving device
WO2013182359A3 (en) * 2012-06-06 2014-07-03 Pierburg Gmbh Actuator for operating a control element

Also Published As

Publication number Publication date
JPH0343471B2 (en) 1991-07-02

Similar Documents

Publication Publication Date Title
US3134585A (en) Shock attenuating devices
US1988345A (en) Snap action device
US2643109A (en) Spring device
US3332523A (en) Telescopic frictional shock absorber
JPH0571566A (en) Isolator-installed assembly
US2720374A (en) Resilient supports
US2772086A (en) Controlled gradient compression leaf spring
JPS59168282A (en) Heat responsive device utilizing shape memory spring
US3833171A (en) Temperature responsive valve assembly
US3331581A (en) Plastic spring seats for ball valves
US3115337A (en) Variable spring
US2102656A (en) Thermostatic device
US1988956A (en) Snap action valve mechanisms
US3175132A (en) Magnetostrictive motoring device
US1895592A (en) Snap acting device
Stoeckel et al. Temperature compensation with thermovariable rate springs in automatic transmissions
JP3899925B2 (en) Disc spring ground anchor
JPS5824669A (en) Hot and cold water mixing faucet
JPH0146040B2 (en)
TW206277B (en)
US775582A (en) Coil-spring.
JP3946830B2 (en) Thermally activated steam trap
US2510756A (en) Fusible element
US3175766A (en) Thermally operated dischargers of condensation water
JP2996566B2 (en) Bent leaf spring and damper disk using the same