JP5017796B2 - Plasma display panel driving method and plasma display device - Google Patents
Plasma display panel driving method and plasma display device Download PDFInfo
- Publication number
- JP5017796B2 JP5017796B2 JP2005116894A JP2005116894A JP5017796B2 JP 5017796 B2 JP5017796 B2 JP 5017796B2 JP 2005116894 A JP2005116894 A JP 2005116894A JP 2005116894 A JP2005116894 A JP 2005116894A JP 5017796 B2 JP5017796 B2 JP 5017796B2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- subfield
- sustain
- period
- subfields
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of Gas Discharge Display Tubes (AREA)
Description
本発明は、プラズマディスプレイパネルの駆動方法およびそれを用いたプラズマディスプレイ装置に関する。 The present invention relates to a method for driving a plasma display panel and a plasma display device using the same.
プラズマディスプレイパネル(以下、「パネル」と略記する)として代表的な交流面放電型パネルは、対向配置された前面板と背面板との間に多数の放電セルが形成されている。前面板は、1対の走査電極と維持電極とからなる表示電極が前面ガラス基板上に互いに平行に複数対形成され、それら表示電極を覆うように誘電体層および保護層が形成されている。背面板は、背面ガラス基板上に複数の平行なデータ電極と、それらを覆うように誘電体層と、さらにその上にデータ電極と平行に複数の隔壁がそれぞれ形成され、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。そして、表示電極とデータ電極とが立体交差するように前面板と背面板とが対向配置されて密封され、内部の放電空間には放電ガスが封入されている。ここで表示電極とデータ電極とが対向する部分に放電セルが形成される。このような構成のパネルにおいて、各放電セル内でガス放電により紫外線を発生させ、この紫外線でRGB各色の蛍光体を励起発光させてカラー表示を行っている。 A typical AC surface discharge type panel as a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells formed between a front plate and a back plate arranged to face each other. In the front plate, a plurality of pairs of display electrodes made up of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other, and a dielectric layer and a protective layer are formed so as to cover the display electrodes. The back plate has a plurality of parallel data electrodes on the back glass substrate, a dielectric layer so as to cover them, and a plurality of partition walls formed in parallel to the data electrodes on each of the dielectric layers. A phosphor layer is formed on the side surface of the partition wall. Then, the front plate and the back plate are arranged opposite to each other so that the display electrode and the data electrode are three-dimensionally crossed and sealed, and a discharge gas is sealed in the internal discharge space. Here, a discharge cell is formed at a portion where the display electrode and the data electrode face each other. In the panel having such a configuration, ultraviolet light is generated by gas discharge in each discharge cell, and phosphors of RGB colors are excited and emitted by the ultraviolet light to perform color display.
パネルを駆動する方法としてはサブフィールド法、すなわち1フィールド期間を複数のサブフィールドに分割した上で、発光させるサブフィールドの組み合わせによって階調表示を行う方法が一般的である。また、サブフィールド法の中でも、階調表示に関係しない発光を極力減らして黒輝度の上昇を抑え、コントラスト比を向上した新規な駆動方法が特許文献1に開示されている。
As a method for driving the panel, a subfield method, that is, a method in which gradation display is performed by dividing one field period into a plurality of subfields and combining subfields to emit light is generally used. In addition, among the subfield methods,
以下にサブフィールド法について簡単に説明する。各サブフィールドはそれぞれ初期化期間、書込み期間および維持期間を有する。また、初期化期間は、画像表示を行うすべての放電セルに対して初期化放電を行わせる全セル初期化動作、または直前のサブフィールドにおいて維持放電を行った放電セルに対して選択的に初期化放電を行わせる選択初期化動作のいずれかの動作を行う。 The subfield method will be briefly described below. Each subfield has an initialization period, an address period, and a sustain period. In addition, the initializing period is an initializing operation for all the cells that perform initializing discharge for all the discharge cells that perform image display, or selectively for the discharge cells that have undergone sustain discharge in the immediately preceding subfield. One of the selective initializing operations for causing the igniting discharge is performed.
全セル初期化期間はすべての放電セルで一斉に初期化放電を行い、それ以前の個々の放電セルに対する壁電荷の履歴を消すとともに、つづく書込み動作のために必要な壁電荷を形成する。加えて、放電遅れを小さくし書込み放電を安定して発生させるためのプライミング(放電のための起爆剤=励起粒子)を発生させるという働きをもつ。選択初期化期間は直前のサブフィールドで維持放電を発生した放電セルに対して、書込み動作に必要な壁電荷を形成する。つづく書込み期間では、走査電極に順次走査パルスを印加するとともに、データ電極には表示すべき画像信号に対応した書込みパルスを印加し、走査電極とデータ電極との間で選択的に書込み放電を起こし、選択的な壁電荷形成を行う。そして維持期間では、走査電極と維持電極との間に輝度重みに応じた所定の回数の維持パルスを印加し、書込み放電による壁電荷形成を行った放電セルを選択的に放電させ発光させる。そして、全セル初期化動作を行うサブフィールドを減らすことにより、階調に関係しない発光を減らすことができ、黒輝度の上昇を抑えることができる。 During the all-cell initializing period, initializing discharge is simultaneously performed in all the discharge cells, the history of wall charges with respect to individual individual discharge cells is erased, and wall charges necessary for the subsequent address operation are formed. In addition, it has a function of generating priming (priming for discharge = excited particles) for reducing the discharge delay and stably generating the address discharge. During the selective initialization period, wall charges necessary for the address operation are formed in the discharge cells that have generated the sustain discharge in the immediately preceding subfield. In the subsequent address period, a scan pulse is sequentially applied to the scan electrodes, and an address pulse corresponding to an image signal to be displayed is applied to the data electrodes to selectively cause an address discharge between the scan electrodes and the data electrodes. , Selective wall charge formation. In the sustain period, a predetermined number of sustain pulses corresponding to the luminance weight are applied between the scan electrodes and the sustain electrodes, and the discharge cells in which the wall charges are formed by the address discharge are selectively discharged to emit light. Further, by reducing the number of subfields for performing the all-cell initialization operation, it is possible to reduce the light emission not related to the gradation and suppress the increase in black luminance.
ここで、画像を正しく表示するためには書込み期間における選択的な書込み放電を確実に行うことが重要であるが、回路構成上の制約から書込みパルスに高い電圧が使えないこと、データ電極上に形成された蛍光体層が放電を起こり難くしていること等、書込み放電に関しては放電遅れを大きくする要因が多い。したがって、書込み放電を安定して発生させるためのプライミングが非常に重要となる。
近年、消費電力削減や輝度向上の要求にこたえるために、パネルの構造やパネル材料等に対する検討が活発になされている。たとえば、パネルに封入されている放電ガスのキセノン分圧を増加させることによりパネルの発光効率が向上することが一般に知られている。しかしながら上述のパネルおよびその駆動方法においては、キセノン分圧を増加させると書込み放電が不安定になり、書込み期間に書込み不良を生じるおそれがある等、書込み動作の駆動電圧マージンが狭くなるという課題があった。 In recent years, in order to meet demands for reducing power consumption and improving brightness, panel structures and panel materials have been actively studied. For example, it is generally known that the luminous efficiency of the panel is improved by increasing the xenon partial pressure of the discharge gas sealed in the panel. However, in the above-described panel and its driving method, there is a problem that the drive voltage margin of the address operation is narrowed, for example, the address discharge becomes unstable when the xenon partial pressure is increased, and the address failure may occur during the address period. there were.
本発明は、これらの課題に鑑みなされたものであり、書込み放電を安定化させることによって、黒輝度の上昇を抑えつつ良好な品質で画像表示させることができるパネルの駆動方法およびプラズマディスプレイ装置を提供することを目的とする。 The present invention has been made in view of these problems, and provides a panel driving method and a plasma display device capable of displaying an image with good quality while suppressing an increase in black luminance by stabilizing address discharge. The purpose is to provide.
本発明のパネルの駆動方法は、走査電極および維持電極とデータ電極との交差部に放電セルを形成してなるプラズマディスプレイパネルの駆動方法であって、1フィールド期間を、放電セルに初期化放電を発生させる初期化期間、放電セルに書込み放電を発生させる書込み期間および書込み放電を発生させた放電セルに所定の輝度重みで発光させるための維持放電を発生させる維持期間を有する複数のサブフィールドから構成し、複数のサブフィールドは非発光のサブフィールドと発光するサブフィールドから成り、維持放電を発生させない非発光のサブフィールドに連続して後続するサブフィールドでは維持放電を発生させない非発光のサブフィールドになるように書込み期間において書込み放電を発生させない連続コーディングを用いる2以上の連続するサブフィールドから構成されたサブフィールド群と、維持放電を発生させないサブフィールドと維持放電を発生させるサブフィールドが階調に応じてランダムに決められたランダムコーディングを用いるサブフィールドから構成されたサブフィールド群とを1フィールド期間に少なくとも各々1つ以上を備え、
サブフィールド群の先頭のサブフィールドの初期化期間において、画像表示を行うすべての放電セルに対して初期化放電を発生させる全セル初期化動作を行わせるか、または直前のサブフィールドにおいて維持放電を発生した放電セルに対して選択的に初期化放電を発生させる選択初期化動作を行わせるかを、連続コーディングをおこなうサブフィールド群における所定のサブフィールドの点灯率に依存して決定し、点灯率が閾値以上の場合は全セル初期化動作を行い、閾値以下の場合は選択初期化動作を行い、かつ、連続コーディングを行うサブフィールド群の先頭サブフィールド以外の初期化期間においては選択初期化動作を行い、表示すべき画像信号のAPLに基づいて、ランダムコーディングを行うサブフィールド群におけるサブフィールドの各々の初期化期間における初期化動作を全セル初期化動作または選択初期化動作のいずれかに決定することを特徴とする。この方法により、黒輝度の上昇を抑えつつ良好な品質で画像表示させることができるパネルの駆動方法を提供することが可能となる。
The panel driving method of the present invention is a plasma display panel driving method in which a discharge cell is formed at the intersection of a scan electrode, a sustain electrode and a data electrode, and one field period is initialized to the discharge cell. From a plurality of subfields having an initializing period for generating an address discharge, an address period for generating an address discharge in the discharge cell, and a sustain period for generating a sustain discharge for causing the discharge cell that has generated the address discharge to emit light with a predetermined luminance weight configured, plurality of sub-fields consist subfields that emit light when subfields non-emission, non-light emission of the subfield is not generated a sustain discharge in the subfield that follows continuously the subfields non-emission is not generated a sustain discharge using a continuous coding which does not cause the address discharge in the so as to write period Consists subfields using the subfield group composed of sub-fields, a random coding subfields causing a sustain discharge and a subfield is not generated a sustain discharge is determined at random in accordance with the gradation of consecutive or Each subfield group includes at least one subfield group in one field period,
In the initializing period of the first subfield of the subfield group, all cell initializing operations for generating initializing discharge are performed on all discharge cells that perform image display, or sustain discharge is performed in the immediately preceding subfield. Whether to perform a selective initialization operation for selectively generating an initializing discharge for the generated discharge cells is determined depending on the lighting rate of a predetermined subfield in the subfield group performing continuous coding, and the lighting rate When all the cells are equal to or greater than the threshold value, all cells are initialized. When the value is less than the threshold value, the selective initialization operation is performed. And sub-frames in the sub-field group for which random coding is performed based on the APL of the image signal to be displayed. And determining an initialization operation in each initialization period of Rudo in any one of all-cell initializing operation or selective initializing operation. With this method, it is possible to provide a panel driving method capable of displaying an image with good quality while suppressing an increase in black luminance.
また、本発明のプラズマディスプレイ装置は、請求項1に記載のプラズマディスプレイパネルの駆動方法を用いたプラズマディスプレイ装置である。この構成により、黒輝度の上昇を抑えつつ、良好な品質で画像表示させることができるプラズマディスプレイ装置を提供することが可能となる。
The plasma display device of the present invention is a plasma display device using the method for driving a plasma display panel according to
本発明によれば、書込み放電を安定化させることによって、黒輝度の上昇を抑えつつ良好な品質で画像表示させることができるパネルの駆動方法およびプラズマディスプレイ装置を提供することが可能となる。 According to the present invention, it is possible to provide a panel driving method and a plasma display device capable of displaying an image with good quality while suppressing an increase in black luminance by stabilizing address discharge.
以下、本発明の一実施の形態におけるパネルの駆動方法について、図面を用いて説明する。 Hereinafter, a panel driving method according to an embodiment of the present invention will be described with reference to the drawings.
(実施の形態1)
図1は本実施の形態に用いるパネルの要部を示す斜視図である。パネル1は、ガラス製の前面基板2と背面基板3とを対向配置して、その間に放電空間を形成するように構成されている。前面基板2上には表示電極を構成する走査電極4と維持電極5とが互いに平行に対をなして複数形成されている。そして、走査電極4および維持電極5を覆うように誘電体層6が形成され、誘電体層6上には保護層7が形成されている。また、背面基板3上には絶縁体層8で覆われた複数のデータ電極9が付設され、データ電極9の間の絶縁体層8上にデータ電極9と平行して隔壁10が設けられている。また、絶縁体層8の表面および隔壁10の側面に蛍光体層11が設けられている。そして、走査電極4および維持電極5とデータ電極9とが交差する方向に前面基板2と背面基板3とを対向配置しており、その間に形成される放電空間には、放電ガスとして、たとえばネオンとキセノンの混合ガスが封入されている。
(Embodiment 1)
FIG. 1 is a perspective view showing a main part of a panel used in the present embodiment. The
図2は本実施の形態に用いるパネルの電極配列図である。行方向にn本の走査電極SCN1〜SCNn(図1の走査電極4)およびn本の維持電極SUS1〜SUSn(図1の維持電極5)が交互に配列され、列方向にm本のデータ電極D1〜Dm(図1のデータ電極9)が配列されている。そして、1対の走査電極SCNiおよび維持電極SUSi(i=1〜n)と1つのデータ電極Dj(j=1〜m)とが交差した部分に放電セルが形成され、放電セルは放電空間内にm×n個形成されている。
FIG. 2 is an electrode array diagram of the panel used in this embodiment. N scan electrodes SCN1 to SCNn (
図3は本実施の形態におけるプラズマディスプレイ装置の回路ブロック図である。このプラズマディスプレイ装置は、パネル1、データ電極駆動回路12、走査電極駆動回路13、維持電極駆動回路14、タイミング発生回路15、AD(アナログ・デジタル)変換器18、走査数変換部19、サブフィールド変換部20、APL(アベレージ・ピクチャ・レベル)検出部30、点灯率算出部40および電源回路(図示せず)を備えている。
FIG. 3 is a circuit block diagram of the plasma display device according to the present embodiment. The plasma display device includes a
図3において、画像信号sigはAD変換器18に入力される。また、水平同期信号Hおよび垂直同期信号Vはタイミング発生回路15に入力される。AD変換器18は、画像信号sigをデジタル信号の画像データに変換し、その画像データを走査数変換部19およびAPL検出部30に出力する。APL検出部30は画像データの平均輝度レベルを検出する。走査数変換部19は、画像データをパネル1の画素数に応じた画像データに変換し、サブフィールド変換部20に出力する。サブフィールド変換部20は、各画素の画像データを複数のサブフィールドに対応する複数のビットに分割し、サブフィールド毎の画像データをデータ電極駆動回路12および点灯率算出部40に出力する。点灯率算出部40はサブフィールド毎の画像データに基づいてそのサブフィールドの点灯率、すなわち維持放電を発生させる放電セルの割合を計算する。データ電極駆動回路12は、サブフィールド毎の画像データを各データ電極D1〜Dmに対応する信号に変換し各データ電極を駆動する。
In FIG. 3, the image signal sig is input to the
タイミング発生回路15は、水平同期信号Hおよび垂直同期信号Vをもとにして各種タイミング信号を発生し各回路ブロックに供給する。走査電極駆動回路13は、タイミング信号に基づいて走査電極SCN1〜SCNnに駆動波形を供給し、維持電極駆動回路14は、タイミング信号に基づいて維持電極SUS1〜SUSnに駆動波形を供給する。ここで、タイミング発生回路15はAPL検出部30から出力されるAPLおよび点灯率算出部40から出力される点灯率信号に基づいて駆動波形を制御する。具体的には後述するように、APLおよび点灯率信号に基づいて1フィールドを構成する各々のサブフィールドの初期化動作を全セル初期化か選択初期化かのいずれかに決定して、1フィールド内の全セル初期化動作の回数を制御する。
The
つぎに、パネルの駆動方法について説明する。本実施の形態においては、1フィールドを12のサブフィールド(SF1、SF2、・・・、SF12)に分割し、各サブフィールドはそれぞれ(1、2、3、6、11、18、28、32、34、37、40、44)の輝度重みをもつものとする。 Next, a method for driving the panel will be described. In the present embodiment, one field is divided into 12 subfields (SF1, SF2,..., SF12), and each subfield is (1, 2, 3, 6, 11, 18, 28, 32). , 34, 37, 40, 44).
図4は本実施の形態におけるパネルの各電極に印加する駆動波形図である。ここで、第1SFの初期化動作は全セル初期化動作であり、第2SFの初期化動作は選択初期化動作であるものとして説明する。 FIG. 4 is a drive waveform diagram applied to each electrode of the panel in the present embodiment. Here, it is assumed that the initialization operation of the first SF is an all-cell initialization operation, and the initialization operation of the second SF is a selective initialization operation.
第1SFの初期化期間では、データ電極D1〜Dmおよび維持電極SUS1〜SUSnを0(V)に保持し、走査電極SCN1〜SCNnに対して放電開始電圧以下となる電圧Vp(V)から、放電開始電圧を超える電圧Vr(V)に向かって緩やかに上昇するランプ電圧を印加する。すると、すべての放電セルにおいて1回目の微弱な初期化放電を起こし、走査電極SCN1〜SCNn上に負の壁電圧が蓄えられるとともに、維持電極SUS1〜SUSn上およびデータ電極D1〜Dm上に正の壁電圧が蓄えられる。ここで、電極上の壁電圧とは、電極を覆う誘電体層上あるいは蛍光体層上等に蓄積した壁電荷により生じる電圧をあらわす。 In the initializing period of the first SF, the data electrodes D1 to Dm and the sustain electrodes SUS1 to SUSn are held at 0 (V), and the discharge is started from the voltage Vp (V) that is lower than the discharge start voltage with respect to the scan electrodes SCN1 to SCNn. A ramp voltage that gradually increases toward the voltage Vr (V) exceeding the start voltage is applied. Then, the first weak initializing discharge is caused in all the discharge cells, negative wall voltages are stored on scan electrodes SCN1 to SCNn, and positive on sustain electrodes SUS1 to SUSn and data electrodes D1 to Dm. Wall voltage is stored. Here, the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer or the phosphor layer covering the electrode.
その後、維持電極SUS1〜SUSnを正の電圧Vh(V)に保ち、走査電極SCN1〜SCNnに電圧Vg(V)から電圧Va(V)に向かって緩やかに下降するランプ電圧を印加する。すると、すべての放電セルにおいて2回目の微弱な初期化放電を起こし、走査電極SCN1〜SCNn上の壁電圧および維持電極SUS1〜SUSn上の壁電圧が弱められ、データ電極D1〜Dm上の壁電圧も書込み動作に適した値に調整される。 Thereafter, sustain electrodes SUS1 to SUSn are maintained at positive voltage Vh (V), and a ramp voltage that gradually decreases from voltage Vg (V) to voltage Va (V) is applied to scan electrodes SCN1 to SCNn. Then, the second weak initializing discharge is caused in all the discharge cells, the wall voltage on scan electrodes SCN1 to SCNn and the wall voltage on sustain electrodes SUS1 to SUSn are weakened, and the wall voltage on data electrodes D1 to Dm is reduced. Is also adjusted to a value suitable for the write operation.
このように、全セル初期化動作では、すべての放電セルにおいて初期化放電が行われ、プライミングを発生させる。 As described above, in the all-cell initializing operation, initializing discharge is performed in all the discharge cells, and priming is generated.
つづく書込み期間では、走査電極SCN1〜SCNnを一旦Vs(V)に保持する。つぎに、データ電極D1〜Dmのうち、1行目に表示すべき放電セルのデータ電極Dk(k=1〜m)に正の書込みパルス電圧Vw(V)を印加するとともに、1行目の走査電極SCN1に負の走査パルス電圧Vb(V)を印加する。すると走査電極SCN1とデータ電極Dkとの間には書込みパルス電圧と走査パルス電圧とが加算された電圧Vw+Vb(V)が印加され放電開始電圧を超えるので、走査電極SCN1とデータ電極Dkとの交差部で放電が発生し、対応する放電セルの走査電極SCN1と維持電極SUS1との間の放電に進展する。そしてつづく維持放電に必要な壁電荷が蓄積される。こうして1行目の書込みパルス電圧Vw(V)を印加した放電セルの書込み放電が終了する。一方、書込みパルス電圧Vw(V)を印加しなかった放電セルには書込み放電は発生せず壁電荷が蓄積されない。このとき、2行目以降の放電セルのデータ電極Dkにも正の書込みパルス電圧Vw(V)が印加されるが、対応する2行目以降の走査電極には負の走査パルス電圧Vb(V)が印加されないので、2行目以降の走査電極とデータ電極Dkとの間に印加される電圧は書込みパルス電圧Vw(V)のみであり放電開始電圧を超えないので書込み放電が発生することはない。 In the subsequent address period, scan electrodes SCN1 to SCNn are temporarily held at Vs (V). Next, a positive address pulse voltage Vw (V) is applied to the data electrode Dk (k = 1 to m) of the discharge cell to be displayed in the first row among the data electrodes D1 to Dm, and the first row. Negative scan pulse voltage Vb (V) is applied to scan electrode SCN1. Then, a voltage Vw + Vb (V) obtained by adding the address pulse voltage and the scan pulse voltage is applied between the scan electrode SCN1 and the data electrode Dk and exceeds the discharge start voltage, so that the scan electrode SCN1 and the data electrode Dk intersect. Discharge occurs at the portion, and progresses to discharge between scan electrode SCN1 and sustain electrode SUS1 of the corresponding discharge cell. The wall charges necessary for the subsequent sustain discharge are accumulated. Thus, the address discharge of the discharge cells to which the address pulse voltage Vw (V) of the first row is applied is completed. On the other hand, in the discharge cells to which the address pulse voltage Vw (V) is not applied, the address discharge does not occur and the wall charges are not accumulated. At this time, the positive address pulse voltage Vw (V) is applied to the data electrodes Dk of the discharge cells in the second and subsequent rows, but the negative scan pulse voltage Vb (V) is applied to the corresponding scan electrodes in the second and subsequent rows. ) Is not applied, the voltage applied between the scan electrode and the data electrode Dk in the second and subsequent rows is only the address pulse voltage Vw (V) and does not exceed the discharge start voltage. Absent.
つづいて、2行目に表示すべき放電セルのデータ電極Dkに正の書込みパルス電圧Vw(V)を印加するとともに、2行目の走査電極SCN2に負の走査パルス電圧Vb(V)を印加する。すると走査電極SCN2とデータ電極Dkとの間には書込みパルス電圧と走査パルス電圧とが加算された電圧Vw+Vb(V)が印加され放電開始電圧を超え、2行目の書込みパルス電圧Vw(V)を印加した放電セルの書込み放電が発生する。一方、書込みパルス電圧Vw(V)を印加しなかった放電セルには書込み放電は発生せず壁電荷が蓄積されない。この場合にも、3行目以降の放電セルの走査電極とデータ電極Dkとの間に印加される電圧は書込みパルス電圧Vw(V)のみであり放電開始電圧を超えないので書込み放電が発生することはない。 Subsequently, a positive address pulse voltage Vw (V) is applied to the data electrode Dk of the discharge cell to be displayed in the second row, and a negative scan pulse voltage Vb (V) is applied to the scan electrode SCN2 in the second row. To do. Then, the voltage Vw + Vb (V) obtained by adding the address pulse voltage and the scan pulse voltage is applied between the scan electrode SCN2 and the data electrode Dk, and exceeds the discharge start voltage, so that the address pulse voltage Vw (V) in the second row. Address discharge occurs in the discharge cell to which is applied. On the other hand, in the discharge cells to which the address pulse voltage Vw (V) is not applied, the address discharge does not occur and the wall charges are not accumulated. Also in this case, the voltage applied between the scan electrodes of the discharge cells in the third and subsequent rows and the data electrode Dk is only the address pulse voltage Vw (V) and does not exceed the discharge start voltage, so that address discharge occurs. There is nothing.
以上の書込み動作をn行目の放電セルに至るまで順次行い、書込み期間が終了する。 The above address operation is sequentially performed until the discharge cell in the nth row, and the address period ends.
つづく維持期間では、まず、維持電極SUS1〜SUSnを0(V)に戻し、走査電極SCN1〜SCNnに正の維持パルス電圧Vm(V)を印加する。このとき、書込み放電を起こした放電セル内では、維持パルス電圧Vm(V)に壁電荷による電圧が加算され放電開始電圧を超え維持放電が発生する。そして極性の反転した壁電荷が放電セル内に蓄積する。つづいて、走査電極SCN1〜SCNnを0(V)に戻し、維持電極SUS1〜SUSnに正の維持パルス電圧Vm(V)を印加すると、放電セル内で維持放電が起こり、壁電荷の極性が反転する。以降同様に、走査電極SCN1〜SCNnと維持電極SUS1〜SUSnとに交互に維持パルスを印加することにより、書込み期間において書込み放電を起こした放電セルでは維持放電が継続して行われる。 In the subsequent sustain period, first, sustain electrodes SUS1 to SUSn are returned to 0 (V), and positive sustain pulse voltage Vm (V) is applied to scan electrodes SCN1 to SCNn. At this time, in the discharge cell in which the address discharge has occurred, the voltage due to the wall charges is added to the sustain pulse voltage Vm (V), and the sustain discharge is generated exceeding the discharge start voltage. Then, the wall charges with the polarity reversed accumulate in the discharge cell. Subsequently, when scan electrodes SCN1 to SCNn are returned to 0 (V) and positive sustain pulse voltage Vm (V) is applied to sustain electrodes SUS1 to SUSn, sustain discharge occurs in the discharge cells, and the polarity of the wall charges is reversed. To do. Thereafter, similarly, by applying sustain pulses alternately to scan electrodes SCN1 to SCNn and sustain electrodes SUS1 to SUSn, the sustain discharge is continuously performed in the discharge cells in which the address discharge has occurred in the address period.
第2SFの初期化期間では、維持電極SUS1〜SUSnをVh(V)に保持し、データ電極D1〜Dmを0(V)に保持し、走査電極SCN1〜SCNnに電圧Va(V)に向かって下降するランプ電圧を印加する。すると前のサブフィールドの維持期間で維持放電を行った放電セルでは、微弱な初期化放電が発生し、つづく書込み動作に必要な壁電荷が形成される。一方、前のサブフィールドで書込み放電および維持放電を行わなかった放電セルについては放電することはなく、前のサブフィールドの初期化期間終了時における壁電荷状態がそのまま保たれる。 In the initialization period of the second SF, sustain electrodes SUS1 to SUSn are held at Vh (V), data electrodes D1 to Dm are held at 0 (V), and scan electrodes SCN1 to SCNn are supplied with voltage Va (V). Apply ramp-down voltage. Then, in a discharge cell that has undergone a sustain discharge in the sustain period of the previous subfield, a weak initializing discharge occurs, and a wall charge necessary for the subsequent address operation is formed. On the other hand, the discharge cells in which the address discharge and the sustain discharge were not performed in the previous subfield are not discharged, and the wall charge state at the end of the initialization period of the previous subfield is maintained as it is.
このように、選択初期化動作は、前のサブフィールドで維持放電を行った放電セルにおいて初期化放電を行うので、維持放電を行わなかった放電セルではプライミングが発生しない。 As described above, in the selective initialization operation, the initialization discharge is performed in the discharge cells in which the sustain discharge has been performed in the previous subfield. Therefore, no priming occurs in the discharge cells in which the sustain discharge has not been performed.
第2SFの書込み期間の動作は第1SFの書込み期間の動作と同様である。また、第2SFの維持期間の輝度重みは第1SFとは異なるものの、それ以外は第1SFの書込み期間の動作と同様である。第3SF以降のサブフィールドについても上述したように、初期化期間では全セル初期化動作または選択初期化動作、書込み期間では書込み動作、維持期間では維持動作を行うため説明を省略する。 The operation during the writing period of the second SF is the same as the operation during the writing period of the first SF. Further, although the luminance weight in the sustain period of the second SF is different from that of the first SF, the other operations are the same as those in the writing period of the first SF. As described above for the subfields after the third SF, the description is omitted because the all-cell initialization operation or selective initialization operation is performed in the initialization period, the address operation is performed in the address period, and the sustain operation is performed in the sustain period.
つぎに、本実施の形態の駆動方法のサブフィールド構成について説明する。上述したように、1フィールドが12のサブフィールドで構成されているものとして説明するが、本発明はサブフィールド数や各サブフィールドの輝度重みがこれに限定されるものではない。 Next, the subfield configuration of the driving method of the present embodiment will be described. As described above, description will be made assuming that one field is composed of 12 subfields. However, the present invention is not limited to the number of subfields and the luminance weight of each subfield.
図5は本実施の形態における表示階調と、その階調を表示するために発光させるサブフィールドの組み合わせ、いわゆるコーディングを示した図である。ここで「1」で示したサブフィールドは発光させるサブフィールド、空欄のサブフィールドは発光させないサブフィールドである。本実施の形態のコーディングの特徴は、第1SF〜第6SFにおいては表示すべき階調に応じてランダムにサブフィールドの発光、非発光が決められている。以下、このような階調の表示方法をランダムコーディングと称する。また第7SF〜第12SFにおいては、維持放電を発生させないサブフィールドにつづくサブフィールドで維持放電を発生させないように書込み放電が制御されている。したがって、第7SFを先頭にして発光するサブフィールドが連続するように、サブフィールドの発光、非発光が決められている。以下、このような階調の表示方法を連続コーディングと称する。連続コーディングを用いて階調を表示するといわゆる動画擬似輪郭が発生しないという長所がある。しかしその反面、表示できる階調が著しく制限されてしまうという弱点もある。本実施の形態においては連続コーディングのこのような弱点を補うために、1フィールドを構成する12のサブフィールドを2つのサブフィールド群に分け、輝度重みの大きいサブフィールド群(第7SF〜第12SF)では連続コーディングを用い、輝度重みの小さいサブフィールド群(第1SF〜第6SF)では表示階調を増やすためにランダムコーディングを用いて階調を表示している。 FIG. 5 is a diagram showing a combination of display gradations and subfields that emit light to display the gradations, that is, so-called coding in this embodiment. Here, the subfield indicated by “1” is a subfield that emits light, and the blank subfield is a subfield that does not emit light. The coding feature of this embodiment is that in the first to sixth SFs, light emission and non-light emission of subfields are determined at random according to the gradation to be displayed. Hereinafter, such a gradation display method is referred to as random coding. In the seventh to twelfth SFs, the address discharge is controlled so as not to generate the sustain discharge in the subfield following the subfield in which the sustain discharge is not generated. Therefore, the light emission and non-light emission of the subfield are determined so that the subfields emitting light with the seventh SF at the head are continuous. Hereinafter, such a gradation display method is referred to as continuous coding. When gradations are displayed using continuous coding, there is an advantage that a so-called moving image pseudo contour does not occur. On the other hand, however, there is a weak point that the gradation that can be displayed is remarkably limited. In the present embodiment, in order to compensate for such a weak point of continuous coding, 12 subfields constituting one field are divided into two subfield groups, and subfield groups (7th SF to 12th SF) having large luminance weights. In the subfield group (first SF to sixth SF) with a small luminance weight, gradation is displayed using random coding in order to increase the display gradation.
ところで、この場合、連続コーディングを用いるサブフィールド群のうち先頭のサブフィールドを除く第8SF〜第12SFの書込み期間を短く設定することができる。それは、第8SF〜第12SFのいずれかのサブフィールドを発光させる場合、必ずその直前のサブフィールドも発光するサブフィールドであり、直前のサブフィールドの維持期間において維持放電による十分なプライミング効果が得られ、つづくサブフィールドの書込み放電が安定するためである。しかしながら、連続コーディングの先頭のサブフィールドである第7SFについては、その直前のサブフィールドが必ず発光するサブフィールドであるとは限らない。そのため、連続コーディングの先頭のサブフィールドでは全セル初期化動作を行い、つづく書込み動作を確実にすることが望ましいが、全セル初期化動作は黒輝度が上昇し、また駆動に要する時間も長くなる。そこで本発明においては、連続コーディングのサブフィールドの点灯率を予測し、点灯率が高いときに限ってこのサブフィールドの初期化を全セル初期化とするものである。本実施の形態においては、第11SFの点灯率を予測し、その値が閾値40%以上となる場合には第7SFの初期化期間に全セル初期化を行い書込み動作を安定させ、閾値40%未満の場合には選択初期化動作を行って黒輝度の上昇を抑制している。
By the way, in this case, the writing period of the eighth SF to the twelfth SF excluding the first subfield in the subfield group using continuous coding can be set short. That is, when any subfield of the eighth SF to the twelfth SF is caused to emit light, the subfield immediately before that always emits light, and a sufficient priming effect due to the sustain discharge can be obtained in the sustain period of the immediately preceding subfield. This is because the subsequent subfield address discharge is stabilized. However, for the seventh SF, which is the first subfield of continuous coding, the subfield immediately before is not necessarily a subfield that emits light. Therefore, it is desirable to perform the all-cell initialization operation in the first subfield of continuous coding and to ensure the subsequent write operation. However, the all-cell initialization operation increases the black luminance and also increases the time required for driving. . Therefore, in the present invention, the lighting rate of the subfield of continuous coding is predicted, and the initialization of this subfield is all-cell initialization only when the lighting rate is high. In the present embodiment, the lighting rate of the eleventh SF is predicted, and when the value is equal to or greater than the
本実施の形態においては、これに加えて、APLに基づいても全セル初期化回数を制御している。図6は本実施の形態におけるパネルの駆動方法のサブフィールドの構成図であり、表示すべき画像信号のAPLおよび所定のサブフィールドの点灯率に基づいてサブフィールド構成を切替えている。図6(a)は、APLが1.5%未満の画像信号時に使用する構成であり、第1SFの初期化期間のみ全セル初期化動作を行い、第2SF〜第12SFの初期化期間は選択初期化動作を行うサブフィールド構成である。図6(b)は、APLが1.5%以上かつ第11SFの点灯率が40%未満の画像信号時に使用する構成であり、第1SFおよび第5SFの初期化期間が全セル初期化期間、第2SF〜第4SFと第6SF〜第12SFの初期化期間は選択初期化期間であるサブフィールド構成となっている。図6(c)は、APLが1.5%以上かつ第11SFの点灯率が40%以上の画像信号時に使用する構成であり、第1SF、第4SF、第7SFの初期化期間は全セル初期化期間、第2SF、第3SF、第5SF、第6SF、第8SF〜第12SFの初期化期間は選択初期化期間であるサブフィールド構成となっている。 In the present embodiment, in addition to this, the number of all-cell initializations is also controlled based on APL. FIG. 6 is a configuration diagram of subfields in the panel driving method according to the present embodiment. The subfield configuration is switched based on the APL of the image signal to be displayed and the lighting rate of a predetermined subfield. FIG. 6A shows a configuration used for an image signal with an APL of less than 1.5%. The initialization operation for all cells is performed only during the initialization period of the first SF, and the initialization periods of the second SF to the 12th SF are selected. This is a subfield configuration for performing an initialization operation. FIG. 6B shows a configuration used for an image signal in which APL is 1.5% or more and the lighting rate of the eleventh SF is less than 40%. The initialization periods of the first SF and the fifth SF are all-cell initialization periods. The initialization period of the second SF to the fourth SF and the sixth SF to the twelfth SF has a subfield configuration that is a selective initialization period. FIG. 6C shows a configuration used for an image signal having an APL of 1.5% or more and an 11th SF lighting rate of 40% or more. The initialization period of the first SF, the fourth SF, and the seventh SF is the initial state of all cells. The initialization period, the second SF, the third SF, the fifth SF, the sixth SF, the eighth SF to the twelfth SF has a subfield configuration that is a selective initialization period.
このように、本実施の形態においては、APLの低い画像表示時においては黒の画像表示領域が広いと考えられるため全セル初期化回数を減らし、黒表示品質を向上している。逆に、APLの高い画像表示時においては黒表示領域が無いかわずかの面積であると考えられるので、全セル初期化回数を増やしプライミングを増やすことによって書込み放電の安定化を図っている。さらに連続コーディングの所定のサブフィールドの点灯率を予測し、点灯率が高いときには連続コーディングの先頭のサブフィールドも全セル初期化とし、さらに書込み放電の安定化を図っている。したがって、輝度の高い領域があってもAPLが低ければ黒表示領域の輝度が低くコントラストの高い画像表示が可能となり、APLが高く点灯率も高ければ連続コーディングの先頭のサブフィールドで全セル初期化動作を行い安定した画像表示が可能となる。 As described above, in this embodiment, when displaying an image with a low APL, it is considered that the black image display area is wide, so the number of all-cell initializations is reduced and the black display quality is improved. Conversely, when an image with a high APL is displayed, it is considered that there is no black display area or a small area. Therefore, the address discharge is stabilized by increasing the number of all-cell initializations and increasing the priming. Further, the lighting rate of a predetermined subfield of continuous coding is predicted, and when the lighting rate is high, the initial subfield of continuous coding is also initialized to all cells to further stabilize the address discharge. Therefore, even if there is a high luminance area, if the APL is low, the black display area can be displayed with low luminance and high contrast, and if the APL is high and the lighting rate is high, all cells are initialized in the first subfield of continuous coding. A stable image display is possible by performing the operation.
なお、本実施の形態においては、1フィールドを12のサブフィールドで構成し、全セル初期化回数を1〜3回の範囲で制御し、先頭に近いサブフィールドの初期化を優先する例を示したが、本発明はこれに限定されるものではない。さらに本実施の形態においては、所定のサブフィールドとして第11SFの点灯率を用いたが、所定のサブフィールドとしては第11SFに限定されるものではなく、1つのサブフィールドに限定されるものでもない。たとえば複数のサブフィールドの点灯率に輝度重みを乗じた合計の値を用いてもよい。 In this embodiment, an example is shown in which one field is composed of 12 subfields, the number of all-cell initializations is controlled within a range of 1 to 3, and initialization of subfields close to the head is prioritized. However, the present invention is not limited to this. Further, in the present embodiment, the lighting rate of the eleventh SF is used as the predetermined subfield. However, the predetermined subfield is not limited to the eleventh SF, and is not limited to one subfield. . For example, a total value obtained by multiplying the lighting rate of a plurality of subfields by a luminance weight may be used.
(実施の形態2)
本発明の実施の形態2に用いるパネルおよびプラズマディスプレイ装置の構成図は実施の形態1と同様である。実施の形態2が実施の形態1と異なるところはサブフィールド構成である。図7は実施の形態2のサブフィールド構成を示す図である。本実施の形態においては、1フィールドを14のサブフィールド(SF1、SF2、・・・、SF14)に分割し、各サブフィールドはそれぞれ(1、2、4、8、20、32、56、4、12、16、16、20、32、32)の輝度重みをもつものとする。本実施の形態のサブフィールド構成およびコーディングの特徴は、第1SFから第7SFまでの輝度重みは単調に増加しているが、第8SFの輝度重みが一旦小さくなり、その後再び単調に増加している点である。このようなサブフィールドの並べ方は、たとえばPAL方式の画像信号のようにフィールド周波数の低い画像信号に対してフリッカの発生を抑制する上で有効である。そして第1SF〜第5SFはランダムコーディング、第6SF〜第7SFは連続コーディング、第8SF〜第10SFはランダムコーディング、第11SF〜第14SFは連続コーディングを用いて階調を表示している。さらに本実施の形態においても、画像信号のAPLおよび所定のサブフィールドの点灯率に依存してサブフィールド構成を切替えている。
(Embodiment 2)
The configuration diagram of the panel and plasma display device used in the second exemplary embodiment of the present invention is the same as that of the first exemplary embodiment. The difference between the second embodiment and the first embodiment is the subfield configuration. FIG. 7 is a diagram showing a subfield configuration of the second embodiment. In the present embodiment, one field is divided into 14 subfields (SF1, SF2,..., SF14), and each subfield is (1, 2, 4, 8, 20, 32, 56, 4). , 12, 16, 16, 20, 32, 32). In the subfield configuration and coding feature of the present embodiment, the luminance weights from the first SF to the seventh SF monotonously increase, but the luminance weight of the eighth SF once decreases and then monotonously increases again. Is a point. Such an arrangement of subfields is effective in suppressing the occurrence of flicker for an image signal having a low field frequency such as a PAL image signal. The first SF to the fifth SF display gradation using random coding, the sixth SF to seventh SF use continuous coding, the eighth SF to tenth SF use random coding, and the eleventh SF to fourteenth SF use continuous coding. Further, also in this embodiment, the subfield configuration is switched depending on the APL of the image signal and the lighting rate of a predetermined subfield.
図7(a)は、APLが1.5%未満の画像信号時に使用する構成であり、第1SFの初期化期間のみ全セル初期化動作を行い、第2SF〜第14SFの初期化期間は選択初期化動作を行うサブフィールド構成である。図7(b)は、APLが1.5%以上かつ第13SFの点灯率が40%未満の画像信号時に使用する構成であり、第1SFおよび第8SFの初期化期間が全セル初期化期間、第2SF〜第7SFと第9SF〜第14SFの初期化期間は選択初期化期間であるサブフィールド構成となっている。図7(c)は、APLが1.5%以上かつ第13SFの点灯率が40%以上の画像信号時に使用する構成であり、第1SF、第8SF、第11SFの初期化期間は全セル初期化期間、第2SF〜第7SF、第9SF、第10SF、第12SF〜第14SFの初期化期間は選択初期化期間であるサブフィールド構成となっている。 FIG. 7A shows a configuration used for an image signal with an APL of less than 1.5%. The all-cell initialization operation is performed only during the initialization period of the first SF, and the initialization periods of the second SF to the 14th SF are selected. This is a subfield configuration for performing an initialization operation. FIG. 7B shows a configuration used for an image signal having an APL of 1.5% or more and a lighting rate of the 13th SF of less than 40%. The initialization period of the first SF and the eighth SF is the all-cell initialization period. The initialization period of the second SF to the seventh SF and the ninth SF to the 14th SF has a subfield configuration that is a selective initialization period. FIG. 7C shows a configuration used for an image signal having an APL of 1.5% or more and a lighting rate of the 13th SF of 40% or more. The initialization period of the first SF, the eighth SF, and the eleventh SF is the initial state of all cells. The initialization period of the 2nd SF to 7th SF, 9th SF, 10th SF, and 12th SF to 14th SF has a subfield configuration that is a selective initialization period.
このように、本実施の形態においても、APLの低い画像表示時においては全セル初期化回数を減らし黒表示品質を向上している。逆に、APLの高い画像表示時においては全セル初期化回数を増やしプライミングを増やすことによって書込み放電の安定化を図っている。さらに連続コーディングの所定のサブフィールドの点灯率を予測し、点灯率が高いときには連続コーディングの先頭のサブフィールドも全セル初期化とし、さらに書込み放電の安定化を図っている。したがって、輝度の高い領域があってもAPLが低ければ黒表示領域の輝度が低くコントラストの高い画像表示が可能となり、APLが高く点灯率も高ければ連続コーディングの先頭のサブフィールドで全セル初期化動作を行い安定した画像表示が可能となる。 Thus, also in the present embodiment, the black display quality is improved by reducing the number of all-cell initializations when displaying an image with a low APL. Conversely, when an image with a high APL is displayed, the address discharge is stabilized by increasing the number of all-cell initializations and increasing the priming. Further, the lighting rate of a predetermined subfield of continuous coding is predicted, and when the lighting rate is high, the initial subfield of continuous coding is also initialized to all cells to further stabilize the address discharge. Therefore, even if there is a high luminance area, if the APL is low, the black display area can be displayed with low luminance and high contrast, and if the APL is high and the lighting rate is high, all cells are initialized in the first subfield of continuous coding. A stable image display is possible by performing the operation.
本発明のパネルの駆動方法によれば、黒輝度の上昇を抑えつつ良好な品質で画像表示させることができるので、パネルを用いた画像表示装置等として有用である。 According to the panel driving method of the present invention, it is possible to display an image with good quality while suppressing an increase in black luminance, which is useful as an image display apparatus using the panel.
1 パネル
2 前面基板
3 背面基板
4 走査電極
5 維持電極
9 データ電極
12 データ電極駆動回路
13 走査電極駆動回路
14 維持電極駆動回路
15 タイミング発生回路
18 AD変換器
19 走査数変換部
20 サブフィールド変換部
30 APL検出部
40 点灯率算出部
DESCRIPTION OF
Claims (1)
1フィールド期間を、前記放電セルに初期化放電を発生させる初期化期間、前記放電セルに書込み放電を発生させる書込み期間および書込み放電を発生させた放電セルに所定の輝度重みで発光させるための維持放電を発生させる維持期間を有する複数のサブフィールドから構成し、
前記複数のサブフィールドは非発光のサブフィールドと発光するサブフィールドから成り、維持放電を発生させない非発光のサブフィールドに連続して後続するサブフィールドでは維持放電を発生させない非発光のサブフィールドになるように書込み期間において書込み放電を発生させない連続コーディングを用いる2以上の連続するサブフィールドから構成されたサブフィールド群と、
維持放電を発生させないサブフィールドと維持放電を発生させるサブフィールドが階調に応じてランダムに決められたランダムコーディングを用いるサブフィールドから構成されたサブフィールド群とを1フィールド期間に少なくとも各々1つ以上を備え、前記連続コーディングを行うサブフィールド群の先頭のサブフィールドの初期化期間において、画像表示を行うすべての放電セルに対して初期化放電を発生させる全セル初期化動作を行わせるか、または直前のサブフィールドにおいて維持放電を発生した放電セルに対して選択的に初期化放電を発生させる選択初期化動作を行わせるかを、前記連続コーディングをおこなうサブフィールド群における所定のサブフィールドの点灯率に依存して決定し、
前記点灯率が閾値以上の場合は前記全セル初期化動作を行い、閾値以下の場合は前記選択初期化動作を行い、かつ、前記連続コーディングを行う前記サブフィールド群の先頭サブフィールド以外の初期化期間においては前記選択初期化動作を行い、
表示すべき画像信号のAPLの値に基づいて、前記ランダムコーディングを行う前記サブフィールド群におけるサブフィールドの各々の初期化期間における初期化動作を全セル初期化動作または選択初期化動作のいずれかに決定し、
前記APLの値が所定値以上である場合は、前記点灯率が閾値以上である場合の方が、前記点灯率が閾値未満である場合よりも全セル初期化動作を行うサブフィールドの数が多いことを特徴とするプラズマディスプレイパネルの駆動方法。 A method for driving a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes,
One field period is maintained for causing the discharge cell to generate an initialization discharge, an address period for generating an address discharge in the discharge cell, and causing the discharge cell in which the address discharge has been generated to emit light with a predetermined luminance weight. Composed of a plurality of subfields having a sustain period for generating discharge,
The plurality of subfields include a non-light-emitting subfield and a light-emitting subfield, and the subfields subsequent to the non-light-emitting subfield that does not generate a sustain discharge are non-light-emitting subfields that do not generate a sustain discharge. A subfield group composed of two or more consecutive subfields using continuous coding that does not generate an address discharge in the address period,
At least one subfield group composed of subfields using random coding in which a subfield that does not generate a sustain discharge and a subfield that generates a sustain discharge is randomly determined according to a gray level is used in one field period. And performing an all-cell initializing operation for generating an initializing discharge for all the discharge cells performing image display in the initializing period of the first subfield of the subfield group performing the continuous coding , or The lighting rate of a predetermined subfield in the subfield group in which the continuous coding is performed is performed to determine whether or not the selective initialization operation for selectively generating the initializing discharge is performed on the discharge cells that have generated the sustain discharge in the immediately preceding subfield. Depends on
When the lighting rate is equal to or higher than a threshold value, the all-cell initialization operation is performed. When the lighting rate is equal to or lower than the threshold value, the selection initialization operation is performed, and initialization other than the first subfield of the subfield group performing the continuous coding is performed. In the period, the selective initialization operation is performed,
Based on the APL value of the image signal to be displayed, the initialization operation in the initialization period of each of the subfields in the subfield group that performs the random coding is set to either the all-cell initialization operation or the selective initialization operation. determined,
When the APL value is equal to or greater than a predetermined value, the number of subfields for performing the all-cell initialization operation is greater when the lighting rate is equal to or higher than the threshold than when the lighting rate is lower than the threshold. A method for driving a plasma display panel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005116894A JP5017796B2 (en) | 2005-04-14 | 2005-04-14 | Plasma display panel driving method and plasma display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005116894A JP5017796B2 (en) | 2005-04-14 | 2005-04-14 | Plasma display panel driving method and plasma display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006293206A JP2006293206A (en) | 2006-10-26 |
JP5017796B2 true JP5017796B2 (en) | 2012-09-05 |
Family
ID=37413833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005116894A Expired - Fee Related JP5017796B2 (en) | 2005-04-14 | 2005-04-14 | Plasma display panel driving method and plasma display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5017796B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5007308B2 (en) * | 2006-11-22 | 2012-08-22 | 株式会社日立製作所 | Plasma display panel driving method and plasma display apparatus |
JP5003713B2 (en) | 2009-04-13 | 2012-08-15 | パナソニック株式会社 | Plasma display panel driving method and plasma display device |
JP5003714B2 (en) * | 2009-04-13 | 2012-08-15 | パナソニック株式会社 | Plasma display panel driving method and plasma display device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3704813B2 (en) * | 1996-06-18 | 2005-10-12 | 三菱電機株式会社 | Method for driving plasma display panel and plasma display |
JP2000172225A (en) * | 1998-12-04 | 2000-06-23 | Fujitsu Ltd | Display device |
JP2000221940A (en) * | 1999-01-28 | 2000-08-11 | Mitsubishi Electric Corp | Driving device of plasma display panel and driving method therefor |
JP3514205B2 (en) * | 2000-03-10 | 2004-03-31 | 日本電気株式会社 | Driving method of plasma display panel |
JP2002023692A (en) * | 2000-07-04 | 2002-01-23 | Matsushita Electric Ind Co Ltd | Display device and display method |
EP1329869A1 (en) * | 2002-01-16 | 2003-07-23 | Deutsche Thomson-Brandt Gmbh | Method and apparatus for processing video pictures |
KR100503603B1 (en) * | 2003-03-11 | 2005-07-26 | 엘지전자 주식회사 | Method of driving plasma display panel |
-
2005
- 2005-04-14 JP JP2005116894A patent/JP5017796B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006293206A (en) | 2006-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4992195B2 (en) | Plasma display panel driving method and plasma display device | |
KR100714187B1 (en) | Method of driving plasma display panel | |
KR100793483B1 (en) | Plasma display panel driving method | |
US7446734B2 (en) | Method of driving plasma display panel | |
KR100805502B1 (en) | Plasma display panel drive method and plasma display device | |
JPWO2008035648A1 (en) | Plasma display panel driving method and plasma display panel apparatus | |
JP2007041251A (en) | Method for driving plasma display panel | |
JP5152183B2 (en) | Plasma display device and driving method thereof | |
JP5044895B2 (en) | Plasma display device | |
JP3988728B2 (en) | Driving method of plasma display panel | |
JP2006003398A (en) | Driving method for plasma display panel | |
JP4956911B2 (en) | Driving method of plasma display panel | |
JP5017796B2 (en) | Plasma display panel driving method and plasma display device | |
JP4736530B2 (en) | Driving method of plasma display panel | |
JP4725522B2 (en) | Plasma display panel driving method and plasma display device | |
JP2005338217A (en) | Method of driving plasma display panel, and display device | |
JP4120594B2 (en) | Driving method of plasma display panel | |
JP2006317856A (en) | Method for driving plasma display panel | |
JP2005301013A (en) | Method for driving plasma display panel | |
JP2005321499A (en) | Method for driving plasma display panel | |
JP2005321500A (en) | Method for driving plasma display panel | |
JP2005338121A (en) | Method for driving plasma display panel | |
JP2005338122A (en) | Method for driving plasma display panel | |
JP2006195328A (en) | Drive method of plasma display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080304 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080414 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120515 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120528 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |