JP5014945B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5014945B2
JP5014945B2 JP2007270704A JP2007270704A JP5014945B2 JP 5014945 B2 JP5014945 B2 JP 5014945B2 JP 2007270704 A JP2007270704 A JP 2007270704A JP 2007270704 A JP2007270704 A JP 2007270704A JP 5014945 B2 JP5014945 B2 JP 5014945B2
Authority
JP
Japan
Prior art keywords
wiring
semiconductor device
metal ion
sealing resin
ion binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007270704A
Other languages
Japanese (ja)
Other versions
JP2008098646A (en
Inventor
和彦 福田
健司 豊沢
貴 木戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007270704A priority Critical patent/JP5014945B2/en
Publication of JP2008098646A publication Critical patent/JP2008098646A/en
Application granted granted Critical
Publication of JP5014945B2 publication Critical patent/JP5014945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

本発明は、半導体装置に関し、特に配線のマイグレーションを抑制する半導体装置に関するものである。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device that suppresses migration of wiring.

電子部品を配線基板に搭載した半導体装置として、フレキシブル配線基板上に半導体素子を接合・搭載した半導体装置(COF:Chip On Film)や、フレキシブル配線基板上に連続して半導体素子が接続された半導体装置(TCP:Tape Carrier Package)が知られている。COFやTCPは、主に、液晶ドライバICを搭載した半導体装置に適用されている。   As a semiconductor device in which electronic components are mounted on a wiring board, a semiconductor device (COF: Chip On Film) in which a semiconductor element is bonded and mounted on a flexible wiring board, or a semiconductor in which semiconductor elements are continuously connected on the flexible wiring board An apparatus (TCP: Tape Carrier Package) is known. COF and TCP are mainly applied to a semiconductor device on which a liquid crystal driver IC is mounted.

近年、液晶ドライバの多出力化の要求に応えるため、液晶ドライバICを搭載するフレキシブル配線基板の配線パターンのファインピッチ化が急速に進んでいる。現在の所、TCPと比べ、COFの方が配線パターンのファインピッチ化に適しているため、液晶ドライバICの実装形式はCOFが主流となっている。   In recent years, in order to meet the demand for increasing the number of outputs of a liquid crystal driver, a fine pitch of a wiring pattern of a flexible wiring board on which a liquid crystal driver IC is mounted has been rapidly advanced. At present, COF is more suitable for finer wiring patterns than TCP, and therefore, the liquid crystal driver IC is mainly mounted as COF.

以下に、従来のCOFのアセンブリ方法を図9を参照して説明する。   Hereinafter, a conventional COF assembly method will be described with reference to FIG.

初めに、フレキシブル配線基板50を作製する方法を示す。まず、ポリイミド基材51の上にスパッタ法でバリア機能を有する金属の層を形成し、さらにメタライジング法にて銅箔を形成する(銅メッキ処理をする)。次に、銅箔の上にフォトレジストを塗布・硬化させ、その後フォトレジストにパターン露光し、現像して所望の配線パターン形状のフォトレジストパターンを形成する。そして、フォトレジストパターンに応じて銅箔およびバリア機能を有する金属の層をエッチングしたあと、フォトレジストを剥離処理することで、所望のパターン形状を転写する。これにより、配線パターン形状のバリア層52と銅からなる導体層53が形成される。そして、導体パターン全面に一様に厚さ0.4〜0.6μmのスズメッキ58を施すことで、配線59が完成する。さらに、配線59の保護のために、配線59表面における半導体チップとの接続に関与しない部分に、ソルダーレジスト57を被覆保護する。これにより、フレキシブル配線基板50が完成する。   First, a method for manufacturing the flexible wiring board 50 will be described. First, a metal layer having a barrier function is formed on the polyimide substrate 51 by a sputtering method, and a copper foil is further formed by a metalizing method (copper plating treatment is performed). Next, a photoresist is applied and cured on the copper foil, and then the photoresist is subjected to pattern exposure and developed to form a photoresist pattern having a desired wiring pattern shape. Then, after etching the copper foil and the metal layer having a barrier function according to the photoresist pattern, the desired pattern shape is transferred by peeling the photoresist. Thereby, a barrier layer 52 having a wiring pattern shape and a conductor layer 53 made of copper are formed. The wiring 59 is completed by uniformly applying a tin plating 58 having a thickness of 0.4 to 0.6 μm to the entire surface of the conductor pattern. Further, in order to protect the wiring 59, a solder resist 57 is covered and protected on a portion of the surface of the wiring 59 that is not involved in the connection with the semiconductor chip. Thereby, the flexible wiring board 50 is completed.

作製されたフレキシブル配線基板50は、金バンプ54(突起電極)を形成した半導体チップと接合される。このとき、スズメッキ58と金バンプ54とをスズ−金共晶接合させる。なお、この接合工程はインナーリードボンディング(ILB)と呼ばれる。   The produced flexible wiring board 50 is bonded to a semiconductor chip on which gold bumps 54 (projection electrodes) are formed. At this time, the tin plating 58 and the gold bump 54 are bonded to tin-gold eutectic. This bonding process is called inner lead bonding (ILB).

ILB後に、半導体チップ55の保護を目的として、半導体チップ55とフレキシブル配線基板50との間にアンダーフィルの(すなわち熱硬化性の)封止樹脂56を充填し、加熱処理にて封止樹脂を硬化させる。   After the ILB, for the purpose of protecting the semiconductor chip 55, an underfill (that is, thermosetting) sealing resin 56 is filled between the semiconductor chip 55 and the flexible wiring board 50, and the sealing resin is applied by heat treatment. Harden.

その後、最終的な電気的特性テストを行って、COFのアセンブリが完了する。
特開平11−144527(公開日:1999年5月28日)
A final electrical property test is then performed to complete the COF assembly.
JP-A-11-144527 (Publication date: May 28, 1999)

このような半導体装置において、最近では、より一層の多出力化が求められており、配線59にかかる電圧の高圧化、配線パターンのファインピッチ化が進んでいる。しかしながら、従来の半導体装置では、この配線59の高圧化ファインピッチ化に対応しきれず、配線59間のマイグレーションが生じてしまっていた。マイグレーションは、高湿度下において向かい合う配線に直流電圧が印加されたときに、電気化学反応により配線材料の金属がイオン化して溶出し、配線の材料が、本来の配線配置位置でない場所に析出成長していく現象である。つまり、1つの配線59にかかる電圧が高くなると、隣接する配線59にかかる電圧との電位差が大きくなり、配線59間でマイグレーションが発生しやすくなり、また、配線59間のスペースがファイン化すると、配線59が隣接する配線59におよぼす電界強度が強くなり、マイグレーションが発生しやすくなるのである。   In such a semiconductor device, recently, further increase in the number of outputs has been demanded, and the voltage applied to the wiring 59 has been increased and the fine pitch of the wiring pattern has been advanced. However, the conventional semiconductor device cannot cope with the high-voltage and fine pitch of the wiring 59, and migration between the wirings 59 has occurred. In migration, when a DC voltage is applied to opposing wires under high humidity, the metal of the wiring material is ionized and eluted by an electrochemical reaction, and the wiring material precipitates and grows at a location that is not the original wiring location. It is a phenomenon that goes on. That is, when the voltage applied to one wiring 59 is increased, the potential difference from the voltage applied to the adjacent wiring 59 is increased, migration is likely to occur between the wirings 59, and the space between the wirings 59 is refined. The electric field intensity exerted on the adjacent wiring 59 by the wiring 59 is increased, and migration is likely to occur.

マイグレーションが発生すると、配線59同士の間にも金属イオンが析出することにより、配線59の間を短絡させ、絶縁破壊に至る現象を生じるので、半導体装置の信頼性が失われる。そこで、長期間にわたってマイグレーションの発生を抑えることが、半導体装置の信頼性を確保する上で、重要な課題となる。   When migration occurs, metal ions are also deposited between the wirings 59, thereby causing a short circuit between the wirings 59, resulting in a dielectric breakdown. Therefore, the reliability of the semiconductor device is lost. Therefore, suppressing the occurrence of migration over a long period of time is an important issue in securing the reliability of the semiconductor device.

マイグレーションの発生を抑制する方法としては、第1に、高湿度となることを防ぐために、配線間に水分の進入を防ぐ防湿手段を設けることが考えられる。防湿手段としては、配線への水分の侵入経路となるフレキシブル配線基板の基材、ソルダーレジスト及び封止樹脂に防湿性を付与することが考えられる。しかし、これらのいずれの部材も透水性のある有機高分子材料を使用することが必要であるため、水分の進入を完全に遮断することは困難である。また、防水塗膜を施す手法もあるが、多大な手間とコストを要し、マイグレーション抑制の効果も不十分である。   As a method for suppressing the occurrence of migration, firstly, in order to prevent high humidity, it is conceivable to provide moisture-proof means for preventing moisture from entering between the wirings. As a moisture-proof means, it can be considered that moisture resistance is imparted to the base material of the flexible wiring board, the solder resist, and the sealing resin, which serve as a moisture intrusion route to the wiring. However, since it is necessary for any of these members to use a water-permeable organic polymer material, it is difficult to completely block the ingress of moisture. In addition, there is a method of applying a waterproof coating, but it requires a lot of labor and cost, and the effect of suppressing migration is insufficient.

第2に、配線材料の金属イオンの溶出を加速する、塩化物イオンなどのハロゲンイオンの混入を減らす方法が考えられる。しかし、ハロゲンイオンは使用する原材料自身に既に混入しており、ハロゲンイオン等の不純物イオンを完全に除去することは困難である。   Secondly, there is a method of accelerating the elution of metal ions in the wiring material and reducing the mixing of halogen ions such as chloride ions. However, halogen ions are already mixed in the raw materials used, and it is difficult to completely remove impurity ions such as halogen ions.

第3に、配線にかかる電界強度を低減することによって、配線材料の金属イオンの溶解速度を減らす方法が考えられる。しかし、半導体装置の高密度実装及び半導体チップの高機能化を達成するために、搭載する半導体チップとフレキシブル配線基板との接続ピッチのファイン化、あるいは配線への印加電圧の高電圧化は避けられず、配線パターンにかかる電界強度が強くなることは避けられない。   Thirdly, a method of reducing the dissolution rate of metal ions in the wiring material by reducing the electric field strength applied to the wiring is conceivable. However, in order to achieve high-density mounting of semiconductor devices and higher performance of semiconductor chips, it is unavoidable to refine the connection pitch between the mounted semiconductor chip and the flexible wiring board or increase the voltage applied to the wiring. Therefore, it is inevitable that the electric field strength applied to the wiring pattern is increased.

このように、COFの半導体装置では、配線をファイン化、あるいは配線に高電圧を印加した場合に、コストをかけずにマイグレーションの発生を防ぐことができず、半導体装置の高機能化の妨げとなっていた。   As described above, in the case of a COF semiconductor device, when the wiring is refined or a high voltage is applied to the wiring, the occurrence of migration cannot be prevented without cost, which hinders the enhancement of the functionality of the semiconductor device. It was.

一方、特許文献1には、電子部品を基板に接着する導電ペーストにおいて発生する銀イオンのマイグレーションを防ぐために、導電ペーストに、イオン化した銀イオンと鎖体を形成する銀イオン結合剤を混合することが記載されている。しかし、このような導電ペーストは半導体の配線には適用できず、配線のマイグレーションを解決することはできない。   On the other hand, in Patent Document 1, in order to prevent migration of silver ions generated in a conductive paste that adheres an electronic component to a substrate, a silver ion binder that forms ionized silver ions and a chain is mixed with the conductive paste. Is described. However, such a conductive paste cannot be applied to semiconductor wiring, and wiring migration cannot be solved.

本発明は、配線からの金属イオンの析出によるマイグレーション発生を防止できる、高信頼性の半導体装置を提供することを目的とする。   An object of the present invention is to provide a highly reliable semiconductor device capable of preventing the occurrence of migration due to deposition of metal ions from wiring.

本発明の半導体装置は、上記課題を解決するために、基材に複数の配線が配置された配線基板と、上記配線基板に搭載された半導体素子と、を含む、COF構造若しくはTCP構造を有する半導体装置において、上記基板がフィルム状のフレキシブル基板であり、
金属イオン結合剤が、上記配線の表面に塗布されており、上記金属イオン結合剤が、ベンゾトリアゾール類、トリアジン類、および、これらのイソシアヌル酸付加物から選ばれる少なくとも1つの化合物を含み、封止樹脂が、上記半導体素子と上記フレキシブル基板との間に充填され、上記半導体素子の接続部周辺で、上記配線の間に入り込んでおり、さらに、配線表面を覆うようにソルダーレジストが、上記配線同士の間に入り込んで形成されており、上記配線同士の間隔が50μm以下であことを特徴としている。
In order to solve the above problems, a semiconductor device according to the present invention has a COF structure or a TCP structure including a wiring board in which a plurality of wirings are arranged on a base material and a semiconductor element mounted on the wiring board. In the semiconductor device, the substrate is a film-like flexible substrate,
A metal ion binder is applied to the surface of the wiring, and the metal ion binder contains at least one compound selected from benzotriazoles, triazines, and these isocyanuric acid adducts, and is sealed Resin is filled between the semiconductor element and the flexible substrate, enters between the wirings around the connection part of the semiconductor element, and a solder resist is formed between the wirings so as to cover the wiring surface. are entered in form between, and wherein the distance between the wiring Ru der less 50 [mu] m.

これにより、配線から放出された材料の金属イオンが、配線と接す金属イオン結合剤と接触し、金属イオンを捕捉するので、金属イオンが析出することを防げる。 Thus, the metal ions of the material released from the wires in contact with the wiring and Sessu that metal ion binding agent, so to capture metal ions, possible to prevent the metal ions are precipitated.

配線から流出した金属イオンが析出すると、配線から金属が成長していき(マイグレーション)、最後には配線が隣接する配線に接続する。この場合、配線間の絶縁性が破壊され、半導体素子が良好に外部装置に接続できず、動作不良を起こす。   When metal ions flowing out of the wiring are deposited, the metal grows from the wiring (migration), and finally the wiring is connected to the adjacent wiring. In this case, the insulation between the wirings is destroyed, and the semiconductor element cannot be connected to the external device satisfactorily, causing malfunction.

本発明によれば、このような配線からの金属の析出が防がれるので、金属の成長も防がれ、半導体装置がこのような動作不良を起こすことがなくなる。また、このような半導体装置では、特に配線のファインピッチ化、高電圧化が求められているので、本発明により、配線からの金属イオンの析出を防ぐことで、半導体装置の高性能化が可能となる。   According to the present invention, metal deposition from such wiring is prevented, so that metal growth is also prevented, and the semiconductor device does not cause such a malfunction. In addition, since such semiconductor devices are required to have finer wiring and higher voltage, the present invention can improve the performance of the semiconductor device by preventing the deposition of metal ions from the wiring. It becomes.

また、本発明の半導体装置は、さらに、上記配線基板と半導体素子との間に、少なくとも一部が配線に接するように配置された封止樹脂を有し、封止樹脂が金属イオン結合剤を含んでいることを特徴としている。   The semiconductor device of the present invention further includes a sealing resin disposed between the wiring substrate and the semiconductor element so that at least a part thereof is in contact with the wiring, and the sealing resin includes a metal ion binder. It is characterized by including.

ここで、封止樹脂は、配線基板、半導体素子、その接続部の保護、および接続の補強のために、一般的に設けられるものである。   Here, the sealing resin is generally provided for the purpose of protecting the wiring board, the semiconductor element, its connecting portion, and reinforcing the connection.

これによれば、封止樹脂に金属イオン結合剤が含まれているので、封止樹脂に含まれる金属イオン結合剤が配線に作用できる。つまり、配線から流出した金属イオンが、封止樹脂中の金属イオン結合剤に接触し、捕捉されるので、金属イオンが封止樹脂中にとどめられ、析出しない。   According to this, since the metal ion binder is contained in the sealing resin, the metal ion binder contained in the sealing resin can act on the wiring. That is, the metal ions flowing out from the wiring come into contact with and captured by the metal ion binder in the sealing resin, so that the metal ions remain in the sealing resin and do not precipitate.

したがって、従来の半導体装置において製造工程や部材数を増やすことなく、封止樹脂に金属イオン結合剤を添加するだけで、配線からの金属イオンの析出が防がれる。よって、配線からの金属の成長が防がれ、半導体装置の動作不良が防がれる。   Therefore, deposition of metal ions from the wiring can be prevented only by adding a metal ion binder to the sealing resin without increasing the number of manufacturing steps and the number of members in the conventional semiconductor device. Therefore, the growth of the metal from the wiring is prevented, and the malfunction of the semiconductor device is prevented.

本発明の半導体装置は、上記封止樹脂が、配線基板と半導体素子との間に充填されるときに、粘度50mPa・s以上1250mPa・s以下であることを特徴としている。   The semiconductor device of the present invention is characterized in that, when the sealing resin is filled between the wiring substrate and the semiconductor element, the viscosity is 50 mPa · s or more and 1250 mPa · s or less.

封止樹脂は、硬化する前の流動性がある状態で、配線基板と半導体素子との間に隙間なく充填された後、硬化される。したがって、金属イオン結合剤を添加した場合も、隙間なく充填ができる程度の流動性を有していることが好ましい。   The sealing resin is cured after being filled without a gap between the wiring board and the semiconductor element in a state of fluidity before curing. Therefore, even when a metal ion binder is added, it should preferably have fluidity that can be filled without any gaps.

そこで、封止樹脂の硬化前、すなわち、配線基板と半導体素子との間に充填されるときに、粘度を上記範囲とすることで、容易に塗布でき、配線基板と半導体素子との間に隙間なく充填できる程度の流動性が封止樹脂に備えられる。   Therefore, before the sealing resin is cured, that is, when it is filled between the wiring board and the semiconductor element, by setting the viscosity within the above range, it can be easily applied and there is no gap between the wiring board and the semiconductor element. The sealing resin is provided with fluidity that can be filled completely.

なお、粘度が粘度50mPa・sより小さいと、流動性が高すぎ、封止樹脂が流れ出たり、半導体素子側に、特に半導体素子側面に付着できないという問題が生じる。一方、粘度が1250mPa・sより大きいと、流動性が低すぎ、ディスペンサーから流出しにくく、封止樹脂内に空隙が残る可能性がある。   When the viscosity is less than 50 mPa · s, there is a problem that the fluidity is too high and the sealing resin flows out or cannot adhere to the semiconductor element side, particularly to the side surface of the semiconductor element. On the other hand, if the viscosity is greater than 1250 mPa · s, the fluidity is too low to easily flow out of the dispenser, and voids may remain in the sealing resin.

また、本発明の半導体装置は、上記封止樹脂が、上記金属イオン結合剤を0.5重量%以上10.0重量%以下含んでいることを特徴としている。   In the semiconductor device of the present invention, the sealing resin contains the metal ion binder in an amount of 0.5 wt% to 10.0 wt%.

これによれば、硬化前の状態で、容易に塗布でき、配線基板と半導体素子との間に隙間なく充填できる程度の流動性を備え、かつ、金属イオン結合剤による十分なマイグレーション抑制効果も有する。   According to this, it can be easily applied in a state before curing, has fluidity that can be filled without a gap between the wiring board and the semiconductor element, and has a sufficient migration suppressing effect by the metal ion binder. .

金属イオン結合剤に含有率が0.5重量%より低いと、マイグレーション抑制の効果が不十分となり、10重量%より多いと、粘度が高くなり、塗布しにくく、充填後に封止樹脂内に空隙が残る可能性が生じる。   When the content of the metal ion binder is lower than 0.5% by weight, the effect of suppressing migration is insufficient, and when the content is higher than 10% by weight, the viscosity becomes high and it is difficult to apply. May remain.

また、本発明の半導体装置は、上記配線が基材表面に形成されており、基材に金属イオン結合剤を含んでいることを特徴としている。   In the semiconductor device of the present invention, the wiring is formed on the surface of the base material, and the base material contains a metal ion binder.

これによれば、基材に金属イオン結合剤が含まれているので、基材に含まれる金属イオン結合剤が配線に作用できる。つまり、配線から流出した金属イオンが、基材中の金属イオン結合剤に接触し、捕捉されるので、金属イオンが基材中にとどめられ、析出しない。   According to this, since the metal ion binder is contained in the base material, the metal ion binder contained in the base material can act on the wiring. That is, the metal ions flowing out from the wiring come into contact with the metal ion binder in the base material and are captured, so that the metal ions remain in the base material and do not precipitate.

したがって、従来の半導体装置において製造工程や部材数を増やすことなく、基材に金属イオン結合剤を添加するだけで、配線からの金属イオンの析出が防がれる。よって、配線からの金属の成長が防がれ、半導体装置の動作不良が防がれる。   Therefore, precipitation of metal ions from the wiring can be prevented only by adding the metal ion binder to the base material without increasing the number of manufacturing steps and the number of members in the conventional semiconductor device. Therefore, the growth of the metal from the wiring is prevented, and the malfunction of the semiconductor device is prevented.

また、本発明の半導体装置は、上記ソルダーレジストに金属イオン結合剤を含んでいてもよい。 Further, the semiconductor device of the present invention may comprise a metal ion binding agent on SL solder resist.

ここで、ソルダーレジストとは、一般的に、配線におけるのショートや断線を防ぐために設けられているもので、配線における電気的に接続を行わない領域を覆って、ゴミの付着や機械的ストレスを受けることを防ぐものである。   Here, the solder resist is generally provided to prevent a short circuit or disconnection in the wiring, and covers an area that is not electrically connected in the wiring to prevent adhesion of dust or mechanical stress. It is to prevent receiving.

これによれば、ソルダーレジストに金属イオン結合剤が含まれているので、ソルダーレジストに含まれる金属イオン結合剤が配線に作用できる。つまり、配線から流出した金属イオンが、接するソルダーレジストの金属イオン結合剤に接触し、捕捉されるので、金属イオンがソルダーレジスト中にとどめられ、析出しない。したがって、配線からの金属の成長も防がれるので、半導体装置の動作不良が防がれる。   According to this, since the metal ion binder is contained in the solder resist, the metal ion binder contained in the solder resist can act on the wiring. That is, the metal ions that have flowed out of the wiring come into contact with the metal ion binder of the solder resist that comes into contact with the metal ions and are trapped, so that the metal ions remain in the solder resist and do not precipitate. Therefore, the growth of the metal from the wiring is also prevented, so that the malfunction of the semiconductor device is prevented.

したがって、従来の半導体装置において製造工程や部材数を増やすことなく、ソルダーレジストの材料に金属イオン結合剤を添加するだけで、配線からの金属の成長も防がれ、半導体装置の動作不良が防がれる。   Therefore, by adding a metal ion binder to the solder resist material without increasing the number of manufacturing steps and the number of members in the conventional semiconductor device, the growth of the metal from the wiring can be prevented and the malfunction of the semiconductor device can be prevented. Can be removed.

また、本発明の半導体装置は、上記金属イオン結合剤が、ベンゾトリアゾール類、ベンゾトリアゾール類のイソシアヌル酸付加物、トリアジン類のイソシアヌル酸付加物から選ばれる少なくとも1つの化合物を含むことを特徴としている。   The semiconductor device according to the present invention is characterized in that the metal ion binder includes at least one compound selected from benzotriazoles, isocyanuric acid adducts of benzotriazoles, and isocyanuric acid adducts of triazines. .

これによれば、これらの化合物が、銅イオンなどの配線から流出する金属イオンと錯体を形成することで、捕捉できるので、析出を防ぐことができる According to this, since these compounds can be captured by forming a complex with metal ions that flow out of wiring such as copper ions, precipitation can be prevented .

また、本発明の半導体装置は、半導体素子が、テープキャリア方式により配線基板に搭載されていることを特徴としている。   Moreover, the semiconductor device of the present invention is characterized in that the semiconductor element is mounted on the wiring board by a tape carrier method.

ここで、テープキャリア方式とは、テープ状のフレキシブル基板の長手方向に、半導体素子の搭載領域が並んでいるものである。この方式は、半導体搭載時には、搭載領域に半導体素子を機械的に連続して搭載でき、また、製品の取り扱いをリールtoリールで行うことができることから、半導体装置製造の自動化に対して有利な方式である。   Here, the tape carrier system is one in which semiconductor element mounting regions are arranged in the longitudinal direction of a tape-like flexible substrate. This method is advantageous for automation of semiconductor device manufacturing because semiconductor elements can be mechanically continuously mounted in the mounting area when a semiconductor is mounted, and the product can be handled reel-to-reel. It is.

このような半導体装置では、近年、高密度実装、高機能化、多出力化にともない、特に配線のファインピッチ化、高電圧化が求められているので、本発明により、配線からの金属イオンの析出を防ぐことが、半導体装置の高性能化が可能となる。   In such a semiconductor device, in recent years, with higher density mounting, higher functionality, and higher output, there has been a demand for particularly finer wiring pitch and higher voltage. Preventing the precipitation can improve the performance of the semiconductor device.

また、本発明の半導体装置は、液晶表示素子が搭載されていることを特徴としている。   Further, the semiconductor device of the present invention is characterized in that a liquid crystal display element is mounted.

このような半導体装置では、特に配線のファインピッチ化、高電圧化が求められているので、本発明により、配線からの金属イオンの析出を防ぐことで、半導体装置の高性能化が可能となる。   In such a semiconductor device, a fine pitch and a high voltage of the wiring are particularly required. Therefore, according to the present invention, it is possible to improve the performance of the semiconductor device by preventing the precipitation of metal ions from the wiring. .

本発明の半導体装置は、以上のように、基材に複数の配線が配置された配線基板と、上記配線基板に搭載された半導体素子と、を含む、COF構造若しくはTCP構造を有する半導体装置において、上記基板がフィルム状のフレキシブル基板であり、
金属イオン結合剤が、上記配線の表面に塗布されており、上記金属イオン結合剤が、ベンゾトリアゾール類、トリアジン類、および、これらのイソシアヌル酸付加物から選ばれる少なくとも1つの化合物を含み、封止樹脂が、上記半導体素子と上記フレキシブル基板との間に充填され、上記半導体素子の接続部周辺で、上記配線の間に入り込んでおり、さらに、配線表面を覆うようにソルダーレジストが、上記配線同士の間に入り込んで形成されており、上記配線同士の間隔が50μm以下である。
As described above, the semiconductor device of the present invention is a semiconductor device having a COF structure or a TCP structure, including a wiring board having a plurality of wirings arranged on a base material and a semiconductor element mounted on the wiring board. , The substrate is a film-like flexible substrate,
A metal ion binder is applied to the surface of the wiring, and the metal ion binder contains at least one compound selected from benzotriazoles, triazines, and these isocyanuric acid adducts, and is sealed Resin is filled between the semiconductor element and the flexible substrate, enters between the wirings around the connection part of the semiconductor element, and a solder resist is formed between the wirings so as to cover the wiring surface. The interval between the wirings is 50 μm or less.

これにより、配線から放出された材料の金属イオンが、配線と接す金属イオン結合剤と接触し、金属イオンを捕捉するので、金属イオンが析出することを防げる。よって、配線からの金属の成長も防がれるので、半導体装置の動作不良が防がれる。
Thus, the metal ions of the material released from the wires in contact with the wiring and Sessu that metal ion binding agent, so to capture metal ions, possible to prevent the metal ions are precipitated. Therefore, the growth of metal from the wiring is also prevented, so that the malfunction of the semiconductor device is prevented.

本発明は、COF(Chip On Film)等の方式の半導体装置において、配線材料が高湿度化でイオン化し、析出することでマイグレーションを起こすという問題を解決するために、金属イオンと錯体を形成する金属イオン結合剤を、配線に接する主要構成材料中に混合させる、または配線の表面に均一に塗布処理を行うものである。これによりマイグレーションによる金属イオンの析出を抑制させ、配線パターンのファイン化及び高電圧化にも対応出来る高信頼性のCOFを提供できる。   The present invention forms a complex with a metal ion in order to solve the problem of causing migration due to ionization and precipitation of wiring material in a semiconductor device of a system such as COF (Chip On Film). The metal ion binder is mixed in the main constituent material in contact with the wiring, or the surface of the wiring is uniformly coated. Thereby, precipitation of metal ions due to migration can be suppressed, and a highly reliable COF that can cope with finer wiring patterns and higher voltages can be provided.

本発明の一実施形態について図1ないし図8に基づいて説明すると以下の通りである。   An embodiment of the present invention will be described below with reference to FIGS.

図1(a)は、本発明の半導体装置の平面図であり、図2は図1(a)におけるA−A’平面の断面図であり、図3は図1(a)におけるB−B’平面の断面図である。   1A is a plan view of the semiconductor device of the present invention, FIG. 2 is a cross-sectional view taken along the plane AA ′ in FIG. 1A, and FIG. 3 is a cross-sectional view taken along line BB in FIG. 'A cross-sectional view of the plane.

本発明の半導体装置11は、図2に示すように、フレキシブル配線基板10と、半導体チップ5と、封止樹脂6と、からなる。   As shown in FIG. 2, the semiconductor device 11 of the present invention includes a flexible wiring substrate 10, a semiconductor chip 5, and a sealing resin 6.

フレキシブル配線基板10は、ベースフィルム(基材)1に、複数の配線9、ソルダーレジスト7をこの順に積層したもので、半導体チップ5が適切に外部機器に接続できるように配線9が形成された搭載用基板である。ベースフィルム1は、ポリイミドからなるフィルムであり、フレキシブル配線基板10の基材となるものである。配線9は、一端を搭載する半導体チップ5に、他端を外部機器に接続できるようになっており、これにより、半導体チップ5と外部機器とを電気的に接続させている。つまり、半導体チップ5上の金バンプ4と配線9は熱圧着により金−スズ共晶合金を形成し接合されている。また、ソルダーレジスト7は、配線9のショートや断線を防ぐための、保護カバーである。   The flexible wiring board 10 is formed by laminating a plurality of wirings 9 and a solder resist 7 in this order on a base film (base material) 1. The wirings 9 are formed so that the semiconductor chip 5 can be properly connected to an external device. This is a mounting board. The base film 1 is a film made of polyimide and serves as a base material for the flexible wiring board 10. The wiring 9 can be connected to the semiconductor chip 5 on which one end is mounted, and the other end can be connected to an external device, whereby the semiconductor chip 5 and the external device are electrically connected. That is, the gold bump 4 and the wiring 9 on the semiconductor chip 5 are bonded by forming a gold-tin eutectic alloy by thermocompression bonding. The solder resist 7 is a protective cover for preventing the wiring 9 from being short-circuited or disconnected.

ここで、配線9は、ベースフィルム1表面において、半導体チップ5の搭載位置からベースフィルム1の辺に向かうように、線状に形成されている。また、配線9は、バリア層2と導電層3とスズメッキ8とからなる。バリア層2は、配線9のベースフィルム1側に設けられたクロム−ニッケル合金からなる層である。バリア層2は、導体層3を保護する機能、および配線9のベースフィルム1への接着性を高める機能を有する。導電層3は銅からなり、配線9において電気を良好に導く機能を有する。スズメッキ8は導電層3の表面部全面に施されている。配線9は、隣り合う配線9との間隔が30μmのファインピッチとなっている。   Here, the wiring 9 is linearly formed on the surface of the base film 1 so as to go from the mounting position of the semiconductor chip 5 toward the side of the base film 1. The wiring 9 includes a barrier layer 2, a conductive layer 3, and a tin plating 8. The barrier layer 2 is a layer made of a chromium-nickel alloy provided on the base film 1 side of the wiring 9. The barrier layer 2 has a function of protecting the conductor layer 3 and a function of improving the adhesion of the wiring 9 to the base film 1. The conductive layer 3 is made of copper and has a function of leading electricity well in the wiring 9. Tin plating 8 is applied to the entire surface of the conductive layer 3. The wiring 9 has a fine pitch of 30 μm between adjacent wirings 9.

また、ソルダーレジスト7は、ベースフィルム1上に、配線9を覆うように設けられており、形成位置は、半導体チップ5の搭載位置からわずかに間隔をあけた周辺部分となっている。ソルダーレジスト7は、このように、配線9における電気的に接続を行わない領域を全てを保護することによって、ショートや断線を防いでいる。つまり、配線9間の距離(配線ピッチ)が例えば30μm程度の狭ピッチになると、外部からのゴミによるショートや、外部からの機械的ストレスによる断線を発生しやすくなっているので、これを防ぐために、ソルダーレジスト7で保護しているのである。また、ソルダーレジスト7は、配線9の電気絶縁特性及びフレキシブル配線基板10の耐折り曲げ性を向上させる働きもある。   Further, the solder resist 7 is provided on the base film 1 so as to cover the wiring 9, and the formation position is a peripheral portion slightly spaced from the mounting position of the semiconductor chip 5. In this way, the solder resist 7 prevents short-circuiting and disconnection by protecting all areas of the wiring 9 that are not electrically connected. In other words, when the distance between the wires 9 (wiring pitch) is a narrow pitch of about 30 μm, for example, shorting due to dust from the outside or disconnection due to mechanical stress from outside tends to occur. The solder resist 7 protects it. The solder resist 7 also has a function of improving the electrical insulation characteristics of the wiring 9 and the bending resistance of the flexible wiring board 10.

半導体チップ5は、フレキシブル配線基板10との接合面に、金からなる突起状のバンプ4を有している。半導体チップ5は、フレキシブル配線基板10上にて、このバンプ4が配線9と加熱圧着により、金−スズ共晶合金を形成し接合されている。これにより、配線9の一端が半導体チップ5に接続された状態で搭載されていることになる。   The semiconductor chip 5 has protruding bumps 4 made of gold on the joint surface with the flexible wiring board 10. In the semiconductor chip 5, the bump 4 is bonded to the wiring 9 by thermocompression bonding on the flexible wiring substrate 10 by forming a gold-tin eutectic alloy. As a result, one end of the wiring 9 is mounted with being connected to the semiconductor chip 5.

封止樹脂6は、半導体チップ5の側面および接合面と、フレキシブル配線基板10の搭載面との間に位置し、半導体チップ5を保護する機能を有する。   The sealing resin 6 is located between the side surface and the bonding surface of the semiconductor chip 5 and the mounting surface of the flexible wiring board 10 and has a function of protecting the semiconductor chip 5.

ここで、半導体装置11を作製する方法を示す。   Here, a method for manufacturing the semiconductor device 11 will be described.

半導体装置11は、図1(b)に示すように、長尺のスプロケットホール41つきのポリイミドフィルム40の長手方向に一列に形成される。すなわち、ポリイミドフィルム40に半導体チップの搭載領域を一列に形成していき、この搭載領域に半導体チップ5を搭載する。そして、使用時には、個々の半導体チップ5をポリイミドフィルム40ごと破線部にて切り離してそれぞれが図1(a)に示す半導体装置11となる。なお、以下の説明では、ポリイミドフィルム40における破線部内の部分、および、切り離された後のポリイミドフィルムを含めてポリイミド基材1と称している。   The semiconductor device 11 is formed in a line in the longitudinal direction of a polyimide film 40 with a long sprocket hole 41 as shown in FIG. That is, the semiconductor chip mounting area is formed in a line on the polyimide film 40, and the semiconductor chip 5 is mounted on this mounting area. At the time of use, the individual semiconductor chips 5 are separated together with the polyimide film 40 at the broken line portions to form the semiconductor devices 11 shown in FIG. In addition, in the following description, the part in the broken-line part in the polyimide film 40 and the polyimide film after cut | disconnecting are called the polyimide base material 1. FIG.

製造方法を詳しく説明すると、図2に示すように、まず、ポリイミド基材1の上にスパッタ法で、ニッケル−クロム合金からなる金属層を形成する。そして、金属層表面にメタライジング法にて銅箔を形成する(つまり、銅メッキ処理をする)。次に、銅箔の上にフォトレジストを塗布・硬化させ、その後フォトレジストに配線パターンをパターン露光・現像して、フォトレジストを所望のパターン形状にする。そして、フォトレジストパターンに応じて金属層、および銅箔をエッチングし、そのあと、フォトレジストを剥離処理する。これにより、金属層および銅箔に所望のパターン形状が形成される。そして、形成したパターン全面に、0.4〜0.6μmのスズ8のメッキ処理を施し、配線9が形成される。さらに、配線9における、半導体チップ5の搭載領域から間隔を置いた周辺部に、ソルダーレジスト7を被覆する。   The manufacturing method will be described in detail. As shown in FIG. 2, first, a metal layer made of a nickel-chromium alloy is formed on the polyimide substrate 1 by sputtering. Then, a copper foil is formed on the surface of the metal layer by a metalizing method (that is, a copper plating process is performed). Next, a photoresist is applied / cured on the copper foil, and then a wiring pattern is pattern-exposed / developed on the photoresist to form the photoresist in a desired pattern shape. Then, the metal layer and the copper foil are etched according to the photoresist pattern, and then the photoresist is stripped. Thereby, a desired pattern shape is formed in the metal layer and the copper foil. Then, the entire pattern thus formed is plated with tin 8 having a thickness of 0.4 to 0.6 μm to form the wiring 9. Further, the solder resist 7 is coated on the periphery of the wiring 9 spaced from the mounting region of the semiconductor chip 5.

そして、半導体チップ5上に設けられたバンプ4(突起電極)と配線9のスズメッキ8との金−スズ共晶により、半導体チップ5の搭載領域に対する半導体チップ5の接合がなされる。なお、この加熱・圧着の金−スズ共晶による接合工程はインナーリードボンディング(ILB)と呼ばれる。   Then, the semiconductor chip 5 is bonded to the mounting region of the semiconductor chip 5 by the gold-tin eutectic of the bump 4 (projection electrode) provided on the semiconductor chip 5 and the tin plating 8 of the wiring 9. In addition, this heating / compression bonding step using gold-tin eutectic is called inner lead bonding (ILB).

ILB後に、半導体チップの保護を目的として、半導体チップ5とフレキシブル配線基板10との間にアンダーフィルの(すなわち熱硬化樹脂の)封止樹脂を充填し、加熱処理にて封止樹脂を硬化させる。   After the ILB, for the purpose of protecting the semiconductor chip, an underfill (that is, thermosetting resin) sealing resin is filled between the semiconductor chip 5 and the flexible wiring substrate 10, and the sealing resin is cured by heat treatment. .

その後、最終的な接続テストを行って、半導体装置のアセンブリが完了する。   Thereafter, a final connection test is performed to complete the assembly of the semiconductor device.

このようにして製造された半導体装置では、特に、高温高湿度環境下において、配線9に含まれる金属(つまり、バリア層2、導体層3、スズメッキ8の材料である金属)がイオン化し、金属イオン(主に銅イオン)が発生しやすくなっている。この金属イオンは、図4に示すように、配線9外に析出して配線間に析出金属20として表れ(マイグレーション)、隣接する配線9と電気的な絶縁が破壊されてしまう原因となる。このマイグレーションによる絶縁破壊は、配線9同士の間隔が50μm以下、特に30μm以下のときに生じやすくなっている。そこで、この金属イオンの析出を防ぐために、発生した銅イオンが析出する前に金属イオン結合剤により捕捉できるような構成となっている。   In the semiconductor device manufactured in this manner, particularly in a high temperature and high humidity environment, the metal contained in the wiring 9 (that is, the metal that is the material of the barrier layer 2, the conductor layer 3, and the tin plating 8) is ionized, and the metal Ions (mainly copper ions) are easily generated. As shown in FIG. 4, the metal ions are deposited outside the wiring 9 and appear as a deposited metal 20 between the wirings (migration), which causes the electrical insulation with the adjacent wiring 9 to be broken. The dielectric breakdown due to migration is likely to occur when the distance between the wirings 9 is 50 μm or less, particularly 30 μm or less. Therefore, in order to prevent the precipitation of the metal ions, the metal ions can be captured by the metal ion binder before the generated copper ions are precipitated.

すなわち、金属イオン結合剤を、配線9に接する部材の少なくとも1つを製造する際に、部材の材料に混合しておくか、あるいは直接配線9に塗布している。配線9に接する部材は、封止樹脂6、ベースフィルム1、ソルダーレジスト7等である。   That is, when producing at least one member in contact with the wiring 9, the metal ion binder is mixed with the material of the member or applied directly to the wiring 9. The members in contact with the wiring 9 are the sealing resin 6, the base film 1, the solder resist 7, and the like.

例えば、封止樹脂6は、図2に示すとおり、半導体チップ5とフレキシブル配線基板10との間に充填されており、半導体チップ5のバンプ4の接続部周辺で、配線9の間に入り込んでいる。したがって、金属イオンと錯体を形成する金属イオン結合剤を、封止樹脂6に混合させておけば、配線9から封止樹脂6に流出する金属イオンが、封止樹脂6中に含まれる金属イオン結合剤に捕捉される。これにより、封止樹脂6中の金属イオン溶解度が増加する。つまり、より多くの金属イオンを封止樹脂6中に流入させて留まらせられる。したがって、配線9中の金属イオンの増加を抑制でき、配線9全体からの金属イオンの析出を遅らせられる。   For example, as shown in FIG. 2, the sealing resin 6 is filled between the semiconductor chip 5 and the flexible wiring substrate 10, and enters between the wirings 9 around the connection portion of the bump 4 of the semiconductor chip 5. Yes. Therefore, if a metal ion binder that forms a complex with metal ions is mixed in the sealing resin 6, the metal ions that flow out from the wiring 9 to the sealing resin 6 are contained in the sealing resin 6. Captured by the binder. Thereby, the metal ion solubility in the sealing resin 6 increases. That is, more metal ions are allowed to flow into the sealing resin 6 and remain. Therefore, an increase in metal ions in the wiring 9 can be suppressed, and precipitation of metal ions from the entire wiring 9 can be delayed.

同様に、ソルダーレジスト7は、図2、3に示すとおり、配線9を覆うように形成されているので、配線9同志の間に入り込んでいる。したがって、金属イオンと錯体を形成する金属イオン結合剤を、ソルダーレジスト7に混合させておけば、配線9からソルダーレジスト7に流出する金属イオンが、ソルダーレジスト7中に含まれる金属イオン結合剤に捕捉される。これにより、ソルダーレジスト7中の金属イオン溶解度が増加する。つまり、より多くの金属イオンを封止樹脂6中に流入させて留まらせられる。したがって、配線9中の金属イオンを抑制でき、配線9全体からの金属イオンの析出を遅らせられる。   Similarly, since the solder resist 7 is formed so as to cover the wiring 9 as shown in FIGS. 2 and 3, the solder resist 7 enters between the wirings 9. Therefore, if a metal ion binder that forms a complex with metal ions is mixed in the solder resist 7, the metal ions that flow out from the wiring 9 to the solder resist 7 become the metal ion binder contained in the solder resist 7. Be captured. Thereby, the metal ion solubility in the solder resist 7 increases. That is, more metal ions are allowed to flow into the sealing resin 6 and remain. Therefore, metal ions in the wiring 9 can be suppressed, and deposition of metal ions from the entire wiring 9 can be delayed.

また、ベースフィルム1は、表面に配線9を形成されているので、配線9のバリア層2全面と接触している。したがって、金属イオンと錯体を形成する金属イオン結合剤を、ベースフィルム1に混合させておけば、配線9から流出する金属イオンであって、ベースフィルム1上を流動するものが、金属イオン結合剤に捕捉される。これにより、ベースフィルム1中の金属イオン溶解度が増加する。つまり、より多くの金属イオンをベースフィルム1中に留まらせられる。したがって、配線9中の金属イオンの増加を抑制でき、金属イオンの析出を遅らせられる。   Further, since the base film 1 has the wiring 9 formed on the surface thereof, it is in contact with the entire barrier layer 2 of the wiring 9. Therefore, if a metal ion binder that forms a complex with metal ions is mixed in the base film 1, the metal ions that flow out of the wiring 9 and flow on the base film 1 are the metal ion binders. Captured. Thereby, the metal ion solubility in the base film 1 increases. That is, more metal ions can remain in the base film 1. Therefore, an increase in metal ions in the wiring 9 can be suppressed, and deposition of metal ions can be delayed.

さらに、配線9に金属イオン結合剤を塗布することでも、配線9を流動する金属イオンが金属イオン結合剤に捕捉される。これにより、配線9中の金属イオンの増加を抑制でき、金属イオンの析出を遅らせられる。なお、配線9に金属イオン結合剤を塗布する方法としては、フレキシブル配線基板10の製造工程における配線パターン形成直後に、フレキシブル配線基板10を、金属イオン結合剤の溶液に浸漬する方法や、金属イオン結合剤を吹き付けにより配線9表面に塗布する方法が挙げられる。   Further, by applying a metal ion binder to the wiring 9, the metal ions flowing through the wiring 9 are captured by the metal ion binder. Thereby, increase of the metal ion in the wiring 9 can be suppressed, and precipitation of a metal ion can be delayed. In addition, as a method of applying a metal ion binder to the wiring 9, a method of immersing the flexible wiring board 10 in a metal ion binder solution immediately after forming a wiring pattern in the manufacturing process of the flexible wiring board 10, or a metal ion The method of apply | coating a binder to the wiring 9 surface by spraying is mentioned.

このようにして、配線9から流出する金属イオンの析出を抑えれば、高湿度環境下でも半導体装置の各配線9間の電気絶縁性は安定し、短絡を抑制できる。   Thus, if the precipitation of metal ions flowing out from the wiring 9 is suppressed, the electrical insulation between the wirings 9 of the semiconductor device is stabilized even in a high humidity environment, and a short circuit can be suppressed.

金属イオン結合剤としては、銅イオンあるいはその他の金属イオンと錯体を形成する化合物を用いればよい。これにより、発生した例えば銅イオンが金属イオン結合剤と錯体を形成することで捕捉され、配線9のパターン間に銅が析出することが防がれる。したがって、隣り合う配線9と電気的に接続することが防がれる。   As the metal ion binder, a compound that forms a complex with copper ions or other metal ions may be used. Thereby, for example, generated copper ions are captured by forming a complex with the metal ion binder, and copper is prevented from being deposited between the patterns of the wiring 9. Therefore, electrical connection with the adjacent wiring 9 is prevented.

金属イオン結合剤としては、ベンゾトリアゾール系、トリアジン系、あるいは、これらのイソシアヌル付加物類等が挙げられる。   Examples of the metal ion binder include benzotriazole, triazine, or isocyanuric adducts thereof.

ベンゾトリアゾール系は、化学式(1)に示される基本形のベンゾトリアゾールを始めとし、メタノールの付加物である1H−ベンゾトリアゾール−1−メタノール(化学式(2))や、トリアゾール側にアルキル基を付加したもの(化学式(3))、ベンゼン側にアルキル基を付加したもの(化学式(4))が挙げられる。   The benzotriazole series includes 1H-benzotriazole-1-methanol (chemical formula (2)), which is an adduct of methanol, as well as the basic form of benzotriazole represented by chemical formula (1), and an alkyl group added to the triazole side. And those having an alkyl group added to the benzene side (Chemical Formula (4)).

Figure 0005014945
Figure 0005014945

トリアジン系は、化学式(5)に示されるものであり、例えば、化学式(6)に示される2,4−ジアミノ−6−ビニル−S−トリアジンや、化学式(7)に示される2,4−ジアミノ−6−[2’−エチル−4−メチルイミダゾール−(1)]−エチル−S−トリアジン、化学式(8)に示される2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジンが挙げられる。   The triazine system is represented by the chemical formula (5). For example, 2,4-diamino-6-vinyl-S-triazine represented by the chemical formula (6) or 2,4-diamino compound represented by the chemical formula (7) is used. Examples include diamino-6- [2′-ethyl-4-methylimidazole- (1)]-ethyl-S-triazine and 2,4-diamino-6-methacryloyloxyethyl-S-triazine represented by the chemical formula (8). It is done.

Figure 0005014945
Figure 0005014945

イソシアヌル酸付加物は、上記したトリアジン系あるいはベンゾトリアゾール系の化合物に、化学式(9)に示すイソシアヌル酸を付加したものである。トリアジン系の化合物のイソシアヌル酸付加物は化学式(10)に示され、例えば、化学式(11)に示される2,4−ジアミノ−6−ビニル−S−トリアジン・イソシアヌル酸や、化学式(12)に示される2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジンが挙げられる。   The isocyanuric acid adduct is obtained by adding isocyanuric acid represented by the chemical formula (9) to the above triazine-based or benzotriazole-based compound. An isocyanuric acid adduct of a triazine-based compound is represented by the chemical formula (10). For example, 2,4-diamino-6-vinyl-S-triazine isocyanuric acid represented by the chemical formula (11) or the chemical formula (12) 2,4-diamino-6-methacryloyloxyethyl-S-triazine shown.

Figure 0005014945
Figure 0005014945

以下にこれら金属イオン結合剤のマイグレーション抑制効果を調べた実験について説明する。実験には、図5(a)に示す電気絶縁性測定用の櫛歯配線パターンを用いた。櫛歯配線パターンは、ポリイミドからなる基板30に、陰極に接続した櫛歯電極31aと、陽極に接続した櫛歯電極31bとを、互いの間隔(図5(b)の距離C)が30μmとなるように形成したものである。また、櫛歯電極31a・31bは、厚さ8μmの銅の上にスズメッキを施したものである。   An experiment for examining the migration suppression effect of these metal ion binders will be described below. In the experiment, a comb-tooth wiring pattern for measuring electrical insulation shown in FIG. 5A was used. In the comb-tooth wiring pattern, a substrate 30 made of polyimide, a comb-tooth electrode 31a connected to the cathode, and a comb-tooth electrode 31b connected to the anode are 30 μm apart from each other (distance C in FIG. 5B). It is formed as follows. The comb electrodes 31a and 31b are obtained by tin plating on copper having a thickness of 8 μm.

この櫛歯配線パターンは、半導体装置の配線パターンと同等のものであり、半導体装置における配線のマイグレーションの発生しやすさを擬似的に観察でき、マイグレーションをリーク電流として測定できる。つまり、櫛歯電極31a、31bから流出した金属イオンが析出し、マイグレーションを起こすと、図6に示すように、櫛歯電極31aと31bとの間に金属が成長し、最終的には櫛歯電極31aと31bとが接続する。このときに、櫛歯電極31a、31bに電圧印加すると、リーク電流が急増することから、リーク電流を測定することで、櫛歯電極31aと31bとの接続を観測できる。   This comb-teeth wiring pattern is equivalent to the wiring pattern of the semiconductor device, and the ease of occurrence of wiring migration in the semiconductor device can be observed in a pseudo manner, and migration can be measured as a leakage current. That is, when metal ions flowing out from the comb electrodes 31a and 31b precipitate and migrate, a metal grows between the comb electrodes 31a and 31b as shown in FIG. The electrodes 31a and 31b are connected. At this time, when a voltage is applied to the comb-tooth electrodes 31a and 31b, the leak current increases rapidly. Therefore, the connection between the comb-tooth electrodes 31a and 31b can be observed by measuring the leak current.

実験では、表1に示す金属イオン結合剤について、所定の濃度となるように純水に分散させ、櫛歯配線パターンに全面・均一に所定量を滴下した。滴下後、櫛歯電極31a・31bに所定の直流電圧を印加し、その後に、室内環境にて放置し、所定時間毎に、リーク電流値の変化を測定した。結果を表1に示す。   In the experiment, the metal ion binders shown in Table 1 were dispersed in pure water so as to have a predetermined concentration, and a predetermined amount was dropped on the entire surface of the comb-tooth wiring pattern uniformly. After the dropping, a predetermined DC voltage was applied to the comb-tooth electrodes 31a and 31b, and then left in an indoor environment, and a change in leak current value was measured every predetermined time. The results are shown in Table 1.

Figure 0005014945
Figure 0005014945

これによれば、比較例の純水ではマイグレーション抑制効果が全くなく、ベンゾトリアゾール、1H−ベンゾトリアゾール−1−メタノール、2,4−ジアミノ−6−ビニル−S−トリアジン・イソシアヌル酸については非常に良好なマイグレーション抑制効果があった。また、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸、2,4−ジアミノ−6−[2’−エチル−4−メチルイミダゾール−(1)]−エチル−S−トリアジンについてもマイグレーション抑制効果があった。さらに、2−ビニル−4、6ジアミノ−S−トリアジンにもわずかにマイグレーション抑制効果が認められた。   According to this, the pure water of the comparative example has no migration suppressing effect, and benzotriazole, 1H-benzotriazole-1-methanol, 2,4-diamino-6-vinyl-S-triazine and isocyanuric acid are very There was a good migration suppression effect. Also, 2,4-diamino-6-methacryloyloxyethyl-S-triazine isocyanuric acid, 2,4-diamino-6- [2′-ethyl-4-methylimidazole- (1)]-ethyl-S-triazine There was also an effect of suppressing migration. Furthermore, a slight migration suppressing effect was also observed in 2-vinyl-4,6diamino-S-triazine.

次に、マイグレーション抑制効果が非常に優れていた金属イオン結合剤について、樹脂との溶解(混合により凝集することなく分散できる性質)を調べたところ、ベンゾトリアゾール、1H−ベンゾトリアゾール−1−メタノールは樹脂との相性がよく良好に樹脂中に分散した。一方、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸は樹脂との相性が悪く、樹脂中に分散しにくかった。   Next, for a metal ion binder having a very excellent migration suppressing effect, the dissolution with a resin (property that can be dispersed without agglomeration by mixing) was investigated. As a result, benzotriazole, 1H-benzotriazole-1-methanol was Good compatibility with resin and well dispersed in resin. On the other hand, 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid had poor compatibility with the resin and was difficult to disperse in the resin.

このような樹脂成分との相性の悪い金属イオン結合剤を樹脂成分に混合すると、封止樹脂中に分散せず、凝集して、金属イオン結合剤が不均一に存在する状態となる。特に、2,4−ジアミノ−6−ビニル−S−トリアジン・イソシアヌル酸付加物は、酸無水物等の樹脂成分と混合しにくく、凝集を起こしやすい。したがって、このような樹脂、例えば封止樹脂6として用いた場合に、部分的に金属イオンの捕捉が起こりにくい箇所が生じる。   When such a metal ion binder having poor compatibility with the resin component is mixed with the resin component, the metal ion binder does not disperse in the sealing resin but aggregates, resulting in a state in which the metal ion binder exists non-uniformly. In particular, 2,4-diamino-6-vinyl-S-triazine / isocyanuric acid adducts are difficult to mix with resin components such as acid anhydrides, and tend to cause aggregation. Accordingly, when such a resin, for example, the sealing resin 6 is used, a portion where the capture of metal ions is difficult to occur is generated.

したがって、金属イオン結合剤として、2,4−ジアミノ−6−ビニル−S−トリアジン・イソシアヌル酸付加物のような、樹脂中に分散しにくい金属イオン結合剤を使用する場合は、金属イオン結合剤を微粉砕化と均一な分散・混合が必要である。このとき、金属イオン結合剤を平均直径が0.5μm以下となるまで微粉砕化することが好ましく、1μm以下とすることがより好ましい。さらに、金属イオン結合剤の凝集を防止するために、1μmメッシュの微細カットフィルターによるろ過処理を施すことも有効である。また、金属イオン結合剤の微粉砕、および均一な分散のための混合方法としては、封止樹脂の混練をロールミル装置又はビーズミル装置を用いて粉砕、混合処理を行うことが好ましい。   Therefore, when a metal ion binder that is difficult to disperse in the resin, such as 2,4-diamino-6-vinyl-S-triazine / isocyanuric acid adduct, is used as the metal ion binder. Must be finely pulverized and uniformly dispersed and mixed. At this time, the metal ion binder is preferably pulverized until the average diameter is 0.5 μm or less, more preferably 1 μm or less. Furthermore, in order to prevent aggregation of the metal ion binder, it is also effective to perform a filtration treatment using a 1 μm mesh fine cut filter. Further, as a mixing method for finely pulverizing and uniformly dispersing the metal ion binder, it is preferable to knead the sealing resin using a roll mill device or a bead mill device and perform a mixing process.

次に、金属イオン結合剤を封止樹脂6に混合させる場合を例に挙げ、金属イオン結合剤を混合した封止樹脂材料の製造について説明する。   Next, the case where a metal ion binder is mixed with the sealing resin 6 will be described as an example, and the production of the sealing resin material mixed with the metal ion binder will be described.

封止樹脂6の樹脂成分としては、エポキシ樹脂や酸無水物等が用いられる。これに、微紛状の上記した金属イオン結合剤、染料、硬化促進剤を添加して、混練する。配合比としては、例えば、エポキシ樹脂および硬化剤を99.6重量%、金属イオン結合剤を2.5重量%、染料および硬化促進剤を0.9重量%とすればよい。   As a resin component of the sealing resin 6, an epoxy resin, an acid anhydride, or the like is used. To this, the above-described metal ion binder, dye, and curing accelerator in the form of fine powder are added and kneaded. The blending ratio may be, for example, 99.6% by weight of the epoxy resin and the curing agent, 2.5% by weight of the metal ion binder, and 0.9% by weight of the dye and the curing accelerator.

ここで、封止樹脂6において、良好にマイグレーション抑制でき、かつ良好な流動性を得られる金属イオン結合剤の含有量を調べた。   Here, in the sealing resin 6, the content of the metal ion binder capable of satisfactorily suppressing migration and obtaining good fluidity was examined.

まず、マイグレーション抑制機能を発揮するために必要な金属イオン結合剤の含有量を調べた。実験方法としては、エポキシ樹脂に、金属イオン結合剤としての、2,4−ジアミノ−6−ビニル−S−トリアジン・イソシアヌル酸付加物を0,0.5,1.5,2.5,5.0,10.0、15.0重量%となるように添加した樹脂を用意し、図5の櫛歯配線パターン全面に、均一に覆って、直流電圧40Vを印加しながら、85℃雰囲気下、85%RHの環境下にに放置して、リーク電流を調べた。ここで、金属イオン結合剤と樹脂との混合には、ロールミルまたはビーズミル装置を用いた。また、これらの樹脂は、主要構成としてエポキシ樹脂と金属イオン結合剤で構成されており、金属イオン結合剤0重量%としては、エポキシ樹脂及び硬化剤が99.3重量%、染料および硬化促進剤を0.7重量%が含まれているものを用いた。   First, the content of the metal ion binder necessary for exhibiting the migration suppressing function was examined. As an experimental method, 2,4-diamino-6-vinyl-S-triazine isocyanuric acid adduct as a metal ion binder was added to an epoxy resin at 0, 0.5, 1.5, 2.5, 5 Prepare a resin added so as to be 0.0, 10.0, 15.0% by weight, uniformly cover the entire surface of the comb-teeth wiring pattern of FIG. 5, and apply a DC voltage of 40 V in an atmosphere of 85 ° C. The leakage current was examined by leaving it in an environment of 85% RH. Here, a roll mill or a bead mill apparatus was used for mixing the metal ion binder and the resin. These resins are mainly composed of an epoxy resin and a metal ion binder. As the metal ion binder 0% by weight, the epoxy resin and the curing agent are 99.3% by weight, the dye and the curing accelerator. In which 0.7% by weight is contained.

結果を図7に示す。図7の横軸は放置時間であり、縦軸はリーク電流から計算される、櫛歯電極31a、31b間の絶縁抵抗値の変化を測定した結果である。これによると、金属イオン結合剤無添加の樹脂では、500時間後に配線から生じた銅の析出に起因するマイグレーションにより、絶縁破壊が生じた。一方、金属イオン結合剤を0.5%添加した樹脂では700時間後まで絶縁破壊が起こらず、配線9のマイグレーションを遅らされたことが分かる。そして、金属イオン結合剤を1.5%含む樹脂では900時間後まで良好な絶縁性が保たれたあと、絶縁性が低下していた。したがって、絶縁性の低下がさらに遅らされ、また観測した1000時間まで絶縁性が完全に破壊されることはなかった。その他の、金属イオン結合剤の添加量が2.5重量%以上の樹脂では観測した1000時間後でも電気絶縁性は安定していた。つまり、金属イオン結合剤の添加量が多くなるほど、高温高湿度環境下でも電気絶縁性は良好であることがわかった。従って、金属イオン結合剤を含む樹脂を塗布して、良好なマイグレーション抑制効果を得るためには、樹脂に、金属イオン結合剤を0.5重量%以上含むことが好ましく、特に、2.5重量%以上含むことが好ましい、と言える。   The results are shown in FIG. The horizontal axis in FIG. 7 is the standing time, and the vertical axis is the result of measuring the change in the insulation resistance value between the comb electrodes 31a and 31b calculated from the leakage current. According to this, in the resin without the addition of a metal ion binder, dielectric breakdown occurred due to migration due to copper deposition generated from the wiring after 500 hours. On the other hand, it can be seen that the resin added with 0.5% of the metal ion binder did not cause dielectric breakdown until 700 hours later, and the migration of the wiring 9 was delayed. And in resin containing 1.5% of a metal ion binder, after good insulation was maintained until 900 hours later, the insulation deteriorated. Therefore, the decrease in insulation was further delayed, and the insulation was not completely destroyed until the observed 1000 hours. Other resins having a metal ion binder addition amount of 2.5 wt% or more had stable electrical insulation even after 1000 hours as observed. That is, it was found that as the amount of the metal ion binder added increases, the electrical insulation is better even in a high temperature and high humidity environment. Therefore, in order to apply a resin containing a metal ion binder and obtain a good migration suppression effect, the resin preferably contains 0.5% by weight or more of the metal ion binder, particularly 2.5 wt. % Or more is preferable.

次に、封止樹脂に必要な流動性を保つことができる金属イオン結合剤への含有量を調べた。すなわち、上記した金属イオン結合剤は、金属イオンと錯体を形成する機能を有する一方、樹脂と混合した場合に、その分子構造から、樹脂の硬化を促進させる。したがって、金属イオン結合剤を封止樹脂6に混合し過ぎると、封止樹脂6の粘度が過度に上昇し、封止樹脂6の充填が困難になる。つまり、封止樹脂6は、ディスペンサーにより半導体チップ5とフレキシブル配線基板10との間に充填されるが、封止樹脂6の粘度が高いと、ディスペンサーからの安定吐出ができなくなる。また、封止樹脂はその流動性により、半導体チップ5とフレキシブル配線基板10との間を、隙間なく充填するものであるが、封止樹脂6の粘度が高いと、流動性が低くなり、半導体チップ5とフレキシブル配線基板10との間に封止樹脂を隙間無く充填することができなくなる。したがって、封止樹脂6に金属イオン結合剤を混合する場合は、粘度の上昇に考慮し、流動性が損なわれないようにする必要がある。なお、重点に適切な封止樹脂6の粘度としては、50mPa・s以上1250mPa・s以下であり、より好ましくは、200mPa・s以上1000mPa・s以下である。   Next, the content in the metal ion binder capable of maintaining the fluidity required for the sealing resin was examined. That is, the above-described metal ion binder has a function of forming a complex with a metal ion, and when mixed with a resin, promotes curing of the resin from its molecular structure. Accordingly, if the metal ion binder is mixed too much with the sealing resin 6, the viscosity of the sealing resin 6 increases excessively, and it becomes difficult to fill the sealing resin 6. That is, the sealing resin 6 is filled between the semiconductor chip 5 and the flexible wiring board 10 by a dispenser. However, when the viscosity of the sealing resin 6 is high, stable discharge from the dispenser cannot be performed. Further, the sealing resin fills the gap between the semiconductor chip 5 and the flexible wiring board 10 without gaps due to its fluidity. However, when the viscosity of the sealing resin 6 is high, the fluidity becomes low, and the semiconductor It becomes impossible to fill the sealing resin between the chip 5 and the flexible wiring board 10 without a gap. Therefore, when mixing a metal ion binder with the sealing resin 6, it is necessary to consider the increase in viscosity so that the fluidity is not impaired. Note that the viscosity of the sealing resin 6 suitable for emphasis is 50 mPa · s or more and 1250 mPa · s or less, and more preferably 200 mPa · s or more and 1000 mPa · s or less.

このためには、封止樹脂6において、10重量%以下となるように混合することが好ましく、5重量%以下となるように混合することがより好ましい。   For this purpose, in the sealing resin 6, it is preferable to mix so that it may become 10 weight% or less, and it is more preferable to mix so that it may become 5 weight% or less.

ここで、エポキシ樹脂に、金属イオン結合剤として2,4−ジアミノ−6−ビニル−S−トリアジン・イソシアヌル酸付加物を0重量%〜15重量%添加した封止樹脂の粘度を測定した結果を表2に示す。なお、ここで用いている封止樹脂は、主要構成としてエポキシ樹脂と金属イオン結合剤で構成されている。   Here, the result of measuring the viscosity of the sealing resin in which 2,4-diamino-6-vinyl-S-triazine / isocyanuric acid adduct was added to the epoxy resin as a metal ion binder by 0 wt% to 15 wt% was measured. It shows in Table 2. The sealing resin used here is mainly composed of an epoxy resin and a metal ion binder.

Figure 0005014945
Figure 0005014945

これによれば、金属イオン結合剤を含まない封止樹脂(0重量%)が粘度850mPa.sであるのに対し、金属イオン結合剤の添加量に相関して、封止樹脂の粘度は増大している。金属イオン結合剤が5重量%以下のときは、粘度が1000mPa.sより低く、樹脂吐出性(ディスペンサーから樹脂が良好に流れ出る性質)、および充填性(半導体チップ5とフレキシブル配線基板10との間を隙間なく充填できる性質)が良好である。しかし、金属イオン結合剤が10重量%では、粘度が1250mPa.sとなり、若干樹脂吐出安定性、充填性が損なわれる。そして、金属イオン結合剤が15重量%となると、粘度が1500mPa.sとなり、ディスペンサーからの樹脂吐出がスムーズにできなくなる。さらに、半導体チップ5とフレキシブル配線基板10の間に充填すると、図8に示すように部分的に充填できない箇所が生じ、この箇所に気泡21ができてしまう。このように、半導体チップ5とフレキシブル配線基板10との間に、気泡21ができると、半導体チップ5が確実にフレキシブル配線基板10に固定されず、接続不良を起こす可能性がある。また、気泡に水分が溜まり、半導体チップ保護の信頼性低下を招く可能性がある。   According to this, the sealing resin (0% by weight) containing no metal ion binder has a viscosity of 850 mPa.s. In contrast to s, the viscosity of the sealing resin increases in correlation with the amount of the metal ion binder added. When the metal ion binder is 5% by weight or less, the viscosity is 1000 mPa.s. The resin dischargeability (property that the resin flows out from the dispenser) and the filling property (property that can fill the space between the semiconductor chip 5 and the flexible wiring board 10 without gaps) are good. However, when the metal ion binder is 10% by weight, the viscosity is 1250 mPa.s. s, and the resin discharge stability and filling properties are slightly impaired. And when a metal ion binder will be 15 weight%, a viscosity will be 1500 mPa.s. s, and the resin cannot be discharged smoothly from the dispenser. Furthermore, when the space between the semiconductor chip 5 and the flexible wiring substrate 10 is filled, a portion that cannot be partially filled as shown in FIG. 8 is generated, and bubbles 21 are formed in this portion. Thus, if bubbles 21 are formed between the semiconductor chip 5 and the flexible wiring board 10, the semiconductor chip 5 is not reliably fixed to the flexible wiring board 10, and connection failure may occur. In addition, moisture accumulates in the bubbles, which may cause a reduction in the reliability of semiconductor chip protection.

また、封止樹脂の粘度増加の抑制のためには、封止樹脂に使用する硬化促進剤の作用を調整する方法もある。例えば、硬化促進剤の成分をカプセルにしみ込ませることで、低温時に硬化反応を抑制したり、硬化促進剤の分子構造の調整により、低温時において硬化反応を抑えることが考えられる。   Moreover, in order to suppress the increase in the viscosity of the sealing resin, there is a method of adjusting the action of the curing accelerator used for the sealing resin. For example, it is conceivable to suppress the curing reaction at low temperatures by impregnating the components of the curing accelerator in capsules or to suppress the curing reaction at low temperatures by adjusting the molecular structure of the curing accelerator.

さらに、封止樹脂の粘度や添加する効果促進剤を調整することで、樹脂ライフの短縮、不純物イオン濃度の増加を防ぐようにしてもよい。   Furthermore, the resin life may be shortened and the impurity ion concentration may be prevented from increasing by adjusting the viscosity of the sealing resin and the effect accelerator to be added.

また、金属イオン結合剤をソルダーレジスト7に混合する場合は、ソルダーレジスト7の材料が硬化する前の状態の時に、0.5重量%以上の金属イオン結合剤を混ぜ、その後硬化させることで、配線9のマイグレーションを抑制できるソルダーレジストとなる。また、ソルダーレジスト7は印刷されて形成される場合は、印刷に適した特性となるよう、金属イオン結合剤の混合を10.0重量%以下とすることが好ましい。   In addition, when mixing the metal ion binder into the solder resist 7, when the material of the solder resist 7 is in a state before being cured, by mixing 0.5% by weight or more of the metal ion binder and then curing it, It becomes a solder resist capable of suppressing migration of the wiring 9. In addition, when the solder resist 7 is formed by printing, it is preferable that the mixing of the metal ion binder is 10.0% by weight or less so as to obtain characteristics suitable for printing.

また、金属イオン結合剤をベースフィルム1に混合する場合は、ベースフィルム1の材料が硬化する前に、0.5重量%以上の金属イオン結合剤を混ぜ、その後硬化させることで、配線9のマイグレーションを抑制できる。また、この場合は、材料特性の確保のために、金属イオン結合剤の混合を10.0重量%以下とすることが好ましい。   Moreover, when mixing a metal ion binder with the base film 1, before the material of the base film 1 hardens | cures, it mixes 0.5 weight% or more of metal ion binders, and is hardened after that, and the wiring 9 Migration can be suppressed. In this case, the metal ion binder is preferably mixed in an amount of 10.0% by weight or less in order to ensure material characteristics.

また、金属イオン結合剤を配線9に塗布する場合は、溶剤として例えば純水を用い、0.5重量%以上の金属イオン結合剤を混ぜることが好ましい。これにより、配線9のマイグレーションを抑制できる。   Moreover, when apply | coating a metal ion binder to the wiring 9, it is preferable to mix a metal ion binder of 0.5 weight% or more, using a pure water as a solvent, for example. Thereby, migration of the wiring 9 can be suppressed.

本発明は、以上のように、ファインにピッチの配線においても、隣接する配線との絶縁破壊を抑制できる。従って、配線のファインピッチ化や高電圧化が求められている、基材がフレキシブル基板である半導体装置、テープキャリア方式の半導体装置、液晶表示阻止を搭載した半導体装置に特に好ましく適用できる。   As described above, the present invention can suppress the dielectric breakdown with the adjacent wiring even in the fine pitch wiring. Therefore, the present invention can be particularly preferably applied to a semiconductor device in which a base material is a flexible substrate, a tape carrier type semiconductor device, and a semiconductor device equipped with a liquid crystal display blocking, which require finer wiring and higher voltage.

なお、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.

また、本発明は、以下の構成とすることもできる。   In addition, the present invention can be configured as follows.

配線パターンが形成されたフイルム状のフレキシブル基板に半導体素子が搭載された半導体装置において、配線パターン間の電気絶縁特性を向上させる為に、半導体チップ保護用の封止樹脂内又は、ソルダーレジスト内又は、ベース基材内にマイグレーション抑制剤(金属イオン結合剤)を添加・混合又は配線パターン表面に塗布したことを特徴とする第1の半導体装置。   In a semiconductor device in which a semiconductor element is mounted on a film-like flexible substrate on which a wiring pattern is formed, in order to improve the electrical insulation characteristics between the wiring patterns, in a sealing resin for protecting a semiconductor chip, in a solder resist, or A first semiconductor device characterized in that a migration inhibitor (metal ion binder) is added to, mixed in, or applied to the surface of the wiring pattern in the base substrate.

上記第1の半導体装置において、使用するマイグレーション抑制剤はベンゾトリアゾール類、トリアジン類、イソシアヌル酸類、トリアジン類とイソシアヌル酸付加物の組成をもつ物質を封止樹脂又は、ソルダーレジスト又は、ベース基材内に添加・混合又は配線パターン表面に塗布したことを特徴とする第2の半導体装置。   In the first semiconductor device, the migration inhibitor used is a benzotriazole, triazine, isocyanuric acid, a substance having a composition of triazine and isocyanuric acid adduct, a sealing resin, a solder resist, or a base substrate. A second semiconductor device characterized by being added to, mixed with, or applied to the surface of the wiring pattern.

上記第1または第2の半導体装置において、使用するマイグレーション抑制剤を添加する際に生じる樹脂の高粘度化及びマイグレーション抑制剤の凝集を抑える為に封止樹脂又は、ソルダーレジスト又は、ベース基材内に上記マイグレーション抑制剤を0.5〜
10.0重量%添加・混合した材料を使用したことを特徴とする第3の半導体装置。
In the first or second semiconductor device described above, in the sealing resin, the solder resist, or the base substrate in order to suppress the increase in the viscosity of the resin and the aggregation of the migration inhibitor that occur when the migration inhibitor to be used is added. The migration inhibitor is 0.5 to
3. A third semiconductor device using a material added and mixed by 10.0% by weight.

上記第1の半導体装置において、保護用の封止樹脂として使用するマイグレーション抑制剤について樹脂内に添加する際に生じる高粘度化を抑える為に、増粘度抑制効果のある硬化促進剤を使用し、粘度調整を行った粘度50〜1250mPa・sの封止樹脂にて保護されていることを特徴とする第4の半導体装置。   In the first semiconductor device, in order to suppress the increase in viscosity that occurs when the migration inhibitor used as a protective sealing resin is added into the resin, a curing accelerator having an effect of suppressing the increase in viscosity is used. The fourth semiconductor device is characterized by being protected by a sealing resin having a viscosity of 50 to 1250 mPa · s after viscosity adjustment.

配線パターンが形成されたフイルム状のフレキシブル基板に半導体素子が搭載された半導体装置において、配線パターン間の電気絶縁特性を向上させる為に、フレキシブル基板上の配線パターン表面にマイグレーション抑制剤を使って、表面処理(マイグレーション抑制剤を含浸又は吹きつけ)を施し、配線パターン表面にマイグレーション抑制剤を塗布したフレキブル基板を使用したことを特徴とする第5の半導体装置。   In a semiconductor device in which a semiconductor element is mounted on a film-like flexible substrate on which a wiring pattern is formed, in order to improve electrical insulation characteristics between wiring patterns, a migration inhibitor is used on the surface of the wiring pattern on the flexible substrate. A fifth semiconductor device characterized by using a flexible substrate that has been subjected to a surface treatment (impregnated or sprayed with a migration inhibitor) and coated with a migration inhibitor on the surface of the wiring pattern.

上記第1〜5の半導体装置において、フイルム状のフレキシブル基板が長尺のテープ状であり、半導体素子が連続的にフレキシブル基板に搭載されたテープキャリア型の半導体装置であることを特徴とする第6の半導体装置。   In the first to fifth semiconductor devices, the film-like flexible substrate is in the form of a long tape, and the semiconductor device is a tape carrier type semiconductor device in which semiconductor elements are continuously mounted on the flexible substrate. 6. Semiconductor device of 6.

上記第1〜5の半導体装置において、液晶表示素子や周辺部品が搭載された液晶モジュールの半導体装置であることを特徴とする第7の半導体装置。   A seventh semiconductor device according to any one of the first to fifth semiconductor devices, wherein the semiconductor device is a liquid crystal module semiconductor device on which a liquid crystal display element and peripheral components are mounted.

本発明の半導体装置は、配線からの金属の析出を防ぎ、配線間の絶縁破壊を防げるので、特に配線ピッチが狭い半導体装置に好適であり、例えば、基材がフレキシブル基板である半導体装置、テープキャリア方式の半導体装置、液晶表示阻止を搭載した半導体装置に適用できる。   The semiconductor device of the present invention is suitable for a semiconductor device having a narrow wiring pitch, for example, a semiconductor device or a tape whose base material is a flexible substrate, because it prevents metal deposition from wiring and prevents dielectric breakdown between wirings. The present invention can be applied to a carrier type semiconductor device and a semiconductor device equipped with liquid crystal display blocking.

(a)は本発明の実施形態にかかる半導体装置を示す平面図であり、(b)はこの半導体の製造工程においてテープキャリアに搭載されている状態を示す図面である。(A) is a top view which shows the semiconductor device concerning embodiment of this invention, (b) is drawing which shows the state mounted in the tape carrier in the manufacturing process of this semiconductor. 図1(a)の半導体装置のA−A’断面を示す断面図である。It is sectional drawing which shows the A-A 'cross section of the semiconductor device of Fig.1 (a). 図1(a)の半導体装置のB−B’断面を示す断面図である。It is sectional drawing which shows the B-B 'cross section of the semiconductor device of Fig.1 (a). マイグレーションを起こした半導体装置を示す平面図である。It is a top view which shows the semiconductor device which raise | generated migration. 封止樹脂のマイグレーション抑制効果を測定するための、櫛歯配線基板を示す平面図であり、(a)が全体の(b)がA部を拡大した図面である。It is a top view which shows the comb-tooth wiring board for measuring the migration suppression effect of sealing resin, (a) is drawing which expanded the A section of the whole (b). 図5の櫛歯配線がマイグレーションを起こした場合を示す平面図である。It is a top view which shows the case where the comb-tooth wiring of FIG. 5 raise | generated migration. 金属イオン結合剤を含む封止樹脂のマイグレーション抑制効果を示す図面である。It is drawing which shows the migration inhibitory effect of sealing resin containing a metal ion binder. 半導体装置に粘度の高い封止樹脂を充填した場合の気泡を含む封止樹脂を示す断面図である。It is sectional drawing which shows sealing resin containing the bubble at the time of filling a semiconductor device with sealing resin with high viscosity. 従来の半導体装置の断面図である。It is sectional drawing of the conventional semiconductor device.

符号の説明Explanation of symbols

1 ベースフィルム(基材)
5 半導体チップ(半導体素子)
6 封止樹脂
7 ソルダーレジスト
8 スズメッキ
9 配線
10 半導体装置
11 フレキシブル配線基板(配線基板)
1 Base film (base material)
5 Semiconductor chip (semiconductor element)
6 Sealing resin 7 Solder resist 8 Tin plating 9 Wiring 10 Semiconductor device 11 Flexible wiring board (wiring board)

Claims (7)

基材に複数の配線が配置された配線基板と、
上記配線基板に搭載された半導体素子と、を含む、COF構造若しくはTCP構造を有する半導体装置において、
上記基板がフィルム状のフレキシブル基板であり、
金属イオン結合剤が、上記配線の表面に塗布されており、
上記金属イオン結合剤が、ベンゾトリアゾール類、トリアジン類、および、これらのイソシアヌル酸付加物から選ばれる少なくとも1つの化合物を含み、
封止樹脂が、上記半導体素子と上記フレキシブル基板との間に充填され、上記半導体素子の接続部周辺で、上記配線の間に入り込んでおり、
さらに、配線表面を覆うようにソルダーレジストが、上記配線同士の間に入り込んで形成されており、
上記配線同士の間隔が50μm以下であることを特徴とする半導体装置。
A wiring board in which a plurality of wires are arranged on a base material;
In a semiconductor device having a COF structure or a TCP structure, including a semiconductor element mounted on the wiring board,
The substrate is a film-like flexible substrate,
A metal ion binder is applied to the surface of the wiring,
The metal ion binder includes at least one compound selected from benzotriazoles, triazines, and these isocyanuric acid adducts,
A sealing resin is filled between the semiconductor element and the flexible substrate, and is inserted between the wirings around the connection part of the semiconductor element.
Furthermore, the solder resist is formed so as to enter between the wirings so as to cover the wiring surface,
A semiconductor device, wherein an interval between the wirings is 50 μm or less.
上記封止樹脂が、配線基板と半導体素子との間に充填されるときに、粘度50mPa・s以上1000mPa・s以下であることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the sealing resin has a viscosity of 50 mPa · s or more and 1000 mPa · s or less when filled between the wiring substrate and the semiconductor element. 上記金属イオン結合剤は、平均直径が1μm以下であることを特徴とする請求項1又は2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the metal ion binder has an average diameter of 1 μm or less. 上記配線が基材表面に形成されており、
基材が金属イオン結合剤を含んでいることを特徴とする請求項1から3の何れか1項に記載の半導体装置。
The wiring is formed on the substrate surface,
The semiconductor device according to any one of claims 1 to 3, wherein the base material contains a metal ion binder.
上記金属イオン結合剤が、1H−ベンゾトリアゾール−1−メタノールであることを特徴とする請求項1からの何れか1項に記載の半導体装置。 The metal ion binding agent is a semiconductor device according to claim 1, characterized in that the 1H- benzotriazol-1-methanol in any one of four. 半導体素子が、テープキャリア方式により配線基板に搭載されていることを特徴とする請求項1からの何れか1項に記載の半導体装置。 Semiconductor device, the semiconductor device according to any one of claims 1, characterized in that mounted on the wiring board by a tape carrier system 5. 液晶表示素子が搭載されていることを特徴とする請求項1からの何れか1項に記載の半導体装置。 The semiconductor device according to any one of 6 claim 1, characterized in that the liquid crystal display device is mounted.
JP2007270704A 2007-10-17 2007-10-17 Semiconductor device Expired - Lifetime JP5014945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270704A JP5014945B2 (en) 2007-10-17 2007-10-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270704A JP5014945B2 (en) 2007-10-17 2007-10-17 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004152372A Division JP4451214B2 (en) 2004-05-21 2004-05-21 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011030965A Division JP5296116B2 (en) 2011-02-16 2011-02-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2008098646A JP2008098646A (en) 2008-04-24
JP5014945B2 true JP5014945B2 (en) 2012-08-29

Family

ID=39381102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270704A Expired - Lifetime JP5014945B2 (en) 2007-10-17 2007-10-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5014945B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107798B1 (en) 2008-04-04 2010-12-08 Sony Corporation Imaging apparatus, image processing apparatus, and exposure control method
KR101678967B1 (en) 2010-10-07 2016-11-24 삼성전자 주식회사 Method for fabricating light guide layer in semiconductor substate
US9589690B2 (en) * 2010-12-15 2017-03-07 Electric Power Research Institute, Inc. Light water reactor primary coolant activity cleanup
WO2013035205A1 (en) 2011-09-09 2013-03-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Underfill composition
WO2013035204A1 (en) 2011-09-09 2013-03-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Composition for electronic device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153332A (en) * 1984-08-23 1986-03-17 Shin Kobe Electric Mach Co Ltd Production of laminate
JPH0618860B2 (en) * 1987-03-23 1994-03-16 タツタ電線株式会社 Resin composition for semiconductor encapsulation
JPH01155683A (en) * 1987-12-11 1989-06-19 Ibiden Co Ltd Manufacture of printed wiring board
JPH01251785A (en) * 1988-03-31 1989-10-06 Hitachi Chem Co Ltd Aftertreatment for printed wiring board
JP2652223B2 (en) * 1988-11-16 1997-09-10 イビデン株式会社 Substrate for mounting electronic components
JPH02276112A (en) * 1989-03-22 1990-11-13 Mitsubishi Electric Corp Manufacture of electronic equipment material
JP2808504B2 (en) * 1990-09-12 1998-10-08 加古川プラスチックス 株式会社 Film-shaped copper-deposited substrate
JPH06105827B2 (en) * 1992-05-19 1994-12-21 イビデン株式会社 Printed wiring board
JPH08335768A (en) * 1995-06-06 1996-12-17 Taiyo Ink Mfg Ltd Alkaline developable one liquid photosolder resist composition and solder resist film obtainable from the resist
JPH0971635A (en) * 1995-09-08 1997-03-18 Toray Ind Inc Resin-sealed semiconductor device
JPH10321994A (en) * 1997-05-16 1998-12-04 Senju Metal Ind Co Ltd Method of preventing migration in conductor parts of electronics
JP3377408B2 (en) * 1997-07-15 2003-02-17 松下電工株式会社 Resin composition for sealing and semiconductor device
JPH11145626A (en) * 1997-11-12 1999-05-28 Kansai Paint Co Ltd Multilayer printed wiring board
WO2000002091A1 (en) * 1998-07-07 2000-01-13 Kansai Paint Co., Ltd. Water-based solder resist composition
JP2000086911A (en) * 1998-07-16 2000-03-28 Citizen Watch Co Ltd Sealing resin composition
JP3441412B2 (en) * 1999-10-29 2003-09-02 シャープ株式会社 Resin-sealed semiconductor device and liquid crystal display module using the same
JP3633422B2 (en) * 2000-02-22 2005-03-30 ソニーケミカル株式会社 Connecting material
JP2001257451A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Printed wiring board and method of manufacturing the same
JP2002201448A (en) * 2000-12-27 2002-07-19 Ricoh Co Ltd Electroconductive adhesive
JP3858705B2 (en) * 2001-01-29 2006-12-20 宇部興産株式会社 Underfill material for COF mounting and electronic components
JP3866058B2 (en) * 2001-07-05 2007-01-10 シャープ株式会社 Semiconductor device, wiring board and tape carrier
JP2003025470A (en) * 2001-07-13 2003-01-29 Seiren Co Ltd Conductive mesh fabric and its production method
JP2003092379A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Semiconductor device
JP3852573B2 (en) * 2001-11-16 2006-11-29 三菱電機株式会社 Method for manufacturing printed wiring board
JP3961335B2 (en) * 2002-04-19 2007-08-22 シャープ株式会社 Semiconductor integrated circuit device
JP3881286B2 (en) * 2002-05-31 2007-02-14 横浜抵抗器株式会社 Printed wiring board and manufacturing method thereof
JP3880912B2 (en) * 2002-10-10 2007-02-14 ジャパンエポキシレジン株式会社 Epoxy resin composition for semiconductor encapsulation

Also Published As

Publication number Publication date
JP2008098646A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4451214B2 (en) Semiconductor device
KR100832628B1 (en) Conductive paste
CN106914710B (en) Resin flux paste and mounting structure
TWI509751B (en) Bottoming of the filling material and electronic components of the assembly method
CN112201435B (en) Coil assembly and method of manufacturing the same
JP5296116B2 (en) Semiconductor device
KR101179744B1 (en) Flip chip mounting process and flip chip assembly
JP5014945B2 (en) Semiconductor device
US8039307B2 (en) Mounted body and method for manufacturing the same
KR100678533B1 (en) Conductive powder and method for preparing the same
JP2004535480A (en) Electrically stable conductive materials for use in electronic devices
CN1329979C (en) Film carrier tape for electronic part and its producing method
JP3837858B2 (en) Conductive adhesive and method of using the same
JP4235888B2 (en) Conductive paste
EP2592127B1 (en) Anisotropic conductive adhesive, process for producing same, connection structure, and process for producing same
JP2003297873A (en) Semiconductor device, structure and electronic device
CN108406165A (en) Soldering paste and assembling structure therefrom
CN109755137A (en) The manufacturing method of semiconductor device and semiconductor device
DE102007029378B4 (en) Interconnect and substrate with compliant conductive interconnects
DE102021129249A1 (en) Molded semiconductor package with high voltage isolation
JP4235885B2 (en) Conductive paste
JP4644963B2 (en) Curing flux and solder joint
JP4224772B2 (en) Conductive paste
JP2004047422A (en) Conductive paste
JP2004043608A (en) Electroconductive adhesive

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110223

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5014945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term