JP5012079B2 - Charcoal-containing reduced iron for blast furnace charging and blast furnace operating method - Google Patents

Charcoal-containing reduced iron for blast furnace charging and blast furnace operating method Download PDF

Info

Publication number
JP5012079B2
JP5012079B2 JP2007036524A JP2007036524A JP5012079B2 JP 5012079 B2 JP5012079 B2 JP 5012079B2 JP 2007036524 A JP2007036524 A JP 2007036524A JP 2007036524 A JP2007036524 A JP 2007036524A JP 5012079 B2 JP5012079 B2 JP 5012079B2
Authority
JP
Japan
Prior art keywords
reduced iron
blast furnace
iron
coke
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007036524A
Other languages
Japanese (ja)
Other versions
JP2008202067A (en
Inventor
泰平 野内
健 佐藤
道貴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007036524A priority Critical patent/JP5012079B2/en
Publication of JP2008202067A publication Critical patent/JP2008202067A/en
Application granted granted Critical
Publication of JP5012079B2 publication Critical patent/JP5012079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02P10/212

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉の生産性および操業安定性を確保しながら、比較的多量のスクラップ等の還元鉄系原料を高炉原料として使用できる高炉装入用の炭材内装還元鉄及びこれを用いた高炉操業方法に関する。   The present invention relates to carbonaceous internal reduced iron for blast furnace charging that can use a relatively large amount of reduced iron-based raw material such as scrap as a blast furnace raw material while ensuring productivity and operational stability of the blast furnace, and a blast furnace using the same It relates to the operation method.

鋼を生産する際のスクラップの利用として、転炉内の溶銑にスクラップなどを投入して精錬することが一般的に行なわれている。転炉における溶銑の配合比率は銑配率と呼ばれている。溶銑の生産は高炉等により酸化鉄系原料を還元して行なうため、炭素系還元材が不可欠であり、必然的に二酸化炭素を生成するのに対し、スクラップなどは還元鉄であるため、そのままで転炉原料として用いることができる。よって、鋼を生産するために発生する二酸化炭素は銑配率に比例することになる。   As for the use of scrap when producing steel, it is a common practice to smelt scrap and the like into molten iron in the converter. The mixing ratio of the hot metal in the converter is called the distribution rate. Since hot metal is produced by reducing iron oxide raw materials in a blast furnace or the like, carbon-based reducing materials are indispensable, and carbon dioxide is inevitably produced, whereas scrap and the like are reduced iron, so that It can be used as a converter raw material. Therefore, the carbon dioxide generated to produce steel is proportional to the distribution rate.

近年、地球温暖化の懸念から二酸化炭素発生量の削減が製鉄業界においても最重要課題とされている。二酸化炭素発生量の削減のために銑配率を低下させる(スクラップなどの還元鉄を多量に転炉に投入する)と、転炉中の溶鋼温度がその熱容量分だけ低下するため、精錬を継続するためには熱補償が不可欠である。転炉中に酸素を吹き込む脱炭工程は発熱反応であるが、ガスのほとんどは溶鋼との熱交換を行なわないまま排ガスとなり熱効率が低く、溶鋼温度の低下を防止するために、銑配率には下限が存在する。従って、転炉におけるスクラップの利用量には限界がある。   In recent years, the reduction of carbon dioxide generation has been considered the most important issue in the steel industry because of global warming concerns. Reducing the distribution rate in order to reduce the amount of carbon dioxide generated (by putting a large amount of reduced iron such as scrap into the converter), the molten steel temperature in the converter decreases by the amount of its heat capacity, so refining continues. In order to do so, thermal compensation is essential. The decarburization process in which oxygen is blown into the converter is an exothermic reaction, but most of the gas becomes exhaust gas without performing heat exchange with the molten steel, resulting in low thermal efficiency and to prevent the molten steel temperature from decreasing. Has a lower bound. Therefore, the amount of scrap used in the converter is limited.

一方で高炉は向流充填層反応容器であり排ガス温度が低く熱効率も高いため、製鉄所において大量にスクラップなどの還元鉄を使用するには高炉への投入が効果的である。高炉でスクラップなどの還元鉄を使用するに際しては、酸化鉄系原料(鉄鉱石や焼結鉱)と共に使用するのが一般的であった(例えば、特許文献1参照。)。また、コークスと混合して装入することによりスクラップなどの還元鉄への浸炭を促進して融点を低下させ、炉内での溶融を促進する方法が提案されている(例えば、特許文献2参照。)。
特開昭62−127411号公報 特許第3700184号公報
On the other hand, since the blast furnace is a countercurrent packed bed reaction vessel and has a low exhaust gas temperature and high thermal efficiency, it is effective to put it in a blast furnace in order to use a large amount of reduced iron such as scrap at an ironworks. When using reduced iron such as scrap in a blast furnace, it is common to use it together with an iron oxide-based raw material (iron ore or sintered ore) (for example, see Patent Document 1). Further, there has been proposed a method of promoting carburization of reduced iron such as scrap by mixing with coke and reducing the melting point to promote melting in the furnace (for example, see Patent Document 2). .)
Japanese Patent Laid-Open No. Sho 62-127411 Japanese Patent No. 3700184

特許文献2に示されるように、スクラップなどの還元鉄をコークスと混合して高炉に装入することにより、還元鉄の溶融を促進することは可能であるが、還元鉄とコークスとは性質(比重、大きさ、形状等)が異なるため、炉内に堆積する過程での分離が避けられないという問題がある。また、コークスとの接触も点接触に限られており、接触点を増やすにはコークスを細粒化する必要がある一方で、コークス細粒化は通気不良や原料降下不調を引き起こすため実施不可能であり、還元鉄とコークスとを充分に接触させることは困難であった。   As shown in Patent Document 2, it is possible to promote the melting of reduced iron by mixing reduced iron such as scrap with coke and charging it into a blast furnace. However, reduced iron and coke have properties ( Since specific gravity, size, shape, etc.) are different, there is a problem that separation in the process of deposition in the furnace is inevitable. In addition, contact with coke is limited to point contact, and in order to increase the number of contact points, it is necessary to refine coke, but coke refinement is not possible because it causes poor ventilation and poor material lowering. It was difficult to sufficiently bring reduced iron and coke into contact.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉において還元鉄を原料として多量に使用することができる高炉装入用の還元鉄及び高炉操業方法を提供することにある。   Accordingly, an object of the present invention is to solve such problems of the prior art and to provide reduced iron for blast furnace charging and a blast furnace operating method capable of using a large amount of reduced iron as a raw material in a blast furnace.

このような課題を解決するための本発明は、炉内におけるコークスとスクラップなどの還元鉄の分離を防止するとともに、接触面積を増加させるため、炭材を還元鉄に内装させて、炭材内装還元鉄とするものであり、その特徴は以下の通りである。
(1)板状の還元鉄を、粒径が1〜10mmの炭材と共にプレス成型して、前記還元鉄の面と面との間に空隙を形成させて、該空隙に前記炭材が挟み込まれた、還元鉄の粒状物からなることを特徴とする高炉装入用の炭材内装還元鉄。
)高炉原料として、コークス、酸化鉄系原料、還元鉄系原料を用いる際に、還元鉄系原料の一部または全部として(1)に記載の炭材内装還元鉄を用いることを特徴とする高炉操業方法。
The present invention for solving such a problem prevents the separation of reduced iron such as coke and scrap in the furnace, and increases the contact area. This is reduced iron, and its features are as follows.
(1) A plate-like reduced iron is press-molded together with a carbonaceous material having a particle size of 1 to 10 mm to form a void between the surfaces of the reduced iron, and the carbonaceous material is sandwiched in the void. A carbonaceous material- containing reduced iron for blast furnace charging, characterized by comprising reduced iron particles .
( 2 ) When using coke, an iron oxide-based material, or a reduced iron-based material as a blast furnace material, the carbonaceous material-containing reduced iron described in (1 ) is used as part or all of the reduced iron-based material. How to operate the blast furnace.

本発明によれば、スクラップなどの還元鉄とコークスの接触点が増加するので、スクラップの溶解が促進され、高炉操業を安定化することができる。その結果、従来以上に多量のスクラップを高炉で利用することができ、高いスクラップ比での安定した高炉操業が可能となる。   According to the present invention, since the contact point between reduced iron such as scrap and coke increases, melting of the scrap is promoted, and blast furnace operation can be stabilized. As a result, a larger amount of scrap than in the past can be used in the blast furnace, and stable blast furnace operation at a high scrap ratio becomes possible.

高炉内においてスクラップなどの還元鉄とコークスの接触点を増加させるには、両方または一方の粒径をできるだけ小さくする必要がある。しかし、粒径を低下させることは、高炉の通気不良や原料降下不調を引き起こすため好ましい方法ではない。そこで、本発明者らはスクラップなどの還元鉄の空隙にコークスなどの炭材を内装させることを考えた。スクラップ等の還元鉄に炭材を内装させることで、スクラップなどの還元鉄の粒径は一定のままに、コークスなどの炭材との接触点を大幅に増加することが可能となる。さらに炭材は還元鉄の内部に格納されているため、高炉への原料装入過程で分離、偏析することもない。このような高炉装入用の炭材内装還元鉄として、還元鉄を炭材と共にプレス成型して製造したものを用いることができる。また、このような高炉装入用の炭材内装還元鉄は、粒径が1〜10mmの炭材が挟み込まれた、還元鉄の粒状物を用いることが好ましい。還元鉄に内装させる炭材の粒径が大きいと、還元鉄との接触面積が低下し、また還元鉄で挟み込むこと自体が困難となる。また、粒径があまりに小さいと、炭材のハンドリングが困難であると同時に、還元鉄の粒状物から炭材が容易に離脱し、挟み込まれた状態の維持が難しい。内装させる炭材の量は、還元鉄の2〜10mass%程度とすることが好ましい。   In order to increase the contact point between reduced iron such as scrap and coke in a blast furnace, it is necessary to make the particle size of both or one of them as small as possible. However, reducing the particle size is not a preferable method because it causes poor ventilation of the blast furnace and poor material lowering. Therefore, the present inventors have considered that carbon materials such as coke are provided in the voids of reduced iron such as scrap. By incorporating the carbonaceous material into the reduced iron such as scrap, the contact point with the carbonaceous material such as coke can be greatly increased while the particle size of the reduced iron such as scrap remains constant. Furthermore, since the carbonaceous material is stored inside the reduced iron, it does not separate or segregate during the raw material charging process in the blast furnace. As such a carbon material internal reduced iron for charging a blast furnace, a product produced by press-molding reduced iron together with a carbon material can be used. Moreover, it is preferable to use the granular material of reduced iron in which the carbonaceous material internal reduced iron for such a blast furnace charge was inserted | pinched the carbonaceous material with a particle size of 1-10 mm. When the particle size of the carbonaceous material incorporated in the reduced iron is large, the contact area with the reduced iron is reduced, and it is difficult to sandwich the reduced carbon. Further, if the particle size is too small, it is difficult to handle the carbon material, and at the same time, the carbon material is easily detached from the reduced iron particles and it is difficult to maintain the sandwiched state. It is preferable that the amount of the carbon material to be installed is about 2 to 10 mass% of the reduced iron.

尚、本発明において還元鉄とは、酸化鉄に比較して酸素の還元が進んだ状態の鉄であり、スクラップ等の金属鉄を用いることが好ましい。また、炭材とは、主として炭素からなる原料であり、石炭、コークス等を用いることが好ましい。   In the present invention, reduced iron is iron in which the reduction of oxygen is advanced as compared with iron oxide, and it is preferable to use metallic iron such as scrap. The carbonaceous material is a raw material mainly composed of carbon, and it is preferable to use coal, coke or the like.

図1にこのような炭材を内装させた還元鉄の一実施形態を示す。図1において、還元鉄1の内部に炭材2が挟み込まれている。このような構造とすることで、還元鉄と炭材との接触面積が増加し、しかも高炉装入原料として適当な粒径を有する原料とすることができる。   FIG. 1 shows an embodiment of reduced iron in which such a carbon material is incorporated. In FIG. 1, a carbon material 2 is sandwiched inside reduced iron 1. By setting it as such a structure, the contact area of reduced iron and a carbon material increases, and it can be set as the raw material which has a suitable particle size as a blast furnace charging raw material.

炭材を内装させた還元鉄は、例えば鋼板等の鉄スクラップに石炭粉を混合して、プレス処理することで製造できる。炭材を内装させた還元鉄の粒径は、1cm〜40cm程度とすることが、原料搬送の点で好ましい。   Reduced iron in which a carbon material is built can be manufactured by mixing coal powder into iron scrap such as a steel plate and pressing it. The particle size of the reduced iron in which the carbon material is incorporated is preferably about 1 cm to 40 cm from the viewpoint of material conveyance.

高炉原料として、コークス、酸化鉄系原料、還元鉄系原料を用いる高炉操業を行なう際に、還元鉄系原料の一部または全部として上記の炭材内装還元鉄を用いることで、還元鉄の高炉での使用量を増やすことができる。酸化鉄系原料とは、鉄鉱石、焼結鉱等の酸化鉄を主成分とする鉄原料であり、還元鉄系原料とは、酸化鉄系原料に比較して鉄の還元の進んだ鉄原料であり、鉄スクラップ等のリサイクル原料が主に用いられている。還元鉄系原料の少なくとも一部として炭材内装還元鉄を用いれば効果があるが、全量を炭材内装還元鉄とすることが好ましい。   When performing blast furnace operation using coke, iron oxide-based material, or reduced iron-based material as a blast furnace material, the above-mentioned carbonaceous material-containing reduced iron is used as a part or all of the reduced iron-based material, thereby reducing the blast furnace of reduced iron. You can increase the amount used. An iron oxide-based material is an iron material mainly composed of iron oxide such as iron ore and sintered ore, and a reduced iron-based material is an iron material whose iron has been reduced more than iron oxide-based materials. Recycled raw materials such as iron scrap are mainly used. Although it is effective to use carbonaceous material-containing reduced iron as at least a part of the reduced iron-based raw material, it is preferable that the total amount be carbonaceous material-containing reduced iron.

図2に、炭材を内装していない還元鉄をコークスに混合して高炉に装入する状態の概略図を示す。図2において還元鉄1は周辺のコークス3とわずかな点接触で接触するのみである。還元鉄1をコークス3と混合して高炉に装入することにより、還元鉄の溶融を促進する効果はあるが、図1と比較した場合、溶融が促進されるのは表面のわずかな部分のみであることが分かる。   FIG. 2 is a schematic view showing a state in which reduced iron not containing a carbon material is mixed with coke and charged into a blast furnace. In FIG. 2, the reduced iron 1 is only in contact with the surrounding coke 3 with a slight point contact. There is an effect of promoting the melting of reduced iron by mixing reduced iron 1 with coke 3 and charging it into a blast furnace, but when compared with FIG. 1, only a small part of the surface promotes melting. It turns out that it is.

還元鉄を高炉原料として使用する場合、鉄鉱石あるいは焼結鉱(酸化鉄系原料)と共存させるパターンと、コークスと共存させるパターンとが考えられる。酸化鉄系原料、またはコークスとの混合状態として還元鉄を高炉に装入する場合、コークス層中に還元鉄系原料を存在させた方が、還元鉄の溶け落ち開始温度(溶融開始温度)が40℃程度低下し、還元鉄系原料使用においてはコークス層中へ存在させる方が有利である。さらに、還元鉄に炭材を内装体として存在させることにより、コークス層中に還元鉄系原料を存在させた時より、50℃程度溶け落ち開始温度が低下する。炭材を内装した還元鉄をコークス層中に存在させれば、還元鉄の溶融促進効果はさらに大きい。   When reduced iron is used as a blast furnace raw material, a pattern in which iron ore or sintered ore (iron oxide-based raw material) coexists and a pattern in which coke coexists are considered. When reducing iron is charged into the blast furnace as a mixed state with iron oxide raw material or coke, the reduced iron starting temperature (melting start temperature) is reduced when the reduced iron raw material is present in the coke layer. When the reduced iron-based raw material is used, it is advantageous to make it exist in the coke layer. Further, by allowing the reduced iron to contain a carbonaceous material as an interior body, the melting start temperature is lowered by about 50 ° C. compared to when the reduced iron-based material is present in the coke layer. If reduced iron containing carbonaceous material is present in the coke layer, the effect of promoting the melting of reduced iron is even greater.

上記のように、炭材を内装した還元鉄を用いることで、還元鉄の溶融が促進されるので、操業の自由度が高まり、還元鉄を酸化鉄系原料と共存させる、あるいは、コークス層中に存在させる等、操業形態を任意に選択することが可能となる。また、溶け落ち開始温度が低い為、高炉原料としての還元鉄系原料の多量使用を実現できる。   As mentioned above, the use of reduced iron with carbonaceous material promotes melting of reduced iron, which increases the degree of freedom of operation and allows reduced iron to coexist with iron oxide-based raw materials, or in the coke layer. It is possible to arbitrarily select the operation mode, such as to be present in the system. In addition, since the melting start temperature is low, a large amount of reduced iron-based material can be used as a blast furnace material.

冷延鋼板の裁断屑であるスクラップの還元鉄を用いて、本発明の効果を確認する実験を行った。0.5mm厚さの冷延鋼板140gを30mm角の立方体にプレス成型し、電気炉にて溶け落ち開始温度を測定した。プレス成型の際に、炭材として粒径約2mmのコークス粉を、スクラップ150gに対して7g添加してプレス処理したもの(炭材内装冷延鋼板)も製造した。プレス成型品は、図3に示すように(a)冷延鋼板のプレス成型品1の周囲空隙をアルミナ球4で充填し、立方体容器内に収納した、冷延鋼板スクラップの単体、(b)冷延鋼板スクラップ1を用いその周囲空隙をコークス3で充填し、立方体容器内に収納したもの、(c)炭材2内装冷延鋼板スクラップ1の周囲空隙をアルミナ球4で充填し、立方体容器内に収納したもの、とし、(a)〜(c)を電気炉に装入して、溶け落ち開始温度を測定した。図3(c)の、炭材内装冷延鋼板スクラップの写真を、図4に示す。溶け落ち開始温度は、図3に示すように(a)1436℃、(b)1392℃、(c)1335℃であり、炭材内装冷延鋼板では、コークス層に混合した場合に対して溶け落ち開始温度が56℃低下した。   An experiment for confirming the effect of the present invention was conducted using scrap reduced iron, which is a cutting scrap of a cold-rolled steel sheet. A cold-rolled steel sheet (140 g) having a thickness of 0.5 mm was press-molded into a 30 mm square cube, and the melting start temperature was measured in an electric furnace. At the time of press molding, 7 g of coke powder having a particle diameter of about 2 mm was added as a charcoal material to 150 g of scrap and pressed (charcoal material internal cold-rolled steel sheet). As shown in FIG. 3, the press-formed product is (a) a single piece of cold-rolled steel plate scrap, in which the voids around the press-formed product 1 of the cold-rolled steel plate are filled with alumina spheres 4 and stored in a cubic container, (b) A cold rolled steel sheet scrap 1 is used to fill the surrounding voids with coke 3 and stored in a cubic container. (A) to (c) were charged into an electric furnace, and the melt-off start temperature was measured. FIG. 4 shows a photograph of the carbonaceous steel cold-rolled steel sheet scrap in FIG. As shown in FIG. 3, the melting start temperature is (a) 1436 ° C., (b) 1392 ° C., and (c) 1335 ° C. The drop start temperature dropped by 56 ° C.

(a)のパターンは、還元鉄系原料を使用する際に、還元鉄系原料を鉄鉱石あるいは焼結鉱と共存させた場合に該当し、(b)のパターンは、還元鉄系原料を使用する際、還元鉄系原料をコークスと共存させた場合に該当し、(c)のパターンは、炭材を内装した還元鉄系原料を使用する場合に該当する。(c)に示すように、冷延鋼板スクラップ内に炭材を内装体として存在させることにより、大きく溶け落ち開始温度が低下することが示された。   The pattern of (a) corresponds to the case where the reduced iron-based raw material coexists with iron ore or sintered ore when the reduced iron-based raw material is used, and the pattern of (b) uses the reduced iron-based raw material. In this case, the reduced iron-based raw material coexists with coke, and the pattern (c) corresponds to the case where the reduced iron-based raw material with the carbon material is used. As shown to (c), it was shown by making a carbonaceous material exist as an interior body in the cold-rolled steel plate scrap that the melting start temperature greatly decreases.

炭材を内装させた還元鉄の一実施形態を示す概略図。Schematic which shows one Embodiment of the reduced iron which made the interior of a carbonaceous material. 炭材を内装していない還元鉄をコークスに混合して高炉に装入する状態の概略図Schematic of the state in which reduced iron without carbon material is mixed with coke and charged into the blast furnace 還元鉄の状態と、溶け落ち開始温度の関係を示すグラフ。The graph which shows the relationship between the state of reduced iron and the melting start temperature. 炭材を内装させた還元鉄の写真。Photograph of reduced iron with carbonaceous materials.

符号の説明Explanation of symbols

1 還元鉄
2 炭材
3 コークス
4 アルミナ球
1 Reduced iron 2 Carbon material 3 Coke 4 Alumina sphere

Claims (2)

板状の還元鉄を、粒径が1〜10mmの炭材と共にプレス成型して、前記還元鉄の面と面との間に空隙を形成させて、該空隙に前記炭材が挟み込まれた、還元鉄の粒状物からなることを特徴とする高炉装入用の炭材内装還元鉄。 The plate-like reduced iron was press-molded together with a carbonaceous material having a particle size of 1 to 10 mm to form a void between the surfaces of the reduced iron, and the carbonaceous material was sandwiched in the void. Charcoal-incorporated reduced iron for blast furnace charging, characterized by comprising reduced iron particles . 高炉原料として、コークス、酸化鉄系原料、還元鉄系原料を用いる際に、還元鉄系原料の一部または全部として請求項1に記載の炭材内装還元鉄を用いることを特徴とする高炉操業方法。 Blast furnace operation characterized in that when using coke, iron oxide-based material, or reduced iron-based material as the blast furnace material, the carbonaceous material-containing reduced iron according to claim 1 is used as a part or all of the reduced iron-based material. Method.
JP2007036524A 2007-02-16 2007-02-16 Charcoal-containing reduced iron for blast furnace charging and blast furnace operating method Active JP5012079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036524A JP5012079B2 (en) 2007-02-16 2007-02-16 Charcoal-containing reduced iron for blast furnace charging and blast furnace operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036524A JP5012079B2 (en) 2007-02-16 2007-02-16 Charcoal-containing reduced iron for blast furnace charging and blast furnace operating method

Publications (2)

Publication Number Publication Date
JP2008202067A JP2008202067A (en) 2008-09-04
JP5012079B2 true JP5012079B2 (en) 2012-08-29

Family

ID=39779864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036524A Active JP5012079B2 (en) 2007-02-16 2007-02-16 Charcoal-containing reduced iron for blast furnace charging and blast furnace operating method

Country Status (1)

Country Link
JP (1) JP5012079B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282433A (en) * 1989-04-21 1990-11-20 Nisshin Steel Co Ltd Raw material charged into shaft furnace
JP3700184B2 (en) * 1994-09-28 2005-09-28 Jfeスチール株式会社 Method of charging scrap into the blast furnace
JP3708981B2 (en) * 1995-01-20 2005-10-19 新日本製鐵株式会社 Agglomerate for iron making
JPH09143533A (en) * 1995-11-17 1997-06-03 Topy Ind Ltd Sttelmaking method by using iron scrap holding carbon source
JP2001152220A (en) * 1999-11-25 2001-06-05 Nkk Corp Treating method of synthetic resins in vertical type metallic scrap melting furnace
JP3746978B2 (en) * 2000-10-11 2006-02-22 光洋精工株式会社 Manufacturing method of briquette for steelmaking raw material
JP2006097048A (en) * 2004-09-28 2006-04-13 Jfe Steel Kk Method for melting iron scrap

Also Published As

Publication number Publication date
JP2008202067A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
KR101145603B1 (en) Process for producing reduced iron pellets, and process for producing pig iron
JP4153281B2 (en) Method for producing titanium oxide-containing slag
JP4317579B2 (en) Method for producing reduced iron molded body and method for producing pig iron
WO2015005190A1 (en) Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
JP2009530492A5 (en)
US6503289B2 (en) Process for manufacturing molten metal iron
JP2004156140A (en) Processes for preparing ferronickel and ferronickel smelting material
JP5540859B2 (en) Carbon steel interior agglomerate for iron making and method for producing the same
JP4808819B2 (en) Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same
JP2009102746A (en) Method for producing pig iron
WO2013011521A1 (en) A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
JP2006265569A (en) Method for producing sintered ore and pseudo-grain for producing sintered ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP5012079B2 (en) Charcoal-containing reduced iron for blast furnace charging and blast furnace operating method
JP5052963B2 (en) Method for producing molten zinc
CN102686758B (en) Method for melting high-carbon ferrochrome
JP5521387B2 (en) Method for producing reduced iron molded body and method for producing pig iron
JP3732024B2 (en) Method for producing reduced iron pellets
JP4462008B2 (en) Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron
CN108342585A (en) A kind of method of comprehensive utilization of magnesium-smelting reduction slag
EP3921447B1 (en) Process for refining steel and dephosphorization agent used in said process
JP2008088533A (en) Method for manufacturing sintered ore
JP4415690B2 (en) Method for producing sintered ore
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
Jung et al. Reduction behavior of self-reducing pellets of chromite and Si sludge with and without carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250