JP5011770B2 - Method for producing martensitic stainless steel pipe - Google Patents

Method for producing martensitic stainless steel pipe Download PDF

Info

Publication number
JP5011770B2
JP5011770B2 JP2006079131A JP2006079131A JP5011770B2 JP 5011770 B2 JP5011770 B2 JP 5011770B2 JP 2006079131 A JP2006079131 A JP 2006079131A JP 2006079131 A JP2006079131 A JP 2006079131A JP 5011770 B2 JP5011770 B2 JP 5011770B2
Authority
JP
Japan
Prior art keywords
content
steel pipe
pipe
steel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006079131A
Other languages
Japanese (ja)
Other versions
JP2007254799A (en
Inventor
孝光 稲毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006079131A priority Critical patent/JP5011770B2/en
Priority to US11/723,622 priority patent/US20070251611A1/en
Priority to CNA2007100889010A priority patent/CN101041882A/en
Publication of JP2007254799A publication Critical patent/JP2007254799A/en
Application granted granted Critical
Publication of JP5011770B2 publication Critical patent/JP5011770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • B21B17/04Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、遅れ破壊による割れの発生を抑止し、かつ内面疵の発生を防止した油井管用などのマルテンサイト系ステンレス鋼管の製造方法に関する。   The present invention relates to a method for manufacturing a martensitic stainless steel pipe for an oil well pipe or the like that suppresses the occurrence of cracking due to delayed fracture and prevents the occurrence of internal flaws.

クロム(Cr)を13質量%程度含有するAPI規格13%Crなどのマルテンサイト系ステンレス鋼管は、80ksi(552MPa)以上の降伏強度を要求され、かつ熱間加工性も必要とされるので、通常は0.2質量%程度のCが含有されている。このようにCr含有量およびC含有量が多いことにより、熱間製管のままでは高硬度のマルテンサイト組織となっており、靭性が低い。したがって、従来の鋼成分組成および製造方法により製造すると、製管後熱処理を行うまでの間に、衝撃荷重や静的荷重により加工を受けた部分(以下、「被衝撃加工部」とも記す)が遅れ破壊により割れを発生する場合がある。そのため、鋼管の運搬および保管の際には、鋼管の積み高さを制限するといった対策を講じた上、製管後熱処理を行うまでの待機時間を短縮しなければならない。   Since martensitic stainless steel pipes such as API standard 13% Cr containing about 13% by mass of chromium (Cr) are required to have a yield strength of 80 ksi (552 MPa) or more and hot workability is usually required. Contains about 0.2% by mass of C. Thus, since there is much Cr content and C content, if it is hot pipe making, it will become a high-hardness martensitic structure, and toughness will be low. Therefore, when manufactured by the conventional steel component composition and manufacturing method, a portion subjected to processing by impact load or static load (hereinafter also referred to as “impact processed portion”) before pipe-forming heat treatment is performed. Cracks may occur due to delayed fracture. For this reason, when transporting and storing steel pipes, it is necessary to take measures such as limiting the stacking height of the steel pipes, and to shorten the waiting time until heat treatment after pipe forming.

上記のような鋼管の運搬および保管上の制約は、積み上げ高さの制約から広い置き場所を必要とし、また、製管後制限時間内に熱処理を行うためには、製管から熱処理までの工程を調整する必要が生じるなど、鋼管製造工程の全般にわたり多くの支障を発生する。   The above-mentioned restrictions on the transportation and storage of steel pipes require a large space due to the stacking height restrictions, and in order to perform heat treatment within the time limit after pipe making, the process from pipe making to heat treatment is required. Many problems occur throughout the steel pipe manufacturing process.

特許文献1には、有効固溶炭素量、有効固溶窒素量、Cr当量およびS含有量を規定することにより、被衝撃加工部の遅れ破壊を発生しにくくし、内面欠陥の発生を防止したマルテンサイト系ステンレス継目無鋼管およびその製造方法が開示されている。しかし、同文献に開示された技術においても、依然として製管後熱処理を行うまでの時間を短縮する必要がある。特に、熱間製管後熱処理までに1週間以上を経過すると、置き割れが発生するという問題については解決されていない。   Patent Document 1 stipulates the amount of effective solute carbon, the amount of effective solute nitrogen, the Cr equivalent and the S content, thereby making it difficult for delayed fracture of the impacted part to occur and preventing the occurrence of internal defects. A martensitic stainless steel seamless pipe and a method for producing the same are disclosed. However, even in the technique disclosed in this document, it is still necessary to shorten the time until the heat treatment after pipe making. In particular, the problem of laying cracks after one week or more before the heat treatment after hot pipe forming has not been solved.

特開2004−43935号公報(特許請求の範囲、段落[0009]〜[0016])JP 2004-43935 A (claims, paragraphs [0009] to [0016])

本発明は、上記の問題に鑑みてなされたものであり、その課題は、C含有量が0.2質量%程度のマルテンサイト系ステンレス鋼管を熱間製管後熱処理まで1週間以上放置しても遅れ破壊に起因する置き割れが発生せず、かつ内面疵の発生も防止できる鋼管の製造方法を提供することにある。   The present invention has been made in view of the above problems, and the problem is that a martensitic stainless steel pipe having a C content of about 0.2% by mass is left for one week or longer until the heat treatment after hot pipe making. Another object of the present invention is to provide a method of manufacturing a steel pipe that does not cause a crack due to delayed fracture and can prevent the occurrence of internal flaws.

本発明者は、上述の課題を解決するために、被衝撃加工部の遅れ破壊による割れの発生を防止し、かつ内面疵の発生を抑止するためのビレットの鋼成分組成の適正範囲、ならびに、穿孔圧延された素管の均熱温度および最終圧延における断面加工度の適正条件について検討を行い、下記の(a)〜(c)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor prevents the occurrence of cracking due to delayed fracture of the impacted part, and the appropriate range of the steel component composition of the billet for suppressing the occurrence of inner surface flaws, and Appropriate conditions for the soaking temperature of the pierced and rolled element pipe and the cross-section working degree in the final rolling were studied, and the following findings (a) to (c) were obtained to complete the present invention.

(a)マルテンサイト系ステンレス鋼管の製管後の固溶強化による被衝撃加工部の遅れ破壊を防止するには、質量%で、C含有量を0.22%以下とし、また、N含有量を0.05%以下とする必要がある。δフェライトによる製管後の内面疵の発生を抑止するには、C含有量を0.15%以上とし、また、熱間加工性を改善して内面疵の発生を防止するには、オーステナイト安定化元素であるN含有量を0.01%以上とする必要がある。Mn含有量は、鋼の強度、脱酸作用および熱間加工性を確保する上で、0.10〜1.00質量%とする必要がある。   (A) In order to prevent delayed fracture of the impacted part due to solid solution strengthening after the production of the martensitic stainless steel pipe, the C content is 0.22% or less in mass%, and the N content Must be 0.05% or less. To suppress the occurrence of internal flaws after pipe making due to δ ferrite, the C content should be 0.15% or more, and to improve hot workability and prevent the formation of internal flaws, austenite stabilization It is necessary to make the N content of the chemical element 0.01% or more. The Mn content needs to be 0.10 to 1.00% by mass in order to ensure the strength, deoxidation action and hot workability of the steel.

(b)さらに、鋼成分として、質量%で、V:0.200%以下、Nb:0.200%以下、Ti:0.200%以下およびB:0.0100%以下のうちから選ばれた1種以上を含有させれば、さらに、被衝撃加工部の遅れ破壊防止効果が発揮されるので好ましい。   (B) Further, the steel component was selected from mass%, V: 0.200% or less, Nb: 0.200% or less, Ti: 0.200% or less, and B: 0.0100% or less. It is preferable to contain one or more types since the effect of preventing delayed fracture of the impacted part is exhibited.

(c)被衝撃加工部の遅れ破壊による割れの発生を防止し、かつ内面疵の発生を抑止するためには、上記(a)および(b)の鋼成分組成を有するビレットを穿孔圧延して得られた素管の均熱時における再加熱温度T(℃)および最終圧延における断面加工度R(%)が下記(1)式により表される関係を満足するように調整する必要がある。ただし、再加熱温度Tは上限を1020℃とする。 (C) In order to prevent the occurrence of cracking due to delayed fracture of the impacted part and to suppress the occurrence of internal flaws, the billet having the steel component composition of the above (a) and (b) is pierced and rolled. It is necessary to adjust the reheating temperature T (° C.) during soaking of the obtained tube and the cross-section working degree R (%) in the final rolling so as to satisfy the relationship represented by the following expression (1). However, the upper limit of the reheating temperature T is 1020 ° C.

T>44.4×ln(R)+821 ・・・(1)
本発明は、上記の知見に基づいて完成されたものであり、その要旨とするところは下記の(1)〜(4)に示すマルテンサイト系ステンレス鋼管の製造方法にある。
T> 44.4 × ln (R) +821 (1)
The present invention has been completed based on the above findings, and the gist of the present invention resides in a method for manufacturing a martensitic stainless steel pipe as shown in the following (1) to (4).

(1)質量%で、C:0.15〜0.22%、Si:0.1〜1.0%、Mn:0.10〜1.00%、Cr:12.00〜14.00%、N:0.01〜0.05%、Al:0.001〜0.1%、P:0.020%以下およびS:0.010%以下を含有し、且つV:0.005〜0.200%、Nb:0.005〜0.200%、Ti:0.005〜0.200%およびB:0.0005〜0.0100%のうちの1種以上を含有し、残部がFeおよび不純物からなるビレットを穿孔圧延し、さらに延伸圧延して素管となし、該素管を、最終圧延前の均熱における再加熱温度T(℃)および最終圧延における断面加工度R(%)が下記(1)式により表される関係を満足するように、均熱した後、最終圧延することを特徴とするマルテンサイト系ステンレス鋼管の製造方法。 (1) By mass%, C: 0.15 to 0.22%, Si: 0.1 to 1.0%, Mn: 0.10 to 1.00%, Cr: 12.00 to 14.00% N: 0.01-0.05%, Al: 0.001-0.1% , P: 0.020% or less and S: 0.010% or less, and V: 0.005-0 200%, Nb: 0.005 to 0.200%, Ti: 0.005 to 0.200%, and B: 0.0005 to 0.0100%, with the balance being Fe and A billet made of impurities is pierced and rolled, and further stretched and rolled to form a raw pipe. After the soaking so as to satisfy the relationship represented by the following formula (1), the final rolling is performed. Manufacturing method of onsite stainless steel pipe.

T>44.4×ln(R)+821 ・・・(1)
ただし、再加熱温度Tは上限を1020℃とする
T> 44.4 × ln (R) +821 (1)
However, the upper limit of the reheating temperature T is 1020 ° C.

(2)前記(1)に記載のマルテンサイト系ステンレス鋼管の製造方法において、前記ビレットが、さらに、Feの一部に替えて、質量%で、Ni:0.001〜0.5%およびCu:0.001〜0.25%のうちの1種以上を含有してもよい。 (2) In the method for manufacturing a martensitic stainless steel tube described in (1), wherein the billet is further, instead of part of Fe, by mass%, Ni: 0.001~ 0.5% Contact and Cu: One or more of 0.001 to 0.25 % may be contained.

(3)前記(1)または(2)に記載のマルテンサイト系ステンレス鋼管の製造方法において、前記ビレットが、さらに、Feの一部に替えて、質量%で、Ca:0.0050%以下を含有してもよい。 (3) In the method for producing a martensitic stainless steel pipe according to the above (1) or (2) , the billet is further replaced by a part of Fe and is in mass%, and C a: 0.0050% or less It may contain.

継目無鋼管の熱間製造方法は、中実ビレットの中心部に孔をあける穿孔圧延工程と、穿孔圧延により得られた素管の肉厚加工を主たる目的とする延伸圧延工程と、素管外径を減径して目標寸法に仕上げる定径圧延工程とにより構成される。   The seamless manufacturing method for seamless steel pipes includes a piercing and rolling process for drilling a hole in the center of a solid billet, a drawing and rolling process mainly for the wall thickness processing of the raw pipe obtained by piercing and rolling, And a constant diameter rolling process in which the diameter is reduced to finish the target dimension.

図1は、継目無鋼管を熱間で製造するマンネスマン製管法の製造工程の一例を説明する図である。この製管方法は、所定温度に加熱された中実ビレット1を穿孔圧延機3に送給して穿孔圧延し、素管2を製造する。次いで、素管2を後続するマンドレルミル(延伸圧延機)4に送給して延伸圧延する。マンドレルミル4で延伸圧延される際に、素管2は挿入されたマンドレルバー4bと素管外面を規制する圧延ロール4rによって延伸圧延と同時に冷却される。このため、素管2は、次いで再加熱炉5に装入され、所定の再加熱温度にて均熱される。その後、素管2はストレッチレデューサ6に送られ、圧延ロール6rによりサイジング、形状修正、磨管などの最終圧延を経て製品となる。   Drawing 1 is a figure explaining an example of the manufacturing process of the Mannesmann pipe manufacturing method which manufactures a seamless steel pipe hot. In this pipe making method, a solid billet 1 heated to a predetermined temperature is fed to a piercing and rolling machine 3 and pierced and rolled to produce a raw pipe 2. Next, the raw tube 2 is fed to a subsequent mandrel mill (stretching mill) 4 and stretched and rolled. When the mandrel mill 4 is drawn and rolled, the blank 2 is cooled simultaneously with the drawn and rolled by the inserted mandrel bar 4b and a rolling roll 4r that regulates the outer surface of the blank. For this reason, the raw tube 2 is then charged into the reheating furnace 5 and soaked at a predetermined reheating temperature. Thereafter, the raw tube 2 is sent to the stretch reducer 6, and becomes a product through final rolling such as sizing, shape correction, and polishing tube by the rolling roll 6r.

本発明において、「最終圧延」とは、ストレッチレヂューサやサイザーなどによる定径圧延を意味する。   In the present invention, “final rolling” means constant diameter rolling with a stretch reducer, sizer, or the like.

また、「最終圧延における断面加工度R(%)」とは、下記(2)式により算出される値を意味する。   In addition, “cross section processing degree R (%) in final rolling” means a value calculated by the following equation (2).

R(%)={(Sin―Sout)/Sin}×100 ・・・・(2)
ここで、Sinは最終圧延前の鋼管の断面積を、また、Soutは最終圧延後の鋼管の断面積を表す。
R (%) = {(Sin−Sout) / Sin} × 100 (2)
Here, Sin represents the cross-sectional area of the steel pipe before the final rolling, and Sout represents the cross-sectional area of the steel pipe after the final rolling.

以下の説明では、成分含有量についての「質量%」の標記を、単に「%」とも標記する。   In the following description, “mass%” for the component content is also simply denoted as “%”.

本発明の鋼管の製造方法によれば、ビレットの鋼成分組成、および、穿孔圧延された素管の均熱温度と最終圧延における断面加工度との関係を適正化したことにより、13%Crなどのマルテンサイト系ステンレス鋼管の被衝撃加工部の遅れ破壊による割れの発生を防止し、かつ内面疵の発生を抑止することができる。したがって、本発明は、鋼管の運搬および保管ならびに製管から熱処理までの工程上の制約を受けることなく、油井管用などのマルテンサイト系ステンレス鋼管を製造できる方法として有用である。   According to the method of manufacturing a steel pipe of the present invention, the steel component composition of the billet and the relation between the soaking temperature of the pierced and rolled raw pipe and the cross-sectional processing degree in the final rolling are optimized, so that 13% Cr or the like It is possible to prevent the occurrence of cracks due to delayed fracture of the impacted part of the martensitic stainless steel pipe and to suppress the occurrence of internal flaws. Therefore, the present invention is useful as a method capable of producing martensitic stainless steel pipes for oil well pipes and the like without being restricted in the process from transportation and storage of steel pipes and from pipe making to heat treatment.

本発明は、前記したとおり、質量%で、C:0.15〜0.22%、Si:0.1〜1.0%、Mn:0.10〜1.00%、Cr:12.00〜14.00%、N:0.01〜0.05%、Al:0.001〜0.1%、P:0.020%以下およびS:0.010%以下を含有し、且つV:0.005〜0.200%、Nb:0.005〜0.200%、Ti:0.005〜0.200%およびB:0.0005〜0.0100%のうちの1種以上を含有し、残部がFeおよび不純物からなるビレットを穿孔圧延し、さらに延伸圧延して素管となし、該素管を、最終圧延前の均熱における再加熱温度T(℃)および最終圧延における断面加工度R(%)が前記(1)式により表される関係を満足するように、均熱した後、最終圧延することを特徴とするマルテンサイト系ステンレス鋼管の製造方法である。以下に、本発明の方法についてさらに詳細に説明する。 As described above, the present invention is, in mass%, C: 0.15 to 0.22%, Si: 0.1 to 1.0%, Mn: 0.10 to 1.00%, Cr: 12.00. -14.00%, N: 0.01-0.05%, Al: 0.001-0.1% , P: 0.020% or less and S: 0.010% or less, and V: One or more of 0.005 to 0.200%, Nb: 0.005 to 0.200%, Ti: 0.005 to 0.200% and B: 0.0005 to 0.0100% are contained. The remaining billet is formed by piercing and rolling a billet made of Fe and impurities, and further stretch-rolled to form a raw pipe. The raw pipe is subjected to reheating temperature T (° C.) in soaking before final rolling and cross-sectional work degree in final rolling. After soaking so that R (%) satisfies the relationship represented by the formula (1), it is finally rolled. A method for manufacturing a martensitic stainless steel pipe characterized by and. Hereinafter, the method of the present invention will be described in more detail.

(1)鋼管の化学成分組成
本発明のマルテンサイト系ステンレス鋼管の化学成分組成を前記のように規定した理由および好ましい範囲について説明する。
(1) Chemical component composition of steel pipe The reason why the chemical component composition of the martensitic stainless steel pipe of the present invention is specified as described above and the preferred range will be described.

C:
Cは、Nとともに製管後の鋼管、すなわち、熱間圧延により製管したままで、熱処理を施されていない鋼管の固溶強化をもたらす元素である。固溶強化による被衝撃加工部の遅れ破壊を防止するためには、その含有量を0.22%以下とする必要がある。しかし、C含有量が低下し過ぎると、熱処理後に適正な強度を保つことができなくなる。また、Cは、オーステナイト生成元素であることから、C含有量が低下し過ぎると、δフェライトの生成により、製管後に中被れ疵が発生する。上記の理由から、C含有量は0.15%以上とする必要がある。さらに好ましいC含有量の範囲は、0.18%〜0.21%である。
C:
C is an element that brings about solid solution strengthening of the steel pipe after the pipe making together with N, that is, the steel pipe that has not been heat-treated while being piped by hot rolling. In order to prevent delayed fracture of the impacted part due to solid solution strengthening, the content needs to be 0.22% or less. However, if the C content is too low, it becomes impossible to maintain an appropriate strength after the heat treatment. Further, since C is an austenite-generating element, if the C content is excessively reduced, burrs are generated after pipe making due to the generation of δ ferrite. For the above reasons, the C content needs to be 0.15% or more. A more preferable range of the C content is 0.18% to 0.21%.

Si:
Siは、鋼の脱酸作用を有する元素である。その効果を得るためには、Si含有量を0.1%以上とする必要がある。一方、含有量が1.0%を超えて多くなると、靭性が劣化する。上記の理由から、Si含有量の適正範囲は、0.1〜1.0%とした。靭性の確保を優先させる場合には、その含有量を0.75%以下とすることが好ましい。さらに好ましい含有量の範囲は、0.20〜0.35%である。
Si:
Si is an element having a deoxidizing action of steel. In order to obtain the effect, the Si content needs to be 0.1% or more. On the other hand, if the content exceeds 1.0%, the toughness deteriorates. For the above reason, the appropriate range of the Si content is set to 0.1 to 1.0%. When priority is given to ensuring toughness, the content is preferably 0.75% or less. A more preferable range of the content is 0.20 to 0.35%.

Mn:
Mnは、鋼の強度向上作用を有し、また、Siと同様に脱酸作用を有する元素である。さらに、鋼中のSをMnSとして固定し、熱間加工性を改善する作用も有する。それらの効果を得るためには、0.10%以上を含有させる必要がある。しかし、その含有量が1.00%を超えて多くなると、靭性が劣化する。上記の理由から、Mn含有量の適正範囲は、0.10〜1.00%とした。
Mn:
Mn is an element that has an effect of improving the strength of steel and also has a deoxidizing action similar to Si. Furthermore, it has the effect | action which fixes S in steel as MnS and improves hot workability. In order to acquire those effects, it is necessary to contain 0.10% or more. However, when the content exceeds 1.00%, the toughness deteriorates. For the above reason, the appropriate range of Mn content is 0.10 to 1.00%.

Cr:
Crは、鋼の耐食性を向上させる作用を有する基本成分である。特に、Cr含有量を12.00%以上とすることにより、耐孔食性および耐隙間腐食性が改善されるとともに、CO2環境下での耐食性が著しく向上する。一方、Crはフェライト形成元素であることから、その含有量が14.00%を超えて多くなると、高温での加工の際にδフェライトが生成しやすくなり、熱間加工性が損なわれる。また、過度のCr添加は、製造コストの上昇を招く。上記の理由により、Cr含有量の適正範囲は、12.00〜14.00%とした。含有率のより好ましい範囲は12.40〜13.10%である。
Cr:
Cr is a basic component having an effect of improving the corrosion resistance of steel. In particular, by setting the Cr content to 12.00% or more, the pitting corrosion resistance and crevice corrosion resistance are improved, and the corrosion resistance in a CO 2 environment is remarkably improved. On the other hand, since Cr is a ferrite-forming element, if its content exceeds 14.00%, δ-ferrite tends to be generated during high-temperature processing, and hot workability is impaired. Further, excessive addition of Cr causes an increase in manufacturing cost. For the above reason, the appropriate range of Cr content is 12.00 to 14.00%. A more preferable range of the content is 12.40 to 13.10%.

N:
Nは、オーステナイト安定化元素であり、鋼の熱間加工性を改善して内面疵の発生を防止する作用を有する。その効果を得るためには、0.01%以上を含有させる必要がある。しかし、その含有量が0.05%を超えて多くなると、被衝撃加工部の遅れ破壊を引き起こす。したがって、N含有量の適正範囲は、0.01〜0.05%とした。その含有量を0.02〜0.035%とすればさらに好ましい。
N:
N is an austenite stabilizing element and has an action of improving the hot workability of steel and preventing the occurrence of internal flaws. In order to obtain the effect, it is necessary to contain 0.01% or more. However, if the content exceeds 0.05%, delayed fracture of the impacted part is caused. Therefore, the proper range of N content is set to 0.01 to 0.05%. More preferably, the content is 0.02 to 0.035%.

P:
Pは、鋼中の不純物元素である。その含有量が多いと熱処理後の製品の靭性が低下することから、その含有量の許容上限値を0.020%以下とした。P含有量は、できる限り少ないことが好ましい。
P:
P is an impurity element in steel. When the content is large, the toughness of the product after the heat treatment is lowered, so the allowable upper limit of the content is set to 0.020% or less. The P content is preferably as small as possible.

S:
Sは、その含有量が多くなると鋼の熱間加工性を低下させる不純物元素であることから、含有量の許容上限値を0.010%とした。S含有量は少ないほど好ましく、0.003%以下とすればさらに一層好ましい。
S:
Since S is an impurity element that decreases the hot workability of steel as the content increases, the allowable upper limit of the content is set to 0.010%. The smaller the S content, the better, and even more preferably 0.003% or less.

V、Ti、NbおよびBのうちの1種以上:
これらの元素は含有させれば、被衝撃加工部の遅れ破壊を防止する効果を発揮する。そのためには、これらの元素のうちの1種以上を含有させ、その含有量は、V、TiおよびNbについては0.005%以上、また、Bについては0.0005%以上とする。一方、これらの元素の含有量が多すぎると、熱処理後の窒化物の生成に起因する硬度の上昇により、耐食性の劣化や靭性の低下を招き、また、強度の変動を引き起こす。したがって、V、TiおよびNbについては、それらの含有量を各0.200%以下とし、また、Bについては0.0100%以下とする。
One or more of V, Ti, Nb and B:
If you ask these elements are free chromatic exhibits the effect of preventing delayed fracture of the impact processing unit. For this purpose, to contain one or more of these elements, the content thereof, V, 0.005% or more for Ti and Nb, also, for B you 0.0005% or more. On the other hand, if the content of these elements is too large, the increase in hardness resulting from the formation of nitride after the heat treatment causes a deterioration in corrosion resistance and a decrease in toughness, and causes a fluctuation in strength. Therefore, V, about Ti and Nb are their contents and the 0.200% or less, also for the B shall be the 0.0100% or less.

NiおよびCuのうちの1種以上:
これらの元素は、含有させてもさせなくてもよいが、1種以上を含有させれば、鋼の熱間加工性や耐食性を改善させる作用を有する。
One or more of Ni and Cu:
These elements may or may not be contained, but if one or more elements are contained, they have an effect of improving the hot workability and corrosion resistance of steel.

Ni:Niはオーステナイト安定化元素であることから、含有させれば、鋼の熱間加工性を改善する作用を有する。その効果を得るためには、0.001%以上を含有させることが好ましい。一方、含有量が過度に多いと、耐硫化物応力腐食割れ性が低下する。したがって、その含有量は0.5%以下とすることが好ましい。   Ni: Ni is an austenite stabilizing element. Therefore, when Ni is contained, it has the effect of improving the hot workability of steel. In order to acquire the effect, it is preferable to contain 0.001% or more. On the other hand, when the content is excessively large, the resistance to sulfide stress corrosion cracking is lowered. Therefore, the content is preferably 0.5% or less.

Cu:Cuは鋼の耐食性向上させる元素であり、またオーステナイト安定化元素であることから、含有させれば、鋼の熱間加工性を改善する作用を有する。その効果を得るには、0.001%以上の含有が好ましい。一方、Cuは低融点金属であり、含有量が過剰になると、かえって熱間加工性を低下させる。したがって、その含有量は0.25%以下とすることが好ましい。   Cu: Cu is an element that improves the corrosion resistance of steel, and since it is an austenite stabilizing element, if contained, it has the effect of improving the hot workability of steel. In order to acquire the effect, containing 0.001% or more is preferable. On the other hand, Cu is a low melting point metal, and when the content is excessive, the hot workability is reduced. Therefore, the content is preferably 0.25% or less.

Al:Alは、含有させれば、鋼の脱酸剤として有効に作用し、また、鋼管の外被れ疵の発生を防止する作用も有する。その効果を得るには、0.001%以上を含有させる。一方、含有量が多すぎると、鋼の洗浄度を低下させ、また連続鋳造時に浸漬ノズルの詰まりを発生させる。したがって、Al含有量は0.1%以下とする。 Al: When Al is contained, it effectively acts as a deoxidizing agent for steel, and also has an effect of preventing the occurrence of outer shell flaws in the steel pipe. To obtain the effect, Ru is contained more than 0.001%. On the other hand, if the content is too large, the degree of cleaning of the steel is lowered, and the immersion nozzle is clogged during continuous casting. Therefore, Al content is you 0.1% or less.

Ca:Caは、含有させれば、鋼中のSと結合してSの粒界偏析による熱間加工性の低下を防止する作用を有する。その効果を得るためには、0.0001%以上の含有が好ましい。一方、Caが過度に多く含有されると、地疵発生の原因となるので、その含有量は、0.0050%以下とすることが好ましい。   When Ca: Ca is contained, it has an action of combining with S in the steel and preventing a decrease in hot workability due to segregation of S at the grain boundary. In order to acquire the effect, containing 0.0001% or more is preferable. On the other hand, when Ca is contained excessively, it causes ground generation, so the content is preferably 0.0050% or less.

(2)均熱における再加熱温度と最終圧延における断面加工度との関係
上記の適正範囲の鋼成分組成を有する外径190mmのビレットを穿孔圧延後、延伸圧延して素管とし、その素管を種々の再加熱温度T(℃)にて均熱した後、断面加工度R(%)を変化させて最終圧延を行い、製管後の鋼管の遅れ破壊による割れの発生状況および内面疵の発生状況を調査する基礎試験を行った。一部の基礎試験では、鋼中のN含有量またはMn含有量が適正範囲を外れるビレットを用いた試験も行った。
(2) Relationship between reheating temperature in soaking and cross-sectional working degree in final rolling After piercing and rolling a billet having an outer diameter of 190 mm having a steel component composition in the above-mentioned appropriate range, it is drawn and rolled into a raw pipe. After soaking at various reheating temperatures T (° C), the final rolling is performed with the cross-section processing degree R (%) changed, and the occurrence of cracks due to delayed fracture of the steel pipe after pipe making and the inner surface defect A basic test was conducted to investigate the occurrence. In some basic tests, tests using billets in which the N content or Mn content in the steel was outside the proper range were also conducted.

なお、穿孔圧延には、コーン型ロールを有する2ロール型傾斜圧延機を用い、ロールの傾斜角は12〜15°、交叉角は10°とした。   For piercing and rolling, a two-roll type inclined rolling mill having a cone type roll was used, and the roll inclination angle was set to 12 to 15 ° and the crossing angle was set to 10 °.

表1に、ビレットの鋼成分組成、鋼管の製造条件および試験結果を示した。   Table 1 shows the steel component composition of the billet, the manufacturing conditions of the steel pipe, and the test results.

Figure 0005011770
Figure 0005011770

同表において、断面加工度R(%)は、最終圧延における断面加工度を意味し、下記(2)式による算出値を示した。   In the same table, the cross-section work degree R (%) means the cross-section work degree in the final rolling, and shows a calculated value by the following equation (2).

R(%)={(Sin―Sout)/Sin}×100 ・・・・(2)
ただし、Sinは最終圧延前の鋼管の断面積を、また、Soutは最終圧延後の鋼管の断面積を表す。
R (%) = {(Sin−Sout) / Sin} × 100 (2)
However, Sin represents the cross-sectional area of the steel pipe before final rolling, and Sout represents the cross-sectional area of the steel pipe after final rolling.

また、試験結果は、下記の評価基準に基づいて評価し、評価結果を同表中の評価欄に示した。   The test results were evaluated based on the following evaluation criteria, and the evaluation results are shown in the evaluation column in the table.

内面疵の評価:
長さ10〜12.5mの50本以上の鋼管を製造し、目視および超音波試験(UST)により内面疵の発生状況を調査した。内面疵の発生率が3%以下の場合を○印により、また、内面疵の発生率が3%を超える場合を×印により評価した。
Evaluation of inner surface defects:
50 or more steel pipes having a length of 10 to 12.5 m were manufactured, and the occurrence state of inner surface flaws was examined by visual inspection and an ultrasonic test (UST). The case where the occurrence rate of internal flaws was 3% or less was evaluated by ○ mark, and the case where the occurrence rate of internal flaws exceeded 3% was evaluated by X mark.

割れの評価:
製管後の鋼管から長さ250mmの落重試験用試験片を採取し、この試験片に、先端の曲率半径が90mmで質量が150kgの重錘を0.2mの高さから落下させ(すなわち、294Jの衝撃荷重を与え)ることにより変形を加え、目視およびUSTにより割れの有無を調査した。1週間後に割れの発生していない場合を○印により、3日後に割れの発生していない場合を△印により、そして、3日後に割れの発生した場合を×印により、それぞれ評価した。
Crack evaluation:
A test piece for drop weight test having a length of 250 mm was collected from the steel pipe after pipe making, and a weight having a radius of curvature of 90 mm at the tip and a weight of 150 kg was dropped from the height of 0.2 m on this test piece (that is, The sample was deformed by applying an impact load of 294J), and the presence or absence of cracks was examined by visual inspection and UST. The case where cracks did not occur after 1 week was evaluated by a mark ◯, the case where cracks did not occur after 3 days was evaluated by a mark Δ, and the case where cracks occurred after 3 days were evaluated by a mark X.

総合評価:
上記の内面疵の評価結果および割れの評価結果のうち、低い方の評価結果を総合評価結果とした。
Comprehensive evaluation:
Of the evaluation results of the inner surface defects and the evaluation results of cracks, the lower evaluation result was taken as the comprehensive evaluation result.

さらに、上記表1に示された試験結果のうち、鋼中のNおよびMn含有率が請求項1で規定する適正範囲を満たす試験について、内面疵および割れの総合評価に及ぼす断面加工度および再加熱温度の影響を整理した。   Further, among the test results shown in Table 1 above, with respect to the test in which the N and Mn contents in the steel satisfy the appropriate range specified in claim 1, the degree of cross-sectional work and the effect on the comprehensive evaluation of inner surface flaws and cracks The effect of heating temperature was arranged.

図2は、鋼管の内面疵および遅れ破壊による割れの総合評価に及ぼす断面加工度および再加熱温度の影響を示す図である。   FIG. 2 is a diagram showing the influence of the cross-section working degree and the reheating temperature on the overall evaluation of cracks due to inner surface defects and delayed fracture of a steel pipe.

表1および図2に示された結果から、総合評価が○評価となる場合と、△評価または×評価となる場合との境界線を、最終圧延における断面加工度R(%)と均熱における再加熱温度T(℃)との関係式として求め、下記(3)式を得た。   From the results shown in Table 1 and FIG. 2, the boundary line between the case where the overall evaluation is ○ evaluation and the case where the evaluation is Δ evaluation or × evaluation is the cross-sectional work degree R (%) in final rolling and soaking. It calculated | required as a relational expression with reheating temperature T (degreeC), and obtained the following (3) Formula.

T=44.4×Ln(R)+821 ・・・・(3)
上記(3)式の関係から、被衝撃加工部の遅れ破壊による割れの発生を防止し、かつ内面疵の発生を抑止するためには、穿孔圧延して得られた素管の均熱時における再加熱温度T(℃)および最終圧延における断面加工度R(%)が前記(1)式により表される関係を満足するように調整する必要のあることが判明した。
T = 44.4 × Ln (R) +821 (3)
From the relationship of the above formula (3), in order to prevent the occurrence of cracking due to delayed fracture of the impacted part and to suppress the occurrence of inner surface flaws, It has been found that it is necessary to adjust the reheating temperature T (° C.) and the cross-section working degree R (%) in the final rolling so as to satisfy the relationship represented by the formula (1).

また、鋼中のN含有量が適正範囲を外れる試験番号A31およびA35ならびにMn含有量が適正範囲を外れる試験番号A36およびA40では、内面疵または割れが発生し、総合評価は△評価または×評価であった。   In addition, in test numbers A31 and A35 in which the N content in the steel deviates from the proper range and in test numbers A36 and A40 in which the Mn content deviates from the proper range, internal flaws or cracks occurred, and the overall evaluation was Δ evaluation or × evaluation Met.

本発明のマルテンサイト系ステンレス鋼管の製造方法の効果を確認するため、下記に述べる鋼管製造試験を行い、その結果を評価した。   In order to confirm the effect of the manufacturing method of the martensitic stainless steel pipe of the present invention, a steel pipe manufacturing test described below was conducted and the result was evaluated.

前記の基礎試験と同様にして、種々の鋼成分組成を有する外径190mmのビレットを穿孔圧延して素管を製造し、その素管を種々の再加熱温度T(℃)にて均熱した後、断面加工度R(%)を変化させて最終圧延を行い、製管後の鋼管の遅れ破壊による割れの発生状況および内面疵の発生状況を調査した。   In the same manner as in the basic test described above, billets having an outer diameter of 190 mm having various steel composition compositions were pierced and rolled to produce raw tubes, and the raw tubes were soaked at various reheating temperatures T (° C.). After that, final rolling was performed while changing the cross-section working degree R (%), and the occurrence of cracks and the occurrence of internal flaws were investigated due to delayed fracture of the steel pipe after pipe making.

また、穿孔圧延には、コーン型ロールを有する2ロール型傾斜圧延機を用い、ロールの傾斜角は12〜15°、交叉角は10°とした。   For piercing and rolling, a two-roll type inclined rolling mill having a cone-type roll was used, and the roll inclination angle was 12 to 15 ° and the crossing angle was 10 °.

表2および表3に、ビレットの鋼成分組成、鋼管の製造条件および試験結果を示した。   Tables 2 and 3 show the steel component composition of the billet, the manufacturing conditions of the steel pipe, and the test results.

Figure 0005011770
Figure 0005011770

Figure 0005011770
Figure 0005011770

なお、試験結果は、前記の基礎試験において用いた評価基準と同一の基準により評価した。   The test results were evaluated according to the same criteria as those used in the basic test.

試験番号B9、B10、B14、B15、B19、B20、B24、B25、B29、B30、B34、B35、B39およびB40は、それぞれ本発明の範囲を満足する本発明例である。また、試験番号B5〜B8は、鋼成分中のN含有量またはMn含有量が本発明の範囲を満たさない比較例であり、試験番号B11〜B13、B16〜B18、B21〜B23、B26〜B28、B31〜B33およびB36〜B38は、それぞれ断面加工度Rと再加熱温度Tとの関係が前記(1)式の関係を満たさない比較例である。
Test number B 9, B10, B14, B15 , B19, B20, B24, B25, B29, B30, B34, B35, B39 and B40 are examples of the present invention which satisfies the scope of the present invention, respectively. Test numbers B5 to B8 are comparative examples in which the N content or Mn content in the steel components does not satisfy the scope of the present invention, and the test numbers B11 to B13, B16 to B18, B21 to B23, and B26 to B28. , B31 to B33 and B36 to B38 are comparative examples in which the relationship between the cross-section processing degree R and the reheating temperature T does not satisfy the relationship of the expression (1).

本発明の範囲を満足する上記の本発明例では、製管後の遅れ破壊による割れ、および内面疵がいずれも発生せず、良好な品質の鋼管が得られた。特に、V、Ti、NbおよびBのうちの1種以上、またはNiおよびCuのうちの1種以上、またはAlおよびCaのうちの1種以上を含有する本発明例の試験番号B9、B10、B14、B15、B19、B20、B24、B25、B29、B30、B34、B35、B39およびB40は、それぞれ、さらに優れた耐遅れ破壊性能、熱間加工性などを有する。   In the above examples of the present invention satisfying the scope of the present invention, neither cracking due to delayed fracture after pipe production nor internal flaws occurred, and a steel pipe of good quality was obtained. In particular, test numbers B9, B10 of the present invention containing one or more of V, Ti, Nb and B, or one or more of Ni and Cu, or one or more of Al and Ca, B14, B15, B19, B20, B24, B25, B29, B30, B34, B35, B39, and B40 each have further excellent delayed fracture resistance, hot workability, and the like.

これに対して、鋼成分中のN含有量またはMn含有量が本発明の範囲を満たさない比較例の試験番号B5〜B8では、熱間加工性の低下による内面疵の発生、耐遅れ破壊性の低下による割れの発生および靱性の低下による割れの発生が認められ、劣った品質の鋼管となった。また、断面加工度Rと再加熱温度Tとが前記(1)式の関係を満たさない比較例の試験番号B11〜B13、B16〜B18、B21〜B23、B26〜B28、B31〜B33およびB36〜B38は、それぞれ、遅れ破壊による割れや内面疵が発生し、性能の劣った鋼管であった。   On the other hand, in the test numbers B5 to B8 of comparative examples in which the N content or the Mn content in the steel component does not satisfy the scope of the present invention, the occurrence of internal flaws due to a decrease in hot workability, delayed fracture resistance The occurrence of cracks due to the deterioration of the steel and the occurrence of cracks due to the decrease in the toughness were observed, resulting in a steel pipe of inferior quality. Moreover, test numbers B11 to B13, B16 to B18, B21 to B23, B26 to B28, B31 to B33, and B36 to Comparative Examples in which the cross-section processing degree R and the reheating temperature T do not satisfy the relationship of the expression (1). Each of B38 was a steel pipe with inferior performance due to cracks and internal flaws caused by delayed fracture.

本発明の鋼管の製造方法によれば、ビレットの鋼成分組成、および、穿孔圧延された素管の均熱温度と最終圧延における断面加工度との関係を適正化したことにより、13%Crなどのマルテンサイト系ステンレス鋼管の被衝撃加工部の遅れ破壊による割れの発生を防止し、かつ内面疵の発生を抑止することができる。したがって、本発明の方法は、鋼管の運搬および保管ならびに製管から熱処理までの工程上の制約を受けることなく、高品質の鋼管を製造できるプロセスとして、油井管用などのマルテンサイト系ステンレス鋼管の製造分野において広範に適用できる。   According to the method of manufacturing a steel pipe of the present invention, the steel component composition of the billet and the relation between the soaking temperature of the pierced and rolled raw pipe and the cross-sectional processing degree in the final rolling are optimized, so that 13% Cr or the like It is possible to prevent the occurrence of cracks due to delayed fracture of the impacted part of the martensitic stainless steel pipe and to suppress the occurrence of internal flaws. Therefore, the method of the present invention is a process for producing martensitic stainless steel pipes for oil well pipes and the like as a process capable of producing high-quality steel pipes without being restricted in the process from transportation and storage of steel pipes and from pipe making to heat treatment. Widely applicable in the field.

継目無鋼管を熱間で製造するマンネスマン製管法の製造工程の一例を説明する図である。It is a figure explaining an example of the manufacturing process of the Mannesmann pipe manufacturing method which manufactures a seamless steel pipe hot. 鋼管の内面疵および遅れ破壊による割れの評価に及ぼす断面加工度および再加熱温度の影響を示す図である。It is a figure which shows the influence of the cross-section work degree and the reheating temperature which give to the evaluation of the crack by internal flaw and delayed fracture of a steel pipe.

符号の説明Explanation of symbols

1:中実ビレット、 2:素管、 3:穿孔圧延機、 4:マンドレルミル、
4b:マンドレルバー、 4r:圧延ロール、 5:再加熱炉、
6:ストレッチレデューサ、 6r:圧延ロール
1: solid billet, 2: blank tube, 3: piercing and rolling mill, 4: mandrel mill,
4b: mandrel bar, 4r: rolling roll, 5: reheating furnace,
6: Stretch reducer, 6r: Rolling roll

Claims (3)

質量%で、C:0.15〜0.22%、Si:0.1〜1.0%、Mn:0.10〜1.00%、Cr:12.00〜14.00%、N:0.01〜0.05%、Al:0.001〜0.1%、P:0.020%以下およびS:0.010%以下を含有し、且つV:0.005〜0.200%、Nb:0.005〜0.200%、Ti:0.005〜0.200%およびB:0.0005〜0.0100%のうちの1種以上を含有し、残部がFeおよび不純物からなるビレットを穿孔圧延し、さらに延伸圧延して素管となし、該素管を、最終圧延前の均熱における再加熱温度T(℃)および最終圧延における断面加工度R(%)が下記(1)式により表される関係を満足するように、均熱した後、最終圧延することを特徴とするマルテンサイト系ステンレス鋼管の製造方法。
T>44.4×ln(R)+821 ・・・(1)
ただし、再加熱温度Tは上限を1020℃とする
In mass%, C: 0.15 to 0.22%, Si: 0.1 to 1.0%, Mn: 0.10 to 1.00%, Cr: 12.00 to 14.00%, N: 0.01 to 0.05%, Al: 0.001 to 0.1% , P: 0.020% or less and S: 0.010% or less, and V: 0.005 to 0.200% Nb: 0.005 to 0.200%, Ti: 0.005 to 0.200% and B: 0.0005 to 0.0100%, and the balance is Fe and impurities. The billet is pierced and rolled, and further stretched and rolled to form a raw pipe. The raw pipe has a reheating temperature T (° C.) in soaking before the final rolling and a cross-section processing degree R (%) in the final rolling (1) The martenser is characterized in that it is soaked so as to satisfy the relationship represented by the formula, followed by final rolling. Method of manufacturing a door stainless steel pipe.
T> 44.4 × ln (R) +821 (1)
However, the upper limit of the reheating temperature T is 1020 ° C.
前記ビレットが、さらに、Feの一部に替えて、質量%で、Ni:0.001〜0.5%およびCu:0.001〜0.25%のうちの1種以上を含有する請求項1に記載のマルテンサイト系ステンレス鋼管の製造方法。 Claims containing one or more of from 0.001 to 0.25 percent: the billet, further, instead of part of Fe, by mass%, Ni: 0.001 to 0.5% Contact and Cu Item 2. A method for producing a martensitic stainless steel pipe according to Item 1 . 前記ビレットが、さらに、Feの一部に替えて、質量%で、Ca:0.0050%以下を含有する請求項1または2に記載のマルテンサイト系ステンレス鋼管の製造方法。 The billet is further, instead of part of Fe, at mass%, C a: method for manufacturing a martensitic stainless steel tube according to 0.0050% claim 1 or 2 containing hereinafter.
JP2006079131A 2006-03-22 2006-03-22 Method for producing martensitic stainless steel pipe Active JP5011770B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006079131A JP5011770B2 (en) 2006-03-22 2006-03-22 Method for producing martensitic stainless steel pipe
US11/723,622 US20070251611A1 (en) 2006-03-22 2007-03-21 Method for producing martensitic stainless steel tubes
CNA2007100889010A CN101041882A (en) 2006-03-22 2007-03-21 Method for producing martensitic stainless steel tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079131A JP5011770B2 (en) 2006-03-22 2006-03-22 Method for producing martensitic stainless steel pipe

Publications (2)

Publication Number Publication Date
JP2007254799A JP2007254799A (en) 2007-10-04
JP5011770B2 true JP5011770B2 (en) 2012-08-29

Family

ID=38629325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079131A Active JP5011770B2 (en) 2006-03-22 2006-03-22 Method for producing martensitic stainless steel pipe

Country Status (3)

Country Link
US (1) US20070251611A1 (en)
JP (1) JP5011770B2 (en)
CN (1) CN101041882A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3174649A1 (en) * 2014-07-31 2017-06-07 SMS Innse S.p.A. Compact plant for rolling seamless tubes
RU2017106032A (en) * 2014-07-31 2018-08-28 Смс Иннсе С.П.А. COMBINED DEVICE FOR ROLLING SEAMLESS PIPES
JP6686951B2 (en) * 2017-03-27 2020-04-22 Jfeスチール株式会社 Evaluation method for brittle crack propagation arresting performance of thick steel plate
EP3767000A4 (en) * 2018-05-25 2021-03-03 JFE Steel Corporation Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
CN110643895B (en) * 2018-06-27 2021-05-14 宝山钢铁股份有限公司 Martensitic stainless steel oil casing and manufacturing method thereof
CN111270129A (en) * 2018-12-05 2020-06-12 兴化市聚鑫不锈钢有限公司 Novel alloy wear-resistant material for mine hydraulic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979604B2 (en) * 1990-08-31 1999-11-15 住友金属工業株式会社 Manufacturing method of martensitic stainless steel seamless tube
JP2707839B2 (en) * 1990-12-25 1998-02-04 住友金属工業株式会社 Martensitic seamless steel pipe and its manufacturing method
JP3937964B2 (en) * 2001-08-29 2007-06-27 Jfeスチール株式会社 High strength and high toughness martensitic stainless steel seamless pipe manufacturing method
DE60231279D1 (en) * 2001-08-29 2009-04-09 Jfe Steel Corp Method for producing seamless tubes of high-strength, high-strength, martensitic stainless steel
JP2003105441A (en) * 2001-09-28 2003-04-09 Kawasaki Steel Corp METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JP4126979B2 (en) * 2002-07-15 2008-07-30 住友金属工業株式会社 Martensitic stainless steel seamless pipe and its manufacturing method

Also Published As

Publication number Publication date
CN101041882A (en) 2007-09-26
JP2007254799A (en) 2007-10-04
US20070251611A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP6227664B2 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4632000B2 (en) Seamless steel pipe manufacturing method
JP3700582B2 (en) Martensitic stainless steel for seamless steel pipes
EP2127767B1 (en) Process for producing seamless steel pipe made of high-chromium high-nickel alloy steel
US8701455B2 (en) Method for manufacturing a high alloy pipe
WO2010082395A1 (en) Process for production of duplex stainless steel pipe
JP5011770B2 (en) Method for producing martensitic stainless steel pipe
CA3108758C (en) Duplex stainless steel seamless pipe and method for manufacturing same
CA3118704C (en) Duplex stainless steel seamless pipe and method for manufacturing same
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP4126979B2 (en) Martensitic stainless steel seamless pipe and its manufacturing method
JP4380487B2 (en) Method for producing martensitic stainless steel pipe
JP5971415B2 (en) Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe
JP2004124158A (en) Seamless steel pipe and manufacturing method therefor
EP2835439B1 (en) Hollow seamless pipe for high-strength spring
JP5056990B2 (en) Method for producing seamless steel round bar made of high Cr-high Ni alloy and method for producing seamless pipe using the round steel piece
JP6225795B2 (en) Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking
CN111187978A (en) Phi 559 mm-711 mm large-caliber oblique rolling rotary-expansion seamless pipeline pipe and manufacturing method thereof
JP3456468B2 (en) Martensitic stainless steel seamless steel pipe with excellent machinability and hot workability
US7686897B2 (en) Martensitic stainless steel seamless pipe and a manufacturing method thereof
JP3858611B2 (en) Manufacturing method of seamless steel pipe with excellent versatility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5011770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350