JP4126979B2 - Martensitic stainless steel seamless pipe and its manufacturing method - Google Patents

Martensitic stainless steel seamless pipe and its manufacturing method Download PDF

Info

Publication number
JP4126979B2
JP4126979B2 JP2002206169A JP2002206169A JP4126979B2 JP 4126979 B2 JP4126979 B2 JP 4126979B2 JP 2002206169 A JP2002206169 A JP 2002206169A JP 2002206169 A JP2002206169 A JP 2002206169A JP 4126979 B2 JP4126979 B2 JP 4126979B2
Authority
JP
Japan
Prior art keywords
less
mass
content
steel pipe
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002206169A
Other languages
Japanese (ja)
Other versions
JP2004043935A (en
Inventor
茂 木谷
睦 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002206169A priority Critical patent/JP4126979B2/en
Priority to ARP030102375 priority patent/AR040354A1/en
Priority to EP03741248.3A priority patent/EP1521856B1/en
Priority to CNB2007101099334A priority patent/CN100532617C/en
Priority to MXPA05000454A priority patent/MXPA05000454A/en
Priority to PCT/JP2003/008625 priority patent/WO2004007780A1/en
Priority to BR0312612-9A priority patent/BR0312612A/en
Priority to CA2600580A priority patent/CA2600580C/en
Priority to CA2491834A priority patent/CA2491834C/en
Priority to CNB038167352A priority patent/CN100355914C/en
Priority to AU2003280989A priority patent/AU2003280989A1/en
Publication of JP2004043935A publication Critical patent/JP2004043935A/en
Priority to US11/030,107 priority patent/US7686897B2/en
Priority to ZA2005/00365A priority patent/ZA200500365B/en
Application granted granted Critical
Publication of JP4126979B2 publication Critical patent/JP4126979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油井管などとして使用される継目無鋼管であって、遅れ破壊による割れ発生のないマルテンサイト系ステンレス鋼継目無鋼管、およびその鋼管を中被れ疵の発生なしに製造する方法に関する。
【0002】
【従来の技術】
主に油井管として使用されるAPI-13Cr等のマルテンサイト系ステンレス鋼は、80ksi(552MPa)以上の降伏強度が要求され、かつ熱間加工性も必要とされるから、通常0.2%(以下、成分含有量についての%は質量%を意味する)程度のCが含有されている。このようにC含有量が多く、Cr含有量も多いことにより熱間製管のままでは高硬度のマルテンサイト組織となっており、靭性が低い。従って、従来の化学組成および製造方法では、製管後、熱処理までの間に衝撃荷重や静的荷重により加工を受けた部分(以下、「被衝撃加工部」という)の遅れ破壊による割れが発生する懸念がある。そのため、運搬および保管の際には鋼管の積み高さを制限したり、鋼管の落とし込み高さを制限するといった対策を講じなければならない。また、製管後、熱処理を行うまでの待機時間を短くしなければならないという制約もある。
【0003】
上記のようなハンドリング上の制約は、置き場の確保(積み上げ高さや落とし込み高さに制約があるので、広い置き場面積が必要)、衝撃荷重を与えないように管を取り扱うための作業能率の低下、制限時間内に熱処理するための製管と熱処理の工程の調整等、生産上、多くの不利益をもたらす。
【0004】
特開平8−120415公報には、Nの含有量を特定したマルテンサイト系ステンレス鋼が開示されている。しかし、その公報には熱処理後の靭性改善についてのみ記述されており、N含有量と製管後の鋼管の被衝撃加工部の遅れ破壊との関係についての記載はない。また、低N化により必然的に発生する熱間加工性の低下に伴う管の中被れ疵という内面欠陥の発生を防止する対策については全く言及されていない。この中被れ疵の発生防止対策がないと実用に供し得る継目無鋼管の工業的生産は困難である。
特開平6−306551号公報には、低炭素マルテンサイト系ステンレス鋼について、溶接熱影響部の靭性改善を意図して水素含有量を制限する発明が開示されている。また、特開平5−255734号公報には、同じく低炭素マルテンサイト系ステンレス鋼の遅れ破壊防止のための脱水素熱処理の発明が開示されている。これらの発明は、いずれも低炭素マルテンサイト鋼を対象としており、0.2%程度の高炭素マルテンサイト系ステンレス鋼について、製管後の鋼管の被衝撃加工部の遅れ破壊と水素量との関連についての記述はなされていない。
【0005】
【発明が解決しようとする課題】
本発明の第1の目的は、0.2%程度のCが含有されているマルテンサイト系ステンレス鋼管であって、製管後でも、熱処理後においても被衝撃加工部の遅れ破壊が発生しにくく、しかも中被れ疵のない鋼管を提供することにある。
【0006】
本発明の第2の目的は、製管後でも、熱処理後においても被衝撃加工部の遅れ破壊が発生しにくく、しかも中被れ疵のないマルテンサイト系ステンレス鋼管を製造する方法を提供することにある。
【0007】
【問題を解決するための手段】
後に詳述するとおり、本発明者は、鋼の多数の成分の含有量をそれぞれ適正範囲とし、併せてC(炭素)、H(水素)、N(窒素)およびS(硫黄)の相関関係を定めて上記の第1の目的を達成した。また、製管の条件を特定して、第2の目的を達成した。
【0008】
本発明は、下記(1)のマルテンサイト系ステンレス鋼および(2)のマルテンサイト系ステンレス鋼の製造方法を要旨とする。なお、前記のとおり、成分含有量に関する%は「質量%」を意味する。
【0009】
(1)C:0.15〜0.22%、Si:0.1〜1.0%、Mn:0.10〜1.00%、Cr:12.00〜14.00%、P:0.020%以下、S:0.010%以下、N:0.05%以下、O:0.0060%以下、さらにそれぞれ0.005〜0.200%のV、NbおよびTiならびに0.0005〜0.0100%のBの中から選んだ1種以上(但し、2種以上の場合は合計で0.005〜0.200%)を含有するとともに、 Al 0.1 %以下、 Ni 0.5 %以下、 Cu 0.25 %以下および Ca 0.0050 %以下のうちの少なくとも1種を含有し、残部が鉄および不純物からなり、残部は鉄および不純物からなり、下記の(1)式、(2)式、(4)式および(5)式をともに満たすか、または(1)式、(3)式、(4)式および(5)式をともに満たすことを特徴とするマルテンサイト系ステンレス継目無鋼管。
【0010】
C*+10N*≦0.45 ・・・(1)
H1≦−0.003(C*+10N*)+0.0016 ・・・(2)
H2≦−0.0018(C*+10N*)+0.00096 ・・・(3)
Cr*≦9.0 ・・・(4)
S≦0.088N*+0.00056 ・・・(5)
但し、上記の各式中のC*は有効固溶炭素量(質量%)、N*は有効固溶窒素量(質量%)、Cr*はCr当量で、それぞれ下記(6)式、(7)式および(8)式で表される。また、(2)式のH1は製管後の鋼管中の残存水素量(質量%)、(3)式のH2は熱処理後の鋼管中の残存水素量(質量%)であり、各式中の元素記号はその元素の含有量(質量%)を表す。
【0011】
C*=C−[12{(Cr/52)×(6/23)}/10] ・・・(6)
N*=N−[14{(V/51)+(Nb/93)}/10]
−[14{(Ti/48)+(B/11)+(Al/27)}/2] ・・・(7)
Cr*=Cr+4Si−(22C+0.5Mn+1.5Ni+30N) ・・・(8)
上記の継目無鋼管においては、Cは0.18〜0.21%、Siは0.20〜0.35%、Crは12.40〜13.10%、Sは0.003%以下、Nは0.035%以下であることが望ましい。
【0012】
なお、この明細書で「製管後の鋼管」というのは、熱間圧延で製管したままで、熱処理を施されていない鋼管を意味する。
【0013】
(2)C:0.15〜0.22%、Si:0.1〜1.0%、Mn:0.10〜1.00%、Cr:12.00〜14.00%、P:0.020%以下、S:0.010%以下、N:0.05%以下、O:0.0060%以下、さらにそれぞれ0.005〜0.200%のV、NbおよびTiならびに0.0005〜0.0100%のBの中から選んだ1種以上(但し、2種以上の場合は合計で0.005〜0.200%)を含有するとともに、 Al 0.1 %以下、 Ni 0.5 %以下、 Cu 0.25 %以下および Ca 0.0050 %以下のうちの少なくとも1種を含有し、残部は鉄および不純物からなり、上記の(1)式と、(4)式と、(5)式をともに満たす鋼を穿孔圧延する際、傾斜ロール式穿孔機による穿孔圧延を下記(a)式を満たす条件で行うことを特徴とするマルテンサイト系ステンレス鋼継目無鋼管の製造方法。
【0014】
Cr*<0.00009(C.A.+F.A.)−0.0035(C.A.+F.A.)
+0.0567(C.A.+F.A.)+8.0024 ・・・(a)
但し、(a)式中のC.A.は交叉角(但し、C.A.=0でもよい)、F.A.は傾斜角である。
【0015】
この製造方法においても、穿孔圧延に供する鋼のCは0.18〜0.21%、Siは0.20〜0.35%、Crは12.40〜13.10%、Sは0.003%以下、Nは0.035%以下であることが望ましい。
【0016】
また、穿孔圧延後、仕上げ圧延前の再加熱における均熱温度を920℃以上として熱間製管を実施することが望ましい。
【0017】
【発明の実施の形態】
本発明者は、マルテンサイト系ステンレス鋼での被衝撃加工部の遅れ破壊が侵入型元素であるC(炭素)、N(窒素)およびH(水素)の固溶量に左右されるとの仮説をたてて、多くの試験を行った。その結果、下記の事実が確認された。
【0018】
(1)製管後の鋼管の被衝撃加工部の遅れ破壊感受性は、CとNの固溶量に依存し、特にNの固溶量に大きく影響される。
【0019】
(2)Cの固溶量は、熱処理後の強度に大きく影響するが、NはCほどには熱処理後の強度に影響を及ぼさない。しかし、Nは製管後の鋼管の被衝撃加工部の耐遅れ破壊性を大きく低下させる。
【0020】
(3)製管後の鋼管の被衝撃加工部の耐遅れ破壊性を上げるためにN含有量を低くすると、高温でのオーステナイトが不安定となるため熱間加工性が低下する。そのために製管時に中被れ疵が多発するので、その解決が製造上の大きな課題となる。
【0021】
(4)この解決手段の一つが、ピアサーの穿孔角度(交叉角)と傾斜角をオーステナイト生成元素とフェライト生成元素の含有量により規定して被製管材の加工歪量を最小限に抑えることである。これによって中被れ疵の発生を防止することができる。
【0022】
以下、本発明のマルテンサイト系ステンレス鋼管とその製造方法の諸条件について詳細に説明する。
【0023】
1.鋼管の化学組成
本発明のマルテンサイト系ステンレス鋼管の化学組成を前記のように定めた理由を説明する。
【0024】
C:
CはNとともに製管後の鋼管の固溶強化をもたらす。固溶強化による被衝撃加工部の遅れ破壊を防止するためには0.22%以下とする必要がある。より好ましいのは0.21%以下である。しかし、C含有量を低減させると熱処理後に適正な強度を保つことができなくなる。またCはオーステナイト生成元素であるから、Cを過度に少なくするとδフェライトによる製管後の中被れ疵が発生する。これらの理由から、Cの含有量は0.15%以上であることが必要である。より好ましいのは0.18%以上である。なお、有効固溶Cの含有量は、前記の(1)式を満たす必要がある。その理由は後述する。
【0025】
Si:
Siは鋼の脱酸剤として利用される。0.1%未満の含有量ではその効果がなく、1.0%を超えると靭性が劣化する。靭性のためには、0.75%以下が望ましい。最も好ましい含有量は0.20〜0.35%である。
【0026】
Mn:
Mnは鋼の強度向上に効果的な元素であり、またSiと同様に脱酸作用がある。さらに鋼中のSをMnSとして固定し熱間加工性を改善する。0.10%未満ではその効果がなく、1.00%を超えると靭性が劣化する。
【0027】
Cr:
Crは、鋼の耐食性を向上させる基本成分である。特に、12.00%以上で孔食および隙間腐食に対する耐食性を改善するとともに、CO環境下での耐食性を著しく向上させる。一方、Crはフェライト形成元素であるから、その含有量が14.00%を超えると高温での加工の際にδフェライトが生成し易くなって、熱間加工性が損なわれる。また、過度のCr添加は製造コストを高くする。従って、Cr含有量の適正範囲は12.00〜14.00%である。より好ましい範囲は12.40〜13.10%である。
【0028】
P:
Pは鋼の不純物の一つであり、その含有量が多いと熱処理後の製品の靭性が低下するため、その許容上限値を0.020%とした。できるだけ少ないのが望ましい。
【0029】
S:
Sは鋼の熱間加工性を低減させる不純物であるから、その含有量は少ないほどよい。0.010%は許容上限値である。0.003%以下とするのが一層望ましい。なお、Sの含有量は、前記の(5)式を満たす必要がある。
【0030】
N:
Nはオーステナイト安定化元素で鋼の熱間加工性を改善する。一方、先に述べたように、製管後の鋼管の被衝撃加工部の遅れ破壊を引き起こす。従って、その上限を0.05%とした。好ましいのは0.035%以下である。本発明では、低窒素化による熱間加工性の劣化は、他の手段で補うので、Nの含有量はできるだけ少なくする。
【0031】
O(酸素):
鋼の脱酸が不十分でO(酸素)の含有量が高いと素材ビレットの表面疵が多くなり、熱間製管した鋼管に外被れ疵が発生する。従って、Oは0.0060%以下とした。Oはできるだけ少ない方がよい。
【0032】
V、Ti、NbおよびB:
これらの元素は、Nと結合して窒化物をつくる。従って、これらの1種以上を含有させれば、固溶N量を減少させ、N含有量を下げたのと同じ効果を発揮する。但し、含有量が多すぎると熱処理後の窒化物生成による硬度上昇によって耐食性の劣化や靭性低下を招き、また、強度ばらつきの原因となる。従って、V、TiおよびNbの含有量は、それぞれ単独で0.005〜0.200%、Bの含有量は0.0005〜0.0100%とした。これらを2種以上含有させる場合は合計で0.005〜0.200%とする。
【0033】
Al、Ni、CuおよびCa
本発明においては、 Al 0.1 %以下、 Ni 0.5 %以下、 Cu 0.25 %以下および Ca 0.0050 %以下のうちの少なくとも1種を含有する。
【0034】
Al:
Alは鋼の脱酸剤として有効であり、鋼管の外被れ疵の発生防止にも有効であるが、その含有量が多すぎると鋼の洗浄度を低下させ、また連続鋳造時に浸漬ノズル詰まりを発生させる。従って、その含有量を0.1 %以下とした。
【0035】
Ni:
Niはオーステナイト安定化元素で鋼の熱間加工性を改善するが、その含有量が過剰になると耐硫化物応力腐食割れ性が低下する。従って、その含有量を0.5 %以下とした。
【0036】
Cu:
Cuは鋼の耐食性向上させる元素であり、またオーステナイト安定化元素であるから鋼の熱間加工性を改善する。しかし、Cuは低融点であり、含有量が過剰になるとかえって熱間加工性を低下させる。従って、その含有量を0.25 %以下とした。
【0037】
Ca:
Caは、鋼中のSと結合してSの粒界偏析による熱間加工性の低下を防止する。しかし、Caが多量に含有されると地疵の原因となるので、その含有量を0.0050 %以下とした。
【0038】
2.(1)式から(5)式までについて
まず(1)式について説明する。被衝撃加工部の割れを防止するには、被衝撃加工部の耐遅れ破壊性を改善する必要がある。CおよびN等の侵入型元素は鋼の強度を上昇させ、被衝撃加工部の耐遅れ破壊性を低下させる。製管後の状態では、サイザーやレデユーサーでの熱間圧延後の残留応力が存在し、被衝撃加工部の耐遅れ破壊性がさらに低下する。
【0039】
本発明者はAPI-13Crにおいて、CとNの製管後の鋼管の被衝撃加工部の遅れ破壊に及ぼす影響を、衝撃荷重を与えた鋼管の遅れ破壊試験(試験条件は「実施例」の項で説明する)により確認した。その結果を図1、表1〜表4に示す。これらの図および表において有効C(C*)および有効N(N*)を用いたのは次の理由からである。
【0040】
Cの一部はCrと結合して炭化物を形成する。従って、侵入型元素として働くCは、全C量から炭化物となるCの量を差し引いたものである。この侵入型元素として有効なCが(6)式によって定義されるC*である。
【0041】
一方、Nの一部は、微量元素との間で窒化物を形成するから、全てのNが侵入型元素としては働かない。従って、窒化物として消費されるN量を全N量から差し引いたのが侵入型元素として有効なN量、即ち、(7)式で定義したN*である。(7)式では、微量元素のうち折出温度の低いNbおよびVの窒化物については係数を1/10、折出温度が高いTi、BおよびAlの窒化物については係数を1/2とした。
【0042】
CおよびNは、共に鋼に対する侵入型元素であり、同じ含有量であれば強度、硬度などへの影響はほぼ等しい。しかしながら、継目無鋼管用、特に油井用の13Cr系マルテンサイト系ステンレス鋼管の仕様においては、API-L80グレードに規定されるように、Cは0.18〜0.21%の範囲でほぼ限定される。これに対してNは「≦0.1%」とされているだけであるから、含有量の選択幅が広い。また、N含有量自体も一般に0.01〜0.05%と、C含有量に比して1桁少ない。そこで、前記の有効N(N*)を10倍して鋼の性質に及ぼすNの影響をまとめた。
【0043】
図1に示すように、有効C(C*)の含有量および有効N(N*)の含有量が少ない程、被衝撃加工部の遅れ破壊は発生しにくい。これらの結果をプロットして直線回帰することにより、前記(1)式、即ち、C*+10N* ≦0.45を定めた。
【0044】
侵入型元素であるCおよびNは、鋼管が衝撃を受けた場合の塑性変形による加工硬化にも影響する。特にNは転位を固着させて加工硬化を増大させる。種々の実験の結果、「C*+10N*」を0.45以下とすれば、この加工硬化の抑制にも大きな効果があること、従って、次に述べる水素起因の遅れ破壊の防止にも有効であることが明らかになった。
【0045】
被衝撃加工部の遅れ破壊は、被衝撃加工部の硬度と含有水素量に影響される。従って、この割れを防止するには、一つには、前述のように硬度を下げるために固溶Cおよび固溶Nを減少させる必要がある。しかし、ハンドリングの際の衝撃等で、鋼材が塑性変形して加工硬化した場合には、初期の硬度が低くても水素割れが発生する。この水素割れを防ぐには、鋼管中の水素含有量を制限することが重要である。
【0046】
鋼中の水素含有量は、製管後の状態と熱処理を施した後の状態とでは異なる。しかし、13Cr鋼では、熱処理温度がほぼ一定(焼入温度:920〜980℃、焼戻温度:650〜750℃)であるため、製管後の鋼管の水素量と熱処理後の鋼管の水素量との間には相関がある。
【0047】
図2は、後述の実施例で使用した13Cr鋼の製管後の鋼管の水素含有量(H1)と熱処理材の水素含有量(H2)との関係を示す図である。例えば、図中のaの○は、製管後の鋼管ではH1が約3ppmであったが、熱処理後のH2は約2ppmになったことを示している。
【0048】
前記の(2)式および(3)式は、「C*+10N*」とH(水素)の関係を規制した式である。上述のように、C*とN*による強度上昇と靭性低下に伴って水素による被衝撃加工部の遅れ破壊感受性が増大する。従って、この遅れ破壊の防止にはC*とN*とHの総合作用を考慮しなければならない。
【0049】
図3に、C含有量が0.19%の13Crマルテンサイト系ステンレス鋼の製管後の鋼管を使用して、「C*+10N*」とHの含有量と被衝撃加工部の遅れ破壊感受性との関係を調べた結果を示す。また、図4には熱処理材についての同じ調査の結果を示す。いずれも後述する実施例の試験で得た結果である。
【0050】
図3および図4から、前記(1)式および下記の(2)式または(3)式を満たせば、被衝撃加工部の遅れ破壊が発生しないことがわかる。ただし、H1は製管後の水素含有量、H2は熱処理後の鋼中残存水素量である。
【0051】
H1≦−0.003(C*+10N*)+0.0016 ・・・(2)
または H2≦−0.0018(C*+10N*)+0.00096 ・・・(3)
一方、(4)式および(5)式は、内面欠陥(中被れ疵)を抑制するための規制である。上記の(2)式または(3)式を満たすようにするという対策で製管後の鋼管および熱処理後の鋼管の被衝撃加工部の遅れ破壊を防止できるが、製管時に中被れ疵と呼ばれる内面欠陥が発生することがある。
【0052】
中被れ疵発生の原因の一つとして、ピアサー穿孔時の円周方向のせん断変形の影響がある。穿孔中の円周方向のせん断歪により、例えばビレット中の変形抵抗の異なる部分、すなわちフェライト−オーステナイト粒界、S等の偏析部、介在物等を起点としてクラックが発生し、それが圧延されて中被れ疵となる。
【0053】
まず、フェライト−オーステナイト粒界でのクラックを防ぐにはδフェライトの量をできるだけ少なくすればよい。δフェライトの生成量はCr当量(Cr*)と相関があり、Cr当量の値が増加するとフェライト生成量が増加する。Cr当量(Cr*)はフェライトフォーマーとオーステナイトフォーマーの関係を表す一次式、即ち、下記(8)式で表すことができる。
【0054】
Cr*=Cr+4Si−(22C+0.5Mn+1.5Ni+30N) ・・・(8)
この(8)式から明らかなように、Nの影響は大きい。即ち、製管後の鋼管の靭性向上のためにN含有量を少なくするとCr当量が大きくなり、フェライトが増加して中被れ疵が発生しやすくなる。そこで、δフェライトの発生を抑制するために下記の(4)式を満たすようにすると中被れ疵の発生が抑制されることが判明した。
Cr*≦9.0 ・・・(4)
Sの偏析部も熱間加工時にクラック発生の起点となる。これを抑制するため、S含有量をできるだけ低くするのが望ましい。そこで、前記のとおり、S含有量を0.010%以下(望ましいのは、0.003%以下)とした。なお、鋼中の介在物および地疵を少なくするため、また、製鋼段階でS量を下げるために酸素(O)の含有量は、0.0060%以下とするのが望ましい。
【0055】
前記のとおり、割れ抑制のために(1)式で規制するようにN*を下げると、(8)式のCr当量が大きくなってフェライト相が出やすくなり熱間加工性が悪化する。その熱間加工性を回復するには、S含有量を下げる必要がある。
【0056】
図5は、横軸がN*の含有量、縦軸がS含有量のマップに中被れ疵発生状況をプロットしたものである。この図から、下記の(5)式でS含有量を規制することによって中被れ疵の発生を防止できることがわかる。
【0057】
S≦0.088N*+0.00056 ・・・(5)
3.製造方法について
本発明の継目無鋼管の製造方法は、これまで述べた化学組成を有し、(1)式、(4)式および(5)式を満たす鋼を傾斜ロール式穿孔機により前記の(a)式を満たす条件で穿孔圧延することを特徴とする。
【0058】
穿孔圧延での中被れ疵の発生を防止するには、被圧延材の加工性も考慮して適切な圧延条件を選択することが重要である。
【0059】
中被れ疵の発生に影響を及ぼす因子は各種報告されているが、なかでもピアサー主ロールの傾斜角、および交叉角の値は特に重要な役割を果たすとされ、一般には傾斜角および交叉角を大きく設定するほど穿孔圧延時の付加的せん断変形が小さくなり、加工性の低い材料であっても疵の発生なく圧延が可能となる。
【0060】
しかしながら、傾斜角と交叉角を大きくすることは必ずしも容易ではなく、主電動機の更新や場合によっては圧延機本体の更新さえ必要となる。また、被圧延材で一定の加工性が確保されるのであれば、それに応じて必ずしも大きくない傾斜角、交叉角の選択が可能であると考えられる。従って、予め被圧延材の加工性に関する指標と、中被れ疵の抑制、換言すれば付加的せん断変形の抑制に関する指標との関係を見出すことができれば、経済性の観点から適切な製造条件(被圧延材の材質設計と穿孔圧延における条件設定)を選択することができ、実生産上極めて有効である。
【0061】
本発明者らは、傾斜角と交叉角が付加的せん断変形に及ぼす影響に関する過去の研究事実を再度検討し、傾斜角と交叉角がほぼ同程度のオーダーで付加的せん断歪と関係するという事実に注目して、「C.A.(交叉角)+F.A.(傾斜角)」という単純加算値に注目し、前記Cr*との関係を調査した。その結果、中被れ疵発生率はCr*および「C.A.+F.A.」と相関があることが見出され、安定製造作業の目安として中被れ疵発生率2%をクライテリアとして整理したところ、図6に示されるように、安定製造を確保するための条件が得られたのである。
【0062】
図6は、後述の実施例に示す試験で得た中被れ疵の発生状況を横軸「C.A.+F.A.」、縦軸Cr*のマップにプロットしたものである。図示のとおり、中被れ疵発生の境界線は、三次曲線で表される。そして、下記の(a)式を満たすとき、中被れ疵の発生が防止できる。
【0063】
Cr*<0.00009(C.A.+F.A.)−0.0035(C.A.+F.A.)
+0.0567(C.A.+F.A.)+8.0024 ・・・(a)
この(a)式の右辺は、図6の中被れ疵発生の境界を示す曲線を回帰式化して決定したものである。
【0064】
本発明の製造方法では、仕上げ圧延の前に再加熱を行う場合(レデユーサーを使用する場合)には、再加熱における均熱温度を920℃以上にするのが望ましい。再加熱における均熱温度が低いと加工によって扁平化した粒の再結晶が不十分でアズロール状態でのT方向(圧延方向に直角の方向)の靭性が低下する。また、NbやVの炭窒化物の固溶および拡散が不十分で、その炭窒化物周辺にCやNの濃化域が生じ、その部分で硬化と脆化がおこり、遅れ破壊が発生する。従って、再加熱の均熱温度は920℃以上とするのがよく、1000℃以上が望ましい。なお、均熱温度の上限は1100℃程度である。
【0065】
【実施例】
表1および表2に示す組成の鋼から外径が60.3mm、肉厚が4.83mmの継目無鋼管を製造し、下記の試験を行った。
【0066】
(1)遅れ破壊試験
製管後の鋼管から長さ250mmの落重試験材を採取した。この供試材に先端の曲率が90mmで質量が150kgの重りを高さ0.2mから落下させて衝撃荷重(294J)変形を加え、1週間後に割れ発生の有無を調査した。割れの確認は目視および超音波検査(UST)によって行った。その結果を表3および表4に示す。
【0067】
図1は、鋼管の有効固溶炭素(C*)および有効固溶窒素(N*)の含有量と割れ発生との関係をプロットしたものである。図示のとおり直線aが割れ発生の境界である。この直線aは「C*+10N*=0.45」で表される。従って、C*+10N*<0.45が遅れ破壊の発生しない条件となる。
【0068】
(2)水素含有量の測定
製管後の鋼管および熱処理後の鋼管の水素含有量をJIS Z2614に規定される分析方法で測定した。熱処理は、950℃からの水冷後に700℃で焼き戻す処理である。測定結果を表3および表4に示す。
【0069】
図2は、各供試材の製管後の水素含有量(H1)と熱処理後の水素含有量(H2)を示す図である。およそ「H2=0.6H1」の関係にあることがわかる。
【0070】
(3)有効固溶炭素(C*)、有効固溶窒素(N*)および水素含有量と遅れ破壊との関係
表3および表4に示した遅れ破壊発生の有無を、横軸が「C*+10N*」含有量、縦軸が水素含有量のマップに示す。図3は製管後の鋼管、図4は熱処理後の鋼管についてのものである。図3および図4の中の割れ発生の境界を示す直線はそれぞれ下記の(2)-1式と(3)-1式で表される。従って、遅れ破壊の発生しない条件は、前述の(2)式または(3)式を満たすことである。なお、(2)式または(3)式を満たしても、「C*+10N*」が0.45以上になると遅れ破壊が発生するから、(1)式を満たすことも必要である。
【0071】
H1=−0.003(C*+10N*)+0.0016 ・・・(2)-1
H2=−0.0018(C*+10N*)+0.00096 ・・・(3)-1
【0072】
【表1】

Figure 0004126979
【0073】
【表2】
Figure 0004126979
【0074】
【表3】
Figure 0004126979
【0075】
【表4】
Figure 0004126979
【0076】
(4)中被れ疵の調査
表1および表2に示した鋼の中から種々の有効N(N*)とSの含有量の鋼を選び、「C.A.+F.A.」を9として各500本製管し、中被れ疵発生の有無を調べた。その結果を図5に示す。図中の斜線は下記の(5)-1式で表される中被れ疵発生率2%の境界線である。この結果から、中被れ疵発生の防止には前記の(5)式を満たすことが必要であることがわかる。
【0077】
S=0.088N*+0.00056 ・・・(5)-1
表1および表2に示した鋼の中から表5に示す種々のCr当量(Cr*)鋼のビレットを使用して、下記の条件でそれぞれ50本製管して中被れ疵発生の有無を調べた。
【0078】
▲1▼ ビレット加熱温度:1200〜1250℃
▲2▼ 穿孔時のプラグ先端ドラフト率:5.0〜8.0%
▲3▼ C.A.+F.A.:10、17、21および30
表5にCr*および「C.A.+F.A.」と中被れ疵発生との関係を示す。なお、同表および図6では、中被れおよび外被れ疵とも発生率が2%未満であった場合を○、2%以上であった場合を●とした。また、中被れおよび外被れ疵とも評価が○の場合を総合評価で○とした。
【0079】
図6は、表5の結果を「C.A.+F.A.」とCr*のマップにプロットしたものである。図中の三次曲線が下記の(a)-1式で表される曲線である。従って、中被れ疵の発生を防止する条件は前記の(a)式を満たすことである。
【0080】
Cr*=0.00009(C.A.+F.A.)−0.0035(C.A.+F.A.)
+0.0567(C.A.+F.A.)+8.0024・・・(a)-1
【0081】
【表5】
Figure 0004126979
【0082】
【発明の効果】
本発明の13Crマルテンサイト系継目無鋼管は、製管後のハンドリングで衝撃加工を受けても遅れ破壊発生のおそれのないものである。この鋼管は、需要の増大している耐食性油井管等として有用である。また、本発明の製管方法によれば、中被れ疵の発生なしに13Crマルテンサイト系継目無鋼管を製造することができる。
【図面の簡単な説明】
【図1】有効固溶炭素(C*)および有効固溶窒素(N*)と遅れ破壊割れとの関係を示す図である。
【図2】製管後の鋼管の水素含有量(H1)と熱処理後の鋼管の水素含有量(H2)との関係を示す図である。
【図3】「Cr*+10N*」および製管後の鋼管の水素含有量(H1)と遅れ破壊割れとの関係を示す図である。
【図4】「Cr*+10N*」および熱処理後の鋼管の水素含有量(H2)と遅れ破壊割れとの関係を示す図である。
【図5】有効固溶窒素(N*)およびSの含有量と中被れ疵発生との関係を示す図である。
【図6】「交叉角(C.A.)+傾斜角(F.A.)」およびCr当量(Cr*)と中被れ疵発生との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a seamless steel pipe used as an oil well pipe or the like, and a martensitic stainless steel seamless steel pipe that does not generate cracks due to delayed fracture, and a method for manufacturing the steel pipe without the occurrence of inner covering flaws. .
[0002]
[Prior art]
Martensitic stainless steels such as API-13Cr used mainly as oil well pipes are required to have a yield strength of 80 ksi (552 MPa) or higher and hot workability. % Of the component content means mass%). Thus, since the C content is large and the Cr content is also large, a hot-hardened pipe has a high hardness martensite structure and low toughness. Therefore, in the conventional chemical composition and manufacturing method, cracking due to delayed fracture occurs in the part (hereinafter referred to as “impacted part”) that has been processed by impact load or static load between pipe making and heat treatment. There are concerns. Therefore, measures such as limiting the stacking height of steel pipes and limiting the dropping height of steel pipes must be taken during transportation and storage. In addition, there is a restriction that the waiting time until heat treatment after pipe making must be shortened.
[0003]
The above handling restrictions are to secure the storage space (there are restrictions on the stacking height and drop-in height, so a large storage space is required), and the work efficiency for handling the tube so as not to give an impact load, There are many disadvantages in production, such as adjustment of pipe making and heat treatment processes for heat treatment within the time limit.
[0004]
JP-A-8-120415 discloses martensitic stainless steel in which the N content is specified. However, the publication only describes toughness improvement after heat treatment, and there is no description about the relationship between the N content and the delayed fracture of the impacted part of the steel pipe after pipe making. In addition, there is no mention of a measure for preventing the occurrence of inner surface defects such as pipe capping due to the decrease in hot workability that is inevitably caused by low N. If there is no measure to prevent the occurrence of the cover, it is difficult to industrially produce seamless steel pipes that can be put to practical use.
Japanese Patent Application Laid-Open No. 6-306551 discloses an invention that limits the hydrogen content of a low carbon martensitic stainless steel with the intention of improving the toughness of the weld heat affected zone. Japanese Patent Laid-Open No. 5-255734 also discloses an invention of dehydrogenation heat treatment for preventing delayed fracture of low carbon martensitic stainless steel. These inventions are all intended for low-carbon martensitic steels. Regarding high-carbon martensitic stainless steel of about 0.2%, the relationship between delayed fracture of impacted parts of steel pipes after pipe making and hydrogen content. Is not described.
[0005]
[Problems to be solved by the invention]
The first object of the present invention is a martensitic stainless steel pipe containing about 0.2% of C, which is unlikely to cause delayed fracture of the impacted part even after pipe making or after heat treatment. The object is to provide a steel pipe with no inner covering.
[0006]
A second object of the present invention is to provide a method for producing a martensitic stainless steel pipe that is less likely to cause delayed fracture of an impacted part even after pipe making or after heat treatment, and that is free from inner covering. It is in.
[0007]
[Means for solving problems]
As will be described in detail later, the present inventor makes the contents of a large number of components of steel appropriate ranges, and also correlates C (carbon), H (hydrogen), N (nitrogen) and S (sulfur). The first objective is achieved. Moreover, the 2nd objective was achieved by specifying the conditions of pipe making.
[0008]
The gist of the present invention is the following (1) martensitic stainless steel and (2) a method of producing martensitic stainless steel. In addition, as above-mentioned,% regarding component content means "mass%."
[0009]
  (1) C: 0.15-0.22%, Si: 0.1-1.0%, Mn: 0.10-1.00%, Cr: 12.00-14.00%, P: 0.020% or less, S: 0.010% or less, N: 0.05% or less, O : 0.0060% or less, each containing 0.005 to 0.200% of V, Nb and Ti and 0.0005 to 0.0100% of B or more (provided that 0.005 to 0.200% in total in the case of 2 or more)And Al : 0.1 %Less than, Ni : 0.5 %Less than, Cu : 0.25 % And below Ca : 0.0050 % At least one of the following,The balance is made of iron and impurities, and the balance is made of iron and impurities, satisfying both the following formulas (1), (2), (4) and (5), or (1), (3 ), (4) and (5) are satisfied, martensitic stainless steel seamless steel pipe characterized by the above.
[0010]
C * + 10N * ≦ 0.45 (1)
H1 ≦ −0.003 (C * + 10N *) + 0.0016 (2)
H2 ≦ −0.0018 (C * + 10N *) + 0.00096 (3)
Cr * ≦ 9.0 (4)
S ≦ 0.088N * + 0.00056 (5)
However, in the above formulas, C * is the effective solute carbon content (mass%), N * is the effective solute nitrogen content (mass%), Cr * is the Cr equivalent, and the following formulas (6), (7 ) And (8). In addition, H1 in equation (2) is the amount of hydrogen remaining in the steel pipe after mass production (mass%), and H2 in equation (3) is the amount of hydrogen in the steel pipe after heat treatment (mass%). The element symbol of represents the content (% by mass) of the element.
[0011]
C * = C− [12 {(Cr / 52) × (6/23)} / 10] (6)
N * = N- [14 {(V / 51) + (Nb / 93)} / 10]
-[14 {(Ti / 48) + (B / 11) + (Al / 27)} / 2] (7)
Cr * = Cr + 4Si- (22C + 0.5Mn + 1.5Ni + 30N) (8)
In the seamless steel pipe, it is desirable that C is 0.18 to 0.21%, Si is 0.20 to 0.35%, Cr is 12.40 to 13.10%, S is 0.003% or less, and N is 0.035% or less.
[0012]
In this specification, “steel pipe after pipe making” means a steel pipe that has been piped by hot rolling and has not been heat-treated.
[0013]
  (2) C: 0.15-0.22%, Si: 0.1-1.0%, Mn: 0.10-1.00%, Cr: 12.00-14.00%, P: 0.020% or less, S: 0.010% or less, N: 0.05% or less, O : 0.0060% or less, each containing 0.005 to 0.200% of V, Nb and Ti and 0.0005 to 0.0100% of B or more (provided that 0.005 to 0.200% in total in the case of 2 or more)And Al : 0.1 %Less than, Ni : 0.5 %Less than, Cu : 0.25 % And below Ca : 0.0050 % At least one of the following,The balance is made of iron and impurities, and when piercing and rolling steel that satisfies both the above formulas (1), (4), and (5), piercing and rolling with an inclined roll type piercing machine is performed using the following formula (a) The manufacturing method of the martensitic stainless steel seamless steel pipe characterized by performing on the conditions which satisfy | fill.
[0014]
Cr * <0.00009 (C.A. + F.A.)3-0.0035 (C.A. + F.A.)2
+0.0567 (C.A. + F.A.) + 8.0024 (a)
In the formula (a), C.A. is a crossing angle (C.A. = 0 may be used), and F.A. is an inclination angle.
[0015]
Also in this manufacturing method, it is desirable that C of the steel used for piercing and rolling is 0.18 to 0.21%, Si is 0.20 to 0.35%, Cr is 12.40 to 13.10%, S is 0.003% or less, and N is 0.035% or less.
[0016]
In addition, it is desirable to carry out hot pipe production after setting the soaking temperature in reheating before piercing rolling and before finish rolling to 920 ° C. or higher.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor hypothesized that delayed fracture of impacted parts in martensitic stainless steel depends on the amount of solid solution of interstitial elements C (carbon), N (nitrogen) and H (hydrogen). A number of tests were conducted. As a result, the following facts were confirmed.
[0018]
(1) Delayed fracture susceptibility of the impacted part of the steel pipe after pipe production depends on the solid solution amount of C and N, and is greatly influenced by the solid solution amount of N in particular.
[0019]
(2) Although the solid solution amount of C greatly affects the strength after heat treatment, N does not affect the strength after heat treatment as much as C. However, N greatly reduces the delayed fracture resistance of the impacted part of the steel pipe after pipe making.
[0020]
(3) If the N content is decreased in order to increase the delayed fracture resistance of the impact-processed part of the steel pipe after pipe making, the austenite at high temperature becomes unstable and the hot workability is lowered. For this reason, during the pipe making process, there are frequent occurrences of coverings, so that the solution becomes a major manufacturing issue.
[0021]
(4) One of the solutions is to regulate the drilling angle (crossing angle) and inclination angle of the piercer according to the contents of the austenite-forming element and ferrite-forming element, thereby minimizing the processing strain of the pipe material to be manufactured. is there. As a result, it is possible to prevent the occurrence of middle covering wrinkles.
[0022]
Hereinafter, the conditions of the martensitic stainless steel pipe of the present invention and its manufacturing method will be described in detail.
[0023]
1. Chemical composition of steel pipe
The reason why the chemical composition of the martensitic stainless steel pipe of the present invention is determined as described above will be described.
[0024]
C:
C together with N brings about solid solution strengthening of the steel pipe after pipe making. In order to prevent delayed fracture of impacted parts due to solid solution strengthening, it is necessary to be 0.22% or less. More preferred is 0.21% or less. However, if the C content is reduced, it becomes impossible to maintain an appropriate strength after the heat treatment. Further, since C is an austenite-forming element, if C is excessively reduced, burrs due to δ ferrite are generated. For these reasons, the C content needs to be 0.15% or more. More preferred is 0.18% or more. In addition, the content of the effective solute C needs to satisfy the above formula (1). The reason will be described later.
[0025]
Si:
Si is used as a deoxidizer for steel. If the content is less than 0.1%, there is no effect, and if it exceeds 1.0%, the toughness deteriorates. For toughness, 0.75% or less is desirable. The most preferable content is 0.20 to 0.35%.
[0026]
Mn:
Mn is an element effective for improving the strength of steel, and has a deoxidizing action like Si. Furthermore, S in steel is fixed as MnS to improve hot workability. If it is less than 0.10%, there is no effect, and if it exceeds 1.00%, the toughness deteriorates.
[0027]
Cr:
Cr is a basic component that improves the corrosion resistance of steel. In particular, at 12.00% or more, the corrosion resistance against pitting corrosion and crevice corrosion is improved, and CO2Significantly improves the corrosion resistance under the environment. On the other hand, since Cr is a ferrite-forming element, if its content exceeds 14.00%, δ-ferrite is easily generated during high-temperature processing, and hot workability is impaired. Further, excessive addition of Cr increases the manufacturing cost. Therefore, the proper range of Cr content is 12.00-14.00%. A more preferable range is 12.40 to 13.10%.
[0028]
P:
P is one of the impurities of steel, and if the content is large, the toughness of the product after heat treatment is lowered, so the allowable upper limit is set to 0.020%. It is desirable to have as few as possible.
[0029]
S:
Since S is an impurity that reduces the hot workability of steel, the smaller the content, the better. 0.010% is the allowable upper limit. It is more desirable to make it 0.003% or less. Note that the S content needs to satisfy the above formula (5).
[0030]
N:
N is an austenite stabilizing element and improves the hot workability of steel. On the other hand, as described above, it causes delayed fracture of the impacted portion of the steel pipe after pipe making. Therefore, the upper limit was made 0.05%. Preferable is 0.035% or less. In the present invention, since the deterioration of hot workability due to low nitrogen is compensated by other means, the N content is made as small as possible.
[0031]
O (oxygen):
If the steel is not sufficiently deoxidized and the content of O (oxygen) is high, the surface billet of the material billet will increase, and encrustation flaws will occur on the hot-formed steel pipe. Therefore, O is set to 0.0060% or less. O should be as small as possible.
[0032]
V, Ti, Nb and B:
These elements combine with N to form nitrides. Therefore, if one or more of these are contained, the same effect as reducing the N content and reducing the N content is exhibited. However, if the content is too large, the increase in hardness due to the formation of nitride after heat treatment causes deterioration in corrosion resistance and a decrease in toughness, and causes variation in strength. Therefore, the contents of V, Ti and Nb are each 0.005 to 0.200%, and the content of B is 0.0005 to 0.0100%. When two or more of these are contained, the total content is 0.005 to 0.200%.
[0033]
  Al, Ni, Cu and Ca
  In the present invention, Al : 0.1 %Less than, Ni : 0.5 %Less than, Cu : 0.25 % And below Ca : 0.0050 % Or less.
[0034]
  Al:
  Al is effective as a deoxidizer for steel, and is effective in preventing the occurrence of fouling of steel pipes. However, if its content is too high, the degree of cleaning of the steel will be reduced and the immersion nozzle will be clogged during continuous casting. Is generated. Therefore, its content is0.1 %Less thanIt was.
[0035]
  Ni:
  Ni is an austenite stabilizing element that improves the hot workability of steel, but if its content is excessive, the resistance to sulfide stress corrosion cracking decreases. Therefore, its content is0.5 %Less thanIt was.
[0036]
  Cu:
  Cu is an element that improves the corrosion resistance of steel and is an austenite stabilizing element, so it improves the hot workability of steel. However, Cu has a low melting point, and if the content is excessive, it reduces the hot workability. Therefore, its content is0.25 %Less thanIt was.
[0037]
  Ca:
  Ca combines with S in the steel to prevent deterioration of hot workability due to segregation of S grain boundaries. However, if Ca is contained in a large amount, it will cause grounding.0.0050 %Less thanIt was.
[0038]
2. From (1) to (5)
First, equation (1) will be described. In order to prevent the impacted part from cracking, it is necessary to improve the delayed fracture resistance of the impacted part. Interstitial elements such as C and N increase the strength of the steel and decrease the delayed fracture resistance of the impacted part. In the state after pipe making, there is residual stress after hot rolling with a sizer or a reducer, and the delayed fracture resistance of the impacted part is further reduced.
[0039]
The present inventor, in API-13Cr, the effect on the delayed fracture of the impacted part of the steel pipe after the C and N pipes were produced, and the delayed fracture test of the steel pipe to which the impact load was applied (the test condition is that of “Example”). (Explained in the section). The results are shown in FIG. The reason why effective C (C *) and effective N (N *) are used in these figures and tables is as follows.
[0040]
A part of C combines with Cr to form a carbide. Accordingly, C that functions as an interstitial element is obtained by subtracting the amount of C that becomes carbide from the total C amount. C that is effective as the interstitial element is C * defined by the equation (6).
[0041]
On the other hand, since a part of N forms a nitride with a trace element, all N does not work as an interstitial element. Therefore, the amount of N consumed as nitride is subtracted from the total amount of N to obtain an effective amount of N as an interstitial element, that is, N * defined by equation (7). In equation (7), the Nb and V nitrides with low folding temperatures among the trace elements have a coefficient of 1/10, and the Ti, B and Al nitrides with high folding temperatures have a coefficient of 1/2. did.
[0042]
C and N are both interstitial elements for steel, and if they have the same content, the effects on strength, hardness, etc. are almost equal. However, in the specification of 13Cr martensitic stainless steel pipes for seamless steel pipes, particularly oil wells, C is almost limited in the range of 0.18 to 0.21% as defined in API-L80 grade. On the other hand, since N is only “≦ 0.1%”, the selection range of the content is wide. Further, the N content itself is generally 0.01 to 0.05%, which is one digit less than the C content. Therefore, the effect of N on the properties of steel was summarized by multiplying the above effective N (N *) by 10.
[0043]
As shown in FIG. 1, the smaller the effective C (C *) content and the effective N (N *) content, the harder the delayed fracture of the impacted part. By plotting these results and performing linear regression, the above equation (1), that is, C * + 10N * ≦ 0.45 was determined.
[0044]
The interstitial elements C and N also affect work hardening due to plastic deformation when the steel pipe is impacted. In particular, N fixes dislocations and increases work hardening. As a result of various experiments, if “C * + 10N *” is set to 0.45 or less, it has a great effect on suppressing the work hardening, and is therefore effective in preventing delayed fracture caused by hydrogen as described below. It became clear.
[0045]
The delayed fracture of the impacted part is affected by the hardness and hydrogen content of the impacted part. Therefore, in order to prevent this cracking, it is necessary to reduce the solid solution C and the solid solution N in order to reduce the hardness as described above. However, when the steel material is plastically deformed and hardened due to impact during handling, hydrogen cracking occurs even if the initial hardness is low. In order to prevent this hydrogen cracking, it is important to limit the hydrogen content in the steel pipe.
[0046]
The hydrogen content in steel is different between the state after pipe making and the state after heat treatment. However, in 13Cr steel, the heat treatment temperature is almost constant (quenching temperature: 920-980 ° C, tempering temperature: 650-750 ° C), so the amount of hydrogen in the steel pipe after pipe making and the amount of hydrogen in the steel pipe after heat treatment There is a correlation between
[0047]
FIG. 2 is a diagram showing the relationship between the hydrogen content (H1) of the steel pipe after the 13Cr steel pipe used in the examples described later and the hydrogen content (H2) of the heat-treated material. For example, o in the figure indicates that H1 was about 3 ppm in the steel pipe after pipe making, but H2 after the heat treatment was about 2 ppm.
[0048]
The expressions (2) and (3) are expressions that regulate the relationship between “C * + 10N *” and H (hydrogen). As described above, the delayed fracture susceptibility of the impacted part due to hydrogen increases with an increase in strength and a decrease in toughness due to C * and N *. Therefore, to prevent this delayed fracture, the combined action of C *, N * and H must be considered.
[0049]
Fig. 3 shows the relationship between C * + 10N *, H content, and delayed fracture susceptibility of impacted parts, using a steel pipe made of 13Cr martensitic stainless steel with a C content of 0.19%. The result of investigating the relationship is shown. FIG. 4 shows the result of the same investigation on the heat-treated material. All are the results obtained by the test of the Example mentioned later.
[0050]
3 and 4, it can be seen that if the above equation (1) and the following equation (2) or (3) are satisfied, the delayed fracture of the impacted part does not occur. However, H1 is the hydrogen content after pipe making, and H2 is the amount of hydrogen remaining in the steel after heat treatment.
[0051]
H1 ≦ −0.003 (C * + 10N *) + 0.0016 (2)
Or H2 ≦ −0.0018 (C * + 10N *) + 0.00096 (3)
On the other hand, the equations (4) and (5) are regulations for suppressing inner surface defects (medium covering defects). The measures to satisfy the above formula (2) or (3) can prevent delayed fracture of the impacted parts of the steel pipe after pipe making and the steel pipe after heat treatment. Sometimes called internal defects occur.
[0052]
One of the causes of the middle covering wrinkles is the influence of circumferential shear deformation during piercer drilling. Due to the shear strain in the circumferential direction during drilling, for example, cracks are generated starting from parts with different deformation resistance in the billet, that is, ferrite-austenite grain boundaries, segregated parts such as S, inclusions, etc. It becomes a mid-cover.
[0053]
First, in order to prevent cracks at the ferrite-austenite grain boundaries, the amount of δ ferrite should be as small as possible. The amount of δ ferrite produced correlates with the Cr equivalent (Cr *), and the amount of ferrite produced increases as the Cr equivalent value increases. Cr equivalent (Cr *) can be expressed by a linear expression representing the relationship between the ferrite former and the austenite former, that is, the following expression (8).
[0054]
Cr * = Cr + 4Si- (22C + 0.5Mn + 1.5Ni + 30N) (8)
As is clear from this equation (8), the influence of N is large. That is, if the N content is reduced to improve the toughness of the steel pipe after pipe making, the Cr equivalent becomes large and the ferrite increases, so that intermediate covering flaws are likely to occur. Thus, it has been found that if the following equation (4) is satisfied in order to suppress the occurrence of δ ferrite, the occurrence of intermediate covering flaws is suppressed.
Cr * ≦ 9.0 (4)
The segregated portion of S also becomes a starting point of crack generation during hot working. In order to suppress this, it is desirable to reduce the S content as much as possible. Therefore, as described above, the S content is set to 0.010% or less (desirably 0.003% or less). In order to reduce inclusions and soil in the steel, and to reduce the amount of S in the steel making stage, the content of oxygen (O) is preferably 0.0060% or less.
[0055]
As described above, if N * is lowered so as to be controlled by the formula (1) for suppressing cracking, the Cr equivalent of the formula (8) becomes large and a ferrite phase is easily produced, and the hot workability deteriorates. In order to recover the hot workability, it is necessary to lower the S content.
[0056]
FIG. 5 is a plot of the state of the occurrence of middle covering on a map where the horizontal axis is N * content and the vertical axis is S content. From this figure, it can be seen that by controlling the S content by the following formula (5), the occurrence of middle covering flaws can be prevented.
[0057]
S ≦ 0.088N * + 0.00056 (5)
3. About manufacturing method
The method for producing a seamless steel pipe of the present invention has the above-described chemical composition, and the steel satisfying the formulas (1), (4) and (5) is subjected to the above-mentioned (a) by using an inclined roll type punch. It is characterized by piercing and rolling under conditions that satisfy the equation.
[0058]
In order to prevent the occurrence of intermediate covering flaws in piercing and rolling, it is important to select appropriate rolling conditions in consideration of workability of the material to be rolled.
[0059]
Various factors have been reported to affect the occurrence of bunkering, but in particular, the inclination angle and crossing angle value of the piercer main roll are considered to play a particularly important role. The larger the is set, the smaller the additional shear deformation at the time of piercing and rolling, and even a material with low workability can be rolled without causing wrinkles.
[0060]
However, it is not always easy to increase the inclination angle and the crossing angle, and it is necessary to update the main electric motor and even the rolling mill body. In addition, if a certain workability is ensured for the material to be rolled, it is considered that an inclination angle and a crossing angle that are not necessarily large can be selected accordingly. Therefore, if it is possible to find in advance a relationship between an index related to workability of a material to be rolled and an index related to suppression of intermediate covering wrinkles, in other words, suppression of additional shear deformation, an appropriate manufacturing condition ( The material design of the material to be rolled and the condition setting in piercing and rolling can be selected, which is extremely effective in actual production.
[0061]
The inventors have reexamined past research facts regarding the effect of tilt angle and crossover angle on additional shear deformation, and the fact that the tilt angle and crossover angle are related to additional shear strain on the order of approximately the same degree. Focusing on the above, the simple addition value of “CA (crossing angle) + F.A. (Inclination angle)” was noted, and the relationship with Cr * was investigated. As a result, it was found that the incidence of medium covering wrinkles was correlated with Cr * and “CA + F.A.”. As shown in FIG. 6, conditions for ensuring stable production were obtained.
[0062]
FIG. 6 is a plot of the state of occurrence of middle covering obtained in the tests shown in the examples described later on a map with the horizontal axis “C.A. + F.A.” And the vertical axis Cr *. As shown in the figure, the boundary line of the occurrence of the middle covering is expressed by a cubic curve. And when satisfy | filling the following (a) formula, generation | occurrence | production of a middle covering can be prevented.
[0063]
Cr * <0.00009 (C.A. + F.A.)3-0.0035 (C.A. + F.A.)2
+0.0567 (C.A. + F.A.) + 8.0024 (a)
The right side of the equation (a) is determined by regressing a curve indicating the boundary of occurrence of the mid-cover in FIG.
[0064]
In the production method of the present invention, when reheating is performed before finish rolling (when a reducer is used), it is desirable that the soaking temperature in reheating is 920 ° C. or higher. If the soaking temperature in the reheating is low, the recrystallization of the grains flattened by the processing is insufficient, and the toughness in the T direction (direction perpendicular to the rolling direction) in the as-roll state decreases. In addition, the solid solution and diffusion of Nb and V carbonitrides are insufficient, and a C and N enriched region occurs around the carbonitrides, where hardening and embrittlement occur, and delayed fracture occurs. . Therefore, the soaking temperature for reheating is preferably 920 ° C. or higher, and preferably 1000 ° C. or higher. The upper limit of the soaking temperature is about 1100 ° C.
[0065]
【Example】
Seamless steel pipes having an outer diameter of 60.3 mm and a wall thickness of 4.83 mm were manufactured from steels having the compositions shown in Tables 1 and 2, and the following tests were performed.
[0066]
(1) Delayed fracture test
A drop weight test material having a length of 250 mm was taken from the steel pipe after pipe making. A weight having a tip curvature of 90 mm and a mass of 150 kg was dropped from a height of 0.2 m to this test material, and an impact load (294 J) was applied thereto. The crack was confirmed by visual inspection and ultrasonic inspection (UST). The results are shown in Tables 3 and 4.
[0067]
FIG. 1 is a plot of the relationship between the content of effective solute carbon (C *) and effective solute nitrogen (N *) and crack initiation in a steel pipe. As shown in the figure, the straight line a is the boundary of occurrence of cracking. The straight line a is represented by “C * + 10N * = 0.45”. Therefore, C * + 10N * <0.45 is a condition in which delayed fracture does not occur.
[0068]
(2) Measurement of hydrogen content
The hydrogen content of the steel pipe after pipe making and the steel pipe after heat treatment was measured by an analysis method specified in JIS Z2614. The heat treatment is a process of tempering at 700 ° C. after water cooling from 950 ° C. The measurement results are shown in Tables 3 and 4.
[0069]
FIG. 2 is a diagram showing the hydrogen content (H1) after pipe production of each specimen and the hydrogen content (H2) after heat treatment. It can be seen that the relationship is approximately “H2 = 0.6H1”.
[0070]
(3) Relationship between effective solute carbon (C *), effective solute nitrogen (N *) and hydrogen content and delayed fracture
The presence or absence of delayed fracture shown in Tables 3 and 4 is shown in a map of “C * + 10N *” content on the horizontal axis and hydrogen content on the vertical axis. FIG. 3 shows a steel pipe after pipe making, and FIG. 4 shows a steel pipe after heat treatment. The straight lines indicating the boundary of occurrence of cracks in FIGS. 3 and 4 are represented by the following equations (2) -1 and (3) -1. Therefore, the condition that the delayed fracture does not occur is to satisfy the above-mentioned formula (2) or (3). Even if the formula (2) or the formula (3) is satisfied, if “C * + 10N *” becomes 0.45 or more, delayed fracture occurs. Therefore, it is also necessary to satisfy the formula (1).
[0071]
H1 = -0.003 (C * + 10N *) + 0.0016 (2) -1
H2 = -0.0018 (C * + 10N *) + 0.00096 (3) -1
[0072]
[Table 1]
Figure 0004126979
[0073]
[Table 2]
Figure 0004126979
[0074]
[Table 3]
Figure 0004126979
[0075]
[Table 4]
Figure 0004126979
[0076]
(4) Investigation of inside cover
Select steels with various effective N (N *) and S contents from the steels shown in Table 1 and Table 2, and make 500 pipes each with 9 as "CA + FA." The presence or absence of wrinkles was examined. The result is shown in FIG. The slanted line in the figure is a boundary line with a 2% occurrence rate of intermediate covering expressed by the following formula (5) -1. From this result, it can be seen that the above-mentioned expression (5) needs to be satisfied in order to prevent the occurrence of middle covering.
[0077]
S = 0.088N * + 0.00056 (5) -1
Using the billets of various Cr equivalent (Cr *) steels shown in Table 5 from the steels shown in Tables 1 and 2, 50 pipes were made under the following conditions, and whether or not there was an internal covering flaw. I investigated.
[0078]
▲ 1 Billet heating temperature: 1200 ~ 1250 ℃
(2) Draft rate of plug tip when drilling: 5.0 to 8.0%
(3) C.A. + F.A .: 10, 17, 21, and 30
Table 5 shows the relationship between Cr * and "C.A. + F.A." In the table and FIG. 6, the case where the incidence rate was less than 2% for both the inner cover and the outer cover wrinkle was indicated as ◯, and the case where it was 2% or more was indicated as ●. In addition, a case where the evaluation was good for both the inner covering and the outer covering soot was evaluated as “good”.
[0079]
FIG. 6 is a plot of the results of Table 5 on a map of “C.A. + F.A.” And Cr *. The cubic curve in the figure is a curve represented by the following equation (a) -1. Therefore, a condition for preventing the occurrence of the middle covering is to satisfy the above formula (a).
[0080]
Cr * = 0.00009 (C.A. + F.A.)3-0.0035 (C.A. + F.A.)2
+0.0567 (C.A. + F.A.) + 8.0024 ... (a) -1
[0081]
[Table 5]
Figure 0004126979
[0082]
【The invention's effect】
The 13Cr martensitic seamless steel pipe of the present invention has no risk of delayed fracture even when subjected to impact machining during handling after pipe making. This steel pipe is useful as a corrosion-resistant oil well pipe or the like whose demand is increasing. In addition, according to the pipe making method of the present invention, a 13Cr martensite-based seamless steel pipe can be produced without the occurrence of intermediate covering flaws.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between effective solute carbon (C *) and effective solute nitrogen (N *) and delayed fracture cracking.
FIG. 2 is a diagram showing the relationship between the hydrogen content (H1) of a steel pipe after pipe making and the hydrogen content (H2) of the steel pipe after heat treatment.
FIG. 3 is a diagram showing the relationship between “Cr * + 10N *” and the hydrogen content (H1) of a steel pipe after pipe making and delayed fracture cracking.
FIG. 4 is a diagram showing the relationship between “Cr * + 10N *” and the hydrogen content (H 2) of the steel pipe after heat treatment and delayed fracture cracking.
FIG. 5 is a diagram showing the relationship between the content of effective solid solution nitrogen (N *) and S and the occurrence of intermediate covering wrinkles.
FIG. 6 is a diagram showing the relationship between “crossing angle (C.A.) + Inclination angle (F.A.)” and Cr equivalent (Cr *) and the occurrence of intermediate covering wrinkles.

Claims (5)

質量%で、C:0.15〜0.22%、Si:0.1〜1.0%、Mn:0.10〜1.00%、Cr:12.00〜14.00%、P:0.020%以下、S:0.010%以下、N:0.05%以下、O:0.0060%以下、さらにそれぞれ0.005〜0.200%のV、NbおよびTiならびに0.0005〜0.0100%のBの中から選んだ1種以上(但し、2種以上の場合は合計で0.005〜0.200%)を含有するとともに、Al:0.1 %以下、Ni:0.5 %以下、Cu:0.25 %以下およびCa:0.0050 %以下のうちの少なくとも1種を含有し、残部が鉄および不純物からなり、下記の(1)式、(2)式、(4)式および(5)式をともに満たすか、または(1)式、(3)式、(4)式および(5)式をともに満たすことを特徴とするマルテンサイト系ステンレス継目無鋼管。
C*+10N*≦0.45 ・・・(1)
H1≦−0.003(C*+10N*)+0.0016 ・・・(2)
H2≦−0.0018(C*+10N*)+0.00096 ・・・(3)
Cr*≦9.0 ・・・(4)
S≦0.088N*+0.00056 ・・・(5)
但し、上記の各式中のC*は有効固溶炭素量(質量%)、N*は有効固溶窒素量(質量%)、Cr*はCr当量で、それぞれ下記(6)式、(7)式および(8)式で表される。また、(2)式のH1は製管後の鋼管中の残存水素量(質量%)、(3)式のH2は熱処理後の鋼管中の残存水素量(質量%)であり、各式中の元素記号はその元素の含有量(質量%)を表す。
C*=C−[12{(Cr/52)×(6/23)}/10] ・・・(6)
N*=N−[14{(V/51)+(Nb/93)}/10]
−[14{(Ti/48)+(B/11)+(Al/27)}/2] ・・・(7)
Cr*=Cr+4Si−(22C+0.5Mn+1.5Ni+30N) ・・・(8)
In mass%, C: 0.15-0.22%, Si: 0.1-1.0%, Mn: 0.10-1.00%, Cr: 12.00-14.00%, P: 0.020% or less, S: 0.010% or less, N: 0.05% or less, O: 0.0060% or less, 0.005 to 0.200% of V, Nb and Ti, and 0.0005 to 0.0100% B or more selected from B (0.005 to 0.200% in total in the case of 2 or more) as well as containing, Al: 0.1% or less, Ni: 0.5% or less, Cu: 0.25% or less and Ca: contains at least one selected 0.0050% or less, made balance being iron and impurities, the following (1) A martens characterized by satisfying both the formulas (2), (4) and (5), or (1), (3), (4) and (5) Site-based stainless steel seamless pipe.
C * + 10N * ≦ 0.45 (1)
H1 ≦ −0.003 (C * + 10N *) + 0.0016 (2)
H2 ≦ −0.0018 (C * + 10N *) + 0.00096 (3)
Cr * ≦ 9.0 (4)
S ≦ 0.088N * + 0.00056 (5)
However, in the above formulas, C * is an effective amount of dissolved carbon (% by mass), N * is an effective amount of dissolved nitrogen (% by mass), and Cr * is a Cr equivalent. ) And (8). In addition, H1 in the formula (2) is the amount of hydrogen remaining in the steel pipe after mass production (mass%), and H2 in the formula (3) is the amount of hydrogen in the steel pipe after heat treatment (mass%). The element symbol of represents the content (% by mass) of the element.
C * = C− [12 {(Cr / 52) × (6/23)} / 10] (6)
N * = N- [14 {(V / 51) + (Nb / 93)} / 10]
-[14 {(Ti / 48) + (B / 11) + (Al / 27)} / 2] (7)
Cr * = Cr + 4Si- (22C + 0.5Mn + 1.5Ni + 30N) (8)
質量%で、Cが0.18〜0.21%、Siが0.20〜0.35%、Crが12.40〜13.10%、Sが0.003%以下、Nが0.035%以下である請求項1に記載のマルテンサイト系ステンレス継目無鋼管。  The martensitic stainless steel seamless according to claim 1, wherein, in mass%, C is 0.18 to 0.21%, Si is 0.20 to 0.35%, Cr is 12.40 to 13.10%, S is 0.003% or less, and N is 0.035% or less. Steel pipe. 質量%で、C:0.15〜0.22%、Si:0.1〜1.0%、Mn:0.10〜1.00%、Cr:12.00〜14.00%、P:0.020%以下、S:0.010%以下、N:0.05%以下、O:0.0060%以下、さらにそれぞれ0.005〜0.200%のV、NbおよびTiならびに0.0005〜0.0100%のBの中から選んだ1種以上(但し、2種以上の場合は合計で0.005〜0.200%)を含有するとともに、Al:0.1 %以下、Ni:0.5 %以下、Cu:0.25 %以下およびCa:0.0050 %以下のうちの少なくとも1種を含有し、残部が鉄および不純物からなり、下記の(1)式と、(4)式と、(5)式をともに満たす鋼を穿孔圧延する際、傾斜ロール式穿孔機による穿孔圧延を下記(a)式を満たす条件で行うことを特徴とするマルテンサイト系ステンレス鋼継目無鋼管の製造方法。
C*+10N*≦0.45 ・・・(1)
Cr*≦9.0 ・・・(4)
S≦0.088N*+0.00056 ・・・(5)
Cr*<0.00009(C.A.+F.A.)−0.0035(C.A.+F.A.)
+0.0567(C.A.+F.A.)+8.0024 ・・・(a)
但し、上記の各式中のC*は有効固溶炭素量(質量%)、N*は有効固溶窒素量(質量%)、Cr*はCr当量で、それぞれ下記(6)式、(7)式および(8)式で表される。また、各式中の元素記号はその元素の含有量(質量%)を表し、(a)式中のC.A.は交叉角(但し、C.A.=0でもよい)、F.A.は傾斜角である。
C*=C−[12{(Cr/52)×(6/23)}/10] ・・・(6)
N*=N−[14{(V/51)+(Nb/93)}/10]
−[14{(Ti/48)+(B/11)+(Al/27)}/2] ・・・(7)
Cr*=Cr+4Si−(22C+0.5Mn+1.5Ni+30N) ・・・(8)
In mass%, C: 0.15-0.22%, Si: 0.1-1.0%, Mn: 0.10-1.00%, Cr: 12.00-14.00%, P: 0.020% or less, S: 0.010% or less, N: 0.05% or less, O: One or more selected from 0.0060% or less, 0.005 to 0.200% of V, Nb and Ti, and 0.0005 to 0.0100% of B (in the case of two or more, 0.005 to 0.200% in total) as well as containing, Al: 0.1% or less, Ni: 0.5% or less, Cu: 0.25% or less and Ca: contains at least one selected 0.0050% or less, made balance being iron and impurities, the following (1) Martensite system characterized by performing piercing and rolling with an inclined roll type piercing machine under conditions satisfying the following expression (a) when piercing and rolling a steel satisfying both the formulas (4) and (5) Manufacturing method of stainless steel seamless steel pipe.
C * + 10N * ≦ 0.45 (1)
Cr * ≦ 9.0 (4)
S ≦ 0.088N * + 0.00056 (5)
Cr * <0.00009 (CA + FA) 3 −0.0035 (CA + FA) 2
+0.0567 (CA + FA) +8.0024 (a)
However, in the above formulas, C * is an effective amount of dissolved carbon (% by mass), N * is an effective amount of dissolved nitrogen (% by mass), and Cr * is a Cr equivalent. ) And (8). In addition, the element symbol in each formula represents the content (mass%) of the element, CA in the formula (a) is a crossing angle (however, CA = 0 may be used), and FA is an inclination angle.
C * = C− [12 {(Cr / 52) × (6/23)} / 10] (6)
N * = N- [14 {(V / 51) + (Nb / 93)} / 10]
-[14 {(Ti / 48) + (B / 11) + (Al / 27)} / 2] (7)
Cr * = Cr + 4Si- (22C + 0.5Mn + 1.5Ni + 30N) (8)
穿孔圧延に供する鋼のCが0.18〜0.21質量%、Siが0.20〜0.35質量%、Crが12.40〜13.10質量%、Sが0.003質量%以下、Nが0.035質量%以下である請求項3に記載のマルテンサイト系ステンレス継目無鋼管の製造方法。  The steel used for piercing and rolling has C of 0.18 to 0.21 mass%, Si of 0.20 to 0.35 mass%, Cr of 12.40 to 13.10 mass%, S of 0.003 mass% or less, and N of 0.035 mass% or less. Of martensitic stainless steel seamless pipes. 穿孔圧延後、仕上げ圧延前の再加熱における均熱温度を920℃以上として熱間製管を実施することを特徴とする請求項3または請求項4に記載のマルテンサイト系ステンレス鋼継目無鋼管の製造方法。  The martensitic stainless steel seamless steel pipe according to claim 3 or 4, wherein hot pipe making is performed with a soaking temperature in reheating before piercing rolling and before finish rolling being 920 ° C or higher. Production method.
JP2002206169A 2002-07-15 2002-07-15 Martensitic stainless steel seamless pipe and its manufacturing method Expired - Lifetime JP4126979B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2002206169A JP4126979B2 (en) 2002-07-15 2002-07-15 Martensitic stainless steel seamless pipe and its manufacturing method
ARP030102375 AR040354A1 (en) 2002-07-15 2003-06-30 SEAMLESS STAINLESS STEEL PIPE MARTENSITICO AND PROCEDURE FOR MANUFACTURING
CNB038167352A CN100355914C (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
MXPA05000454A MXPA05000454A (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof.
PCT/JP2003/008625 WO2004007780A1 (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
BR0312612-9A BR0312612A (en) 2002-07-15 2003-07-07 Martensically seamless stainless steel tube and a production method thereof
EP03741248.3A EP1521856B1 (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
CA2491834A CA2491834C (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
CNB2007101099334A CN100532617C (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
AU2003280989A AU2003280989A1 (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
CA2600580A CA2600580C (en) 2002-07-15 2003-07-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
US11/030,107 US7686897B2 (en) 2002-07-15 2005-01-07 Martensitic stainless steel seamless pipe and a manufacturing method thereof
ZA2005/00365A ZA200500365B (en) 2002-07-15 2005-01-14 Martensitic stainless steel seamless pipe and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206169A JP4126979B2 (en) 2002-07-15 2002-07-15 Martensitic stainless steel seamless pipe and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004043935A JP2004043935A (en) 2004-02-12
JP4126979B2 true JP4126979B2 (en) 2008-07-30

Family

ID=30112786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206169A Expired - Lifetime JP4126979B2 (en) 2002-07-15 2002-07-15 Martensitic stainless steel seamless pipe and its manufacturing method

Country Status (10)

Country Link
EP (1) EP1521856B1 (en)
JP (1) JP4126979B2 (en)
CN (2) CN100532617C (en)
AR (1) AR040354A1 (en)
AU (1) AU2003280989A1 (en)
BR (1) BR0312612A (en)
CA (1) CA2491834C (en)
MX (1) MXPA05000454A (en)
WO (1) WO2004007780A1 (en)
ZA (1) ZA200500365B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100435988C (en) * 2004-05-28 2008-11-26 住友金属工业株式会社 Method for manufacturing seamless steel pipe or tube
JP4359783B2 (en) * 2004-05-28 2009-11-04 住友金属工業株式会社 Seamless steel pipe manufacturing method
JP4273338B2 (en) 2004-11-26 2009-06-03 住友金属工業株式会社 Martensitic stainless steel pipe and manufacturing method thereof
CN101146917B (en) 2005-03-30 2010-11-17 住友金属工业株式会社 Method of manufacturing martensitic stainless steel
JPWO2007100042A1 (en) 2006-03-01 2009-07-23 住友金属工業株式会社 High Cr seamless pipe manufacturing method
CN100395479C (en) * 2006-03-03 2008-06-18 朱国良 Machining process of high-performance stainless steel and seamless steel pipe
JP5011770B2 (en) * 2006-03-22 2012-08-29 住友金属工業株式会社 Method for producing martensitic stainless steel pipe
WO2007138914A1 (en) * 2006-05-26 2007-12-06 Sumitomo Metal Industries, Ltd. Process for producing seamless stainless-steel pipe
JP2008221250A (en) * 2007-03-09 2008-09-25 Sumitomo Metal Ind Ltd Method for producing seamless steel tube
CN101532110B (en) * 2008-09-17 2010-06-02 中国科学院金属研究所 Method for removing Delta ferrite from high strength and toughness martensitic stainless steel
KR101339484B1 (en) 2009-05-07 2013-12-10 닛신 세이코 가부시키가이샤 High-strength stainless steel pipe
DE102012009496B4 (en) * 2012-05-14 2017-05-11 Stahlwerk Ergste Westig Gmbh chrome steel
JP5924256B2 (en) * 2012-06-21 2016-05-25 Jfeスチール株式会社 High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
RU2530113C1 (en) * 2013-03-05 2014-10-10 Открытое акционерное общество "Челябинский трубопрокатный завод" PRODUCTION OF SEAMLESS HOT-WORKED MACHINED 610×36,53 mm FROM 15X5"M"-GRADE STEEL FOR REFINERY COMMUNICATIONS WITH STRINGENT REQUIREMENTS TO GEOMETRICAL SIZES
CN111315906A (en) * 2017-11-02 2020-06-19 日本制铁株式会社 Piercing-rolling machine plug and manufacturing method thereof
CN110643894B (en) * 2018-06-27 2021-05-14 宝山钢铁股份有限公司 Ultra-high strength hot rolled steel sheet and steel strip having good fatigue and hole expansion properties, and method for manufacturing same
CN109536829A (en) * 2018-11-07 2019-03-29 林州凤宝管业有限公司 A kind of automobile axle shaft applies seamless steel pipe and its production method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178334B1 (en) * 1984-10-11 1990-07-18 Kawasaki Steel Corporation Martensitic stainless steels for seamless steel pipe
JPH0726180B2 (en) * 1990-07-30 1995-03-22 日本鋼管株式会社 Martensitic stainless steel for oil wells with excellent corrosion resistance
JPH04210453A (en) * 1990-12-13 1992-07-31 Kawasaki Steel Corp Martensitic stainless steel pipe excellent in low temperature toughness and its manufacture
JP2705416B2 (en) * 1991-12-19 1998-01-28 住友金属工業株式会社 Martensitic stainless steel and manufacturing method
JPH07109522A (en) * 1993-10-08 1995-04-25 Sumitomo Metal Ind Ltd Production of seamless tube of martensitic stainless steel
JP3538915B2 (en) * 1994-10-20 2004-06-14 住友金属工業株式会社 Martensitic stainless steel for oil country tubular goods with excellent toughness
JPH09143629A (en) * 1995-11-17 1997-06-03 Kawasaki Steel Corp Pipe stock for steel pipe joint coupling and production of pipe stock for steel pipe joint coupling
JPH09310121A (en) * 1996-05-17 1997-12-02 Nippon Steel Corp Production of martensitic seamless heat resistant steel tube
EP1099772B1 (en) * 1999-05-18 2004-12-29 Sumitomo Metal Industries, Ltd. Martensite stainless steel for seamless steel tube
JP3491149B2 (en) * 2000-08-10 2004-01-26 Jfeスチール株式会社 High-strength martensitic stainless steel pipe for oil well with excellent strength-toughness balance and method for producing the same
JP4867088B2 (en) * 2001-06-21 2012-02-01 住友金属工業株式会社 Manufacturing method of high Cr seamless steel pipe

Also Published As

Publication number Publication date
EP1521856B1 (en) 2013-08-21
CN100355914C (en) 2007-12-19
MXPA05000454A (en) 2005-03-23
AU2003280989A1 (en) 2004-02-02
BR0312612A (en) 2005-04-19
CA2491834C (en) 2010-06-22
AR040354A1 (en) 2005-03-30
EP1521856A1 (en) 2005-04-13
CN100532617C (en) 2009-08-26
CN1668768A (en) 2005-09-14
WO2004007780A1 (en) 2004-01-22
ZA200500365B (en) 2005-09-28
CN101070579A (en) 2007-11-14
JP2004043935A (en) 2004-02-12
CA2491834A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4126979B2 (en) Martensitic stainless steel seamless pipe and its manufacturing method
JP4632000B2 (en) Seamless steel pipe manufacturing method
CN104937126B (en) Oil well stainless-steel seamless pipe and its manufacture method
JP6047947B2 (en) Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
EP2824198B1 (en) Method for producing seamless steel pipe having high-strength and excellent sulfide stress cracking resistance
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP4609491B2 (en) Ferritic heat resistant steel
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
EP3018229B1 (en) Seamless steel tube for line pipe used in acidic environment and method for its manufacture
CA2882843C (en) Seamless steel pipe and method for producing same
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP4529269B2 (en) High Cr martensitic stainless steel pipe for line pipe excellent in corrosion resistance and weldability and method for producing the same
CA3094517A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP3879723B2 (en) High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JP6225795B2 (en) Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking
JP5794138B2 (en) Manufacturing method of seamless steel pipe for high-strength line pipe
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JP5794139B2 (en) Manufacturing method of seamless steel pipe for high-strength line pipe
US7686897B2 (en) Martensitic stainless steel seamless pipe and a manufacturing method thereof
JP2000313941A (en) Seamless tube of martensitic stainless steel excellent in surface quality
CA2600580C (en) Martensitic stainless steel seamless pipe and a manufacturing method thereof
JP2001323340A (en) Martensitic stainless steel seamless steel tube excellent in machinability and hot workability
JP2004238662A (en) Martensitic stainless steel pipe and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4126979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term