JP5009233B2 - Repair method for cracks in cement-based structures mixed with fibers - Google Patents

Repair method for cracks in cement-based structures mixed with fibers Download PDF

Info

Publication number
JP5009233B2
JP5009233B2 JP2008141307A JP2008141307A JP5009233B2 JP 5009233 B2 JP5009233 B2 JP 5009233B2 JP 2008141307 A JP2008141307 A JP 2008141307A JP 2008141307 A JP2008141307 A JP 2008141307A JP 5009233 B2 JP5009233 B2 JP 5009233B2
Authority
JP
Japan
Prior art keywords
cement
cracks
water
calcium
alginic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008141307A
Other languages
Japanese (ja)
Other versions
JP2009286661A (en
Inventor
恵哲 六郷
孝一 小林
幸男 浅野
仁志 大野
直治 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bild Land Co Ltd
Original Assignee
Bild Land Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bild Land Co Ltd filed Critical Bild Land Co Ltd
Priority to JP2008141307A priority Critical patent/JP5009233B2/en
Publication of JP2009286661A publication Critical patent/JP2009286661A/en
Application granted granted Critical
Publication of JP5009233B2 publication Critical patent/JP5009233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4803Polysaccharides, e.g. cellulose, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/44Thickening, gelling or viscosity increasing agents
    • C04B2103/445Gelling agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Description

本発明は繊維を混入したセメント系材料から成る構造物の微細なひび割れの補修方法に関する。 The present invention relates to method of repairing fine cracks of structures made of cement-based material obtained by mixing fibers.

コンクリート構造物に代表されるセメント系材料から成る構造物のひび割れに起因した止水方法には、注入工法、充填工法、表面含浸工法及び表面被覆工法があり、一般にひび割れ幅の大小と今後のひび割れの挙動の有無によってこれらの工法の選択が行われている。   Water-stopping methods caused by cracks in structures made of cement-based materials, such as concrete structures, include the injection method, filling method, surface impregnation method, and surface coating method. Generally, the crack width is large and the cracks in the future. These methods are selected depending on the presence or absence of the behavior.

注入工法及び充填工法は発生したひび割れを1本単位で捉えて補修する方法で、0.2mmを超えるひび割れ幅の場合に適用されることが多い。   The injection method and the filling method are methods for repairing the generated cracks in units of one, and are often applied when the crack width exceeds 0.2 mm.

表面含浸工法及び表面被覆工法はひび割れ箇所を含む全体を面的に捉えて補修する方法で、0.2mm以下のひび割れ幅に適用されることが多い。   The surface impregnation method and the surface coating method are methods of repairing the entire surface including the cracked part, and are often applied to a crack width of 0.2 mm or less.

これら四工法に用いる材料は、エポキシ、アクリル、ウレタン樹脂等のように、主原料を石油資源に依存して有機溶剤を含有するものや、珪酸塩系のような強アルカリ性を特色としたものが一般に用いられている。   The materials used in these four methods include those that use organic solvents depending on petroleum resources, such as epoxies, acrylics, and urethane resins, and those that feature strong alkalinity such as silicates. Commonly used.

従来は止水効果に対する性能面が優先し、施工時における安全性の確保や資源の有効利用、環境負荷低減という安全面や環境面への配慮がなされないまま、現状に至っているという問題がある。   Conventionally, the performance aspect of the water-stopping effect is prioritized, and there is a problem that the present situation has been reached without consideration for safety and environmental aspects such as ensuring safety during construction, effective use of resources, and reducing environmental impact. .

又界面活性剤、高吸水性ポリマー、高吸水性ポリマーのゲル化剤及び水を含有する漏水防止剤を、セメント系材料から成る構造物に予め設けた漏水防止剤注入口から注入して漏水を止める方法がある(例えば特許文献1参照)。   In addition, a surfactant, a highly water-absorbing polymer, a water-absorbing polymer gelling agent and a water leakage preventing agent containing water are injected from a water leakage preventing agent inlet provided in advance in a structure made of cementitious material to prevent water leakage. There is a method of stopping (see, for example, Patent Document 1).

しかしこの方法では高吸水性ポリマーにゲル化剤を添加したゲル状物質を漏水防止剤としているため、ひび割れ幅0.2mm以下の微細なひび割れへの浸透は難しい。   However, in this method, since a gel substance obtained by adding a gelling agent to a superabsorbent polymer is used as a water leakage preventing agent, it is difficult to penetrate into fine cracks having a crack width of 0.2 mm or less.

更にカオリン系鉱物、三種類以上の親水性ポリマー、コロイダルシリカ、アルキレングリコール誘導体を主成分とした漏水防止剤がある(例えば特許文献2参照)。   Further, there is a water leakage preventing agent mainly composed of kaolin-based minerals, three or more kinds of hydrophilic polymers, colloidal silica, and alkylene glycol derivatives (see, for example, Patent Document 2).

しかしこの方法は、その実施例でも明らかとされているように、粘度が940〜3,300mPa・sの高粘度になっていることから、特殊な装置を使用しない限り、微細なひび割れへの浸透は難しい。
特開平11−190133号公報 特開2004−182869号公報
However, this method has a high viscosity of 940 to 3,300 mPa · s, as clearly shown in the examples, so that it penetrates into fine cracks unless a special device is used. Is difficult.
JP-A-11-190133 JP 2004-182869 A

以上に述べた従来のセメント系材料から成る構造物におけるひび割れ補修方法は、材料面では施工時点の安全性の確保、資源の有効利用、環境負荷に対する問題があり、施工面では0.2mm以下の微細なひび割れへの浸透は特殊な装置を用いない限り不可能で、このため止水目的が適切に達成し難い問題があった。   The conventional crack repair method for a structure made of cement-based material described above has problems in terms of material safety, effective use of resources, and environmental load. Penetration into fine cracks is impossible unless a special device is used, and therefore there is a problem that it is difficult to properly achieve the purpose of water stoppage.

本発明は施工性に優れ、施工時の安全性も高く、石油資源に依存しない環境保全形の材料による、セメント系材料から成る構造物の微細なひび割れを閉塞する技術を提供する。   The present invention provides a technique for closing fine cracks in a structure made of a cement-based material by using an environment-conserving material that has excellent workability, high safety during construction, and does not depend on petroleum resources.

本発明は繊維を混入したセメント系材料を用いた構造物に発生したひび割れ内にカルシウムの溶液を予め浸透させて前処理を行った後に、該ひび割れ内に海藻類から抽出されたアルギン酸、その塩類(アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウム)、アルギン酸プロピレングリコールエステルの何れか(以下アルギン酸と言う)の溶液を含浸し、該含浸されたアルギン酸と、上記カルシウム溶液のカルシウム及びセメントのカルシウムの反応を得てゲル状のアルギン酸カルシウムをひび割れ内部に生成せしめ、該ゲル状のアルギン酸カルシウムをひび割れ破面に現れた多量の上記繊維によって保持させることによりひび割れの止水を図る。 The present invention relates to alginic acid extracted from seaweed and its salt after pretreatment by pre-infiltrating a calcium solution into cracks generated in a structure using a cement-based material mixed with fibers, (Sodium alginate, potassium alginate, ammonium alginate) or a propylene glycol ester of alginate (hereinafter referred to as alginic acid) is impregnated, and the reaction of the impregnated alginic acid with calcium of the calcium solution and calcium of cement is carried out. Thus, gel-like calcium alginate is formed inside the crack, and the gel-like calcium alginate is retained by a large amount of the above-mentioned fibers appearing on the fracture surface, thereby preventing water from cracking.

ワカメや昆布等の海藻類を主原料としたアルギン酸の希釈溶液をひび割れ発生箇所に含浸させることにより、セメントモルタルやコンクリートの主要成分であるカルシウムとアルギン酸が反応してゲル状のアルギン酸カルシウムをひび割れ内部に生成せしめ、これによってひび割れ箇所の止水を可能としたものである。   By impregnating the crack generation site with a dilute solution of alginic acid made mainly of seaweed such as seaweed and kelp, the calcium and alginic acid, which are the main components of cement mortar and concrete, react to cause the gel-like calcium alginate to crack. This makes it possible to stop the water at the cracked portion.

希釈溶液は低粘度となるため、微細なひび割れにも浸透し易く、止水の実効を上げることができ、補修作業が容易である。   Since the diluted solution has a low viscosity, it can easily penetrate into fine cracks, can improve the effectiveness of water stopping, and can be easily repaired.

上記アルギン酸及びアルギン酸カルシウムは何れも食品添加物として認められているものである。これにより石油資源や有機溶剤を含有しない安全面や環境面に配慮した材料によるひび割れの補修方法の提供を可能とした。   Both alginic acid and calcium alginate are recognized as food additives. This has made it possible to provide a method for repairing cracks using materials that are safe and environmentally friendly and do not contain petroleum resources or organic solvents.

本発明によれば、繊維を混入したセメント系材料から成る構造物に発生した微細ひび割れに起因した止水性の改善目的を、食品添加物として認められている海藻物質の使用により有効に達成でき、従来の止水材、即ち補修材料自体の安全性の確保や資源の有効利用、環境負荷低減という諸課題を有効に解決できる。 According to the present invention, it is possible to effectively achieve the purpose of improving water stoppage due to fine cracks generated in a structure composed of a cement-based material mixed with fibers by using a seaweed substance recognized as a food additive, It is possible to effectively solve various problems such as ensuring the safety of the conventional water-stopping material, that is, the repair material itself, effectively using resources, and reducing the environmental load.

本発明によりコンクリート構造物の微細なひび割れを閉塞し止水性を高めることができれば、構造物の止水構造が向上し、構造物の有用性を高め、適用範囲を広げることができる。   If the present invention can block fine cracks in a concrete structure and increase the water-stopping property, the water-stopping structure of the structure can be improved, the usefulness of the structure can be increased, and the application range can be expanded.

例えば、水路や水道施設では、ひび割れからの漏水が減ることによる経済効果が大きい。又有害な水溶性を貯蔵する構造物では、ひび割れの止水性が高まることにより環境への影響を減らすことができる。   For example, in waterways and water supply facilities, the economic effect due to the reduction of water leakage from cracks is great. In addition, in a structure that stores harmful water solubility, the impact on the environment can be reduced by increasing the water resistance of cracks.

本発明で用いるアルギン酸は昆布等に含まれる多糖類であり、食品添加物として用いられており、人体への影響が少なく、安全性が高い。   Alginic acid used in the present invention is a polysaccharide contained in kelp and the like, is used as a food additive, has little influence on the human body, and has high safety.

道路、河川、港湾、空港及び上下水道施設等における各種コンクリート構造物に代表される、繊維を混入したセメント系材料から成る構造物の機能性の回復に寄与することで、良質な社会資本整備の充実に貢献できる。 By contributing to the restoration of functionality of structures made of cement-based materials mixed with fiber, such as various concrete structures in roads, rivers, harbors, airports, and water and sewage facilities, etc. Can contribute to fulfillment.

以下本発明を実施するための最良の形態を図1乃至図3に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to FIGS.

本発明における補修の対象となるセメント系材料から成る構造物1とは、道路、河川、港湾、空港及び上下水道施設、農業用水路等における各種コンクリート構造物である。これら各種コンクリート構築物はセメントを硬化材として用い、これに各種骨材を配合したセメント系材料2から成る。   The structure 1 made of a cement material to be repaired in the present invention is various concrete structures in roads, rivers, harbors, airports, water and sewage facilities, agricultural waterways, and the like. These various concrete structures are made of cement-based material 2 in which cement is used as a hardener and various aggregates are blended therein.

上記構造物におけるセメント系材料2としては、その構成材料として合成樹脂繊維、セラミック繊維、金属繊維、ガラス繊維等の補強繊維を配合した繊維補強セメントモルタル(繊維補強ポリマーセメントモルタルを含む)が用いられるようになっている。   As the cement-based material 2 in the above structure, fiber reinforced cement mortar (including fiber reinforced polymer cement mortar) in which reinforcing fibers such as synthetic resin fibers, ceramic fibers, metal fibers, and glass fibers are blended is used. It is like that.

本発明は繊維を混入したセメント系材料から成る構造物のひび割れの止水方法、即ち、図3A,B,Cに概示するように、上記繊維補強モルタルから成る構造物1のひび割れ3の止水方法、即ち補修方法として有効に実施される。 The present invention relates to a method for preventing cracks in a structure made of a cement-based material mixed with fibers, that is , as shown in FIGS. It is effectively implemented as a water method, that is, a repair method.

上記ひび割れ3は、構造物1の表面から裏面へ達するひび割れ3、或いは構造物1の表層に発生するひび割れ3である。   The crack 3 is a crack 3 reaching from the front surface to the back surface of the structure 1 or a crack 3 generated on the surface layer of the structure 1.

即ち、ワカメや昆布等の海草類を主原料としたアルギン酸、その塩類(アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウム)、アルギン酸プロピレングリコールエステルの何れか(以下アルギン酸と言う)の希釈溶液4をひび割れ3内に含浸させることにより、このアルギン酸とセメント系材料2の主成分であるカルシウムが反応してゲル状のアルギン酸カルシウム4′をひび割れ3内部に生成せしめてひび割れ箇所の止水目的を達成できた。   That is, a dilute solution 4 of alginic acid, a salt thereof (sodium alginate, potassium alginate, ammonium alginate), or propylene glycol alginate (hereinafter referred to as alginic acid) mainly made from seaweeds such as seaweed and kelp is contained in the crack 3. By impregnating, the alginic acid and calcium, which is the main component of the cement-based material 2, react to generate gel-like calcium alginate 4 'inside the crack 3, thereby achieving the purpose of water stopping at the cracked portion.

上記アルギン酸の希釈溶液4は、アルギン酸を水で希釈したものであり、この希釈溶液は低粘度となるため、0.2mm以下の微細なひび割れにも浸透し易い。   The diluted solution 4 of alginic acid is obtained by diluting alginic acid with water. Since this diluted solution has a low viscosity, it easily penetrates into fine cracks of 0.2 mm or less.

上記アルギン酸の希釈溶液4は0.1%〜0.25%の希釈濃度で充分な効果が得られ、その希釈濃度は任意である。例えば、0.1%〜80%程度の希釈濃度で使用することができる。   The diluted solution 4 of alginic acid has a sufficient effect at a dilution concentration of 0.1% to 0.25%, and the dilution concentration is arbitrary. For example, it can be used at a dilution concentration of about 0.1% to 80%.

前記の通り、アルギン酸、アルギン酸カルシウムは何れも食品添加物として認められているものであり、石油資源を用いず、有機溶剤をも含有しない、安全面や環境面に配慮した材料によるひび割れの補修方法を提供できる。   As described above, alginic acid and calcium alginate are both recognized as food additives, and they do not use petroleum resources and do not contain organic solvents. Can provide.

図1はアルギン酸ナトリウム溶液の濃度と粘度との関係を、図2はアルギン酸ナトリウム溶液の濃度と浸透量の関係を示すグラフである。   FIG. 1 is a graph showing the relationship between the concentration of the sodium alginate solution and the viscosity, and FIG. 2 is a graph showing the relationship between the concentration of the sodium alginate solution and the amount of penetration.

厚さ40mmのコンクリートと10mmの繊維補強セメントモルタルを積層して一体化し、両引き載荷により無数の微細ひび割れを導入した供試体を用いて濃度と浸透量を求めた。   A 40 mm thick concrete and a 10 mm fiber reinforced cement mortar were laminated and integrated, and the concentration and the amount of penetration were determined using a specimen into which innumerable fine cracks were introduced by double loading.

この時のひび割れ幅はコンクリート層は0.589mm、繊維補強セメントモルタル層は最大で0.040mmであった。   The crack width at this time was 0.589 mm for the concrete layer and 0.040 mm at the maximum for the fiber-reinforced cement mortar layer.

これらのことから、一例ではあるが、ひび割れが0.04mm程度のものでは2mPa・sの粘度が浸透可能な上限値となっており、ゲル化して高粘度となったものを使用した場合の浸透性は殆ど期待が持てない結果となった。   From these things, although it is an example, when the crack is about 0.04 mm, the viscosity of 2 mPa · s is the upper limit value that can penetrate, and the penetration when using a gelled and high viscosity is used. Sex was almost unpredictable.

繊維を混入したセメント系材料を用いた構造物にひび割れが発生すると、繊維がひび割れ破面間を架橋して現れる。このため、浸透後のアルギン酸溶液や反応後の生成ゲル(アルギン酸カルシウム)はひび割れ断面内の多量の繊維によって保持されることになり、流出し難くなる。混入した繊維が止水性の改善に果たす役割は大きい。   When cracks occur in a structure using a cement-based material in which fibers are mixed, the fibers appear by bridging between the crack fracture surfaces. For this reason, the alginic acid solution after permeation and the generated gel (calcium alginate) after reaction are held by a large amount of fibers in the cracked cross section, and are difficult to flow out. The mixed fiber plays a major role in improving water stoppage.

又セメント系材料は空気中の二酸化炭素の影響で表面部から内部に向かって徐々に中性化が進展するという性質がある。   Cement-based materials have the property that neutralization gradually progresses from the surface toward the inside due to the influence of carbon dioxide in the air.

本発明による補修方法の具体例として、中性化が進んだものへの適用には、止水性に有効なアルギン酸カルシウムの生成量が少なくなるので、酢酸カルシウム、亜硝酸カルシウム、水酸化カルシウム等のカルシウムの溶液を予めひび割れ内に浸透させて前処理を行った後に、アルギン酸溶液を上記ひび割れ内に浸透すると止水性の改善効果は高くなる。   As a specific example of the repair method according to the present invention, the amount of calcium alginate that is effective for water-stopping is reduced in application to those that have become neutralized, so that calcium acetate, calcium nitrite, calcium hydroxide, When the calcium solution is preliminarily infiltrated into the cracks and pretreatment is performed, and then the alginic acid solution is infiltrated into the cracks, the water-stopping improvement effect is enhanced.

酢酸カルシウム等は海外では食品添加物として認められているもので、安全性は高い材料である。   Calcium acetate and the like are recognized as food additives overseas and are highly safe materials.

アルギン酸又はアルギン酸塩は食品添加物として大量生産されていることや、0.1〜0.25%の低濃度品でも十分な止水効果を発揮することから、表面含浸工法による安価で止水効果の高い施工が可能となる。   Alginic acid or alginate is mass-produced as a food additive and exhibits a sufficient water-stopping effect even in low-concentration products of 0.1 to 0.25%. High construction is possible.

安全性が高く環境への負荷が少ない海藻物質を用いて0.2mm以下の微細ひび割れ内部への浸透を低粘度溶液で行った後、セメント成分中のカルシウムとの反応でゲル状のアルギン酸カルシウムをひび割れ内部に生成させ、ひび割れ破面に現れた多量の繊維によって生成ゲルを保持させることにより止水性の改善を行う。   After using a low-viscosity solution to infiltrate fine cracks of 0.2 mm or less using a seaweed substance with high safety and low environmental impact, gel calcium alginate is reacted with calcium in the cement component. Water stoppage is improved by forming the gel inside the crack and holding the gel by a large amount of fibers appearing on the fracture surface.

上記繊維を混入したセメント系材料の微細ひび割れに起因した止水性の改善を図る海藻物質は、アルギン酸とアルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムのアルギン酸塩類及びアルギン酸プロピレングリコールエステルの何れでも良い。 Seaweed material to improve the water cut-off due to fine cracks in cementitious materials obtained by mixing the fibers, alginate and sodium alginate, potassium alginate, either good alginates of ammonium alginate and propylene glycol alginate.

微細ひび割れへ浸透させるアルギン酸、アルギン酸塩類、アルギン酸プロピレングリコールエステルの濃度は希釈後の溶液粘度が2〜30mPa・sとなるように調整すれば良い。   What is necessary is just to adjust the density | concentration of the alginic acid, alginates, and alginic acid propylene glycol ester which are penetrated to a fine crack so that the solution viscosity after dilution may be 2-30 mPa * s.

上記微細ひび割れ内への浸透乃至充填方法はローラー刷毛等の刷毛、低圧スプレーによる含浸工法や、貯水槽等では貯水槽内に所定濃度のアルギン酸溶液を貯水して止水性の改善を図ることもできる。   The fine cracks can be penetrated or filled with a brush such as a roller brush, an impregnation method using low-pressure spray, or in a water storage tank or the like, a predetermined concentration of alginic acid solution can be stored in the water storage tank to improve water stoppage. .

止水性の改善のために使用するアルギン酸は安全性も高いことから、このような貯水方法による施工も可能となる。   Since alginic acid used for improving waterstop is also highly safe, construction by such a water storage method is also possible.

<実施例1>
コンクリート層の厚さを40mm、繊維混入モルタル層の厚さを10mmとしたものを一体に複合して全厚を50mmとした供試体を作製し、両引き載荷によってひび割れを導入した。導入後のひび割れ幅の最大値は、コンクリート層は0.140mm、繊維混入モルタル層は0.062mmとなった。
<Example 1>
A specimen having a concrete layer thickness of 40 mm and a fiber-mixed mortar layer thickness of 10 mm was integrally combined to produce a specimen having a total thickness of 50 mm, and cracks were introduced by double pulling loading. The maximum crack width after introduction was 0.140 mm for the concrete layer and 0.062 mm for the fiber-mixed mortar layer.

この供試体を用いて0.1%濃度のアルギン酸ナトリウム溶液をひび割れ部へ含浸させた後、乾湿の繰り返しを計4回、延べ日数で10日間行った後、透水試験を行った。透水試験は水頭が250mmから200mm迄下がる時間で評価し、試験装置は繊維混入モルタル層に取り付けて行った。   After impregnating the cracked portion with a 0.1% sodium alginate solution using this specimen, the wet and dry cycle was repeated a total of 4 times for a total of 10 days, and then a water permeability test was conducted. The water permeation test was evaluated by the time required for the water head to drop from 250 mm to 200 mm, and the test apparatus was attached to the fiber-mixed mortar layer.

アルギン酸処理による止水性の改善効果は透水時間の差で約123分、比で約308倍となり、高い止水性の改善効果が認められた。   The effect of improving the water stoppage by the treatment with alginic acid was about 123 minutes due to the difference in water permeation time, and the ratio was about 308 times, and a high water stoppage improvement effect was recognized.

<実施例2>
コンクリート層の厚さを40mm、繊維混入モルタル層の厚さを10mmとしたものを一体に成形して全厚を50mmとした供試体を作成し、両引き載荷によってひび割れを導入した。導入後のひび割れ幅の最大値は、コンクリート層は0.655mm、繊維混入モルタル層は0.027mmとなった。
<Example 2>
A specimen having a concrete layer thickness of 40 mm and a fiber-mixed mortar layer thickness of 10 mm was integrally formed to prepare a specimen having a total thickness of 50 mm, and cracks were introduced by double pulling loading. The maximum crack width after introduction was 0.655 mm for the concrete layer and 0.027 mm for the fiber-mixed mortar layer.

この供試体を用いて0.10%濃度のアルギン酸ナトリウム溶液をひび割れ部へ含浸させた後、乾湿の繰り返しを計4回、延べ日数で10日間行った後、透水試験を行った。透水試験は水頭が250mmから200mm迄下がる時間で評価し、試験装置は繊維混入モルタル層に取り付けて行った。   After impregnating the cracked portion with a 0.10% sodium alginate solution using this specimen, the wet and dry cycle was repeated a total of four times for a total of 10 days, and then a water permeability test was performed. The water permeation test was evaluated by the time required for the water head to drop from 250 mm to 200 mm, and the test apparatus was attached to the fiber-mixed mortar layer.

アルギン酸処理による止水性の改善効果は、透水時間の差で約22分、比で約5倍となり、高い止水性の改善効果が認められた。   The effect of improving the water stoppage due to the treatment with alginic acid was about 22 minutes due to the difference in water permeation time, and the ratio was about 5 times, and a high water stoppage improvement effect was recognized.

又コンクリート層の大きなひび割れ箇所に多量の水酸化カルシウムの析出が認められ、アルギン酸処理によるひび割れの自己閉塞作用が高いことも確認した。   In addition, a large amount of calcium hydroxide was observed in the large cracked part of the concrete layer, and it was also confirmed that the self-occlusion action of cracking by alginic acid treatment was high.

上記海藻類からアルギン酸を抽出する方法は、海藻類をアルカリにより溶解する方法を基本としており、この溶解液を濾過した後の処理方法により「酸法」と「カルシウム法」に別れる。この酸法とカルシウム法は何れも周知であるので、詳細は割愛する。   The method of extracting alginic acid from the seaweed is based on a method of dissolving seaweed with an alkali, and is divided into an “acid method” and a “calcium method” depending on the treatment method after filtering the solution. Since both the acid method and the calcium method are well known, the details are omitted.

海藻類から抽出されたアルギン酸は粉末状態であり、このアルギン酸粉末を水等で希釈してアルギン酸溶液を得る。   Alginic acid extracted from seaweed is in a powder state, and the alginic acid powder is diluted with water or the like to obtain an alginic acid solution.

又上記セメント系材料のカルシウムとアルギン酸とは、アルギン酸中のNaがセメントのCaと置換して不溶性のアルギン酸カルシウムゲルを生成する。その反応化学式は下記化1に示す通りである。

Figure 0005009233
In addition, calcium and alginic acid in the cement-based material form an insoluble calcium alginate gel by replacing Na in alginic acid with Ca in cement. The reaction chemical formula is as shown in the following chemical formula 1.
Figure 0005009233

以上の通り、本発明は施工性に優れ、安全面や環境面に配慮した従来にない特色を持ったひび割れの補修方法である。特に、上水道施設や農業用の貯水槽、用水路等、人の健康と直接に関わる飲料水や農作物の供給に関わる構造物の最適な補修方法である。   As described above, the present invention is a method for repairing a crack having an unprecedented feature that is excellent in workability and takes safety and environmental aspects into consideration. In particular, it is an optimal repair method for water supply facilities, agricultural water tanks, irrigation canals, and other structures related to the supply of drinking water and crops directly related to human health.

アルギン酸ナトリウム溶液の濃度と粘度との関係図。The relationship figure of the density | concentration and viscosity of a sodium alginate solution. アルギン酸ナトリウム溶液の濃度とひび割れへの浸透量を表す関係図。The relationship figure showing the density | concentration of a sodium alginate solution and the penetration | invasion amount to a crack. Aはセメント系材料から成る構造物に発生したひび割れの拡大断面図、Bは該ひび割れ内にアルギン酸の溶液を含浸せしめた状態を示す拡大断面図、Cは該ひび割れ内でセメントとアルギン酸とが反応しゲル化したアルギン酸カルシウムが生成された状態を示す拡大断面図。A is an enlarged cross-sectional view of a crack generated in a structure made of a cement-based material, B is an enlarged cross-sectional view showing a state in which a solution of alginic acid is impregnated in the crack, and C is a reaction between cement and alginic acid in the crack. The expanded sectional view which shows the state by which the gelatinized calcium alginate was produced | generated.

符号の説明Explanation of symbols

1…構造物、2…セメント系材料、3…ひび割れ、4…アルギン酸の希釈溶液、4′…ゲル状のアルギン酸カルシウム。   DESCRIPTION OF SYMBOLS 1 ... Structure, 2 ... Cement-type material, 3 ... Crack, 4 ... Diluted solution of alginic acid, 4 '... Gel-like calcium alginate.

Claims (1)

繊維を混入したセメント系材料を用いた構造物に発生したひび割れ内にカルシウムの溶液を予め浸透させて前処理を行った後に、該ひび割れ内にアルギン酸又はその塩類又はアルギン酸プロピレングリコールエステルの溶液を含浸し、該含浸されたアルギン酸又はその塩類又はアルギン酸プロピレングリコールエステルと、上記カルシウム溶液のカルシウム及びセメントのカルシウムの反応を得てゲル状のアルギン酸カルシウムをひび割れ内部に生成せしめ、該ゲル状のアルギン酸カルシウムをひび割れ破面に現れた上記繊維によって保持させることによりひび割れの止水を図ることを特徴とする繊維を混入したセメント系構造物におけるひび割れの補修方法。 After pretreatment by pre-infiltrating the cracks generated in the structure using the cement-based material mixed with fibers with a calcium solution, the cracks are impregnated with a solution of alginic acid or its salts or propylene glycol alginate. Then, the gelled calcium alginate is formed inside the crack by obtaining a reaction between the impregnated alginic acid or a salt thereof or propylene glycol alginate and calcium of the calcium solution and calcium of the cement. A method for repairing cracks in a cement-based structure mixed with fibers, characterized in that the cracks are retained by the fibers appearing on the fracture surface of the cracks to prevent water from cracking.
JP2008141307A 2008-05-29 2008-05-29 Repair method for cracks in cement-based structures mixed with fibers Active JP5009233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141307A JP5009233B2 (en) 2008-05-29 2008-05-29 Repair method for cracks in cement-based structures mixed with fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141307A JP5009233B2 (en) 2008-05-29 2008-05-29 Repair method for cracks in cement-based structures mixed with fibers

Publications (2)

Publication Number Publication Date
JP2009286661A JP2009286661A (en) 2009-12-10
JP5009233B2 true JP5009233B2 (en) 2012-08-22

Family

ID=41456243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141307A Active JP5009233B2 (en) 2008-05-29 2008-05-29 Repair method for cracks in cement-based structures mixed with fibers

Country Status (1)

Country Link
JP (1) JP5009233B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082090A (en) * 2010-10-08 2012-04-26 C & C:Kk Method of regenerating cement cured body, cement cured body regenerated by the same method and regenerating material of cement cured body
NL2011542B3 (en) * 2013-10-03 2024-02-28 Univ Delft Tech Biobased membrane.
KR101557300B1 (en) * 2014-05-14 2015-10-05 (주)마이더스엠앤디 Concrete Composition and Method for Manufacturing thereof and Artificial Sculptures by Using Concrete Composition
JP6664644B2 (en) * 2016-12-22 2020-03-13 日本特殊膜開発株式会社 Coating agent for preventing rain from building materials
JP6871570B2 (en) * 2017-03-31 2021-05-12 国立大学法人愛媛大学 Repair materials and repair methods
CN110424330B (en) * 2019-07-18 2021-07-20 华南理工大学 Cement-based material crack self-repairing agent capable of curing seawater aggressive ions and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688853B2 (en) * 1986-01-31 1994-11-09 清水建設株式会社 Lightweight aggregate with excellent water absorption resistance and method for producing the same
JP2501591B2 (en) * 1987-08-13 1996-05-29 電気化学工業株式会社 Mortar concrete curing sealant
JP2983101B2 (en) * 1991-11-25 1999-11-29 日本化薬株式会社 Leakage prevention composition
JPH10265256A (en) * 1997-03-26 1998-10-06 Nippon Kayaku Co Ltd Preventing composition of water leakage and crack repairing of building
JP2000038565A (en) * 1998-07-22 2000-02-08 Nippon Kayaku Co Ltd Production of water leak preventive and method for preventing water leak
JP2001026766A (en) * 1999-07-15 2001-01-30 Nippon Kayaku Co Ltd Agent for and method of preventing leakage of water
JP2001152131A (en) * 1999-11-26 2001-06-05 Nippon Kayaku Co Ltd Process for inhibiting water leakage
JP2001106583A (en) * 1999-10-06 2001-04-17 Gaeart Kumagai Co Ltd Surface treating agent for concrete and method for removing mortar on concrete surface using the same
JP2002206085A (en) * 2001-01-10 2002-07-26 Nippon Kayaku Co Ltd Water leak-preventing agent, water leak-preventing material using the same, and method of preventing water leak

Also Published As

Publication number Publication date
JP2009286661A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5009233B2 (en) Repair method for cracks in cement-based structures mixed with fibers
CN109761575B (en) TRD continuous wall curing agent and using method and application thereof
CN105239789A (en) Construction process for plugging and consolidating concrete crack through chemical grouting
CN101863643B (en) Hydrophobic gel composite cement and plugging method thereof
KR101265239B1 (en) Water repellency and non-freezing in winter aqueous concrete surface reinforcing agent based alkali silicate, manufacturing method thereof and method of treating concrete surface reinforcement using the same
JP2019172564A (en) Concrete patching agent
CN107445561A (en) Polymer anticorrosion mortar and its application method
JP2007009487A (en) Crack repairing construction method of concrete
KR101607062B1 (en) Grout for filling pore space in ground and Method for grouting using the same
JP5504414B1 (en) Repair method for concrete structures
JP6183678B2 (en) Solution type grout and grout method using the same
JP2008063794A (en) Method of treating soil or building skeleton
KR101333157B1 (en) An acrylic waterproof composition
JP6220195B2 (en) Leakage cracking water-stopping material using high-performance inorganic crack injection material and its waterproofing method
JP3806621B2 (en) Concrete reinforcement method
CN104529339B (en) A kind of polypropylene cross-linked copolymer fiber concrete leak stopping slurry
AU2017100604A4 (en) Method of limiting or reducing permeability of a matrix to liquid or gas flow
JP2011256066A (en) Method for protecting concrete structure
JP2011184212A (en) Concrete modifier, and method for modifying concrete structure
KR102240436B1 (en) Eco friendly polymeric grouting composition and deep mix processing method using therefor
JP2010270288A (en) Chemical liquid injection material using water-absorbing resin having surface covered with hydrophilic polymer compound as coating material and chemical liquid injection construction method
KR100559150B1 (en) Composition with nano level inorganic polymer for repairing crevis on concrete structure
JP6831508B2 (en) How to repair concrete
JP5083806B2 (en) Grout injection method
JP2003292942A (en) Repairing agent for concrete, repairing material containing the same and repairing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5009233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250