JP5008453B2 - High strength bolt friction joint using high strength steel - Google Patents

High strength bolt friction joint using high strength steel Download PDF

Info

Publication number
JP5008453B2
JP5008453B2 JP2007123792A JP2007123792A JP5008453B2 JP 5008453 B2 JP5008453 B2 JP 5008453B2 JP 2007123792 A JP2007123792 A JP 2007123792A JP 2007123792 A JP2007123792 A JP 2007123792A JP 5008453 B2 JP5008453 B2 JP 5008453B2
Authority
JP
Japan
Prior art keywords
strength
base material
steel
tsb
shot blasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007123792A
Other languages
Japanese (ja)
Other versions
JP2008281040A (en
Inventor
大 西尾
友弥 川畑
和茂 有持
康生 一戸
正道 佐々木
多一郎 福田
進 桑原
功夫 甲津
元英 多田
静司 向出
謙蔵 多賀
正一郎 藤平
知幸 橋田
俊之 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Sumitomo Metal Industries Ltd
Original Assignee
Nikken Sekkei Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd, Sumitomo Metal Industries Ltd filed Critical Nikken Sekkei Ltd
Priority to JP2007123792A priority Critical patent/JP5008453B2/en
Publication of JP2008281040A publication Critical patent/JP2008281040A/en
Application granted granted Critical
Publication of JP5008453B2 publication Critical patent/JP5008453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Connection Of Plates (AREA)

Description

本発明は、建築鉄骨構造物あるいはその他の鉄骨構造物における鋼材の高力ボルト摩擦接合部、特に今後ますます適用範囲の拡大が期待される高強度鋼を適用する際の高力ボルト摩擦接合部に関するものである。   The present invention relates to high-strength bolt friction joints of steel materials in architectural steel structures or other steel structures, particularly high-strength bolt friction joints when applying high-strength steel that is expected to expand in the future. It is about.

従来、鉄骨構造物の高力ボルトによる摩擦接合構造においては、鋼材の摩擦面は自然発生の赤錆が標準になっており(日本建築学会「JASS6」参照)、施工上のバラツキを考慮して、設計上は低いすべり係数値(μ=0.45)に設定している。   Conventionally, in the friction bonded structure using high-strength bolts of steel structures, the naturally occurring red rust is standard on the friction surface of the steel material (see Japan Society for Architectural Engineers “JASS6”). In terms of design, the slip coefficient value is set to a low value (μ = 0.45).

この改善策として、より高いすべり係数を得るために、以下の構造、接合方式が提案されている。   As an improvement measure, in order to obtain a higher slip coefficient, the following structure and joining method have been proposed.

(1) 特許文献1に示されるように、鋼材の表面に特殊な塗装を施して高力ボルトにより接合するもの。   (1) As shown in Patent Document 1, a special coating is applied to the surface of a steel material and joined with a high-strength bolt.

(2) 特許文献2に示されるように、鋼材の接合面にセラミックのプラズマ溶射処理を施して、高力ボルトにより接合するもの。   (2) As shown in Patent Document 2, a ceramic plasma spraying treatment is applied to the joining surface of steel materials and joined with a high-strength bolt.

(3) 特許文献3あるいは特許文献4に示されるように、表面粗さと表面硬さの差の大きな鋼材を組み合わせるもの。   (3) As shown in Patent Document 3 or Patent Document 4, a combination of steel materials having a large difference in surface roughness and surface hardness.

(4) 特許文献5に示されるように、表面近傍の硬さのみを高くするもの。   (4) As shown in Patent Document 5, only the hardness near the surface is increased.

(5) 特許文献6、特許文献7に示されるように、高低差0.2〜1.0mmの凹凸を設け、さらに表面を硬くするもの。   (5) As shown in Patent Document 6 and Patent Document 7, the surface is provided with unevenness with a height difference of 0.2 to 1.0 mm, and the surface is further hardened.

特開昭51−052336号公報Japanese Patent Laid-Open No. 51-052336 特開平01−266309号公報JP-A-01-266309 特開平06−146427号公報Japanese Patent Laid-Open No. 06-146427 特開平07−238595号公報Japanese Patent Application Laid-Open No. 07-238595 特開平06−226404号公報Japanese Patent Laid-Open No. 06-226404 特開平08−081736号公報Japanese Patent Laid-Open No. 08-081736 特開平08−284912号公報JP 08-284912 A 宇野暢芳,井上一朗,志村保美,脇山広三:「硬さが異なる鋼材間の摩擦係数に関する基礎的研究」,日本建築学会構造系論文集, 第494号, pp.123-128, 1997.4.Yasuyoshi Uno, Ichiro Inoue, Yumi Shimura, Hirozo Wakiyama: “Fundamental study on friction coefficient between steels with different hardness”, Architectural Institute of Japan, 494, pp.123-128, 1997.4.

前記従来の赤錆を発生させる場合は、施工上のバラツキが大きく、かつ施工品質の管理が非常に困難であるため、0.45よりも大きなすべり係数値を接合部設計に用いることができないという欠点がある。   In the case of generating the conventional red rust, since the variation in construction is large and the management of construction quality is very difficult, a slip coefficient value larger than 0.45 cannot be used for joint design. There is.

前記(1)の接合方式の場合は、鋼材に特殊な塗装を施す必要があるので煩雑であり、前記(2)の接合方式の場合は、鉄骨加工工程中で新たな専用設備を必要とするという欠点がある。   In the case of the joining method of (1), it is complicated because it is necessary to apply a special coating to the steel material, and in the case of the joining method of (2), a new dedicated equipment is required in the steel frame processing process. There is a drawback.

前記(3)の接合方式では、異なる表面粗さを現場で制御することが困難であり、また異なる硬さを有する鋼材の調達に関し問題が生じる場合があり、実際的でない。   In the joining method (3), it is difficult to control different surface roughness on site, and there may be a problem in procurement of steel materials having different hardness, which is not practical.

また、前記(4)の接合方式において、表層部の硬さだけを高めた鋼材は、製造やその硬度の管理が煩雑である。また、前記(5)の接合方式における表面加工は極めて煩雑である。   In addition, in the joining method of (4), a steel material in which only the hardness of the surface layer portion is increased is complicated to manufacture and manage the hardness. Further, the surface processing in the joining method (5) is extremely complicated.

このように、従来提案されている前記(1)〜(5)の接合方式は、何れも課題が残っており、広く実施されるまでには至っていない。   As described above, all of the conventionally proposed joining methods (1) to (5) still have problems and have not yet been widely implemented.

また、高強度鋼に関するすべり係数の知見はこれまで明らかになっていない。これまでの検討は汎用強度材を対象にしたものであり、全く金属組織の異なる高強度鋼において、どのように取り組むべきか、示唆を与えるものもない。   Moreover, the knowledge of the slip coefficient regarding high-strength steel has not been clarified so far. The investigations so far have focused on general-purpose strength materials, and there is no suggestion on how to work on high-strength steels with completely different metal structures.

本発明は、特に高強度鋼材を高力ボルト摩擦接合する場合において、従来技術における前述の課題の解決を図り、摩擦接合面の施工品質の安定性と高いすべり係数を確保することを目的としたものである。   The present invention aims to solve the above-mentioned problems in the prior art, particularly when high-strength steel materials are friction-bonded to high-strength steel, and to ensure the stability of the construction quality of the friction-bonded surface and a high slip coefficient. Is.

前述の課題を有利に解決するために、本発明者らは、高強度鋼を含む鋼材群を用いて多数のすべり試験を実施した。   In order to solve the above-described problem advantageously, the present inventors have conducted a number of sliding tests using a group of steel materials including high-strength steel.

すべり試験は、図1に例を示す試験片を用い、F14T級の高力ボルトで締め付けた後、引張載荷し、すべり荷重を求め、すべり係数を導出した。すべり係数導出は、「鋼構造接合部設計指針」(第2版第1刷、社団法人日本建築学会、2006年3月1日発行)の付7「すべり係数評価試験法」に基づいて行った。   In the slip test, the test piece shown in Fig. 1 was used, and after tightening with a high strength bolt of F14T class, tensile loading was performed, the slip load was obtained, and the slip coefficient was derived. Slip coefficient derivation was performed based on Appendix 7 “Slip coefficient evaluation test method” of “Guidelines for design of steel structure joints” (2nd edition, 1st edition, Architectural Institute of Japan, published on March 1, 2006). .

摩擦特性は表面粗さと強い相関関係を有することはよく知られたことであるため、高強度鋼についても粗さを向上させるため、ブラスト方法を種々変化させた試験を実施した。グリットブラスト法は高強度鋼であっても高い粗さが確保できる手法であるが、すべり試験を行った結果、すべり係数は比較的低い値に留まった。   Since it is well known that the friction characteristics have a strong correlation with the surface roughness, tests were performed with various changes in the blasting method in order to improve the roughness of the high-strength steel. The grit blasting method is a method that can ensure high roughness even with high-strength steel, but as a result of the slip test, the slip coefficient remained at a relatively low value.

そこで、本発明者らは、現実的に広く適用されており、汎用性の観点で優れている方法であるショットブラスト法に着目し、すべり係数との相関関係を鋭意検討した。なお、添板については、母材と同等のものと、汎用性を考慮し、常用強度鋼のものを用いて検討を行った。工業的に現実的な条件とするため、母材と添板には同じブラスト条件を適用した。   Accordingly, the present inventors have focused on the shot blast method, which is a method that is widely applied practically and is excellent from the viewpoint of versatility, and intensively studied the correlation with the slip coefficient. In addition, about the accessory plate, considering the same as the base material and versatility, examination was performed using the steel of normal strength. The same blasting conditions were applied to the base material and the accessory plate in order to achieve industrially realistic conditions.

その結果、すべり係数に関しては、
(1) 母材の強度が高くなればなるほど、すべり係数が低下する。
(2) 添板は母材強度と同等材の方が優れており、汎用強度材を用いた場合は低下する。
(3) 研削材の粒径には最適点が存在する。
(4) 研削材の硬度は高い方が有利である。
(5) 母材接合面の粗さ曲線最大高さ(Rz)が小さい方がすべり係数が向上する。
(6) 母材接合面の粗さ曲線山谷間隔(RSm)が大きくなればなるほど、すべり係数が向上する。
との知見を得ることができた。
As a result, regarding the slip coefficient,
(1) The higher the strength of the base material, the lower the slip coefficient.
(2) For the accessory plate, a material equivalent to the base material strength is superior, and decreases when a general-purpose strength material is used.
(3) There is an optimum point in the grain size of the abrasive.
(4) Higher hardness of the abrasive is advantageous.
(5) The smaller the maximum height (Rz) of the roughness curve of the base metal joint surface, the better the slip coefficient.
(6) The slip coefficient improves as the roughness curve peak-to-valley spacing (RSm) of the base material joint surface increases.
I was able to obtain the knowledge.

これらの傾向について考えられる理由を、以下に述べる。   The possible reasons for these trends are described below.

(1) 母材の強度が高くなればなるほど、すべり係数が低下することについて
母材の強度については、すべり係数とは負の相関関係を示す。一見すると、強度が上昇すると摩擦時の剪断破壊限界特性が上昇するため、すべり係数も上昇すると考える方が自然であり、本件発明のような負の相関関係は従来知られていない。実際に、例えば、特許文献5では、複相鋳片を用いて製造した鋼材を適用し、表面のみを高硬度化させることにより高い摩擦係数を期待する知見が記載されている。
(1) The slip coefficient decreases as the strength of the base material increases. The strength of the base material shows a negative correlation with the slip coefficient. At first glance, since the shear fracture limit characteristic during friction increases as the strength increases, it is natural to think that the slip coefficient also increases, and a negative correlation as in the present invention has not been known so far. Actually, for example, Patent Document 5 describes the knowledge of expecting a high coefficient of friction by applying a steel material produced using a double-phase slab and increasing the hardness of only the surface.

しかしながら、強度上昇に伴い、限界剪断応力も上昇するという考えは、金属組織の耐破壊特性が一定であるという仮定に基づいていると言える。実際には、一般的な汎用高強度材、特に溶接施工を考慮した材料においては、転位密度の極めて高い金属組織を利用しており、剪断破壊時の限界特性は汎用強度鋼よりも低下することが知られている。高強度鋼適用によるすべり係数の低下は、強度上昇による寄与分に比べて、金属組織に因る耐破壊特性の低下が支配的であるため、起こると考えられる。   However, it can be said that the idea that the critical shear stress increases as the strength increases is based on the assumption that the fracture resistance of the metal structure is constant. In practice, general high-strength materials for general use, especially materials that consider welding, use a metal structure with extremely high dislocation density, and the critical properties at the time of shear failure are lower than those for general-purpose strength steel. It has been known. The decrease in the slip coefficient due to the application of high-strength steel is considered to occur because the decrease in fracture resistance due to the metal structure is dominant compared to the contribution due to the increase in strength.

(2) 添板は母材強度と同等材の方が優れており、汎用強度材を用いた場合は低下することについて
例えば、前述の特許文献5や非特許文献1には、添板には母材と異なる鋼材を用いることが有利であると記載されている。しかしながら、本発明者らの実験によれば、異材継手(異なる鋼材を用いる場合)は共材継手(同種の鋼材を用いる場合)に比べてすべり係数が小さい結果となった。
(2) As for the accessory plate, the same material as the base material strength is superior, and it decreases when a general-purpose strength material is used. For example, in Patent Document 5 and Non-Patent Document 1 described above, It is described that it is advantageous to use a steel material different from the base material. However, according to the experiments by the present inventors, the dissimilar material joint (when using different steel materials) has a smaller slip coefficient than the joint material joint (when using the same kind of steel material).

実験後の表面観察により、軟らかい鋼板の起伏がことごとく削られてすべり現象が発生している。このことは、軟らかい材料側の表面も硬い材料側と同様のブラストを施しており、軟らかい材料の有効な剪断応力が低くなっていることに起因していると考えられる。   According to the surface observation after the experiment, all the undulations of the soft steel plate were scraped and a slip phenomenon occurred. This is considered to be due to the fact that the surface on the soft material side is subjected to the same blasting as that on the hard material side, and the effective shear stress of the soft material is low.

軟らかい材料側の起伏をコントロールし、最適化することですべり特性を向上させることは可能性があると考えられるものの、実際的な施工の際には、部材により異なった表面処理を必要とするものであり、実現にはコスト面から困難であると考える。   Although it may be possible to improve the slip characteristics by controlling and optimizing the undulations on the soft material side, it may require different surface treatments depending on the member during practical construction Therefore, realization is difficult from the viewpoint of cost.

(3) 研削材の粒径には最適点が存在することについて
ショット玉は、基本的に球形であるため、摩擦理論で議論される頂角は、粒径を変化させても、あまり変化しないと考えられるが、実際的には、粒径を小さくすることで、頂角は小さくなる傾向にある。
(3) There is an optimum point in the particle size of the abrasive. Since the shot ball is basically spherical, the vertex angle discussed in the friction theory does not change much even if the particle size is changed. However, in practice, the apex angle tends to decrease by decreasing the particle size.

このことから、粒径を小さくすれば頂角が小さいことに起因してすべり係数が低下する。また、粒径が大きすぎる場合には、載荷方向に垂直な面に投影した接触面積の総和が減少し、接触部位の摩擦力の総和が減少すると考えられる。つまり粒径にはすべり係数を向上させるための最適点が存在すると考える。今回の一連の実験では、0.8mmのものが最良の結果であった。   For this reason, if the particle size is reduced, the slip coefficient is lowered due to the small apex angle. In addition, when the particle size is too large, it is considered that the sum of the contact areas projected on the surface perpendicular to the loading direction is reduced and the sum of the frictional forces at the contact portions is reduced. That is, it is considered that there is an optimum point for improving the slip coefficient in the particle diameter. In this series of experiments, 0.8mm was the best result.

(4) 研削材の硬度は高い方が有利であることについて
すべり係数向上のために粗さを確保することが重要であることは自明であるが、部材に高強度材を用いた場合には、ショット玉が鋼材表面に動的に衝突した際に、ショット玉側の塑性変形が大きくなり、鋼材に所望の粗さを付与することができない。
(4) About the higher hardness of the abrasive material It is obvious that it is important to secure roughness to improve the slip coefficient, but when high strength material is used for the member When the shot ball dynamically collides with the surface of the steel material, the plastic deformation on the shot ball side increases, and the desired roughness cannot be imparted to the steel material.

つまり、鋼材に所望の起伏を付与するためには、ショット玉側の塑性変形を抑制する必要があり、ショット玉の高硬度化が有効である。   That is, in order to give the steel material a desired undulation, it is necessary to suppress plastic deformation on the shot ball side, and increasing the hardness of the shot ball is effective.

(5) 母材接合面の粗さ曲線最大高さ(Rz)が小さい方がすべり係数が向上することについて
グリットブラストではショットブラストに比べ比較的容易にRzを高めることができるが、接合時の接触面積が減少する。また工業的な範疇の衝突エネルギーでは、接合面のRzを高めると起伏の頂角が鋭くなり、摩擦により容易に削り落とされてしまい、意図したすべり係数を得られない。
(5) The slip coefficient is improved when the maximum roughness curve (Rz) of the base metal joint surface is small.In grit blasting, Rz can be increased relatively easily compared to shot blasting. The contact area is reduced. In addition, in the industrial category of collision energy, when the Rz of the joint surface is increased, the vertical angle of the undulations becomes sharp and is easily scraped off by friction, and the intended slip coefficient cannot be obtained.

特に、高強度鋼では降伏応力が高く、起伏の生成にはより大きな衝突エネルギーを必要とするため、この傾向は顕著になる。即ち同等の衝突エネルギーでは、Rzは適度に抑え、次に述べるRSmを相対的に大きくする方が、工業的に効率良く高いすべり係数を得ることができる。   In particular, this tendency becomes significant because high strength steel has high yield stress and requires more collision energy to generate undulations. That is, at the same collision energy, Rz is moderately suppressed, and a relatively large RSm described below makes it possible to obtain a high slip coefficient efficiently and industrially.

ここで、母材の表面性状のみを評価の対象としているのは、添板の強度を母材と同等かそれ以下とし、また同じブラスト条件を適用しているため、添板の表面性状の寄与度は小さいためである。   Here, only the surface properties of the base material are subject to evaluation because the strength of the accessory plate is equal to or less than that of the base material and the same blasting conditions are applied. This is because the degree is small.

(6) 母材接合面の粗さ曲線山谷間隔(RSm)が多くなればなるほど、すべり係数が向上することについて
ショットブラストではグリットブラストに比べ起伏の頂角は鈍くなり、頂角の間隔が広がる結果、接合時の接触面積が増大する。これは即ちRzが小さく、RSmが大きい状態を意味する。
(6) The roughness curve of the base metal joint surface increases as the spacing between peaks and valleys (RSm) increases, and the slip coefficient improves. In shot blasting, the apex angle of undulations becomes duller and the apex angle interval widens than grit blasting. As a result, the contact area at the time of joining increases. This means that Rz is small and RSm is large.

また、これにより、起伏は摩擦に対し比較的大きな抵抗力を持つようになり、すべり係数が向上する。無論、グリットブラストでもこのような表面性状を得ることは可能であるが、すべり係数は比較的低位となる。   In addition, this makes the undulations have a relatively large resistance to friction and improves the slip coefficient. Of course, it is possible to obtain such surface properties even with grit blasting, but the slip coefficient is relatively low.

本発明者らは、700MPa級以上の高強度鋼からなる母材と、前記高強度鋼と同等の強度またはそれより低い強度の鋼からなる添板に、双方同じ条件のショットブラストまたはグリットブラストを施し、それらの面を重ね合わせて高力ボルトにより接合した高力ボルト摩擦接合部についてすべり試験を行い、得られた知見をもとに、各パラメータの定量評価を行い、次式(1)〜(2)で示す指標を得ることができた。 The inventors of the present invention applied shot blasting or grit blasting under the same conditions to a base material made of high strength steel of 700 MPa class or higher and a base plate made of steel having the same or lower strength as the high strength steel. A high-strength bolt friction joint jointed with high-strength bolts by superimposing these surfaces was subjected to a sliding test, and based on the knowledge obtained, quantitative evaluation of each parameter was performed. The index shown in (2) was obtained.

なお、母材および添板の強度は、鋼材の元の厚みまま、または厚みの1/4から外表面に平行に採取した引張試験片を使い引張試験して得られる引張強さとする。   The strength of the base material and the accessory plate is the tensile strength obtained by a tensile test using a tensile test piece taken from the original thickness of the steel material or from 1/4 of the thickness in parallel to the outer surface.

式(1)はすべり係数0.45以上を得るためのショットブラスト条件、式(2)はすべり係数0.45以上を得る表面態様を得るためのショットブラスト条件である。 Expression (1) is a shot blast condition for obtaining a slip coefficient of 0.45 or more , and Expression (2) is a shot blast condition for obtaining a surface mode for obtaining a slip coefficient of 0.45 or more.

(1) すべり係数0.45以上を得るためのショットブラスト条件
前記の母材と添板の強度、ショットブラスト条件が下記の関係を満足すること。
0.11×TSB+1.2×(TSB-TSS)-2.9×(HVS-TSB/3.11)+303×|GSS-0.8|≦0 … (1)
ここで、
TSB: 母材強度 [MPa]
TSS: 添板強度 [MPa]
HVS: 研削材の平均ビッカース硬度
GSS: 研削材の平均粒径 [mm]
(1) Shot blasting conditions for obtaining a slip coefficient of 0.45 or more The strength of the base material and the accessory plate, and the shot blasting conditions satisfy the following relationship.
0.11 × TSB + 1.2 × (TSB-TSS) -2.9 × (HVS-TSB / 3.11) + 303 × | GSS-0.8 | ≦ 0… (1)
here,
TSB: Base material strength [MPa]
TSS: Plywood strength [MPa]
HVS: Average Vickers hardness of abrasive
GSS: Average particle size of abrasives [mm]

(2) すべり係数0.45以上を得る表面態様を得るためのショットブラスト条件
前記母材の強度と、ショットブラスト条件が以下の関係を満足すること。
2.36×(HVS-TSB/3.11)-105×|GSS-0.8|≧700 … (2)
ここで、
TSB: 母材強度 [MPa]
HVS: 研削材の平均ビッカース硬度
GSS: 研削材の平均粒径 [mm]
(2) Shot blasting conditions for obtaining a surface mode for obtaining a slip coefficient of 0.45 or more The strength of the base material and the shot blasting conditions satisfy the following relationship.
2.36 × (HVS-TSB / 3.11) -105 × | GSS-0.8 | ≧ 700… (2)
here,
TSB: Base material strength [MPa]
HVS: Average Vickers hardness of abrasive
GSS: Average particle size of abrasives [mm]

式(1)、(2)何れも母材の強度は低い方が有利となる。これは、母材および添板の強度、および研削材の硬度の相関関係の支配度が大きいためであり、この関係が維持される限り広い範囲で有効であると考えられるが、一般に入手可能な研削材の硬度の上限との相関関係から、母材強度の上限を1200[MPa]とする。 In both formulas (1) and (2), it is advantageous that the strength of the base material is low. This is because the degree of control of the correlation between the strength of the base material and the accessory plate, and the hardness of the abrasive is large, and it is considered that it is effective in a wide range as long as this relationship is maintained. From the correlation with the upper limit of the hardness of the abrasive, the upper limit of the base metal strength is set to 1200 [MPa].

本発明によれば、従来、すべり係数との関係が十分に把握されていなかった高強度鋼の高力ボルト摩擦接合において、摩擦接合面の施工品質の安定性と高いすべり係数を確保することができる。   According to the present invention, conventionally, in high-strength bolt friction welding of high-strength steel for which the relationship with the slip coefficient has not been sufficiently grasped, it is possible to ensure the stability of the construction quality of the friction joint surface and the high slip coefficient. it can.

すなわち、高力ボルト摩擦接合において問題となる施工上のバラツキが防止され、施工品質の管理が容易となり、また特殊な塗装や加工も必要なく、経済的かつ効率的に、品質の優れた高強度鋼を用いた高力ボルト摩擦接合部が得られる。   In other words, variations in construction, which are problems in high-strength bolt friction welding, are prevented, management of construction quality is easy, and no special painting or processing is required. Economically and efficiently, high strength with excellent quality A high-strength bolt friction joint using steel is obtained.

以下、本発明の接合構造を上記のように定めた理由について詳細に説明する。   Hereinafter, the reason why the bonding structure of the present invention is defined as described above will be described in detail.

鋼材の表面処理には、グリットブラスト、またはショットブラストを用いる。これは現在広く用いられている方法であり、現実性を考慮すれば、極めて有効な手法である。接合面の表面性状は、課題を解決するための手段の項に詳述した理由に基づき、以下の条件となるよう制御する。その他の条件は常法に従えば良い。   Grit blasting or shot blasting is used for the surface treatment of the steel material. This is a widely used method at present, and is a very effective method in consideration of the reality. The surface property of the joint surface is controlled so as to satisfy the following conditions based on the reason detailed in the section for solving the problem. Other conditions may be in accordance with ordinary methods.

(1) ショットブラスト条件
0.11×TSB+1.2×(TSB-TSS)-2.9×(HVS-TSB/3.11)+303×|GSS-0.8|≦0 … (1)
ここで、
TSB: 母材強度 [MPa]
TSS: 添板強度 [MPa]
HVS: ショットブラストの研削材の平均ビッカース硬度
GSS: ショットブラストの研削材の平均粒径 [mm]
(1) Shot blasting condition A
0.11 × TSB + 1.2 × (TSB-TSS) -2.9 × (HVS-TSB / 3.11) + 303 × | GSS-0.8 | ≦ 0… (1)
here,
TSB: Base material strength [MPa]
TSS: Plywood strength [MPa]
HVS: Average Vickers hardness of shot blasting abrasive
GSS: Average particle size of shot blasting abrasive [mm]

なお、母材強度および添板強度は、鋼材の元の厚みまま、または厚みの1/4から外表面に平行に採取した引張試験片を使い引張試験して得られる引張強さとする。 Incidentally, the base material strength and添板strength remains the original thickness of the steel, or you 1/4 the thickness and tensile strength obtained by a tensile test using a tensile test piece parallel to collect on the outer surface.

(2) ショットブラスト条件
2.36×(HVS-TSB/3.11)-105×|GSS-0.8|≧700 … (2)
ここで、
TSB: 母材強度 [MPa]
HVS: ショットブラストの研削材の平均ビッカース硬度
GSS: ショットブラストの研削材の平均粒径 [mm]
(2) Shot blasting condition B
2.36 × (HVS-TSB / 3.11) -105 × | GSS-0.8 | ≧ 700… ( 2 )
here,
TSB: Base material strength [MPa]
HVS: Average Vickers hardness of shot blasting abrasive
GSS: Average particle size of shot blasting abrasive [mm]

なお、母材強度および添板強度は、鋼材の元の厚みまま、または厚みの1/4から外表面に平行に採取した引張試験片を使い引張試験して得られる引張強さとする。   Note that the base metal strength and the strength of the accessory plate are the tensile strengths obtained by performing a tensile test using a tensile test piece taken from the original thickness of the steel material or from 1/4 of the thickness parallel to the outer surface.

式(1)、(2)何れも母材の強度は低い方が有利となる。これは、母材および添板の強度、および研削材の硬度の相関関係の支配度が大きいためであり、この関係が維持される限り広い範囲で有効であると考えられるが、一般に入手可能な研削材の硬度の上限との相関関係から、母材強度の上限を1200[MPa]とする。 In both formulas (1) and (2), it is advantageous that the strength of the base material is low. This is because the degree of control of the correlation between the strength of the base material and the accessory plate, and the hardness of the abrasive is large, and it is considered that it is effective in a wide range as long as this relationship is maintained. From the correlation with the upper limit of the hardness of the abrasive, the upper limit of the base metal strength is set to 1200 [MPa].

接合構造に用いる鋼材は高強度鋼である。高強度鋼の製造法については、溶接施工を行うことも考慮に入れ、以下に示す化学成分範囲を有するものが望ましい。この規定は、摩擦特性に優れた接合構造を実現することのみを考慮すれば、必ずしも必須ではないが、建築構造用鋼として必要な幅広い特性を考慮すると、この範囲にコントロールすることが望ましいものである。ただし、これにより本発明の技術的範囲が狭く解釈されるものではない。   The steel material used for the joint structure is high-strength steel. As for the manufacturing method of high-strength steel, it is desirable to have the chemical composition range shown below in consideration of performing welding. This rule is not necessarily indispensable if only considering the realization of a joint structure with excellent friction characteristics, but it is desirable to control within this range considering the wide range of characteristics required for steel for building structures. is there. However, this does not mean that the technical scope of the present invention is narrowly interpreted.

Cは、母材の強度確保を目的に添加する。その含有量が0.04質量%未満では必要な強度が確保できないだけでなく、FL(溶融線)でのラス形成が不十分になってFL近傍のHAZ(溶接熱影響部)の靭性も低下する。一方、その含有量が0.15質量%を超えると、HAZ、なかでもFL近傍のHAZの靭性劣化が著しくなる。さらに、鋼板表面の硬度が上昇傾向となり、すべり係数を減じる原因となる。   C is added for the purpose of securing the strength of the base material. If the content is less than 0.04% by mass, not only the required strength cannot be secured, but also the lath formation in the FL (melting line) becomes insufficient and the toughness of the HAZ (welding heat affected zone) near the FL also decreases. To do. On the other hand, if the content exceeds 0.15% by mass, the toughness deterioration of HAZ, particularly HAZ near FL, becomes remarkable. Furthermore, the hardness of the steel sheet surface tends to increase, which causes the slip coefficient to decrease.

よって、C含有量の望ましい範囲は0.04〜0.15質量%である。なお、溶接部の靭性向上の観点からは、C含有量はできるだけ少ない方がよく、好ましい範囲は0.05〜0.12質量%である。   Therefore, the desirable range of the C content is 0.04 to 0.15% by mass. In addition, from the viewpoint of improving the toughness of the welded portion, the C content is preferably as small as possible, and a preferable range is 0.05 to 0.12% by mass.

Siは、基本的には脱酸や強度確保の目的で添加するが、0.05質量%以上ではその効果は十分ではなく、0.6質量%を超える過剰なSiは、HAZ部や母材部において、島状マルテンサイトを増加させ、靭性を低下させる。また、介在物量の増加を通じて母材靭性を低下させる。よって、Si含有量の望ましい範囲は0.05〜0.6質量%である。   Si is basically added for the purpose of deoxidation and ensuring strength, but the effect is not sufficient at 0.05% by mass or more, and excess Si exceeding 0.6% by mass is used for the HAZ part and the base material. In the part, island martensite is increased and toughness is decreased. In addition, the base material toughness is reduced through the increase in the amount of inclusions. Therefore, the desirable range of the Si content is 0.05 to 0.6% by mass.

なお、溶接部の靭性向上の観点からは、Si含有量はできるだけ少ない方がよく、好ましい範囲は0.05〜0.4質量%である。   In addition, from the viewpoint of improving the toughness of the welded portion, the Si content is preferably as small as possible, and a preferable range is 0.05 to 0.4 mass%.

Mnは、脱酸剤、母材の強度と靭性確保およびHAZの焼入性確保のために添加する。その含有量が0.4質量%以下ではこれらの効果が得られないだけでなく、HAZにフェライトサイドプレートが生成してラス形成が不十分になり、溶接部の靭性が低下する。   Mn is added to ensure the strength and toughness of the deoxidizer, the base material, and the hardenability of the HAZ. If the content is 0.4% by mass or less, not only these effects can be obtained, but also ferrite side plates are generated in the HAZ, so that lath formation is insufficient and the toughness of the welded portion is lowered.

一方、2質量%を超える過剰なMnは、中心偏析による板厚方向での母材特性の不均一をもたらす。よって、Mn含有量の望ましい範囲は0.4〜2.0質量%である。   On the other hand, excessive Mn exceeding 2% by mass brings about non-uniformity of base material characteristics in the thickness direction due to center segregation. Therefore, the desirable range of the Mn content is 0.4 to 2.0% by mass.

Pは、不純物として鋼中に不可避的に存在する。0.05質量%を超えると、顕著な靭性や耐溶接割れ性の劣化を伴うため、0.05質量%以下とする必要がある。Pは少ないほど好ましいため下限は特に規定するものではない。   P is unavoidably present in the steel as an impurity. If it exceeds 0.05% by mass, it is accompanied by remarkable deterioration of toughness and weld crack resistance, so it is necessary to make it 0.05% by mass or less. The lower limit is not particularly specified because P is preferably as small as possible.

Sは、多すぎると中心偏析を助長したり、延伸したMnSが多量に生成し、顕著な延性亀裂発生特性による劣化を伴うため、上限を0.003質量%とする。Sは少ないほど好ましいため下限は特に規定するものではない。   If S is too much, center segregation is promoted, or a large amount of stretched MnS is produced and accompanied by remarkable ductile crack generation characteristics, so the upper limit is made 0.003 mass%. The lower limit is not particularly specified because S is preferably as small as possible.

Alは、一般的には脱酸剤として添加する必要がある。効果を得るためには、0.002質量%以上の添加が必要である。しかしながら、その含有量が0.05質量%を超える過剰なAlは、AlNなどの析出物の増加を通じて母材部・溶接部の靭性を低下させる。よって、Al含有量の望ましい範囲は0.002〜0.05質量%である。   Al must generally be added as a deoxidizer. In order to obtain the effect, addition of 0.002% by mass or more is necessary. However, excessive Al whose content exceeds 0.05% by mass reduces the toughness of the base metal part and the welded part through an increase in precipitates such as AlN. Therefore, the desirable range of the Al content is 0.002 to 0.05% by mass.

鋼中のNは、析出物の生成を通して靭性の劣化原因となる。Nは0.01質量%以下でなければHAZの靱性が劣化するのを避けることができない。また、AlNやTiNの形成を通じてHAZ組織の微細化にも効果があるため、0.0015質量%以上の添加は必要である。よって、N含有量の望ましい範囲は0.0015〜0.01質量%である。   N in the steel causes toughness deterioration through the formation of precipitates. Unless N is 0.01 mass% or less, it cannot be avoided that the toughness of HAZ deteriorates. Moreover, since it is effective also in refinement | miniaturization of a HAZ structure | tissue through formation of AlN or TiN, addition of 0.0015 mass% or more is required. Therefore, the desirable range of the N content is 0.0015 to 0.01% by mass.

Cuは本発明では特に入れなくても良い。Cuは、母材の強度確保を目的に添加する。一方、その含有量が0.8質量%を超えると、AC3変態点以下に加熱されたHAZの靭性を劣化させる。よって、Cuを添加する場合の望ましい範囲は0.8質量%以下である。   Cu is not particularly required in the present invention. Cu is added for the purpose of securing the strength of the base material. On the other hand, if the content exceeds 0.8% by mass, the toughness of the HAZ heated below the AC3 transformation point is deteriorated. Therefore, the desirable range when adding Cu is 0.8 mass% or less.

Niは本発明では特に入れなくても良い。Niは、母材の強度確保を目的に添加する。しかし、高価な元素であり多量の添加は経済性を損なうため、Niを添加する場合の望ましい範囲は3質量%以下である。   Ni is not particularly required in the present invention. Ni is added for the purpose of securing the strength of the base material. However, since it is an expensive element and adding a large amount impairs economic efficiency, a desirable range when adding Ni is 3 mass% or less.

Crは本発明では特に入れなくても良い。Crは、耐炭酸ガス腐食性を高め、また焼入性を高めるのに有用である。1質量%を超えて含有させると、他の成分条件を満足させても、HAZの硬化の抑制が難しくなる他、耐炭酸ガス腐食性向上効果も飽和する。よって、Crを添加する場合の望ましい範囲は1.0質量%以下である。   Cr is not particularly required in the present invention. Cr is useful for enhancing the carbon dioxide gas corrosion resistance and enhancing the hardenability. If the content exceeds 1% by mass, it is difficult to suppress the curing of HAZ even if other component conditions are satisfied, and the carbon dioxide corrosion resistance improving effect is saturated. Therefore, the desirable range when adding Cr is 1.0 mass% or less.

Moは本発明では特に入れなくても良い。Moは、母材の強度と靱性を向上させる効果がある。0.8質量%を超えると特にHAZの硬度が高まり、靱性と耐SSC性を損なう。よって、Moを添加する場合の望ましい範囲は0.8質量%以下である。   Mo is not particularly required in the present invention. Mo has the effect of improving the strength and toughness of the base material. If it exceeds 0.8% by mass, the hardness of the HAZ increases, and the toughness and SSC resistance are impaired. Therefore, the desirable range when adding Mo is 0.8 mass% or less.

Vは本発明では特に入れなくても良い。Vは、主に焼戻し時の炭窒化物析出により母材の強度を向上させる。一方0.1質量%を超えると母材の性能向上効果が飽和し、靱性劣化を招く。よって、Vを添加する場合の望ましい範囲は0.8質量%以下である。   V is not particularly required in the present invention. V improves the strength of the base material mainly by carbonitride precipitation during tempering. On the other hand, if it exceeds 0.1% by mass, the performance improvement effect of the base material is saturated, leading to toughness deterioration. Therefore, the desirable range when adding V is 0.8 mass% or less.

Nbは本発明では特に入れなくても良い。Nbは、組織を微細化して低温靭性を向上させる作用を有する元素であり、母材の強度と低温靭性の確保を目的に添加する。一方、0.1質量%を超える過剰なNbは、粗大な炭化物、窒化物を形成し、靭性を低下させる。よって、Nbを添加する場合の望ましい範囲は0.1質量%以下である。   Nb is not particularly required in the present invention. Nb is an element having an effect of improving the low temperature toughness by refining the structure, and is added for the purpose of ensuring the strength of the base material and the low temperature toughness. On the other hand, excessive Nb exceeding 0.1% by mass forms coarse carbides and nitrides and lowers toughness. Therefore, a desirable range in the case of adding Nb is 0.1% by mass or less.

Tiは本発明では特に入れなくても良い。Tiは、主に脱酸元素として利用するが、Al,Ti,Mnからなる酸化物相を形成させる。0.1質量%を超えて含有させた場合には、形成される酸化物がTi酸化物、あるいはTi−Al酸化物となって分散密度が低下し、特に小入熱溶接部熱影響部における組織を微細化する能力が失われる。このため、Tiを添加する場合の望ましい範囲は0.1質量%以下である。   Ti is not particularly required in the present invention. Ti is mainly used as a deoxidizing element, but forms an oxide phase composed of Al, Ti, and Mn. When the content exceeds 0.1% by mass, the formed oxide becomes Ti oxide or Ti—Al oxide, and the dispersion density decreases, particularly in the heat-affected zone of the small heat input weld zone. The ability to refine the tissue is lost. For this reason, the desirable range when adding Ti is 0.1 mass% or less.

Bは本発明では特に入れなくても良い。Bは、母材の強度確保を目的に添加する。その含有量が0.0001質量%未満では必要な強度が得られない。一方、0.002質量%を超える過剰なBは、粗大な硼化合物の析出を招いて靭性を劣化させる。よって、Bを添加する場合の望ましい範囲は0.0001〜0.002質量%である。   B is not particularly necessary in the present invention. B is added for the purpose of securing the strength of the base material. If the content is less than 0.0001% by mass, the required strength cannot be obtained. On the other hand, excessive B exceeding 0.002 mass% causes precipitation of coarse boron compounds and deteriorates toughness. Therefore, a desirable range when adding B is 0.0001 to 0.002 mass%.

Caは本発明では特に入れなくても良い。Caは鋼中のSと反応して溶鋼中で酸・硫化物(オキシサルファイド)を形成し、この酸・硫化物はMnSなどと異なって圧延加工で圧延方向に伸びることがなく圧延後も球状であるため、延伸した介在物の先端などを割れの起点とする溶接割れや水素誘起割れを抑制する作用がある。その含有量が0.004質量%を超えると靱性の劣化を招くことがある。したがって、Caを添加する場合の添加量を0.004質量%以下である。   Ca is not particularly required in the present invention. Ca reacts with S in the steel to form acid / sulfide (oxysulfide) in the molten steel. Unlike MnS, this acid / sulfide does not extend in the rolling direction during rolling and is spherical after rolling. Therefore, it has the effect of suppressing weld cracks and hydrogen-induced cracks starting from the ends of the elongated inclusions. When the content exceeds 0.004 mass%, the toughness may be deteriorated. Therefore, the addition amount when adding Ca is 0.004 mass% or less.

Mgは本発明では特に入れなくても良い。Mgは微細なMg含有酸化物を生成し、γ粒径微細化に効果がある。0.006質量%を超えると、酸化物が多くなり過ぎて延性低下をもたらす。従って、Mgを添加する場合の添加量の上限を0.006質量%である。   Mg is not particularly required in the present invention. Mg produces a fine Mg-containing oxide and is effective in reducing the γ grain size. If it exceeds 0.006% by mass, the amount of oxide becomes excessive and ductility is reduced. Therefore, the upper limit of the addition amount when adding Mg is 0.006% by mass.

REMは本発明では特に入れなくても良い。REMは、溶接熱影響部の組織の微細化や、Sの固定に寄与するが、介在物となって清浄度を低下させる。REMの添加によって形成される介在物は、比較的靱性劣化への影響が小さいため、0.004質量%以下であれば含有させても母材の靱性の低下は許容できる。従って、REMを添加する場合の添加量の上限を0.004質量%である。   REM is not particularly necessary in the present invention. REM contributes to refinement of the structure of the weld heat affected zone and fixation of S, but it becomes an inclusion and reduces cleanliness. Inclusions formed by the addition of REM have a relatively small influence on the toughness deterioration, so that a decrease in the toughness of the base material can be tolerated even if included by 0.004 mass% or less. Therefore, the upper limit of the amount added when REM is added is 0.004% by mass.

これらの鋼の製造方法については、連続鋳造法により得られたスラブを熱間圧延し、焼き入れ焼き戻しを施す、あるいは直接焼き入れ後に焼き戻し処理を施すなど、常法に従えば良いが、焼戻し処理を実施することにより、表面硬度を低下させることがすべり係数に効果がある。焼戻し処理時には、効果の大きいAc1〜Ac1-100℃に温度をコントロールすることが望ましい。   About the manufacturing method of these steels, the slab obtained by the continuous casting method is hot-rolled, subjected to quenching and tempering, or subjected to tempering treatment after direct quenching, etc. By performing the tempering treatment, reducing the surface hardness has an effect on the slip coefficient. During the tempering process, it is desirable to control the temperature to Ac1 to Ac1-100 ° C., which is highly effective.

表1に、供試した鋼材の化学成分を示す。なお、表1中、Ceqは炭素当量(単位%)、Pcmは溶接割れ感受性組成(単位%)である。   Table 1 shows the chemical components of the tested steel materials. In Table 1, Ceq is the carbon equivalent (unit%), and Pcm is the weld cracking susceptibility composition (unit%).

Figure 0005008453
Figure 0005008453

これらの鋼材を用い、表2に示す要領にて図1に示すすべり試験体を構成し、すべり係数を評価するための引張試験を実施した。接合のための高力ボルトはF14T級のものでそれぞれの試験体に対し適切な首下長さのものを用いた。ここでは、添板の強度を母材と同等レベルを最高とし、母材強度よりも軟らかいものを組み合わせた条件を加えている。   Using these steel materials, the slide test body shown in FIG. 1 was constructed in the manner shown in Table 2, and a tensile test for evaluating the slip coefficient was performed. The high-strength bolts for joining were of the F14T class and had a neck length appropriate for each specimen. Here, the condition that the strength of the accessory plate is the same level as that of the base material and the softness of the base material is combined is added.

Figure 0005008453
Figure 0005008453

なお、この接合形式は、ブラスト条件、表面態様、およびすべり係数の相互関係が精度良く得られ、多様な接合形式にも容易に適用できるよう選択されており、本発明の技術的範囲が特定の接合形式だけに狭く解釈されるものではない。即ち、本発明における母材とは主たる高強度鋼であり、添板とは同等の強度またはそれより低い強度の鋼を指し示すため用いた呼び名に過ぎない。 This joining type is selected so that the correlation between the blasting condition, the surface mode, and the slip coefficient can be obtained with high accuracy and can be easily applied to various joining types, and the technical scope of the present invention is specified. It is not to be interpreted narrowly only as a joint type. That is, the main high-strength steel as a base material in the present invention, have Na only mnemonic The添板used for indicating the same strength or lower strength of the steel.

No.27〜30は母材に490N級鋼を用いたものであり、式(1)、式(2)のいずれも規定を満足し、十分高いすべり係数を有している。しかし、本発明は母材が高強度鋼である場合に限定しているため、ここでは比較例として掲載している。 Nos. 27 to 30 use 490N class steel as the base material, and both formula (1) and formula (2) satisfy the regulations and have a sufficiently high slip coefficient. However, the present invention because it only when the base material is a high strength steel, here you are listed as comparative examples.

No.35〜40は1000N級鋼の母材に汎用強度鋼の添板を組み合わせたもので、硬度の低い研削材を使用しているためRSmが十分に大きくなく、すべり係数が小さく、一部目標値である0.45に満たない。 Nos. 35 to 40 are a combination of 1000N class steel base material and general purpose strength steel, and because of the use of low hardness abrasives, RSm is not sufficiently large and the slip coefficient is small. It is less than the target value of 0.45.

その他の実施例は全て本発明の規定範囲内にあるものであり、目標値であるすべり係数0.45を上回っている。本発明の範囲にある例を見ても、目標値に対する余裕度を考えた場合には、各図、各式に既に示したように、係数の符合や式の意味を考慮し、母材強度は小さい方が有利、母材と添板の強度差は小さい方が有利、RSmは大きい方が有利、Rzは低い方が有利、ブラスト粒の硬さは高い方が有利、ブラスト粒の粒径は0.8mmに近いほど有利であることが示されている。   All other examples are within the specified range of the present invention, and exceed the slip coefficient of 0.45, which is a target value. Even when looking at examples within the scope of the present invention, when considering the margin for the target value, as already shown in each figure and each equation, the sign of the coefficient and the meaning of the equation are taken into consideration, and the base material strength Is smaller, the difference in strength between the base material and the base plate is smaller, the larger RSm is advantageous, the lower Rz is advantageous, the higher the hardness of the blast grain, the larger the grain size of the blast grain Has been shown to be more advantageous as it approaches 0.8 mm.

図2、図3は、表2の結果から式(1)〜(2)を横軸にとって整理したもので、各式の臨界性はそれぞれの図において明瞭である。 FIGS. 2 and 3 are obtained by arranging the equations (1) to (2) on the horizontal axis from the results of Table 2, and the criticality of each equation is clear in each figure.

本発明の鋼材は、建築鉄骨構造物あるいはその他の鉄骨構造物における鋼材の高力ボルトによる摩擦接合構造に関するものであり、特に今後ますます適用範囲の拡大が期待される高強度鋼を適用する際に高いすべり係数を安定して実現することができる。これにより、該構造物の設計の自由度拡大に寄与することができ、社会的効果は極めて大きいといえる。   The steel material of the present invention relates to a friction joining structure of steel materials using high-strength bolts in architectural steel structures or other steel structures, especially when applying high-strength steel that is expected to expand in the future. In addition, a high slip coefficient can be realized stably. Thereby, it can contribute to expansion of the freedom degree of design of this structure, and it can be said that a social effect is very large.

本発明に関して用いたすべり試験体の形態例を示す図である。It is a figure which shows the example of a form of the sliding test body used regarding this invention. (1)とすべり係数の関係を示すグラフである。6 is a graph showing the relationship between Equation (1) and a slip coefficient. (2)と表面態様の関係を示すグラフである。6 is a graph showing the relationship between the formula (2) and the surface mode.

Claims (2)

700MPa級以上の高強度鋼からなる母材と、前記高強度鋼と同等の強度またはそれより低い強度の鋼からなる添板とを重ね合わせて、高力ボルトにより接合した高力ボルト摩擦接合部であって、前記母材と前記添板の重ね合わせ面について、双方同じショットブラスト条件またはグリットブラスト条件で、すべり係数0.45以上を確保した表面態様とし、前記母材と前記添板の互いに重ね合わせた面に、以下の条件でショットブラストを施してあることを特徴とする高強度鋼を用いた高力ボルト摩擦接合部。
なお、母材および添板の強度は、鋼材の元の厚みまま、または厚みの1/4から外表面に平行に採取した引張試験片を使い引張試験して得られる引張強さとする。
0.11×TSB+1.2×(TSB-TSS)-2.9×(HVS-TSB/3.11)+303×|GSS-0.8|≦0 … (1)
ここで、
TSB: 母材強度 [MPa]
TSS: 添板強度 [MPa]
HVS: ショットブラストの研削材の平均ビッカース硬度
GSS: ショットブラストの研削材の平均粒径 [mm]
A high-strength bolt friction joint where a base material made of high-strength steel of 700 MPa class or higher and a base plate made of steel with the same or lower strength as the high-strength steel are overlapped and joined with a high-strength bolt. The overlapping surface of the base material and the accessory plate has a surface aspect in which a slip coefficient of 0.45 or more is ensured under the same shot blast condition or grit blast condition, and the base material and the accessory plate are mutually connected. A high-strength bolt friction joint using high-strength steel, characterized in that shot blasting is performed on the superimposed surfaces under the following conditions .
The strength of the base material and the accessory plate is the tensile strength obtained by a tensile test using a tensile test piece taken from the original thickness of the steel material or from 1/4 of the thickness in parallel to the outer surface.
0.11 × TSB + 1.2 × (TSB-TSS) -2.9 × (HVS-TSB / 3.11) + 303 × | GSS-0.8 | ≦ 0… (1)
here,
TSB: Base material strength [MPa]
TSS: Plywood strength [MPa]
HVS: Average Vickers hardness of shot blasting abrasive
GSS: Average particle size of shot blasting abrasive [mm]
前記母材と前記添板の互いに重ね合わせた面に、以下の条件でショットブラストを施してあることを特徴とする請求項1記載の高強度鋼を用いた高力ボルト摩擦接合部。
2.36×(HVS-TSB/3.11)-105×|GSS-0.8|≧700 … (2)
ここで、
TSB: 母材強度 [MPa]
HVS: ショットブラストの研削材の平均ビッカース硬度
GSS: ショットブラストの研削材の平均粒径 [mm]
2. The high strength bolt friction joint using high strength steel according to claim 1, wherein shot blasting is performed on the surfaces of the base material and the accessory plate which are overlapped with each other under the following conditions.
2.36 × (HVS-TSB / 3.11) -105 × | GSS-0.8 | ≧ 700… ( 2 )
here,
TSB: Base material strength [MPa]
HVS: Average Vickers hardness of shot blasting abrasive
GSS: Average particle size of shot blasting abrasive [mm]
JP2007123792A 2007-05-08 2007-05-08 High strength bolt friction joint using high strength steel Expired - Fee Related JP5008453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123792A JP5008453B2 (en) 2007-05-08 2007-05-08 High strength bolt friction joint using high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123792A JP5008453B2 (en) 2007-05-08 2007-05-08 High strength bolt friction joint using high strength steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011258576A Division JP5089802B2 (en) 2011-11-28 2011-11-28 High strength bolt friction joint using high strength steel

Publications (2)

Publication Number Publication Date
JP2008281040A JP2008281040A (en) 2008-11-20
JP5008453B2 true JP5008453B2 (en) 2012-08-22

Family

ID=40142037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123792A Expired - Fee Related JP5008453B2 (en) 2007-05-08 2007-05-08 High strength bolt friction joint using high strength steel

Country Status (1)

Country Link
JP (1) JP5008453B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266309A (en) * 1988-04-18 1989-10-24 Takenaka Komuten Co Ltd Frictional connection method for high strength bolt
JP2667436B2 (en) * 1988-04-20 1997-10-27 新日本製鐵株式会社 High strength bolt friction joint structure of stainless steel structure
JP2962954B2 (en) * 1992-11-12 1999-10-12 新日本製鐵株式会社 Friction welding structure of steel using high strength bolts
JP5176271B2 (en) * 2005-03-22 2013-04-03 新日鐵住金株式会社 Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same

Also Published As

Publication number Publication date
JP2008281040A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
KR101502845B1 (en) Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
JP6102072B2 (en) Abrasion resistant steel plate with excellent stress corrosion cracking resistance and method for producing the same
RU2550985C2 (en) Galling resistant steel plates demonstrating excellent impact toughness of weld and excellent resistance to delayed fracture
JP4721956B2 (en) Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP4858221B2 (en) High-tensile steel with excellent ductile crack initiation characteristics
JP2007119850A (en) Wear resistant steel plate with excellent low-temperature toughness, and method for manufacturing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP2011179122A (en) Wear-resistant steel sheet excellent in low temperature toughness
JP5870007B2 (en) Steel member and manufacturing method thereof
JP2009041073A (en) High-tensile strength steel weld joint having excellent resistivity to generation of ductile crack from weld zone, and method for producing the same
JP2011184754A (en) Steel having excellent brittle crack arrest property, and method of producing the same
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP7076325B2 (en) Thick steel plate and its manufacturing method and welded structure
JP5266836B2 (en) Method of manufacturing a steel material excellent in fatigue crack propagation resistance and ductility
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP5833966B2 (en) Welded joint with excellent fatigue characteristics
JP4363321B2 (en) Welded joint with excellent fatigue characteristics
JP5008453B2 (en) High strength bolt friction joint using high strength steel
JP5089802B2 (en) High strength bolt friction joint using high strength steel
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees