JP5833966B2 - Welded joint with excellent fatigue characteristics - Google Patents

Welded joint with excellent fatigue characteristics Download PDF

Info

Publication number
JP5833966B2
JP5833966B2 JP2012096739A JP2012096739A JP5833966B2 JP 5833966 B2 JP5833966 B2 JP 5833966B2 JP 2012096739 A JP2012096739 A JP 2012096739A JP 2012096739 A JP2012096739 A JP 2012096739A JP 5833966 B2 JP5833966 B2 JP 5833966B2
Authority
JP
Japan
Prior art keywords
less
welded joint
fatigue
hardness
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012096739A
Other languages
Japanese (ja)
Other versions
JP2013224462A (en
Inventor
悠介 三大寺
悠介 三大寺
田村 栄一
栄一 田村
杵渕 雅男
雅男 杵渕
秀徳 名古
秀徳 名古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012096739A priority Critical patent/JP5833966B2/en
Priority to CN2013101222974A priority patent/CN103374689A/en
Priority to KR1020130043590A priority patent/KR20130118825A/en
Publication of JP2013224462A publication Critical patent/JP2013224462A/en
Application granted granted Critical
Publication of JP5833966B2 publication Critical patent/JP5833966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、造船、建築物、橋梁、建設機械などの優れた疲労強度が要求される構造物に用いられる疲労特性に優れた溶接継手、特には引張強さが590MPa以上780MPa未満の鋼材を母材として使用した疲労特性に優れた溶接継手に関するものである。   The present invention relates to a welded joint excellent in fatigue properties used for structures requiring excellent fatigue strength such as shipbuilding, buildings, bridges, construction machines, and the like, in particular, a steel material having a tensile strength of 590 MPa to less than 780 MPa. The present invention relates to a welded joint having excellent fatigue characteristics used as a material.

近年、造船、建築物、橋梁、建設機械などの技術分野に属する溶接構造物においては、大型化とそれに伴う軽量化が進んでおり、同時に使用鋼材においても高強度化が進んでいる。一般的に鋼材が高強度化すると、鋼材自体の疲労強度は向上するが、溶接継手の疲労強度は向上しないということが知られている。鋼材が高強度化すると、溶接継手においては、図2に示す溶接止端部4に応力集中が生じることで疲労亀裂が発生しやすい状況となってしまい、逆に疲労強度が低下してしまう。すなわち、鋼材が高強度化することで、逆に溶接構造体の疲労強度が低下してしまうということが問題となっている。   In recent years, welded structures belonging to technical fields such as shipbuilding, buildings, bridges, and construction machinery have been increased in size and accompanying weight reduction, and at the same time, the strength of steel used is also increasing. In general, it is known that when the strength of steel is increased, the fatigue strength of the steel itself is improved, but the fatigue strength of the welded joint is not improved. When the strength of the steel material is increased, in the welded joint, a stress concentration is generated in the weld toe portion 4 shown in FIG. 2, so that fatigue cracks are likely to occur, and conversely, the fatigue strength is reduced. That is, there is a problem that the fatigue strength of the welded structure is reduced by increasing the strength of the steel material.

従来からこのような問題を解決するために、溶接止端部をグラインダー等で平滑に加工することで応力集中を緩和して疲労強度を向上させるなど、溶接後の止端処理により疲労強度を確保する対策が講じられてきた。しかしながら、このような対策を行うと、今度は作業能率が低下してしまうという新たな問題が発生していた。また、止端処理が不十分であると溶接止端部への応力集中を更に強化させることとなり、溶接構造体の疲労強度を更に低下させてしまう可能性もあった。   Conventionally, to solve such problems, the weld toe is processed smoothly with a grinder, etc. to reduce the stress concentration and improve the fatigue strength. Measures have been taken. However, if such measures are taken, a new problem has arisen that the work efficiency will be reduced this time. Moreover, if the toe treatment is insufficient, the stress concentration on the weld toe part is further strengthened, and the fatigue strength of the welded structure may be further reduced.

このような状況に対して、溶接後の止端処理を施さなくても十分な疲労強度を確保できる溶接継手が求められており、特許文献1〜3等によっても提案されている。   In such a situation, a welded joint that can secure sufficient fatigue strength without requiring a toe treatment after welding is required, and is proposed by Patent Documents 1 to 3 and the like.

特許文献1に記載の技術は、HAZと母材の組織制御を行うことで、亀裂の発生と伝播を抑制して、溶接部の疲労寿命が長い鋼板を得ることができるとした技術で、特に、HAZにおける亀裂発生・伝播の抑制にはHAZのフェライト面積率を高くすることが効果的であるとして、フェライト分率を面積率で15〜80%と規定している。しかしながら、特許文献1記載のようにHAZのフェライト分率を高めると、溶接継手の引張強度を確保することが困難となり、強度上の制約が非常に大きくなってしまう。従って、実際の溶接構造体において、特許文献1記載の技術を適用する場合、適用できる部位が限定されてしまう。   The technique described in Patent Document 1 is a technique that suppresses the generation and propagation of cracks by controlling the structure of the HAZ and the base material, and can obtain a steel sheet with a long fatigue life of the welded part. In order to suppress crack initiation / propagation in HAZ, it is effective to increase the ferrite area ratio of HAZ, and the ferrite fraction is defined as 15 to 80% in area ratio. However, when the ferrite fraction of HAZ is increased as described in Patent Document 1, it becomes difficult to ensure the tensile strength of the welded joint, and the restriction on the strength becomes very large. Therefore, in the actual welded structure, when the technique described in Patent Document 1 is applied, the applicable parts are limited.

特許文献2に記載の技術は、マルテンサイトを含んだベイナイト主体の母材組織が継手疲労特性向上に適しているとして開発された技術であり、HAZ組織がベイナイト60%超となる成分を有した溶接継手とすることで、溶接継手の疲労特性が向上するとしている。しかしながら、特許文献2記載のように、母材組織を前記したような組織とするためには、多量の合金元素の添加が必要であり、製造コストが上昇するという問題がある。また、特許文献2記載のような多量の合金元素の添加は、溶接性を悪化させるだけではなく、鋼材自体を硬化させるため加工性をも悪化させるという問題も兼ね備えている。   The technique described in Patent Document 2 is a technique that was developed on the assumption that a bainite-based base metal structure containing martensite is suitable for improving joint fatigue characteristics, and had a component in which the HAZ structure exceeded 60%. By using a welded joint, the fatigue characteristics of the welded joint are improved. However, as described in Patent Document 2, in order to make the base material structure as described above, it is necessary to add a large amount of alloy elements, and there is a problem that the manufacturing cost increases. Moreover, the addition of a large amount of alloy elements as described in Patent Document 2 not only deteriorates the weldability but also has the problem of degrading workability because the steel material itself is hardened.

特許文献3に記載の技術は、金属組織をフェライトとベイナイト主体の組織として、パーライトの面積率を10%以下とすることで、溶接継手の溶接性と高強度を両立させることができるとした技術で、また、溶接時の入熱量を管理して止端部溶接線方向の硬度分布を制限し、応力集中源の発生を抑制することで、亀裂の発生を抑制することができるとされた技術である。   The technique described in Patent Document 3 is a technique in which both the weldability and high strength of a welded joint can be achieved by setting the metal structure to be a ferrite and bainite-based structure and the area ratio of pearlite to be 10% or less. In addition, the technology is said to be able to suppress the occurrence of cracks by controlling the heat input during welding and limiting the hardness distribution in the toe weld line direction and suppressing the generation of stress concentration sources It is.

この技術によると、確かに止端部溶接線方向の硬度分布を制限することにより、溶接金属部とHAZ部間の硬度差のばらつきを抑制することはできるものの、溶接金属部とHAZ部間の硬度差による応力集中は解消できておらず、疲労特性をどの程度改善できたかは不明である。また、疲労特性に優れた溶接継手を得るにあたり、圧延時の復熱温度幅を厳密に管理した鋼材を母材として用いる必要がある。更には、溶接時の入熱量を厳密に管理する必要があるため、溶接時の作業性という面でも問題が残る技術である。   According to this technique, by restricting the hardness distribution in the toe weld line direction, the hardness difference between the weld metal part and the HAZ part can be suppressed, but the weld metal part and the HAZ part can be suppressed. The stress concentration due to the hardness difference has not been eliminated, and it is unclear how much the fatigue characteristics can be improved. Further, in order to obtain a welded joint having excellent fatigue characteristics, it is necessary to use a steel material in which the recuperation temperature range during rolling is strictly controlled as a base material. Furthermore, since it is necessary to strictly control the amount of heat input during welding, there is still a problem in terms of workability during welding.

特開平9−95754号公報JP-A-9-95754 特開平10−1743号公報JP-A-10-1743 特開2010−24467号公報JP 2010-24467 A

本発明は、上記従来の問題を解決せんとしてなされたもので、製造時に特段の管理を必要としない鋼材を母材として用いることができると共に、溶接時の作業性に優れ、しかも、疲労特性に優れた溶接継手を提供することを課題とするものである。   The present invention has been made as a solution to the above-described conventional problems, and can use a steel material that does not require special management during production as a base material, has excellent workability during welding, and has fatigue characteristics. It is an object to provide an excellent welded joint.

請求項1記載の発明は、質量%で、C:0.01〜0.06%、Si:1.0%以下(0%を含む)、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:1.5%以下(0%を含む)、V:0.04%以下(0%を含む)、Ti:0.005〜0.030%、B:0.0006〜0.005%、P:0.02%以下(0%を含まない)、S:0.01%以下(0%を含まない)、N:0.0020〜0.010%、Cu:0.01〜2.0%および/またはNi:0.01〜5.0%を含有し、残部がFeおよび不可避的不純物であり、金属組織は、面積率で90%以上がフェライトとベイナイトであり、更に、以下の式(1)および(2)を満足する、引張強さが590MPa以上780MPa未満の鋼材を用いた溶接継手であって、且つ、以下の式(3)を満足するHAZ部を有することを特徴とする疲労特性に優れた溶接継手である。 Invention of Claim 1 is the mass%, C: 0.01-0.06%, Si: 1.0% or less (including 0%), Mn: 1.25-2.5%, Cr: 0.1 to 2.0%, Mo: 1.5% or less (including 0%), V: 0.04% or less (including 0%), Ti: 0.005 to 0.030%, B: 0.0006 to 0.005%, P: 0.02% or less (not including 0%), S: 0.01% or less (not including 0%), N: 0.0020 to 0.010%, Cu: 0.01 to 2.0% and / or Ni: 0.01 to 5.0%, the balance is Fe and inevitable impurities, and the metal structure is 90% or more in area ratio with ferrite a bainite, further satisfying the following formula (1) and (2) a tensile strength of welded joints der using steel to less than 590 MPa 780 MPa Te, and an excellent welded joint fatigue characteristics characterized by having a HAZ portion satisfies the following equation (3).

Kp=[Mn]+1.5[Cr]+2[Mo]=2.4〜4.5・・・(1)
[Ti]/[N]=1.5〜4.0・・・(2)
ΔHv/L<150・・・(3)
但し、式(1)および(2)で、[ ]は各元素の含有量(質量%)を示し、式(3)で、ΔHvはHAZ部における表面より100μmの深さ位置の硬さの最大値と最小値の差、LはHAZ部の長さ(mm)である。
Kp = [Mn] +1.5 [Cr] +2 [Mo] = 2.4 to 4.5 (1)
[Ti] / [N] = 1.5 to 4.0 (2)
ΔHv / L <150 (3)
However, in the formulas (1) and (2), [] indicates the content (% by mass) of each element, and in the formula (3), ΔHv is the maximum hardness at a depth position of 100 μm from the surface in the HAZ part . The difference between the value and the minimum value, L is the length (mm) of the HAZ part.

請求項2記載の発明は、前記鋼材が、更に、質量%で、Ca:0.005%以下を含有する請求項1記載の疲労特性に優れた溶接継手である。   The invention according to claim 2 is the welded joint having excellent fatigue characteristics according to claim 1, wherein the steel material further contains Ca: 0.005% or less by mass%.

請求項3記載の発明は、前記鋼材が、更に、質量%で、Nb:0.04%以下を含有する請求項1または2記載の疲労特性に優れた溶接継手である。   Invention of Claim 3 is a welded joint excellent in the fatigue characteristics of Claim 1 or 2 in which the said steel material contains Nb: 0.04% or less further by the mass%.

請求項4記載の発明は、前記鋼材が、更に、質量%で、Al:0.2%以下を含有する請求項1乃至3のいずれかに記載の疲労特性に優れた溶接継手である。   Invention of Claim 4 is a welded joint excellent in the fatigue characteristics in any one of Claim 1 thru | or 3 in which the said steel material contains Al: 0.2% or less further by the mass%.

本発明によると、製造時に特段の管理を必要としない鋼材を母材として用いることができると共に、溶接時の入熱量を厳密に管理する等の必要もないため溶接時の作業性に優れ、しかも、疲労特性に優れた溶接継手とすることができる。   According to the present invention, it is possible to use a steel material that does not require special management at the time of production as a base material, and it is not necessary to strictly control the amount of heat input during welding. In addition, a welded joint having excellent fatigue characteristics can be obtained.

疲労試験および硬度試験に用いた荷重伝達型十字継手疲労試験片を示し、(a)は正面図、(b)は平面図である。The load transmission type cross joint fatigue test piece used for the fatigue test and the hardness test is shown, (a) is a front view, and (b) is a plan view. 荷重伝達型十字継手疲労試験片の止端部付近を拡大した正面図である。It is the front view which expanded the toe part vicinity of a load transmission type cross joint fatigue test piece. HAZ部における硬度勾配を求める方法を説明するための説明図であって、荷重伝達型十字継手疲労試験片の止端部付近を更に拡大した正面図である。It is explanatory drawing for demonstrating the method of calculating | requiring the hardness gradient in a HAZ part, Comprising: It is the front view which expanded further the toe part vicinity of a load transmission type cross joint fatigue test piece.

本発明者らは、疲労特性に優れた溶接継手を得るにあたり、特許文献3記載の技術をはじめ従来からの技術を利用した場合、母材として用いる鋼材を得るために、製造時に厳密な管理を行う必要があり、また、溶接時においても入熱量を厳密に管理する必要があるという実情があるため、鋼材の製造時、および溶接時に特段の管理を行わなくても優れた疲労特性を備えた溶接継手を得ることができる条件を見出すために、鋭意、実験、研究等の検討を実施した。   In order to obtain a steel material used as a base material when using conventional techniques including the technique described in Patent Document 3 in obtaining a welded joint having excellent fatigue characteristics, the present inventors have strict management during manufacturing. Because there is a situation that it is necessary to strictly control the amount of heat input even during welding, it has excellent fatigue characteristics even without special management during steel production and welding In order to find out the conditions under which welded joints can be obtained, we conducted diligent studies, experiments and research.

本発明者らは、製造時に特段の管理を行わなくても得ることができる鋼材を用いることを前提として、様々な化学成分組成(以下、単に成分組成と述べることもある。)、金属組織を有する鋼材を母材として用いて、適宜溶接条件を変更して、図1に示すような荷重伝達型十字継手疲労試験片(以下、単に試験片と述べることもある。)を作製した。これら種々の条件により作製された荷重伝達型十字継手疲労試験片を用いて疲労試験を実施し、疲労試験後の試験片について、詳細に観察、解析を実施することで、以下の知見を得た。   The present inventors have used various chemical component compositions (hereinafter sometimes simply referred to as component compositions) and metal structures on the premise that steel materials that can be obtained without special management at the time of production are used. Using the steel material as a base material, the welding conditions were appropriately changed, and a load transmission type cross joint fatigue test piece (hereinafter sometimes simply referred to as a test piece) as shown in FIG. 1 was produced. A fatigue test was conducted using the load transmission type cross joint fatigue test piece prepared under these various conditions, and the following knowledge was obtained by conducting detailed observation and analysis of the test piece after the fatigue test. .

観察結果を説明するために、まず、溶接継手の止端部付近の概略図を図2に示す。1は鋼材(母材)、2はHAZ部(熱影響部)、3は溶接金属、4は溶接止端部(以下、単に止端部と述べることもある。)、5はガセット(母材と同じ成分組成、金属組織を有する。)である。これらの各種試験片を用いて疲労試験を実施した結果、全ての試験片において、疲労亀裂は溶接止端部4から発生しており、HAZ部2、母材1を進展した後、破断に至っていることを確認した。また、溶接継手の全寿命は、亀裂の発生からHAZ部2まで進展する際の寿命が大部分を占めることも確認した。更に、亀裂の発生は止端部4に生じる歪集中によって支配され、その歪集中はHAZ部2における硬度分布により変化することについても確認した。   In order to explain the observation results, first, a schematic view of the vicinity of the toe portion of the welded joint is shown in FIG. 1 is a steel material (base material), 2 is a HAZ part (heat affected zone), 3 is a weld metal, 4 is a weld toe part (hereinafter also referred to simply as a toe part), and 5 is a gusset (base material). And the same component composition and metal structure). As a result of carrying out the fatigue test using these various test pieces, fatigue cracks occurred in all the test pieces from the weld toe part 4 and progressed through the HAZ part 2 and the base material 1, leading to fracture. I confirmed. It was also confirmed that the entire life of the welded joint accounted for most of the life from the occurrence of cracks to the HAZ part 2. Further, it was also confirmed that the generation of cracks is governed by the strain concentration generated in the toe portion 4 and the strain concentration changes depending on the hardness distribution in the HAZ portion 2.

本発明者らは、これらの試験結果から、HAZ部2の硬度分布を最適化することで止端部4の歪集中を緩和して溶接継手の疲労寿命を向上させることが可能であることを見出した。   From these test results, the present inventors have shown that it is possible to reduce the strain concentration of the toe portion 4 and to improve the fatigue life of the welded joint by optimizing the hardness distribution of the HAZ portion 2. I found it.

HAZ部2の硬度分布については、鋼材1の成分組成だけではなく、溶接時の加熱・冷却速度が大きな影響を与えることが分かっている。特に溶接線6からの距離により溶接時の最高到達温度や冷却速度が大きく変化するため、溶接線6からの距離により金属組織が大きく変化する。その結果、HAZ部2に硬度勾配(硬度分布)が発生する。   Regarding the hardness distribution of the HAZ part 2, it is known that not only the composition of the steel material 1 but also the heating / cooling rate during welding has a great influence. In particular, the maximum ultimate temperature and the cooling rate during welding vary greatly depending on the distance from the weld line 6, and thus the metal structure varies greatly depending on the distance from the weld line 6. As a result, a hardness gradient (hardness distribution) is generated in the HAZ portion 2.

そこで、本発明者らは、溶接線6からの距離によらず、すなわち、溶接時の冷却速度が変化しても金属組織の変化が少なく、HAZ部2において急激な硬度変化が生じることがない鋼材1の成分組成、並びに溶接継手とする際の溶接条件を検討した。   Therefore, the present inventors do not depend on the distance from the welding line 6, that is, the change in the metal structure is small even if the cooling rate at the time of welding changes, and there is no sudden change in hardness in the HAZ part 2. The component composition of the steel material 1 and the welding conditions for making a welded joint were examined.

その結果、焼入れ性向上元素の含有量を適切に制御した上に、溶接時の旧オーステナイト粒径の粗大化を抑制する作用があるTiNを適切に析出させるTi/Nバランスを具えた鋼材を用いて、適切な溶接条件により溶接を施して溶接継手を作製することで、HAZ部に発生する硬度勾配を抑制することができ、良好な疲労特性を有する溶接継手を得られることを見出し、本発明の完成に至った。   As a result, a steel material having a Ti / N balance that appropriately controls the content of the hardenability improving element and appropriately precipitates TiN having an action of suppressing the coarsening of the prior austenite grain size during welding is used. In addition, it has been found that by producing a welded joint by performing welding under appropriate welding conditions, a hardness gradient generated in the HAZ portion can be suppressed, and a welded joint having good fatigue characteristics can be obtained. It was completed.

以下、本発明を実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments.

(鋼材の金属組織)
本発明に係る溶接継手を構成する鋼板は、引張強さが590MPa以上780MPa未満の鋼材であることが好ましく、鋼板の金属組織は、高強度の溶接継手を得るために、主としてフェライトとベイナイトで構成する。具体的には、フェライトとベイナイトを足した合計の面積率を金属組織の90%以上とする。尚、ここで説明するベイナイトには、上部ベイナイト、下部ベイナイト、アシキュラーフェライト、グラニュラーベイナイトなどの組織が含まれる。残部の金属組織は、パーライトやマルテンサイト−オーステナイト混合物(MA)など通常鋼材中に含有される金属組織である。
(Metal structure of steel)
The steel plate constituting the welded joint according to the present invention is preferably a steel material having a tensile strength of 590 MPa or more and less than 780 MPa, and the metal structure of the steel plate is mainly composed of ferrite and bainite in order to obtain a high strength welded joint. To do. Specifically, the total area ratio obtained by adding ferrite and bainite is 90% or more of the metal structure. The bainite described here includes structures such as upper bainite, lower bainite, acicular ferrite, and granular bainite. The remaining metal structure is a metal structure usually contained in a steel material such as pearlite or martensite-austenite mixture (MA).

(鋼材の化学成分組成)
本発明においては、Cの含有量を極めて少ない含有量とした上で、焼入れ性向上元素であるMnおよびCr、場合によってはMoを積極的に添加し、それら焼入れ性向上元素の含有量によって定められるKp値を適切な範囲に制御すると共に、更にBを適量添加する。鋼材にこのような元素を添加することで、ベイナイトの連続冷却曲線(CCT曲線)が短時間且つ低温度側に移動し、また、フェライトのCCT曲線が長時間側に移動する。
(Chemical composition of steel)
In the present invention, after making the content of C extremely small, Mn and Cr, which are hardenability improving elements, and Mo in some cases are positively added, and determined by the content of these hardenability improving elements. The Kp value to be controlled is controlled to an appropriate range, and an appropriate amount of B is added. By adding such an element to the steel material, the continuous cooling curve (CCT curve) of bainite moves to the low temperature side for a short time, and the CCT curve of ferrite moves to the long time side.

従来は、高冷却速度ではマルテンサイト、低冷却速度ではフェライトが生成するために、硬さの冷却速度感受性が大きく、最高温度が高くて冷却速度が高い溶接線近傍ではマルテンサイトが生成され高硬度となるが、溶接線から離れた位置では硬度が低いフェライトが生成されてしまうため、HAZ部における硬度勾配が高くなってしまっていた。しかし、本発明では、焼入れ性向上元素の含有量を適切に制御するため、溶接線からの距離によらずHAZ部の金属組織が安定してベイナイトとなるため、硬度勾配の発生を抑制することができる。   Conventionally, martensite is generated at a high cooling rate and ferrite is generated at a low cooling rate. Therefore, the hardness is highly sensitive to the cooling rate, and martensite is generated near the weld line where the maximum temperature is high and the cooling rate is high. However, since a ferrite having low hardness is generated at a position away from the weld line, the hardness gradient in the HAZ portion is high. However, in the present invention, in order to appropriately control the content of the hardenability improving element, the metal structure of the HAZ part is stably bainite regardless of the distance from the weld line, thereby suppressing the occurrence of a hardness gradient. Can do.

この焼入れ性向上元素の含有量の適切な制御に加えて、Ti/Nバランスを適切に制御して、溶接時の旧オーステナイト粒径の粗大化による強度低下および冷却時のマルテンサイト変態を抑制することで、更に確実に硬度勾配の発生を抑制することができる。   In addition to the appropriate control of the hardenability improving element content, the Ti / N balance is appropriately controlled to suppress the strength reduction due to the coarsening of the prior austenite grain size during welding and the martensitic transformation during cooling. Thus, it is possible to more reliably suppress the occurrence of a hardness gradient.

以下、本発明に係る溶接継手を構成する鋼板の成分組成について説明する。尚、単位は全て%と記載するが、質量%のことを示す。   Hereinafter, the component composition of the steel plate which comprises the welded joint which concerns on this invention is demonstrated. All units are described as%, but indicate mass%.

・C:0.01〜0.06%
Cは、HAZ部の硬度並びに母材強度を確保するために重要となる元素である。Cが0.06%を超えると溶接線近傍でベイナイトではなくマルテンサイトが生成するようになり、疲労強度の低下を招いてしまう。好ましくは、0.055%以下である。一方、0.01%未満では必要最小限の母材強度が得られなくなる。好ましくは、0.015%以上である。
C: 0.01-0.06%
C is an element that is important for ensuring the hardness of the HAZ part and the strength of the base material. If C exceeds 0.06%, not bainite but martensite is generated in the vicinity of the weld line, leading to a decrease in fatigue strength. Preferably, it is 0.055% or less. On the other hand, if it is less than 0.01%, the necessary minimum base material strength cannot be obtained. Preferably, it is 0.015% or more.

・Si:1.0%以下(0%を含む)
Siは脱酸材として有用な元素であるが、1.0%を超えて添加すると疲労強度が低下してしまう。そのため、上限を1.0%とする。好ましくは0.6%以下である。
・ Si: 1.0% or less (including 0%)
Si is an element useful as a deoxidizing material, but if it exceeds 1.0%, the fatigue strength decreases. Therefore, the upper limit is made 1.0%. Preferably it is 0.6% or less.

・Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:1.5%以下(0%を含む)
これらの元素は焼入れ性を改善する作用を有し、HAZ全体に亘ってベイナイトを生成しやすくさせると共に、前記したようにCの含有量を極めて少ない含有量とした上でBを適量添加することにより、小入熱時のHAZ部の強度確保および母材強度の確保を両立させる作用を有する。MnおよびCrは必ず含有させる必要があり、Mnは1.25%以上、Crは0.1%以上含有させる必要がある。MnおよびCrがこれらの含有量に満たないと所望の焼入れ性改善作用が発揮されず、母材強度が不足する。好ましくは、Mnは1.3%以上、Crは0.5%以上であり、Crはより好ましくは1.0%以上である。但し、これら元素の含有量が、Mnで2.5%、Crで2.0%、Moで1.5%を超えるとマルテンサイトを生成しやすくなり疲労強度が低下する。好ましくは、Mnで2.2%以下、Crで1.5%以下、Moで1.3%以下である。
Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 1.5% or less (including 0%)
These elements have the effect of improving the hardenability, make it easy to form bainite throughout the HAZ, and add an appropriate amount of B after making the content of C extremely small as described above. Thus, it has the effect of ensuring both the strength of the HAZ portion and the strength of the base material at the time of small heat input. Mn and Cr must be contained. Mn is required to be 1.25% or more, and Cr is required to be 0.1% or more. If Mn and Cr are less than these contents, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. Preferably, Mn is 1.3% or more, Cr is 0.5% or more, and Cr is more preferably 1.0% or more. However, if the content of these elements exceeds 2.5% for Mn, 2.0% for Cr, and 1.5% for Mo, martensite tends to be formed and the fatigue strength decreases. Preferably, Mn is 2.2% or less, Cr is 1.5% or less, and Mo is 1.3% or less.

・V:0.04%以下(0%を含む)
Vは少量の添加により焼入れ性を向上させる作用を有する。但し、0.04%を超えて添加するとマルテンサイトが生じやすくなって硬度勾配が大きくなり、その結果、疲労強度が低下してしまう。好ましくは0.03%以下である。
・ V: 0.04% or less (including 0%)
V has the effect of improving the hardenability by adding a small amount. However, if added over 0.04%, martensite tends to occur and the hardness gradient increases, resulting in a decrease in fatigue strength. Preferably it is 0.03% or less.

・Ti:0.005〜0.030%
TiはNと窒化物を形成して溶接時におけるHAZ部のγ粒粗大化を抑制することで、マルテンサイトを生じにくくし、硬度勾配を小さくすることで疲労強度を確保する作用を有する。但し、Tiの含有量が0.030%を超えると粗大なTiNが生じてしまい、疲労強度が低下する。好ましくは0.020%以下である。一方、含有量が0.005%未満ではγ粒粗大化抑制の効果が不十分となる。好ましくは0.007%以上である。
Ti: 0.005-0.030%
Ti forms nitrides with N and suppresses γ grain coarsening in the HAZ part during welding, thereby making it difficult for martensite to occur and reducing the hardness gradient to ensure fatigue strength. However, if the Ti content exceeds 0.030%, coarse TiN is generated, and the fatigue strength decreases. Preferably it is 0.020% or less. On the other hand, if the content is less than 0.005%, the effect of suppressing γ grain coarsening becomes insufficient. Preferably it is 0.007% or more.

・N:0.0020〜0.010%
前記したようにNは、Tiと窒化物を形成して溶接時におけるHAZ部のγ粒粗大化の抑制に寄与することで有用な元素である。但し、NはBと結合して固溶Bを減少させて、Bの焼入れ性向上作用を阻害し、疲労強度を低下させる作用も有しており、Nの含有量が0.010%を超えるとその作用が顕著になる。好ましくは0.0080%以下である。一方、含有量が0.0020%未満ではγ粒粗大化抑制の効果が不十分となる。好ましくは0.0035%以上である。
・ N: 0.0020-0.010%
As described above, N is a useful element by forming a nitride with Ti and contributing to the suppression of γ grain coarsening in the HAZ part during welding. However, N combines with B to reduce the solid solution B, inhibits the hardenability improving effect of B, and has the effect of reducing fatigue strength, and the N content exceeds 0.010%. And the effect becomes remarkable. Preferably it is 0.0080% or less. On the other hand, if the content is less than 0.0020%, the effect of suppressing γ grain coarsening becomes insufficient. Preferably it is 0.0035% or more.

・B:0.0006〜0.005%
Bは焼入れ性改善元素で、低冷却速度でもベイナイトを生じやすくすると共に、前記したようにCの含有量を極めて少ない含有量とした上でBを適量添加することにより、Mn、Cr、Moを添加することにより、HAZ部の硬度勾配を穏やかにする作用を具えている。Bの含有量が0.0006未満であると焼入れ性改善効果が期待できず、母材強度が不足する。好ましくは0.0007%以上、より好ましくは0.0010%以上である。一方、含有量が0.005%を超えると逆に焼入れ性が低下してしまい硬度勾配が大きくなる。好ましくは0.003%以下である。
・ B: 0.0006 to 0.005%
B is an element that improves hardenability, and easily forms bainite even at a low cooling rate. As described above, by adding an appropriate amount of B after making the content of C extremely small, Mn, Cr, and Mo are added. By adding, it has the effect of reducing the hardness gradient of the HAZ part. If the B content is less than 0.0006, the effect of improving hardenability cannot be expected, and the strength of the base material is insufficient. Preferably it is 0.0007% or more, More preferably, it is 0.0010% or more. On the other hand, if the content exceeds 0.005%, the hardenability decreases, and the hardness gradient increases. Preferably it is 0.003% or less.

・Cu:0.01〜2.0%および/またはNi:0.01〜5.0%
CuとNiは固溶強化により疲労強度を向上させる作用を有する。但し、Cuを2.0%、Niを5.0%超えて添加するとHAZ部が大幅に硬化してしまい、疲労強度の低下を招く、好ましくは、Cu:1.5%以下、Ni:4.0%以下である。一方、Cu、Ni共に含有量が0.01%に満たないと疲労強度を向上させることができない。
Cu: 0.01-2.0% and / or Ni: 0.01-5.0%
Cu and Ni have the effect of improving fatigue strength by solid solution strengthening. However, if Cu is added in an amount of 2.0% and Ni exceeds 5.0%, the HAZ portion is significantly hardened, resulting in a decrease in fatigue strength. Preferably, Cu: 1.5% or less, Ni: 4 0.0% or less. On the other hand, if the content of both Cu and Ni is less than 0.01%, the fatigue strength cannot be improved.

・P:0.02%以下(0%を含まない)、S:0.01%以下(0%を含まない)
PおよびSは、不純物元素であるので、その含有量はできるだけ少ないことが好ましい。疲労強度向上に悪影響を及ぼさない含有量は、P:0.02%以下、S:0.01%以下である。PおよびSの含有量の下限については特に規定しないが、工業的に鋼中のPおよびSを0%にすることは困難である。
P: 0.02% or less (not including 0%), S: 0.01% or less (not including 0%)
Since P and S are impurity elements, their content is preferably as small as possible. Content which does not have a bad influence on fatigue strength improvement is P: 0.02% or less, S: 0.01% or less. The lower limit of the contents of P and S is not particularly specified, but it is difficult to industrially make P and S in steel 0%.

・Kp=[Mn]+1.5[Cr]+2[Mo]=2.4〜4.5
焼入れ性向上元素であるMn、Cr、Moの含有量によって前記した式より定められるKp値は、2.4〜4.5であることが必要である。Kp値が2.4未満の場合は、焼入れ性向上作用を発揮させることができず、HAZ部にフェライトが生成するようになり、硬度勾配が大きくなって疲労強度が低下してしまう。好ましいKp値は2.7以上である。但し、Kp値が4.5を超えるとHAZ部にマルテンサイトが生じやすくなるため、この場合も、硬度勾配が大きくなって疲労強度が低下してしまう。尚、[ ]は各元素の含有量(質量%)を示す。
* Kp = [Mn] +1.5 [Cr] +2 [Mo] = 2.4-4.5
The Kp value determined by the above-described formula depending on the contents of Mn, Cr, and Mo that are hardenability improving elements needs to be 2.4 to 4.5. When the Kp value is less than 2.4, the effect of improving the hardenability cannot be exhibited, and ferrite is generated in the HAZ portion, the hardness gradient is increased, and the fatigue strength is reduced. A preferable Kp value is 2.7 or more. However, if the Kp value exceeds 4.5, martensite is likely to be generated in the HAZ part. In this case, too, the hardness gradient increases and the fatigue strength decreases. In addition, [] shows content (mass%) of each element.

・[Ti]/[N]=1.5〜4.0
前記したように、Tiの含有量は0.005〜0.030%、Nの含有量は
0.0020〜0.010%とする必要があるが、TiとNについては、これらの含有量を満足させた上で、Ti/Nバランス、すなわち、[Ti]/[N]を1.5〜4.0の範囲とする必要がある。Ti/Nバランスが1.5未満の場合は、鋼中のN含有量が多くなることでHAZ硬度が上昇し、硬度勾配が大きくなり疲労強度が低下する。好ましいTi/Nバランスは2.0以上である。一方、Ti/Nバランスが4.0を超えた場合は、TiNによるHAZのγ粒粗大化抑制効果が得られないため、マルテンサイト変態が生じやすくなり硬度勾配が大きくなり疲労強度が低下する。好ましいTi/Nバランスは3.5以下である。尚、[ ]は各元素の含有量(質量%)を示す。
[Ti] / [N] = 1.5 to 4.0
As described above, the Ti content needs to be 0.005 to 0.030%, and the N content needs to be 0.0020 to 0.010%. When satisfied, the Ti / N balance, that is, [Ti] / [N] needs to be in the range of 1.5 to 4.0. When the Ti / N balance is less than 1.5, the N content in the steel increases, so that the HAZ hardness increases, the hardness gradient increases, and the fatigue strength decreases. A preferable Ti / N balance is 2.0 or more. On the other hand, when the Ti / N balance exceeds 4.0, the effect of suppressing the coarsening of HAZ by γ grains by TiN cannot be obtained, so that martensitic transformation is likely to occur, the hardness gradient increases, and the fatigue strength decreases. A preferable Ti / N balance is 3.5 or less. In addition, [] shows content (mass%) of each element.

以上が、本発明に係る溶接継手を構成する鋼板の必須添加元素の成分範囲の限定理由であり、残部はFeおよび不可避的不純物である。不可避的不純物としては、O、H等を挙げることができ、これらの元素は鋼材の諸特性を害さない程度で含有していても構わない。   The above is the reason for limiting the component range of the essential additive elements of the steel sheet constituting the welded joint according to the present invention, and the balance is Fe and inevitable impurities. Inevitable impurities include O, H and the like, and these elements may be contained to the extent that they do not impair various properties of the steel material.

また、本発明の鋼材に、以下に示す元素を含有すれば更に有効である。これら元素を含有させる場合の成分範囲の限定理由について次に説明する。   It is more effective if the steel material of the present invention contains the following elements. The reason for limiting the component range when these elements are contained will be described below.

・Ca:0.005%以下
CaはTi窒化物を微細化する作用があるため、γ粒の粗大化抑制に寄与することで有用な元素である。このような作用を発揮させるためには0.0005%以上添加することが好ましい。より好ましくは0.0010%以上である。但し、0.005%を超えて過剰に添加すると母材靭性が低下し、疲労強度が低下するので、添加する場合は0.005%以下とする。より好ましくは0.004%以下である。
-Ca: 0.005% or less Ca is a useful element by contributing to the suppression of the coarsening of γ grains because Ca has the effect of refining Ti nitride. In order to exert such an effect, it is preferable to add 0.0005% or more. More preferably, it is 0.0010% or more. However, if added in excess of 0.005%, the base material toughness is lowered and the fatigue strength is lowered. When added, the content is made 0.005% or less. More preferably, it is 0.004% or less.

・Nb:0.04%以下
Nbは少量の添加で焼入れ性を大幅に向上させる作用を有する。しかし、0.04%を超えて添加した場合はHAZ部を硬化させてしまい、その結果、疲労強度が低下するので、添加する場合は0.04%までとする。より好ましくは0.03%以下である。
Nb: 0.04% or less Nb has the effect of greatly improving the hardenability by adding a small amount. However, if added over 0.04%, the HAZ part is cured, resulting in a decrease in fatigue strength. More preferably, it is 0.03% or less.

・Al:0.2%以下
Alは脱酸元素であると同時に、Nを固定化して固溶Bを増加させることにより、Bに基づく焼入れ性向上作用を高めるため、添加することが好ましい元素であるが、0.2%を超えて添加すると疲労強度が低下するので、添加する場合は0.2%以下とする。より好ましくは0.1%以下である。
Al: 0.2% or less Al is a deoxidizing element, and at the same time, it is a preferable element to be added in order to enhance the hardenability improvement effect based on B by fixing N and increasing solid solution B. However, if added over 0.2%, the fatigue strength decreases, so when added, the content is made 0.2% or less. More preferably, it is 0.1% or less.

(HAZ部における硬度勾配)
・ΔHv/L<150
HAZ部(熱影響部)における硬度勾配は、HAZ部における硬度の最大値と最小値の差ΔHvを、HAZ部の長さL(mm)で除することで求めることができるが、求められる硬度勾配(ΔHv/L)は150未満でなければならない。硬度勾配(ΔHv/L)が150以上になると溶接止端部に歪集中が発生ししてしまうので、疲労強度を確保するためには、硬度勾配(ΔHv/L)を150未満とする必要がある。
(Hardness gradient in HAZ part)
・ ΔHv / L <150
The hardness gradient in the HAZ part (heat affected zone) can be obtained by dividing the difference ΔHv between the maximum and minimum hardness values in the HAZ part by the length L (mm) of the HAZ part. The slope (ΔHv / L) must be less than 150. When the hardness gradient (ΔHv / L) is 150 or more, strain concentration occurs at the weld toe. Therefore, in order to ensure fatigue strength, the hardness gradient (ΔHv / L) needs to be less than 150. is there.

尚、HAZ部(熱影響部)における硬度勾配は、例えば、図3に示す測定方法により求めることができる。尚、図3に示す溶接継手は荷重伝達型十字継手疲労試験片である。試験片のごく表面の硬度分布が亀裂発生に大きな影響を与えていると想定できるが、現在の技術では表面付近の硬度を正確に測定することは困難であるため、表面より100μmの深さ位置の硬度を測定することで対応する。   Note that the hardness gradient in the HAZ portion (heat affected zone) can be determined by, for example, the measuring method shown in FIG. The weld joint shown in FIG. 3 is a load transmission type cross joint fatigue test piece. Although it can be assumed that the hardness distribution on the very surface of the specimen has a large effect on crack initiation, it is difficult to accurately measure the hardness in the vicinity of the surface with the current technology, so the depth position is 100 μm from the surface. This can be done by measuring the hardness of.

具体的には、図3に×印で示すように、溶接線(溶接ボンド)6から数百μm溶接金属3側に離れた位置から母材1側へ向かって100μm間隔毎に硬度測定を行う。この測定で、3点連続で母材1の硬度と同等の硬さが得られた場合の最も母材1側の位置と溶接線6の間をHAZ部2とし、この3点連続で母材1の硬度と同等の硬さが得られた場合の最も母材1側の位置と溶接線6間の寸法をHAZ部の長さ(厚み)Lとする。HAZ部2において測定により得られた硬度の最大値と最小値の差ΔHvを、前記したHAZ部の長さL(mm)で除した値ΔHv/Lを硬度勾配とする。尚、母材1の硬度と同等の硬さとは、ビッカース硬さの差が10以内となる硬さである。また、母材1の硬度は、溶接部より十分離れた位置における表層より100μm深さの硬さを測定することで得られる。   Specifically, as shown by x in FIG. 3, the hardness is measured every 100 μm from the position separated from the weld line (weld bond) 6 to the several hundred μm weld metal 3 side toward the base metal 1 side. . In this measurement, when a hardness equivalent to the hardness of the base material 1 is obtained for three consecutive points, the position between the position closest to the base material 1 and the weld line 6 is defined as the HAZ part 2, and the base material is continuously provided for three points. When the hardness equivalent to the hardness of 1 is obtained, the dimension between the position closest to the base material 1 and the weld line 6 is the length (thickness) L of the HAZ portion. A value ΔHv / L obtained by dividing the difference ΔHv between the maximum value and the minimum value of the hardness obtained by measurement in the HAZ part 2 by the length L (mm) of the HAZ part is defined as a hardness gradient. In addition, the hardness equivalent to the hardness of the base material 1 is a hardness at which the difference in Vickers hardness is within 10 or less. Moreover, the hardness of the base material 1 is obtained by measuring the hardness of a depth of 100 μm from the surface layer at a position sufficiently away from the welded portion.

尚、硬度測定はJISやASTMに準拠した方法で行えば良いが、測定間隔が100μmと極めて短いため、測定にあたってはミクロビッカース硬度試験機などを用いることが好ましい。また、測定ではばらつきが生じることが考えられるため、少なくとも3断面以上を測定し、その平均値により硬度勾配を求める必要がある。可能であるならば5断面以上を測定することが好ましい。   The hardness may be measured by a method conforming to JIS or ASTM. However, since the measurement interval is as short as 100 μm, it is preferable to use a micro Vickers hardness tester or the like for the measurement. Moreover, since it is considered that variations occur in the measurement, it is necessary to measure at least three cross sections and obtain a hardness gradient from the average value. If possible, it is preferable to measure at least 5 sections.

(溶接条件)
前記した化学成分組成、金属組織を満足する鋼材を用いて、溶接時の入熱量を50kJ/cm未満、且つ、溶接速度を100cm/min未満として溶接を行うことで、所望の硬度勾配を有するHAZ部を具えた溶接継手を得ることができる。
(Welding conditions)
Using a steel material that satisfies the above-described chemical composition and metal structure, the HAZ having a desired hardness gradient is obtained by performing welding with a heat input during welding of less than 50 kJ / cm and a welding speed of less than 100 cm / min. A welded joint having a portion can be obtained.

入熱量を50kJ/cm以上とすると、冷却速度が急速になるうえに、TiNによるγ粒の粗大化抑制効果も十分に発揮できなくなるため、たとえ、前記した化学成分組成、金属組織を満足する鋼材を用いて溶接継手を得たとしても、溶接線の近傍にマルテンサイトが生じやすくなる。その結果、硬度勾配が大きくなり、疲労強度が低下してしまう。溶接速度を100cm/min以上とした場合は、ビード形状が不安定なるため、アンダーカットの発生など溶接止端部の形状が不安定となってしまう。その結果、たとえ、前記した化学成分組成、金属組織を満足する鋼材を用いて溶接継手を得たとしても、硬度勾配が大きくなり、疲労強度が低下してしまう。   If the heat input is 50 kJ / cm or more, the cooling rate becomes rapid and the effect of suppressing the coarsening of γ grains by TiN cannot be fully exhibited. For example, a steel material that satisfies the above-described chemical composition and metal structure Even if a welded joint is obtained by using martensite, martensite is likely to occur in the vicinity of the weld line. As a result, the hardness gradient increases and the fatigue strength decreases. When the welding speed is set to 100 cm / min or more, the bead shape becomes unstable, so that the shape of the weld toe portion such as occurrence of undercut becomes unstable. As a result, even if a welded joint is obtained using a steel material that satisfies the above-described chemical composition and metal structure, the hardness gradient increases and the fatigue strength decreases.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1および表2に示す化学成分組成の鋼を転炉で溶製し、表3および表4に示す条件で各スラブを、表3および表4に示す板厚になるまで熱間圧延して鋼材を得た。このようにして得た鋼材の一部を切り出し、母材としての金属組織を観察すると共に、引張試験を行い、母材の0.2%耐力(MPa)と引張強さ(MPa)を求めた。金属組織の観察結果と、引張試験の実施結果を表3および表4に示す。   Steels having the chemical composition shown in Tables 1 and 2 were melted in a converter, and each slab was hot rolled under the conditions shown in Tables 3 and 4 until the plate thicknesses shown in Tables 3 and 4 were reached. Steel was obtained. A part of the steel material thus obtained was cut out, the metal structure as a base material was observed, and a tensile test was performed to obtain 0.2% proof stress (MPa) and tensile strength (MPa) of the base material. . Tables 3 and 4 show the observation results of the metal structure and the results of the tensile test.

金属組織は、各鋼材の板厚1/4位置部位を鏡面研磨した試験片を、2%ナイタール液でエッチング後、該箇所について光学顕微鏡を用いて400倍で観察し、写真撮影した。この観察視野10視野について、Media Cybernetics社製「Image−Pro Plus」を用いて画像解析を行い、鋼組織中のベイナイト分率を測定した。この際、フェライト分率、擬ポリゴナルフェライトおよびMA以外のラス状組織はベイナイトとみなした。   The metal structure was obtained by taking a photograph by observing a test piece obtained by mirror polishing a part having a thickness of 1/4 of each steel material with a 2% nital solution, and observing the part at 400 times using an optical microscope. The 10 visual fields were subjected to image analysis using “Image-Pro Plus” manufactured by Media Cybernetics, and the bainite fraction in the steel structure was measured. At this time, the lath-like structure other than the ferrite fraction, pseudopolygonal ferrite and MA was regarded as bainite.

引張試験は、各鋼材の板厚1/4部位からJIS4号試験片を採取した後、それら試験片を用いて0.2%耐力および引張強さを測定することにより実施した。   The tensile test was carried out by collecting JIS No. 4 test pieces from a 1/4 thickness portion of each steel material and measuring 0.2% proof stress and tensile strength using these test pieces.

次に、圧延後の鋼材について、表5に示す様々な溶接条件ですみ肉溶接し、図1に示す荷重伝達型十字継手(溶接継手)を作製した。その溶接継手の溶接止端部付近を適宜切り出すことで疲労試験片を得て、硬度試験に供した。   Next, the steel material after rolling was fillet welded under various welding conditions shown in Table 5 to produce a load transmission cross joint (welded joint) shown in FIG. A fatigue test piece was obtained by appropriately cutting the vicinity of the weld toe of the welded joint and subjected to a hardness test.

各種溶接継手から得た疲労試験片を用いた硬度試験は、マイクロビッカース試験機を使用してJIS Z 2244に準拠する方法(硬度勾配を求める詳しい方法は先に説明した通り)で実施し、硬度を測定することでHAZ部の硬度勾配(ΔHv/L)を求めた。また作製した溶接継手については、最大応力を350MPaで一定とし、最小応力を変化させることで、応力範囲(Δσ)を設定して疲労試験を実施し、各鋼種毎にS−N線図を作成して、1×10回の疲労強度(表3および表4には単に疲労強度と記載)を求めた。 The hardness test using fatigue test pieces obtained from various welded joints is carried out by a method according to JIS Z 2244 using a micro Vickers tester (the detailed method for determining the hardness gradient is as described above). Was measured to determine the hardness gradient (ΔHv / L) of the HAZ part. For the welded joints made, the maximum stress was kept constant at 350 MPa, and the minimum stress was changed to set the stress range (Δσ) and conduct a fatigue test. Create an SN diagram for each steel type. Then, fatigue strength of 1 × 10 6 times (simply described as fatigue strength in Tables 3 and 4) was obtained.

先に説明したように、疲労強度を確保するためには、硬度勾配(ΔHv/L)を150未満とする必要があるが、本実施例では、硬度勾配(ΔHv/L)が150未満、且つ、1×10回の疲労強度が75MPa以上であったものを、疲労特性に優れた溶接継手であるとして合格とする。これらの試験結果を表3および表4に示す。 As described above, in order to ensure fatigue strength, the hardness gradient (ΔHv / L) needs to be less than 150. In this example, the hardness gradient (ΔHv / L) is less than 150, and A fatigue joint having a fatigue strength of 1 × 10 6 times of 75 MPa or more is deemed acceptable as a welded joint having excellent fatigue characteristics. These test results are shown in Tables 3 and 4.

本発明の要件(請求項1記載の要件)を満足する溶接継手から採取したNo.1〜24の疲労試験片は、全て硬度勾配(ΔHv/L)が150未満であり、また、1×10回の疲労強度が75MPa以上であったので、No.1〜24の疲労試験片を採取した溶接継手は、疲労特性に優れた溶接継手であると評価することができる。 No. taken from a welded joint that satisfies the requirements of the present invention (requirements of claim 1). The fatigue test pieces 1 to 24 all had a hardness gradient (ΔHv / L) of less than 150, and the fatigue strength after 1 × 10 6 times was 75 MPa or more. A welded joint obtained by collecting 1 to 24 fatigue test pieces can be evaluated as a welded joint having excellent fatigue characteristics.

これに対し、No.25〜36,38〜45の疲労試験片は、鋼材の化学成分組成、金属組織の少なくともいずれかが本発明の要件(請求項1記載の要件)を満足していないため、硬度勾配(ΔHv/L)、1×10回の疲労強度の少なくともいずれかが前記合格判定条件を満足することができなかった。以上の試験結果より、No.25〜36,38〜45の疲労試験片を採取した溶接継手は、疲労特性に優れた溶接継手であると評価することができない。 In contrast, no. Since the fatigue test specimens 25 to 36, 38 to 45 do not satisfy the requirements of the present invention (requirements of claim 1), at least one of the chemical composition of the steel material and the metal structure, the hardness gradient (ΔHv / L) At least one of the fatigue strengths of 1 × 10 6 times could not satisfy the above-mentioned pass judgment condition. From the above test results, No. A welded joint obtained by collecting fatigue test pieces of 25 to 36 , 38 to 45 cannot be evaluated as a welded joint having excellent fatigue characteristics.

1…鋼材(母材)
2…HAZ部(熱影響部)
3…溶接金属
4…溶接止端部
5…ガセット
6…溶接線
1 ... Steel (base material)
2 ... HAZ part (heat-affected zone)
3 ... weld metal 4 ... weld toe 5 ... gusset 6 ... weld line

Claims (4)

質量%で、C:0.01〜0.06%、Si:1.0%以下(0%を含む)、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:1.5%以下(0%を含む)、V:0.04%以下(0%を含む)、Ti:0.005〜0.030%、B:0.0006〜0.005%、P:0.02%以下(0%を含まない)、S:0.01%以下(0%を含まない)、N:0.0020〜0.010%、Cu:0.01〜2.0%および/またはNi:0.01〜5.0%を含有し、残部がFeおよび不可避的不純物であり、
金属組織は、面積率で90%以上がフェライトとベイナイトであり、
更に、以下の式(1)および(2)を満足する、引張強さが590MPa以上780MPa未満の鋼材を用いた溶接継手であって、
且つ、以下の式(3)を満足するHAZ部を有することを特徴とする疲労特性に優れた溶接継手。
Kp=[Mn]+1.5[Cr]+2[Mo]=2.4〜4.5・・・(1)
[Ti]/[N]=1.5〜4.0・・・(2)
ΔHv/L<150・・・(3)
但し、式(1)および(2)で、[ ]は各元素の含有量(質量%)を示し、式(3)で、ΔHvはHAZ部における表面より100μmの深さ位置の硬さの最大値と最小値の差、LはHAZ部の長さ(mm)である。
In mass%, C: 0.01 to 0.06%, Si: 1.0% or less (including 0%), Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0% Mo: 1.5% or less (including 0%), V: 0.04% or less (including 0%), Ti: 0.005 to 0.030%, B: 0.0006 to 0.005% , P: 0.02% or less (not including 0%), S: 0.01% or less (not including 0%), N: 0.0020 to 0.010%, Cu: 0.01 to 2. Containing 0% and / or Ni: 0.01-5.0%, the balance being Fe and inevitable impurities,
The metal structure has an area ratio of 90% or more of ferrite and bainite,
Furthermore, a welded joint using a steel material satisfying the following formulas (1) and (2) and having a tensile strength of 590 MPa or more and less than 780 MPa ,
And the welded joint excellent in the fatigue characteristic characterized by having a HAZ part which satisfies the following formula | equation (3).
Kp = [Mn] +1.5 [Cr] +2 [Mo] = 2.4 to 4.5 (1)
[Ti] / [N] = 1.5 to 4.0 (2)
ΔHv / L <150 (3)
However, in the formulas (1) and (2), [] indicates the content (% by mass) of each element, and in the formula (3), ΔHv is the maximum hardness at a depth position of 100 μm from the surface in the HAZ part . The difference between the value and the minimum value, L is the length (mm) of the HAZ part.
前記鋼材が、更に、質量%で、Ca:0.005%以下を含有する請求項1記載の疲労特性に優れた溶接継手。   The welded joint excellent in fatigue characteristics according to claim 1, wherein the steel material further contains Ca: 0.005% or less by mass%. 前記鋼材が、更に、質量%で、Nb:0.04%以下を含有する請求項1または2記載の疲労特性に優れた溶接継手。   The welded joint excellent in fatigue characteristics according to claim 1 or 2, wherein the steel material further contains, by mass%, Nb: 0.04% or less. 前記鋼材が、更に、質量%で、Al:0.2%以下を含有する請求項1乃至3のいずれかに記載の疲労特性に優れた溶接継手。   The welded joint excellent in fatigue characteristics according to any one of claims 1 to 3, wherein the steel material further contains, by mass%, Al: 0.2% or less.
JP2012096739A 2012-04-20 2012-04-20 Welded joint with excellent fatigue characteristics Expired - Fee Related JP5833966B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012096739A JP5833966B2 (en) 2012-04-20 2012-04-20 Welded joint with excellent fatigue characteristics
CN2013101222974A CN103374689A (en) 2012-04-20 2013-04-10 Welding joint with excellent fatigue characteristics
KR1020130043590A KR20130118825A (en) 2012-04-20 2013-04-19 Welding joint with excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096739A JP5833966B2 (en) 2012-04-20 2012-04-20 Welded joint with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2013224462A JP2013224462A (en) 2013-10-31
JP5833966B2 true JP5833966B2 (en) 2015-12-16

Family

ID=49460518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096739A Expired - Fee Related JP5833966B2 (en) 2012-04-20 2012-04-20 Welded joint with excellent fatigue characteristics

Country Status (3)

Country Link
JP (1) JP5833966B2 (en)
KR (1) KR20130118825A (en)
CN (1) CN103374689A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10688600B2 (en) 2016-12-13 2020-06-23 Caterpillar Inc. Structure having stress protected groove weld and structural members forming the same
US10981253B2 (en) 2016-12-13 2021-04-20 Caterpillar Inc. Structure having stress protected groove weld and structural members forming the same
CN111378895B (en) * 2018-12-28 2021-10-19 宝山钢铁股份有限公司 Gradient steel material with high-plasticity surface layer and high-strength inner layer and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793244B2 (en) * 1993-10-27 2006-07-05 新日本製鐵株式会社 Structural steel welded joints with excellent fatigue strength
JP4437972B2 (en) * 2005-04-22 2010-03-24 株式会社神戸製鋼所 Thick steel plate with low base material toughness with little acoustic anisotropy and method for producing the same
JP4787141B2 (en) * 2005-11-30 2011-10-05 株式会社神戸製鋼所 Thick steel plate with excellent toughness of weld heat-affected zone and low softening
JP5096088B2 (en) * 2007-09-13 2012-12-12 株式会社神戸製鋼所 Welded joints with excellent toughness and fatigue cracking suppression properties
JP5151693B2 (en) * 2008-05-29 2013-02-27 新日鐵住金株式会社 Manufacturing method of high-strength steel
JP5056634B2 (en) * 2008-07-15 2012-10-24 住友金属工業株式会社 Welded joint with excellent fatigue characteristics
JP5729803B2 (en) * 2010-05-27 2015-06-03 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013224462A (en) 2013-10-31
KR20130118825A (en) 2013-10-30
CN103374689A (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP5733484B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP6472315B2 (en) Thick steel plate
EP2843073B1 (en) Ultrahigh-tensile-strength steel plate
KR101314004B1 (en) Thick steel plate with excellent fatigue property
JP5612532B2 (en) Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
JP5833966B2 (en) Welded joint with excellent fatigue characteristics
KR101365351B1 (en) HIGH-STRENGTH STEEL PLATE WITH 980 MPa OR ABOVE TENSILE STRENGTH EXCELLENT IN LOW TEMPERATURE TOUGHNESS OF MULTI-LAYER JOINT
JP4735192B2 (en) High toughness steel with excellent fatigue crack propagation characteristics
JP6400517B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP5056634B2 (en) Welded joint with excellent fatigue characteristics
JP2014118629A (en) Steel sheet pile and its manufacturing method
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP5457938B2 (en) Steel sheet with excellent fatigue crack growth suppression properties and toughness
JP4363321B2 (en) Welded joint with excellent fatigue characteristics
KR20130126715A (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
KR20130125822A (en) Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
JP5343486B2 (en) Steel material for large heat input welding
JP5906868B2 (en) Thick steel plate with excellent fatigue resistance in the thickness direction and method for producing the same
JP4659593B2 (en) Method for producing high-tensile steel sheet with low acoustic anisotropy and excellent base material toughness
WO2012133872A1 (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JP6579135B2 (en) Low yield ratio steel sheet for construction and manufacturing method thereof
RU2633412C1 (en) Method for clad sheet steel production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151030

R150 Certificate of patent or registration of utility model

Ref document number: 5833966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees