JP5008277B2 - Sound absorbing structure and sound absorbing material using fine perforated plates - Google Patents

Sound absorbing structure and sound absorbing material using fine perforated plates Download PDF

Info

Publication number
JP5008277B2
JP5008277B2 JP2005192339A JP2005192339A JP5008277B2 JP 5008277 B2 JP5008277 B2 JP 5008277B2 JP 2005192339 A JP2005192339 A JP 2005192339A JP 2005192339 A JP2005192339 A JP 2005192339A JP 5008277 B2 JP5008277 B2 JP 5008277B2
Authority
JP
Japan
Prior art keywords
sound
perforated plate
honeycomb
incident
formed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005192339A
Other languages
Japanese (ja)
Other versions
JP2007011034A (en
Inventor
幹記 矢入
敦雄 峯村
公博 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Kobe University NUC
Original Assignee
Kajima Corp
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Kobe University NUC filed Critical Kajima Corp
Priority to JP2005192339A priority Critical patent/JP5008277B2/en
Publication of JP2007011034A publication Critical patent/JP2007011034A/en
Application granted granted Critical
Publication of JP5008277B2 publication Critical patent/JP5008277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は微細穿孔板利用の吸音構造及び吸音材に関し、とくに共鳴器型吸音材である微細穿孔板を利用した吸音構造及び吸音材に関する。   The present invention relates to a sound absorbing structure and a sound absorbing material using a fine perforated plate, and particularly to a sound absorbing structure and a sound absorbing material using a fine perforated plate which is a resonator type sound absorbing material.

従来から、コンサートホール・体育館・集会場等の音が存在する建築空間(以下、音場という)において、騒音対策・音響特性の改善等の音環境の調整を目的として吸音構造が広く使用されている。一般的に使用される吸音構造は、図7に示すように吸音機構の相違により(A)多孔質型吸音構造、(B)板(又は膜)振動型吸音構造、及び(C)共鳴器型吸音構造の3種類に分類することができる(非特許文献1参照)。吸音構造の性能は、音の周波数毎の吸音率(=1−(反射音の強さIr/入射音の強さIi))として示すことができる。   Conventionally, sound-absorbing structures have been widely used for the purpose of adjusting the sound environment such as noise countermeasures and improvement of acoustic characteristics in architectural spaces (hereinafter referred to as sound fields) where sounds such as concert halls, gymnasiums, and meeting halls exist. Yes. As shown in FIG. 7, generally used sound absorbing structures include (A) a porous sound absorbing structure, (B) a plate (or membrane) vibration type sound absorbing structure, and (C) a resonator type. It can be classified into three types of sound absorbing structures (see Non-Patent Document 1). The performance of the sound absorbing structure can be expressed as a sound absorption rate (= 1- (intensity of reflected sound Ir / intensity of incident sound Ii)) for each sound frequency.

図7(A1)に示す多孔質型吸音構造は、複雑に連結した多数の隙間(以下、連続気泡という)を内部に有するグラスウール、ロックウール、綿、布等の鉱物又は植物繊維を吸音材20aとして用いた吸音構造である。連続気泡中に音が入射すると、連続気泡の周壁との摩擦、粘性抵抗、材料小繊維の振動等により音のエネルギーの一部が消費されて吸音される。多孔質型吸音構造の吸音特性(吸音率の周波数特性)は、同図(A2)のグラフのように、一般に低音域で小さく高音域で大きくなる。多孔質型吸音材20aを厚くすると中低音域の吸音率が高まるが、重量も大きくなる。このため特許文献1のように、多孔質型吸音材20aであるガラス繊維又はナイロン繊維製の布を通気性ハニカムコア材の表面及び裏面に覆うように取り付けた軽量の吸音パネル等も提案されている。   The porous sound absorbing structure shown in FIG. 7 (A1) has a sound absorbing material 20a made of minerals or plant fibers such as glass wool, rock wool, cotton, cloth, etc. having a large number of complexly connected gaps (hereinafter referred to as open cells) inside. It is the sound absorption structure used as. When sound enters the open cell, a part of sound energy is consumed and absorbed by friction with the peripheral wall of the open cell, viscous resistance, vibration of the material fibrils, and the like. The sound absorption characteristic (frequency characteristic of sound absorption rate) of the porous sound absorption structure is generally small in the low sound range and large in the high sound range as shown in the graph of FIG. If the porous sound-absorbing material 20a is thickened, the sound absorption coefficient in the mid-low range increases, but the weight also increases. For this reason, as in Patent Document 1, a lightweight sound-absorbing panel in which a cloth made of glass fiber or nylon fiber, which is a porous sound-absorbing material 20a, is attached so as to cover the front and back surfaces of the breathable honeycomb core material has been proposed. Yes.

図7(B1)に示す板(又は膜)振動型吸音構造は、薄いベニヤ板やカンバス等の非通気性の気密板又は気密膜を吸音材20bとして用いた吸音構造である。音場の壁や天井に背後空気層を介して配置された気密板又は気密膜は、板又は膜を質量とし背後空気層の弾性をバネとした質量−バネ振動系を構成し、その共振周波数の音が入射するとよく振動し、その内部摩擦により音のエネルギーが消費されて吸音される。板(又は膜)振動型吸音構造の吸音特性は、同図(B2)のグラフのように一般に低音域(200〜1000Hz程度)においてピークを示すが、吸音率はそれほど大きくない。   The plate (or membrane) vibration type sound absorbing structure shown in FIG. 7 (B1) is a sound absorbing structure using a non-breathable airtight plate such as a thin plywood plate or canvas or an airtight film as the sound absorbing material 20b. An airtight plate or film placed on the wall or ceiling of the sound field via a back air layer constitutes a mass-spring vibration system using the plate or film as a mass and the elasticity of the back air layer as a spring, and its resonance frequency. When the sound is incident, it vibrates well, and its internal friction consumes sound energy and absorbs the sound. The sound absorption characteristic of the plate (or membrane) vibration type sound absorption structure generally shows a peak in the low sound range (about 200 to 1000 Hz) as shown in the graph of FIG. 2 (B2), but the sound absorption coefficient is not so large.

図7(C1)に示す共鳴器型吸音構造は、空胴に孔があいた形の共鳴器(例えばヘルムホルツ共鳴器)を吸音材20cとして用いた吸音構造である。共鳴器型吸音材20cの一例は、石膏ボード・合板等に数〜数十mmの口径のそれぞれ独立した貫通孔が穿たれた孔あき板、または特許文献2及び3が開示するように口径0.1〜1mm程度の多数のそれぞれ独立した微細貫通孔が穿たれた孔あき板(Micro Perforated Panel;以下、MPP又は微細穿孔板ということがある)である。音場の壁や天井に背後空気層を介して配置された孔あき板は、貫通孔(図7(C1)の孔に相当)中の空気を質量とし背後空気層(同図の空胴に相当)の弾性をバネとした質量−バネ振動系を構成し、その共振周波数(共鳴周波数)の音が入射すると微細貫通孔内の空気が激しく振動し、周辺との摩擦により音のエネルギーが消費されて吸音される。共鳴器型吸音構造の吸音特性は、同図(C2)のグラフのように、共振周波数において非常に大きな吸音率を示す。   The resonator type sound absorbing structure shown in FIG. 7 (C1) is a sound absorbing structure using a resonator having a cavity (for example, a Helmholtz resonator) as the sound absorbing material 20c. An example of the resonator-type sound absorbing material 20c is a perforated plate in which independent through holes having a diameter of several to several tens of mm are formed in gypsum board or plywood, or a diameter of 0.1 as disclosed in Patent Documents 2 and 3. It is a perforated panel (hereinafter referred to as MPP or micro perforated plate) in which a large number of independent fine through holes of about 1 mm are formed. A perforated plate placed on the wall or ceiling of the sound field via a back air layer uses the air in the through hole (corresponding to the hole in Fig. 7 (C1)) as the mass, and the back air layer (in the cavity of the figure) A mass-spring vibration system with a spring of elasticity), and when the sound of the resonance frequency (resonance frequency) is incident, the air in the fine through-hole vibrates vigorously, and the sound energy is consumed by friction with the surroundings. Sound absorption. The sound absorption characteristic of the resonator type sound absorption structure shows a very large sound absorption rate at the resonance frequency as shown in the graph of FIG.

実際の音場の吸音構造では、必要な音環境に応じて、上述した3種類の吸音材20a、20b、20cが単独で又は組み合わせて使用される。例えば、共鳴器型吸音材20cである口径数〜数十mmの孔あき石膏ボードの背後空気層に多孔質型吸音材20aであるグラスウール、ロックウール等を挿入することにより、広い周波数帯域(以下、吸音帯域幅ということがある)で高い吸音率が得られる吸音構造とすることができる。   In the actual sound absorbing structure of the sound field, the above-described three types of sound absorbing materials 20a, 20b, and 20c are used alone or in combination depending on the required sound environment. For example, by inserting glass wool, rock wool, etc., which is a porous sound absorbing material 20a, into the air layer behind a perforated gypsum board with a diameter of several to several tens of millimeters, which is the resonator type sound absorbing material 20c, a wide frequency band (hereinafter referred to as “bandwidth”) In some cases, the sound absorption structure can provide a high sound absorption coefficient.

前川純一ほか「建築・環境音響学」共立出版株式会社、2000年9月第2版、第74〜81頁Junichi Maekawa et al. “Architecture and Environmental Acoustics” Kyoritsu Publishing Co., Ltd., September 2000, 2nd edition, pp. 74-81 日本工業規格「音響−インピーダンス管による吸音率及びインピーダンスの測定−定在波比法」JIS-A-1405Japanese Industrial Standard "Acoustics-Measurement of sound absorption coefficient and impedance with impedance tube-Standing wave ratio method" JIS-A-1405 日本工業規格「残響室法吸音率の測定方法」JIS-A-1409Japanese Industrial Standard "Measurement method of sound absorption coefficient of reverberation room method" JIS-A-1409 特開2002−227323号公報JP 2002-227323 A 特表平9−502490号公報Japanese National Patent Publication No. 9-502490 特表平8−510020号公報JP-T 8-510020 Publication 特開2004−076462号公報JP 2004-076462 A 特開2001−295448号公報JP 2001-295448 A

上述した共鳴器型吸音材20cのうち微細穿孔板は、板の厚さ、貫通孔の口径及びピッチ、背後空気層の厚さ等を調節することにより吸音特性を選択することができ、しかも材料の選定により耐水性・耐久性を高めることができる等の利点を有する。しかし、微細穿孔板だけでは吸音帯域幅が比較的狭く吸音率も充分ではないため、音環境の調整が難しい場合がある。上述したようにグラスウール等の多孔質型吸音材20aと組み合わせることも考えられるが、グラスウール等には結露事故の危険性、耐久性の低さ、粉塵等による人体への影響等の吸音特性以外の問題点が指摘されており、音場での使用条件によってはグラスウール等を使用できない場合もある。微細穿孔板の吸音率を高め吸音帯域幅を広げることができれば、グラスウール等を用いずに様々な使用条件の音場に利用可能な吸音板とすることが期待できる。   Of the resonator-type sound absorbing material 20c described above, the fine perforated plate can select the sound absorption characteristics by adjusting the thickness of the plate, the diameter and pitch of the through holes, the thickness of the air layer behind, and the like. It has the advantage that water resistance / durability can be improved by selecting. However, since the sound absorption bandwidth is relatively narrow and the sound absorption rate is not sufficient with a fine perforated plate alone, it may be difficult to adjust the sound environment. As mentioned above, it is possible to combine it with the porous sound absorbing material 20a such as glass wool, but the glass wool etc. has a risk of condensation accident, low durability, other than sound absorbing characteristics such as influence on the human body due to dust etc. Problems have been pointed out, and glass wool or the like may not be used depending on the usage conditions in the sound field. If the sound absorption rate of the fine perforated plate can be increased and the sound absorption bandwidth can be widened, it can be expected that the sound absorbing plate can be used in a sound field under various usage conditions without using glass wool or the like.

そこで本発明の目的は、微細穿孔板を利用して高い吸音率が得られる吸音構造及び吸音材を提供することにある。   Therefore, an object of the present invention is to provide a sound absorbing structure and a sound absorbing material that can obtain a high sound absorption coefficient by using a fine perforated plate.

一般に吸音材の吸音率は音波の入射条件に応じて異なる。図8(A)のように、吸音材20に対し平面音波が垂直(入射角度θ=0度)に入射したときの吸音率は垂直入射吸音率α0と呼ばれる。また同図(B)のように、吸音材20の法線に対し音波が入射角度θ(>0)で入射したときの吸音率は斜入射吸音率αθと呼ばれる。実際の音場内には同図(C)のように様々な入射角度θの音波が存在しており、全方向(入射角度0〜78度の方向)からランダムに音波が入射したときの吸音率は音場入射吸音率αと呼ばれ、式(1)のように垂直入射吸音率α0及び斜入射吸音率αθを空間積分したものとなる。 Generally, the sound absorption rate of the sound absorbing material varies depending on the incident condition of the sound wave. As shown in FIG. 8A, the sound absorption coefficient when a plane sound wave enters the sound absorbing material 20 perpendicularly (incident angle θ = 0 degree) is called a normal incident sound absorption coefficient α 0 . Further, as shown in FIG. 5B, the sound absorption coefficient when the sound wave enters the normal line of the sound absorbing material 20 at the incident angle θ (> 0) is called the oblique incident sound absorption coefficient α θ . In the actual sound field, sound waves with various incident angles θ exist as shown in FIG. 3C, and the sound absorption rate when sound waves are randomly incident from all directions (incidence angles of 0 to 78 degrees). Is called the sound field incident sound absorption coefficient α, and is obtained by spatially integrating the normal incident sound absorption coefficient α 0 and the oblique incident sound absorption coefficient α θ as shown in equation (1).

垂直入射吸音率α0は、例えば図6(A)のように音の波長λより口径wが小さい音響管21の一端に吸音板20を入れ、他端から吸音板20に対し音波(平面波)を垂直に入射することで測定することができる(非特許文献2参照)。また音場入射吸音率αは、同図(B)のような所定容積V及び表面積Sの残響室27に所定面積sの吸音板20を入れ、残響室27内にあらゆる方向の音を入射することで測定することができる(非特許文献3参照)。斜入射吸音率αθの測定はかなり困難であるが、いくつかの測定方法が提案されている(非特許文献1参照)。 For example, as shown in FIG. 6A, the normal incident sound absorption coefficient α 0 is obtained by inserting a sound absorbing plate 20 into one end of an acoustic tube 21 having a diameter w smaller than the sound wavelength λ, and generating sound waves (plane waves) from the other end to the sound absorbing plate 20. Can be measured by vertical incidence (see Non-Patent Document 2). The sound field incident sound absorption coefficient α is set such that a sound absorbing plate 20 having a predetermined area s is placed in a reverberation chamber 27 having a predetermined volume V and surface area S as shown in FIG. Can be measured (see Non-Patent Document 3). Although measurement of the oblique incidence sound absorption coefficient alpha theta is rather difficult, a number of measurement methods have been proposed (see Non-Patent Document 1).

図9は、理論的計算により求めた微細穿孔板1の垂直入射吸音率α0、入射角度θが36度、48度、60度、72度の斜入射吸音率α36、α48、α60、α72、及びそれらを積分(加算)した音場入射吸音率αのグラフの一例を示す。同図から分かるように、微細穿孔板1では垂直入射吸音率α0が最も大きく、入射角度θが大きくなるに従って斜入射吸音率αθは徐々に低下する。このため、それらを積分して得られる微細穿孔板1の音場入射吸音率αは、吸音帯域幅が狭く、全体的に低くなってしまう。入射角度θに依存した斜入射吸音率αθの低下を改善できれば、微細穿孔板1の音場入射吸音率αを向上できるはずである。本発明は、この着想に基づく研究開発の結果、完成に至ったものである。 FIG. 9 shows the oblique incident sound absorption coefficient α 36 , α 48 , α 60 for the normal incident sound absorption coefficient α 0 and the incident angle θ of 36 degrees, 48 degrees, 60 degrees and 72 degrees obtained by theoretical calculation. , Α 72 , and a graph of the sound field incident sound absorption coefficient α obtained by integrating (adding) them. As can be seen from the figure, in the fine perforated plate 1, the normal incident sound absorption coefficient α 0 is the largest, and the oblique incident sound absorption coefficient α θ gradually decreases as the incident angle θ increases. For this reason, the sound field incident sound absorption coefficient α of the fine perforated plate 1 obtained by integrating them has a narrow sound absorption bandwidth and becomes lower overall. If the decrease in the oblique incident sound absorption coefficient α θ depending on the incident angle θ can be improved, the sound field incident sound absorption coefficient α of the fine perforated plate 1 should be improved. The present invention has been completed as a result of research and development based on this idea.

図1及び図3(A)の実施例を参照するに、本発明による微細穿孔板利用の吸音構造は、所要ピッチで貫通孔3が穿たれ且つ表面を音場に臨ませた微細穿孔板1の裏面を音場内の壁15又は天井16に空気層17を介して対向させ、空気層17に、微細穿孔板1と直交する隔壁7により音場からの吸音対象入射音の上限周波数の波長λより小さく且つ貫通孔3の所要ピッチより大きい口径wの複数の筒状空隙6に区画されたハニカム状成形体5を穿孔板1の裏面から離して設けて穿孔板1の裏面側の音波伝播方向を穿孔板1と直交方向に制御しなるものである。 1 and 3A, the sound absorbing structure using the micro perforated plate according to the present invention has a micro perforated plate 1 in which through holes 3 are formed at a required pitch and the surface is exposed to a sound field. Is opposite to the wall 15 or ceiling 16 in the sound field via an air layer 17 , and the wavelength λ of the upper limit frequency of the sound to be absorbed from the sound field by the partition wall 7 orthogonal to the fine perforated plate 1 is opposed to the air layer 17. The direction of sound wave propagation on the back surface side of the perforated plate 1 is provided with a honeycomb-shaped formed body 5 that is smaller and larger than the required pitch of the through holes 3 and is divided into a plurality of cylindrical voids 6 separated from the back surface of the perforated plate 1. Is controlled in a direction orthogonal to the perforated plate 1.

また図1(A)の実施例を参照するに、本発明による微細穿孔板利用の吸音材は、所要ピッチで貫通孔3が穿たれ且つ表面を音場に臨ませる微細穿孔板1の裏面に、微細穿孔板1と直交する隔壁7により音場からの吸音対象入射音の上限周波数の波長λより小さく且つ貫通孔3の所要ピッチより大きい口径wの複数の筒状空隙6に区画されたハニカム状成形体5を穿孔板1の裏面から離して設けて穿孔板1の裏面側の音波伝播方向を穿孔板1と直交方向に制御してなるものである。 Further, referring to the embodiment of FIG. 1A, the sound absorbing material using the fine perforated plate according to the present invention is formed on the back surface of the fine perforated plate 1 in which the through holes 3 are formed at a required pitch and the surface faces the sound field. The honeycomb is partitioned into a plurality of cylindrical voids 6 having a diameter w smaller than the wavelength λ of the upper limit frequency of the sound to be absorbed from the sound field and larger than the required pitch of the through holes 3 by the partition wall 7 orthogonal to the fine perforated plate 1. The shaped molded body 5 is provided away from the back surface of the perforated plate 1 and the sound wave propagation direction on the back surface side of the perforated plate 1 is controlled in a direction orthogonal to the perforated plate 1.

各筒状空隙6の断面形状は、図1及び図2に示すように、円形、方形又は多角形とすることができる。また図3に示すように、空気層17のうち微細穿孔板1の近傍部分だけ複数の筒状空隙6に区画されたハニカム状成形体5を設けることができる。好ましくは、ハニカム状成形体5の各筒状空隙6の口径wを音場からの入射音の波長λの0.6倍以下とする。更に好ましくは、図1及び図3(B)に示すように、ハニカム状成形体5の各筒状空隙6の微細穿孔板1と反対側に気密振動板又は膜9(以下、両者を纏めて気密振動膜9ということがある)を設ける。 The cross-sectional shape of each cylindrical space | gap 6 can be made into circular, a square, or a polygon, as shown in FIG.1 and FIG.2. Also as shown in FIG. 3, it is Rukoto provided a honeycomb-shaped molded body 5 which is divided into a plurality of cylindrical cavities 6 only in the vicinity portion of the microperforated plate 1 of the air layer 17. Preferably, the diameter w of each cylindrical gap 6 of the honeycomb formed body 5 is set to 0.6 times or less the wavelength λ of the incident sound from the sound field. More preferably, as shown in FIG. 1 and FIG. 3 (B), an airtight diaphragm or membrane 9 (hereinafter referred to as “both”) is arranged on the side opposite to the finely perforated plate 1 of each cylindrical void 6 of the honeycomb formed body 5. A hermetic vibration film 9).

本発明の微細穿孔板利用の吸音構造及び吸音材は、微細穿孔板1の背後空気層17を微細穿孔板1と直交する隔壁7により音場からの入射音の波長より小さい口径wの複数の筒状空隙6に区画するので、次の顕著な効果を奏する。   The sound absorbing structure and sound absorbing material using the micro perforated plate according to the present invention includes a plurality of apertures w having a diameter w smaller than the wavelength of the incident sound from the sound field by the partition wall 7 orthogonal to the micro perforated plate 1 in the air layer 17 behind the micro perforated plate 1. Since it divides into the cylindrical space | gap 6, there exists the following remarkable effect.

(イ)背後空気層17を入射音の波長より小さい口径wの筒状空隙6に区画することにより、斜め方向(入射角度θ>0)から微細穿孔板1に入射した音の背後空気層17における伝播方向を微細穿孔板1と垂直(入射角度θ=0)に制御することができる。
(ロ)入射角度θに拘らず入射音を背後空気層17において微細穿孔板1と垂直方向に伝播させることにより、微細穿孔板1の貫通孔中の空気(質量)と背後空気層の弾性(バネ)とで形成される質量−バネ振動系を微細穿孔板1と垂直方向に振動させ、入射角度θに依存した斜入射吸音率αθの低下を抑えることできる。
(ハ)入射角度θに依存した斜入射吸音率αθの低下を抑えることにより、その積分値である音場入射吸音率αの吸音帯域幅を広げ、音場入射吸音率αを向上することができる。
(ニ)各筒状空隙6の微細穿孔板1と反対側に気密振動膜9を設けることにより、筒状空隙6と気密振動膜9との相乗効果によって音場入射吸音率αの吸音帯域幅を更に広げ、音場入射吸音率αを更に向上することができる。
(A) By partitioning the back air layer 17 into the cylindrical gap 6 having a diameter w smaller than the wavelength of the incident sound, the back air layer 17 of the sound incident on the fine perforated plate 1 from an oblique direction (incidence angle θ> 0) Can be controlled to be perpendicular to the fine perforated plate 1 (incident angle θ = 0).
(B) By propagating incident sound in the back air layer 17 in the direction perpendicular to the fine perforated plate 1 regardless of the incident angle θ, the air (mass) in the through hole of the fine perforated plate 1 and the elasticity of the back air layer ( The mass-spring vibration system formed by the spring) can be vibrated in the direction perpendicular to the fine perforated plate 1 to suppress a decrease in the oblique incident sound absorption coefficient α θ depending on the incident angle θ.
(C) By suppressing the decrease in the oblique incident sound absorption coefficient α θ depending on the incident angle θ, the sound absorption band α of the sound field incident sound absorption coefficient α, which is an integral value thereof, is widened, and the sound field incident sound absorption coefficient α is improved. Can do.
(D) By providing the airtight vibration membrane 9 on the opposite side of each cylindrical gap 6 from the fine perforated plate 1, the sound absorption bandwidth of the sound field incident sound absorption coefficient α due to the synergistic effect of the cylindrical gap 6 and the airtight vibration film 9. And the sound field incident sound absorption coefficient α can be further improved.

図1は、微細穿孔板1及びハニカム状成形体5を用いた本発明の吸音板10の実施例を示す。図示例の微細穿孔板1は、上述したように口径0.1〜1mm程度の多数の微細な貫通孔3が所要ピッチで穿たれた所要厚さのパネル2であり、貫通孔3を精度よく穿孔できればとくに材質の制限はなく、例えばガラス製、金属製、木材製、プラスチック製、プラスターボード製等とすることができる。吸音調整が必要な音環境に応じて、微細穿孔板1の厚さ、貫通孔3の口径及びピッチ、背後空気層の厚さを適当に選択することができる。微細穿孔板1における吸音は、貫通孔3中の空気(質量)と背後空気層17の弾性(バネ)とで形成される質量−バネ振動系による共振現象が支配的となるため、パネル2自体の振動や剛性は無関係となる。従って、シート状のパネル2を用いて微細穿孔板1を形成することも可能である。   FIG. 1 shows an embodiment of a sound absorbing plate 10 of the present invention using a fine perforated plate 1 and a honeycomb formed body 5. The fine perforated plate 1 in the illustrated example is a panel 2 having a required thickness in which a large number of fine through holes 3 having a diameter of about 0.1 to 1 mm are formed at a required pitch as described above, and if the through holes 3 can be accurately drilled. There is no restriction | limiting in particular of a material, For example, they can be made from glass, metal, wood, plastic, plasterboard, etc. The thickness of the fine perforated plate 1, the diameter and pitch of the through holes 3, and the thickness of the back air layer can be appropriately selected according to the sound environment that requires sound absorption adjustment. The sound absorption in the fine perforated plate 1 is dominated by the resonance phenomenon caused by the mass-spring vibration system formed by the air (mass) in the through-hole 3 and the elasticity (spring) of the back air layer 17, so that the panel 2 itself The vibration and rigidity of the are irrelevant. Therefore, it is possible to form the fine perforated plate 1 using the sheet-like panel 2.

図示例のハニカム状成形体5は、微細穿孔板1と直交する隔壁7により、相互に仕切られた複数の筒状空隙6を形成するように成形されたものである。図示例では、平板状の隔壁7を格子状に組み合わせてハニカム状成形体5とし、各筒状空隙6の断面形状を方形としている。ただし、筒状空隙6の断面形状は後述するように口径wが入射音の波長より小さければ足り、方形に限定されない。例えば図2(A)及び(B)に示すように、断面形状が円形又は多角形の複数の筒状隔壁7a、7bを相互に密に隣接させてハニカム状成形体5とし、断面形状が円形又は多角形の筒状空隙6a、6bとすることができる。また、同図(C)に示すように、波板状隔壁7cと平板状隔壁7dとを相互に平行に並べて断面形状が三角形の筒状空隙6cを有するハニカム状成形体5とすることもできる。   The honeycomb-shaped formed body 5 in the illustrated example is formed so as to form a plurality of cylindrical voids 6 partitioned from each other by partition walls 7 orthogonal to the fine perforated plate 1. In the illustrated example, the flat partition walls 7 are combined in a lattice shape to form a honeycomb-shaped formed body 5, and the cross-sectional shape of each cylindrical void 6 is rectangular. However, the cross-sectional shape of the cylindrical gap 6 is not limited to a square as long as the diameter w is smaller than the wavelength of the incident sound, as will be described later. For example, as shown in FIGS. 2A and 2B, a plurality of cylindrical partition walls 7a and 7b having a circular or polygonal cross-section are closely adjacent to each other to form a honeycomb-shaped formed body 5, and the cross-sectional shape is circular. Or it can be set as the polygonal cylindrical space | gap 6a, 6b. Further, as shown in FIG. 3C, the corrugated plate-like partition wall 7c and the plate-like partition wall 7d are arranged in parallel with each other to form a honeycomb-shaped formed body 5 having a cylindrical gap 6c having a triangular cross-sectional shape. .

図1(A)に示すように、微細穿孔板1の片側表面にハニカム状成形体5を重ね合わせて本発明の吸音板10とする。ハニカム状成形体5を重ね合わせることにより、微細穿孔板1の背後空気層17を、微細穿孔板1と直交する複数の筒状空隙6に区画することができる。微細穿孔板1の貫通孔3とハニカム状成形体5の筒状空隙6とは1:1に対応する必要はなく、筒状空隙6の口径wは貫通孔3のピッチより大きくすることができる。微細穿孔板1とハニカム状成形体5とは接触させ又は貼り合わせることが望ましいが、背後空気層17を複数の筒状空隙6に区画できれば両者を接触させずに多少離して設けてもよい。例えば図3(A)に示すように、微細穿孔板1の表面を音場に臨ませると共に裏面を音場内の天井16や壁15に背後空気層17を介して対向させ、背後空気層17にハニカム状成形体5をその隔壁7が微細穿孔板1と直交する向きに挿入する。ハニカム状成形体5の隔壁7は、背後空気層17を複数の筒状空隙6に区画できる気密性のものであれば足り、微細穿孔板1の剛性の増加等を目的としないので、材質にとくに制限はない。微細穿孔板1と同じ材質とすることもできるが、紙製、繊維強化プラスチック製、ポリカーボネート製として軽量化を図ることができる。   As shown in FIG. 1 (A), a honeycomb formed body 5 is superposed on one surface of a fine perforated plate 1 to form a sound absorbing plate 10 of the present invention. By superposing the honeycomb formed bodies 5, the air layer 17 behind the fine perforated plate 1 can be partitioned into a plurality of cylindrical gaps 6 orthogonal to the fine perforated plate 1. The through hole 3 of the fine perforated plate 1 and the cylindrical gap 6 of the honeycomb formed body 5 do not need to correspond to 1: 1, and the diameter w of the cylindrical gap 6 can be made larger than the pitch of the through holes 3. . The fine perforated plate 1 and the honeycomb formed body 5 are preferably brought into contact with each other or bonded together. However, if the back air layer 17 can be partitioned into a plurality of cylindrical gaps 6, they may be provided somewhat apart from each other without being brought into contact with each other. For example, as shown in FIG. 3 (A), the surface of the fine perforated plate 1 faces the sound field and the back surface is opposed to the ceiling 16 or the wall 15 in the sound field via the back air layer 17 so as to face the back air layer 17. The honeycomb formed body 5 is inserted in a direction in which the partition walls 7 are orthogonal to the fine perforated plate 1. The partition wall 7 of the honeycomb formed body 5 need only be airtight so that the back air layer 17 can be partitioned into a plurality of cylindrical gaps 6, and does not aim at increasing the rigidity of the fine perforated plate 1. There are no particular restrictions. Although the same material as the fine perforated plate 1 can be used, the weight can be reduced by using paper, fiber reinforced plastic, or polycarbonate.

ハニカム状成形体5の各筒状空隙6の口径wは、音場からの入射音の波長λより小さくし、好ましくは入射音の波長λの0.6倍以下とする。例えば図6の音響管21において測定対象音波を管軸と平行に伝播させるため、音響管21が方形管であればその口径wを測定対象音波の波長λの0.5倍以下(0.5λ≧w)とし、音響管21が円管であればその口径wを測定対象音波の波長λの0.58以下(0.58λ≧w)とすることが知られている(非特許文献2参照)。このことから分かるように、ハニカム状成形体5の各筒状空隙6の断面形状が方形又は円形であれば、その口径wを入射音の波長λの0.6倍以下(0.6λ≧w)とすることにより、筒状空隙6内に入射した音波をその中心軸線と平行に、つまり微細穿孔板1と直交方向に伝播させることができる。好ましくは、口径wを入射音の波長λの0.5倍以下(0.5λ≧w)とする。また、筒状空隙6の断面形状が方形又は円形以外であっても、その口径wを入射音の波長λより小さい範囲内で選択することにより、入射音の伝播方向をその中心軸線と平行にし、又は平行に近づけることができる。   The diameter w of each cylindrical gap 6 of the honeycomb formed body 5 is made smaller than the wavelength λ of the incident sound from the sound field, preferably 0.6 times or less of the wavelength λ of the incident sound. For example, in order to propagate the measurement target sound wave in parallel with the tube axis in the acoustic tube 21 of FIG. 6, if the acoustic tube 21 is a square tube, its diameter w is 0.5 times or less the wavelength λ of the measurement target sound wave (0.5λ ≧ w). It is known that if the acoustic tube 21 is a circular tube, its diameter w is 0.58 or less (0.58λ ≧ w) of the wavelength λ of the sound wave to be measured (see Non-Patent Document 2). As can be seen from this, if the cross-sectional shape of each cylindrical gap 6 of the honeycomb formed body 5 is square or circular, the diameter w is 0.6 times or less (0.6λ ≧ w) of the wavelength λ of the incident sound. Thus, the sound wave incident in the cylindrical gap 6 can be propagated in parallel to the central axis, that is, in the direction orthogonal to the fine perforated plate 1. Preferably, the aperture w is 0.5 times or less (0.5λ ≧ w) of the wavelength λ of the incident sound. Even if the cross-sectional shape of the cylindrical gap 6 is other than a square or a circle, the propagation direction of the incident sound is made parallel to the central axis by selecting the diameter w within a range smaller than the wavelength λ of the incident sound. Or close to parallel.

すなわち、ハニカム状成形体5により微細穿孔板1の背後空気層17を入射音の波長λより小さい口径wの筒状空隙6に区画すれば、入射音の背後空気層17における伝播方向を微細穿孔板1と垂直方向に制御することができる。図9を参照して上述したように微細穿孔板1の吸音率αθは入射音の入射角度θが大きくなると低下するが、この吸音率αθの低下の一原因は入射角度θにより背後空気層17における伝播特性が変化することにあると考えられる。背後空気層17において入射音を微細穿孔板1と直交方向に伝播させれば、微細穿孔板1の質量−バネ振動系を微細穿孔板1と垂直方向に振動させ、どのような入射角度θの入射音に対しても垂直入射音(入射角度θ=0)と同様の吸音率とすることが期待できる。微細穿孔板1の斜入射吸音率αθを垂直入射吸音率α0と同様にレベルにまで高めることができれば、音場入射吸音率αを向上すると共に広帯域化することが期待できる。 That is, if the air layer 17 behind the fine perforated plate 1 is partitioned into the cylindrical gap 6 having a diameter w smaller than the wavelength λ of the incident sound by the honeycomb formed body 5, the propagation direction of the incident sound in the back air layer 17 is finely perforated. It can be controlled in a direction perpendicular to the plate 1. As described above with reference to FIG. 9, the sound absorption coefficient α θ of the fine perforated plate 1 decreases as the incident angle θ of the incident sound increases. One cause of the decrease in the sound absorption coefficient α θ is the background air due to the incident angle θ. It is thought that the propagation characteristics in the layer 17 change. If the incident sound is propagated in the back air layer 17 in the direction orthogonal to the fine perforated plate 1, the mass-spring vibration system of the fine perforated plate 1 is vibrated in the direction perpendicular to the fine perforated plate 1, so The incident sound can be expected to have the same sound absorption rate as that of the normal incident sound (incident angle θ = 0). If the oblique incident sound absorption coefficient α θ of the fine perforated plate 1 can be increased to the same level as the normal incident sound absorption coefficient α 0 , it is possible to improve the sound field incident sound absorption coefficient α and increase the bandwidth.

一般の音場において吸音調整が必要な音の周波数の上限は4000Hz程度であり、その波長は8.3cm程度(=音速33200cm/4000Hz)であるから、本発明の吸音材10によりそのような範囲の音場入射吸音率αを向上するには、例えばハニカム状成形体5の各筒状空隙6の口径wを5cm(≒8.3×0.6)程度以下、好ましくは4cm(≒8.3×0.5)程度以下とすればよい。また、微細穿孔板1と音場の壁15、天井16との間の背後空気層17の全体にハニカム状成形体5を設けることも可能であるが、図3(A)に示すように、背後空気層17のうち微細穿孔板1の近傍部分だけを複数の筒状空隙6に区画すれば、音場入射吸音率αを充分高めることができる(後述する実験例1参照)。従って、ハニカム状成形体5の各筒状空隙6の厚さd(筒状空隙6の両端開口間の長さd)は、背後空気層17の厚さDに比し薄くすることができる(図1(B)も参照)。   The upper limit of the frequency of sound that needs to be adjusted in a general sound field is about 4000 Hz, and its wavelength is about 8.3 cm (= 33200 cm / 4000 Hz), so that the sound absorbing material 10 of the present invention has such a range. In order to improve the sound field incident sound absorption coefficient α, for example, the diameter w of each cylindrical gap 6 of the honeycomb formed body 5 is about 5 cm (≈8.3 × 0.6) or less, preferably about 4 cm (≈8.3 × 0.5) or less. do it. It is also possible to provide the honeycomb shaped body 5 in the entire back air layer 17 between the fine perforated plate 1 and the sound field wall 15 and ceiling 16, but as shown in FIG. If only the vicinity of the fine perforated plate 1 in the back air layer 17 is partitioned into a plurality of cylindrical gaps 6, the sound field incident sound absorption coefficient α can be sufficiently increased (see Experimental Example 1 described later). Accordingly, the thickness d of each tubular void 6 of the honeycomb-shaped formed body 5 (the length d between the openings at both ends of the tubular void 6) can be made thinner than the thickness D of the back air layer 17 ( (See also FIG. 1B).

[実験例1]
微細穿孔板1とハニカム状成形体5とを重ね合わせた吸音構造の吸音特性を確認するため、本発明の吸音板10を試作し、図6(B)の残響室27を用いて音場入射吸音率αを測定する実験を行った。本実験では、孔径0.5mmの貫通孔3が5mmピッチで穿たれた厚さ0.5mmの金属製の微細穿孔板1と、口径w=8mmの複数の筒状空隙6が形成された厚さd=5cmの紙製のハニカム状成形体5(ペーパーハニカムパネル)とを用いて吸音板10を作製した。微細穿孔板1の貫通孔3の開口率は0.64%である。図3(A)に示すように、微細穿孔板1を残響室27の天井16の全面に厚さD=30cmの空気層17を介して吊り下げて二重天井とし、微細穿孔板1の表面を音場に臨ませると共に、微細穿孔板1の裏面にハニカム状成形体5を挿入して本発明の吸音材10とした。残響室27の容積は54m3、天井16の表面積は20m2、背後空気層17の容積は6m3である。残響室27内のスピーカ22から天井の吸音材10に試験音波を全方向から周波数毎に入射し、残響室27内の残響音をマイク25からリアルタイムアナライザー26に伝送して音場入射吸音率αを測定した。比較のため、ハニカム状成形体5のない微細穿孔板1の音場入射吸音率αも併せて測定した。
[Experimental Example 1]
In order to confirm the sound absorption characteristics of the sound absorbing structure in which the fine perforated plate 1 and the honeycomb-shaped molded body 5 are superposed, the sound absorbing plate 10 of the present invention is made as a prototype, and the sound field is incident using the reverberation chamber 27 of FIG. An experiment was conducted to measure the sound absorption coefficient α. In this experiment, a thickness d in which through holes 3 having a hole diameter of 0.5 mm were drilled at a pitch of 5 mm and a metal micro-perforated plate 1 having a thickness of 0.5 mm and a plurality of cylindrical gaps 6 having a diameter w = 8 mm were formed. A sound-absorbing plate 10 was prepared using a honeycomb-shaped molded body 5 (paper honeycomb panel) of 5 cm. The aperture ratio of the through hole 3 of the fine perforated plate 1 is 0.64%. As shown in FIG. 3A, the fine perforated plate 1 is suspended on the entire surface of the ceiling 16 of the reverberation chamber 27 via an air layer 17 having a thickness D = 30 cm to form a double ceiling, and the surface of the fine perforated plate 1 The sound-absorbing material 10 of the present invention was obtained by inserting the honeycomb-shaped formed body 5 on the back surface of the fine perforated plate 1. The volume of the reverberation chamber 27 is 54 m 3 , the surface area of the ceiling 16 is 20 m 2 , and the volume of the back air layer 17 is 6 m 3 . A test sound wave enters the sound absorbing material 10 on the ceiling from the speaker 22 in the reverberation chamber 27 at every frequency from all directions, and the reverberation sound in the reverberation chamber 27 is transmitted from the microphone 25 to the real-time analyzer 26 to receive the sound field incident sound absorption coefficient α. Was measured. For comparison, the sound field incident sound absorption coefficient α of the fine perforated plate 1 without the honeycomb-shaped formed body 5 was also measured.

実験結果を図4のグラフに示す。同図の点線グラフは微細穿孔板1のみの音場入射吸音率α、実線グラフはハニカム状成形体5を重ね合わせた微細穿孔板1の音場入射吸音率αを示す。両グラフの比較から分かるように、微細穿孔板1のみ場合に比し、ハニカム状成形体5で背後空気層17を複数の筒状空隙6に区画することにより、200〜2000Hzの広い帯域で微細穿孔板1の音場入射吸音率αを高めることができた。すなわち、本発明の吸音板10により吸音の広帯域化が可能であることを確認できた。また、背後空気層17の厚さD=30cmに対して厚さd=5cmのハニカム状成形体5を設けるだけで音場入射吸音率αを改善することができ、背後空気層17のうち1/6程度を筒状空隙6に区画するだけで微細穿孔板1の音場入射吸音率αが向上できることを確認できた。なお、本実験結果では実線グラフのピーク吸音率が点線グラフのピーク吸音率より若干低下しているが、ハニカム状成形体5の厚さdを調整すること、または後述するようにハニカム状成形体5の各筒状空隙6の微細穿孔板1と反対側に気密振動膜9を設けることにより、実線グラフの吸音率を更に改善することが可能である。   The experimental results are shown in the graph of FIG. The dotted line graph of FIG. 3 shows the sound field incident sound absorption coefficient α of only the fine perforated plate 1, and the solid line graph shows the sound field incident sound absorption coefficient α of the fine perforated plate 1 on which the honeycomb shaped bodies 5 are superimposed. As can be seen from the comparison of both graphs, by dividing the back air layer 17 into a plurality of cylindrical gaps 6 by the honeycomb-shaped formed body 5 in a wide band of 200 to 2000 Hz as compared with the case of only the fine perforated plate 1. The sound field incident sound absorption coefficient α of the perforated plate 1 could be increased. That is, it was confirmed that the sound absorbing plate 10 of the present invention can broaden the sound absorption. Further, the sound field incident sound absorption coefficient α can be improved only by providing the honeycomb formed body 5 having a thickness d = 5 cm with respect to the thickness D = 30 cm of the back air layer 17. It was confirmed that the sound field incident sound absorption coefficient α of the fine perforated plate 1 can be improved only by dividing about / 6 into the cylindrical gap 6. In this experimental result, the peak sound absorption coefficient of the solid line graph is slightly lower than the peak sound absorption coefficient of the dotted line graph. However, the thickness d of the honeycomb formed body 5 is adjusted, or the honeycomb formed body is described later. It is possible to further improve the sound absorption coefficient of the solid line graph by providing the hermetic vibration film 9 on the opposite side of the micro-perforated plate 1 of each cylindrical gap 6.

こうして本発明の目的である「微細穿孔板を利用して高い吸音率が得られる吸音構造及び吸音材」の提供を達成することができた。   Thus, it was possible to achieve the object of the present invention, “a sound absorbing structure and a sound absorbing material that can obtain a high sound absorption coefficient using a fine perforated plate”.

図1の実施例では、ハニカム状成形体5の各筒状空隙6の微細穿孔板1と反対側の開口(音の出口開口)に非通気性の気密振動膜9を設け、ハニカム状成形体5と気密振動膜9との相乗効果により微細穿孔板1の音場入射吸音率αを更に高めている。気密振動膜9の一例は、例えば紙製又は薄型のポリフィルム製のものであり、空気のインピーダンスと比較して振動膜9のインピーダンスを無視できる程度の厚さとしたものである。図1(A)に示すように、ハニカム状成形体5の片側表面及び反対側表面にそれぞれ微細穿孔板1及び気密振動膜9を重ね合わせて本発明の吸音板10とする。気密振動膜はハニカム状成形体5の出口開口を塞ぐように接触させ又は貼り合わせることが望ましいが、両者を接触させずに多少離して設けてもよい。   In the embodiment of FIG. 1, a non-breathable gas-tight vibrating membrane 9 is provided in an opening (sound exit opening) on the opposite side of the micro-perforated plate 1 of each cylindrical void 6 of the honeycomb-shaped formed body 5. The sound field incident sound absorption coefficient α of the fine perforated plate 1 is further increased by a synergistic effect of the airtight vibration film 9 and the airtight vibration film 9. An example of the airtight vibrating membrane 9 is made of, for example, paper or a thin polyfilm, and has a thickness that allows the impedance of the vibrating membrane 9 to be negligible compared to the impedance of air. As shown in FIG. 1 (A), a finely perforated plate 1 and an airtight vibration film 9 are superposed on one surface and the opposite surface of a honeycomb-shaped formed body 5 to form a sound absorbing plate 10 of the present invention. The hermetic vibration film is desirably brought into contact or bonded so as to close the outlet opening of the honeycomb-shaped formed body 5, but may be provided somewhat apart without contacting both.

[実験例2]
微細穿孔板1とハニカム状成形体5と気密振動膜9とを重ね合わせた吸音構造の吸音特性を確認するため、実験例1と同じ微細穿孔板1及びハニカム状成形体5を用い、図6(B)の残響室27を用いて音場入射吸音率αを測定する実験を行った。本実験では、図3(B)に示すように、実験例1のハニカム状成形体5の微細穿孔板1と反対側に紙製の気密振動膜9を貼り合わせたうえで、微細穿孔板1の背後空気層17に挿入して実験に供した。
[Experiment 2]
In order to confirm the sound absorption characteristics of the sound absorbing structure in which the fine perforated plate 1, the honeycomb-shaped molded body 5 and the airtight vibrating membrane 9 are superposed, the same fine perforated plate 1 and the honeycomb-shaped molded body 5 as those in Experimental Example 1 are used. An experiment was conducted to measure the sound field incident sound absorption coefficient α using the reverberation chamber 27 of (B). In this experiment, as shown in FIG. 3 (B), a paper-made hermetic vibration film 9 is bonded to the opposite side of the micro-perforated plate 1 of the honeycomb-shaped formed body 5 of Experimental Example 1, and then the micro-perforated plate 1 It was inserted into the air layer 17 behind and used for the experiment.

実験結果を図5のグラフに示す。同図の点線グラフは微細穿孔板1のみの音場入射吸音率α、実線グラフはハニカム状成形体5及び気密振動膜9を重ね合わせた微細穿孔板1の音場入射吸音率αを示す。両グラフの比較から分かるように、ハニカム状成形体5で背後空気層17を複数の筒状空隙6に区画すると共に各筒状空隙6の出口開口に気密振動膜9を設けることにより、実験で使用した20〜4000Hzのほぼ全帯域で微細穿孔板1の音場入射吸音率αを高めることができた。すなわち、気密振動膜9で出口が塞がれたハニカム状成形体5を重ね合わせることにより、微細穿孔板1の音場入射吸音率αを著しく向上させ広帯域化することが可能であることを確認できた。気密振動9により音場入射吸音率αが向上する作用の詳細は不明であるが、図7(C1)の共鳴器型吸音構造と同図(B1)の板(膜)振動型吸音構造との組み合わせによる協同吸音作用が一因であると考えられる。 The experimental results are shown in the graph of FIG. The dotted line graph in FIG. 3 shows the sound field incident sound absorption coefficient α of only the fine perforated plate 1, and the solid line graph shows the sound field incident sound absorption coefficient α of the fine perforated plate 1 in which the honeycomb formed body 5 and the airtight vibration film 9 are superimposed. As can be seen from the comparison of both graphs, the honeycomb formed body 5 divides the back air layer 17 into a plurality of cylindrical gaps 6 and provides an airtight vibration film 9 at the outlet opening of each cylindrical gap 6 in the experiment. The sound field incident sound absorption coefficient α of the fine perforated plate 1 could be increased in almost the entire band of 20 to 4000 Hz used. In other words, it is confirmed that the sound field incident sound absorption coefficient α of the fine perforated plate 1 can be remarkably improved and the bandwidth can be broadened by superimposing the honeycomb-shaped molded bodies 5 whose outlets are blocked by the airtight vibrating membrane 9. did it. The details of the effect of improving the sound field incident sound absorption coefficient α by the airtight vibration film 9 are unknown, but the resonator type sound absorption structure in FIG. 7 (C1) and the plate (membrane) vibration type sound absorption structure in FIG. This is considered to be partly due to the cooperative sound absorption effect due to the combination.

本発明の吸音板10は、微細穿孔板1の背後空気層17に比較的薄いハニカム状成形体5及び気密振動膜9を重ね合わせるだけで、図5に示すように微細穿孔板1の音場入射吸音率αを著しく向上させることができる。このような簡単な構成で微細穿孔板1の音場入射吸音率αが向上できることは従来知られておらず、本発明の吸音構造により微細穿孔板1の利用範囲を格段に広げることが期待できる。例えば、音場の壁15や天井17だけでなく、音場内に設置する内装材やパーティション等のパネル材18(図1(B)参照)に背後空隙17(厚さD−d)を介して本発明の吸音材10を対向させることにより、本発明の吸音材10を吸音型内装材や吸音型パーティションとして音環境の調整に利用することも可能である。   The sound absorbing plate 10 of the present invention can be obtained by simply superposing a relatively thin honeycomb-shaped formed body 5 and an airtight vibration film 9 on the air layer 17 behind the fine perforated plate 1, as shown in FIG. The incident sound absorption coefficient α can be significantly improved. It has not been known so far that the sound field incident sound absorption coefficient α of the fine perforated plate 1 can be improved with such a simple configuration, and the use range of the fine perforated plate 1 can be expected to be greatly expanded by the sound absorbing structure of the present invention. . For example, not only the sound field wall 15 and ceiling 17 but also interior materials and panel materials 18 such as partitions installed in the sound field (see FIG. 1 (B)) via a back gap 17 (thickness D-d). By making the sound-absorbing material 10 of the present invention face each other, the sound-absorbing material 10 of the present invention can be used as a sound-absorbing interior material or a sound-absorbing partition for adjusting the sound environment.

は、本発明の吸音材の実施例の説明図である。These are explanatory drawings of the Example of the sound-absorbing material of this invention. は、本発明で用いるハニカム状成形体の一例の説明図である。These are explanatory drawings of an example of the honeycomb-shaped molded object used by this invention. は、音場の天井に適用した本発明の吸音構造の説明図である。These are explanatory drawings of the sound absorption structure of this invention applied to the ceiling of a sound field. は、図3(A)の吸音構造の音場入射吸音率を示すグラフである。These are graphs which show the sound field incident sound absorption coefficient of the sound absorption structure of FIG. は、図3(B)の吸音構造の音場入射吸音率を示すグラフである。These are graphs which show the sound field incidence sound absorption coefficient of the sound absorption structure of FIG. 3 (B). は、吸音構造の音場入射吸音率を測定する実験装置の説明図である。These are explanatory drawings of the experimental apparatus which measures the sound field incident sound absorption coefficient of a sound absorption structure. は、多孔質型・板(又は膜)振動型・共鳴器型の各吸音構造及びそれらの吸音特性(吸音率)の説明図である。These are explanatory drawings of each sound absorption structure of a porous type, a plate (or film) vibration type, and a resonator type, and their sound absorption characteristics (sound absorption rate). は、音波の入射条件の説明図である。These are explanatory drawings of incident conditions of sound waves. は、従来の共鳴器型吸音構造による音場入射吸音率の説明図である。These are explanatory drawings of the sound field incident sound absorption coefficient by the conventional resonator type sound absorption structure.

符号の説明Explanation of symbols

1…微細穿孔板 2…パネル
3…微細貫通孔 5…ハニカム状成形体
6…筒状空隙 7…隔壁
9…振動板又は膜 10…吸音材
14…剛性板 15…壁
16…天井 17…背面空気層
18…パネル材
20a…多孔質型吸音材
20b…板(膜)振動型吸音材
20c…共鳴器型吸音材
21…音響管 22…スピーカー
23…ノイズ・ジェネレーター 25…マイク
26…リアルタイム・アナライザー
27…残響室
DESCRIPTION OF SYMBOLS 1 ... Fine perforated board 2 ... Panel 3 ... Fine through-hole 5 ... Honeycomb-shaped molded object 6 ... Cylindrical space | gap 7 ... Partition 9 ... Diaphragm or film | membrane 10 ... Sound absorbing material
14 ... Rigid plate 15 ... Wall
16 ... Ceiling 17 ... Back air layer
18 ... Panel material
20a ... Porous type sound absorbing material
20b… Plate (membrane) vibration type sound absorbing material
20c ... Resonator type sound absorbing material
21 ... Acoustic tube 22 ... Speaker
23 ... Noise generator 25 ... Microphone
26 Real-time analyzer
27 ... Reverberation room

Claims (7)

所要ピッチで貫通孔が穿たれ且つ表面を音場に臨ませた微細穿孔板の裏面を音場内の壁又は天井に空気層を介して対向させ、前記空気層に、前記穿孔板と直交する隔壁により音場からの吸音対象入射音の上限周波数の波長より小さく且つ前記所要ピッチより大きい口径の複数の筒状空隙に区画されたハニカム状成形体を穿孔板の裏面から離して設けて穿孔板裏面側の音波伝播方向を穿孔板と直交方向に制御してなる微細穿孔板利用の吸音構造。 A through-hole is drilled at a required pitch, and the back surface of the fine perforated plate with the surface facing the sound field is opposed to the wall or ceiling in the sound field via an air layer , and the partition perpendicular to the perforated plate is placed on the air layer By providing a honeycomb-shaped molded body partitioned into a plurality of cylindrical voids having a diameter smaller than the upper limit frequency wavelength of the sound to be absorbed from the sound field and larger than the required pitch, away from the back surface of the perforated plate, A sound-absorbing structure using a fine perforated plate, in which the sound wave propagation direction on the side is controlled in a direction perpendicular to the perforated plate. 請求項1の吸音構造において、前記空気層のうち微細穿孔板の近傍部分前記複数の筒状空隙に区画されたハニカム状成形体を設けてなる微細穿孔板利用の吸音構造。 2. The sound absorbing structure according to claim 1, wherein a honeycomb-shaped formed body partitioned into the plurality of cylindrical voids is provided in a portion of the air layer in the vicinity of the micro-perforated plate. 請求項2の吸音構造において、前記ハニカム状成形体の各筒状空隙の微細穿孔板と反対側に気密振動板又は膜を設けてなる微細穿孔板利用の吸音構造。 3. The sound absorbing structure according to claim 2, wherein an airtight diaphragm or a membrane is provided on the opposite side of each cylindrical void of the honeycomb-shaped formed body from the finely perforated plate. 請求項1から3の何れかの吸音構造において、前記ハニカム状成形体の各筒状空隙の口径を音場からの入射音の波長の0.6倍以下としてなる微細穿孔板利用の吸音構造。 The sound absorbing structure according to any one of claims 1 to 3, wherein a diameter of each cylindrical gap of the honeycomb formed body is 0.6 times or less of a wavelength of incident sound from a sound field. 所要ピッチで貫通孔が穿たれ且つ表面を音場に臨ませる微細穿孔板の裏面に、当該穿孔板と直交する隔壁により音場からの吸音対象入射音の上限周波数の波長より小さく且つ前記所要ピッチより大きい口径の複数の筒状空隙に区画されたハニカム状成形体を穿孔板の裏面から離して設けて穿孔板裏面側の音波伝播方向を穿孔板と直交方向に制御してなる微細穿孔板利用の吸音材。 The required pitch is smaller than the wavelength of the upper limit frequency of the sound to be absorbed from the sound field by the partition perpendicular to the perforated plate on the back surface of the fine perforated plate having through holes drilled at the required pitch and facing the surface to the sound field. Utilizing a fine perforated plate in which a honeycomb-shaped formed body partitioned into a plurality of cylindrical voids with larger diameters is provided away from the back side of the perforated plate and the sound wave propagation direction on the back side of the perforated plate is controlled in a direction orthogonal to the perforated plate Sound absorbing material. 請求項の吸音材において、前記ハニカム状成形体の各筒状空隙の微細穿孔板と反対側に気密振動板又は膜を設けてなる微細穿孔板利用の吸音材。 6. The sound absorbing material according to claim 5 , wherein an airtight vibration plate or a film is provided on the opposite side of each of the cylindrical voids of the honeycomb-shaped formed body to the micro perforated plate. 請求項5又は6の吸音材において、前記ハニカム状成形体の各筒状空隙の口径を音場からの入射音の波長の0.6倍以下としてなる微細穿孔板利用の吸音材。 The sound-absorbing material according to claim 5 or 6 , wherein the diameter of each cylindrical void of the honeycomb-shaped formed body is 0.6 times or less the wavelength of incident sound from the sound field.
JP2005192339A 2005-06-30 2005-06-30 Sound absorbing structure and sound absorbing material using fine perforated plates Expired - Fee Related JP5008277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192339A JP5008277B2 (en) 2005-06-30 2005-06-30 Sound absorbing structure and sound absorbing material using fine perforated plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192339A JP5008277B2 (en) 2005-06-30 2005-06-30 Sound absorbing structure and sound absorbing material using fine perforated plates

Publications (2)

Publication Number Publication Date
JP2007011034A JP2007011034A (en) 2007-01-18
JP5008277B2 true JP5008277B2 (en) 2012-08-22

Family

ID=37749628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192339A Expired - Fee Related JP5008277B2 (en) 2005-06-30 2005-06-30 Sound absorbing structure and sound absorbing material using fine perforated plates

Country Status (1)

Country Link
JP (1) JP5008277B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7540354B2 (en) * 2006-05-26 2009-06-02 United Technologies Corporation Micro-perforated acoustic liner
JP5252699B2 (en) * 2008-06-25 2013-07-31 鹿島建設株式会社 Broadband sound absorbing structure and sound absorbing material
JP5493378B2 (en) * 2009-02-17 2014-05-14 ヤマハ株式会社 Sound absorbing structure
US8833514B2 (en) 2010-07-15 2014-09-16 Nittobo Acoustic Engineering Co., Ltd. Open air layer-type vibration reduction structure
JP5602039B2 (en) * 2011-02-01 2014-10-08 鹿島建設株式会社 Sound masking system
CN102842303B (en) * 2011-06-23 2015-01-21 中国电力科学研究院 Microporous-fiber composite sound absorbing board
JP2015163759A (en) * 2014-01-30 2015-09-10 学校法人神奈川大学 Sound insulation structure of double floor and ceiling, and building having the same
KR101553508B1 (en) * 2015-04-20 2015-09-15 박상철 Panel for ceiling
JP6639526B2 (en) * 2015-05-22 2020-02-05 カーステン マニュファクチュアリング コーポレーション Golf club faceplate with internal cell grid and related methods
JP6725230B2 (en) * 2015-09-29 2020-07-15 岐阜プラスチック工業株式会社 Resin structure and method for manufacturing resin structure
WO2018037959A1 (en) * 2016-08-23 2018-03-01 富士フイルム株式会社 Soundproof structure and opening structure
JP6592620B2 (en) 2017-02-08 2019-10-16 富士フイルム株式会社 Soundproof structure and opening structure
CN107415335B (en) * 2017-05-02 2023-03-21 南昌航空大学 Sound absorption and insulation integrated honeycomb plate with built-in resonant cavity
CN107039028B (en) * 2017-06-02 2023-06-13 郭辰曦 Performance test method of broadband perforated plate
JP7197862B2 (en) * 2019-01-07 2022-12-28 国立大学法人 東京大学 How to adjust the sound absorbing structure
JP6990939B2 (en) * 2020-06-25 2022-01-12 岐阜プラスチック工業株式会社 Resin structure
CN112951188A (en) * 2021-01-28 2021-06-11 西北工业大学 Active micro-perforated plate sound absorber and method for improving low-frequency sound absorption performance thereof
KR102535318B1 (en) * 2022-07-25 2023-05-26 주식회사 노이즈엑스 Sound-absorbing panel with triple sound-absorbing effect

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288000A (en) * 1987-05-21 1988-11-25 松下電工株式会社 Sound absorber
JPH02212895A (en) * 1989-02-14 1990-08-24 Kobe Steel Ltd Sound absorber and sound absorbing structure
JPH02253297A (en) * 1989-03-28 1990-10-12 Matsushita Electric Works Ltd Sound absorbing device
JP3671587B2 (en) * 1997-03-31 2005-07-13 東海ゴム工業株式会社 Resonant silencer
JP3642382B2 (en) * 1998-05-22 2005-04-27 Nok株式会社 Sound absorbing structure
US6871725B2 (en) * 2003-02-21 2005-03-29 Jeffrey Don Johnson Honeycomb core acoustic unit with metallurgically secured deformable septum, and method of manufacture

Also Published As

Publication number Publication date
JP2007011034A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP5008277B2 (en) Sound absorbing structure and sound absorbing material using fine perforated plates
JP5252699B2 (en) Broadband sound absorbing structure and sound absorbing material
US11862136B2 (en) Acoustic metamaterial units with the function of soundproof, flow passing and heat; transfer enhancement, the composite structure and the preparation methods thereof
US7395898B2 (en) Sound attenuating structures
US20210237394A1 (en) Acoustic material structure and method for assembling same and acoustic radiation structure
CN108457393B (en) Sound absorbing structure for anechoic chamber and anechoic chamber comprising same
JP2010191029A (en) Sound-absorbing structure, sound-absorbing structure group and acoustic room
Cops et al. Comparative Study Between the Sound Intensity Method and the Conventional Two-Room Method to Calculate the Sound Transmission Loss of Wall Construction
KR20210001934U (en) sound insulation panel
US6073722A (en) Anechoic room for the entire auditory range
Iannace et al. Egg cartons used as sound absorbing systems
JP6491788B1 (en) Soundproof system
JP6491787B1 (en) Soundproof system
JP2009145740A (en) Sound absorber, sound absorber group and acoustic room
Sugie et al. Effect of inserting a Helmholtz resonator on sound insulation in a double-leaf partition cavity
JP2009198901A (en) Sound absorption structure, sound absorption structure group, acoustic chamber, method of adjusting sound absorption structure and noise reduction method
Bader et al. Metamaterial labyrinth wall for very low and broad-band sound absorption
JP2015132743A (en) Upside-improved translucent-type film vibration sound absorption/insulation wall
DE102019002157B4 (en) WALL FOR LOW-FREQUENCY AND WIDE-FREQUENCY BANDINGS, MASSIVE ACOUSTIC ATTENUATION OF PLANIAL INCIDENT SOUND
Ba et al. Soft 3d printed membrane type-acoustic metamaterials
KR101765993B1 (en) Variable Reverberator with Frequency Selection and Diffusor
Hua et al. Varying backing cavity depths to achieve broadband absorption using micro-perforated panels
JP4311960B2 (en) Low acoustic radiation type interior structure and interior panel material
Prasetiyo et al. Noise Attenuation of a Duct-resonator System Using Coupled Helmholtz Resonator-Thin Flexible Structures.
Kling Miniaturising a wall test facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees