JP5007431B2 - 交流成分予測システムおよび交流成分予測プログラム - Google Patents

交流成分予測システムおよび交流成分予測プログラム Download PDF

Info

Publication number
JP5007431B2
JP5007431B2 JP2010118954A JP2010118954A JP5007431B2 JP 5007431 B2 JP5007431 B2 JP 5007431B2 JP 2010118954 A JP2010118954 A JP 2010118954A JP 2010118954 A JP2010118954 A JP 2010118954A JP 5007431 B2 JP5007431 B2 JP 5007431B2
Authority
JP
Japan
Prior art keywords
component
prediction
frequency
block
target block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010118954A
Other languages
English (en)
Other versions
JP2011249954A (ja
Inventor
一樹 客野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axell Corp
Original Assignee
Axell Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axell Corp filed Critical Axell Corp
Priority to JP2010118954A priority Critical patent/JP5007431B2/ja
Publication of JP2011249954A publication Critical patent/JP2011249954A/ja
Application granted granted Critical
Publication of JP5007431B2 publication Critical patent/JP5007431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

本発明は、交流成分予測システムおよび交流成分予測プログラムに関する。
従来より、交流成分予測(ACP:AC Component Prediction)と呼ばれる画像処理が知られている。交流成分予測とは、図1に例示するように、処理対象となる対象ブロックの周辺領域(例えばPBl,PBr,PBt,PBb)の情報を参照して、このブロックPBsを細分化したサブブロックの情報c00〜c11を求める手法をいう。交流成分予測では、対象ブロックPBsと、その近傍に位置する周辺領域との間における空間的な相関性を利用して、対象ブロックPBsのDC値(直流成分)を保持しつつ、空間分解能がより高いAC値(交流成分)が算出される。特許文献1〜3には、対象ブロックを順次細分化し、画像データを階層的に符号化する再帰的交流成分予測符号化(RACP)が開示されている。具体的には、まず画像平面上において対象ブロックを所定方向に順次シフトさせながら、これを細分化したサブブロックの予測画素値が順次算出される。つぎに、予測画素値と本来の画素値(真値)との差分が残差成分として算出される。そして、この残差成分に対して、非可逆変換およびエントロピー符号化を施すことによって、圧縮画像データの一部となる画像の交流成分が生成される。以上のような処理が、例えば、8×8画素のブロック(最上位階層)、4×4画素のブロック(第2位階層)、2×2画素のブロック(第3位階層)および1×1画素のブロック(最下位階層)よりなる階層構造において、再帰的に繰り返される。
日本特許第4000157号公報 日本特許第3774201号公報 日本特許第3700976号公報
ところで、周知のように、画像平面(実空間)上のブロックは、アダマール空間に写像することによって、理論上、このブロックの直流成分DCと、互いに直交した3つのアダマール基底とで表現できる。図2に示すように、2×2画素で構成されるブロックは、その内部に存在する4つの画素値c00〜c11がどのような値であったとしても、このブロックの直流成分DCと、スカラー倍された3つのアダマール基底の和で表現できる。ここで、平均値DCの後に続く第1のアダマール基底(α基底)では、+1,−1が水平方向に並んでいる。また、これに続く第2のアダマール基底(β基底)では、+1,−1が垂直方向に並んでいる。そして、これに続く第3のアダマール基底(γ基底)では、+1,−1が斜めにクロスして並んでいる。これらのアダマール基底は、任意のものを選択して内積すると必ず0になることから明らかなように、互いに直交している。また、乗数αはα基底のスカラー値(α成分)、乗数βはβ基底のスカラー値(β成分)、乗数γはγ基底のスカラー値(γ成分)である。実空間からアダマール空間への写像では、周知のアダマール変換が用いられ、これによって、画素値c00〜c11からα成分、β成分およびγ成分が一義的に特定される。一方、周波数空間から実空間への写像では、周知の逆アダマール変換が用いられ、これによって、α成分、β成分およびγ成分から画素値c00〜c11が一義的に特定される。このことは、実空間上の処理と等価なことをアダマール空間上で行ってもよいことを意味する。交流成分予測についても同様で、ブロック内の画素値c00〜c11を予測することは、ブロックの平均値DCが既知であることを前提に、α成分、β成分およびγ成分を予測することと等価である。なお、α成分およびβ成分だけでも(γ成分を0とみなしても)、画素値c00〜c11を良好に近似できる。
交流成分予測による画像の予測精度は高い方が好ましい。予測精度が高いほど、予測値の集合としての予測画像と本来の画像との相関が高まり、両者の差分に相当する予差成分が小さくなるからである。残差成分の低減は、統計的に見た残差成分の出現頻度が0近傍に偏る傾向が高まることを意味する。したがって、例えば、残差成分にエントロピー符号化を施してデータ圧縮する場合、残差成分の低減によって、圧縮率を高めることができる。交流成分予測では、対象ブロックからの距離が近い参照領域ほど、すなわち空間的な相関性が高いほど、画素値の変化量(傾き)の除数が小さくなり、より精度の高い予測が可能になる。この点に関して、特許文献1〜3では、今回の処理で算出すべき交流成分の予測値として、それ以前の処理における残差成分(すなわち、従前の処理で生じた原画像に対する予測の誤差)を何ら考慮することなく、各ブロックの処理で互いに独立した予測を行っているため、予測精度の向上を図る余地が残されていた。
そこで、本発明の目的は、交流成分予測における予測精度の一層の向上を図ることである。
かかる課題を解決すべく、第1の発明は、低周波交流成分予測部と、高周波交流成分予測部と、予測処理部と、交流成分復元部と、高周波交流成分算出部とを有し、画像平面上に設定されたブロック毎の繰り返し処理によって、ブロック単位で交流成分予測を行う交流成分予測システムを提供する。低周波交流成分予測部は、今回の処理で処理対象となる対象ブロックの参照領域に相当するブロックの直流成分を用いた交流成分予測によって、対象ブロックの低周波交流成分を予測する。高周波交流成分予測部は、処理済ブロックの高周波交流成分を用いた重み付け予測によって、対象ブロックの高周波交流成分を予測する。この処理済ブロックは、対象ブロックの近傍に位置し、かつ、従前の処理で既に処理されたブロックである。予測処理部は、低周波交流成分予測部によって予測された低周波交流成分と、高周波交流成分予測部によって予測された高周波交流成分とを加算することによって、対象ブロックの交流成分の予測値を算出する。交流成分復元部は、予測処理部によって算出された予測値と、原画像との残差成分とを加算することによって、対象ブロックの交流成分の復元値を算出する。高周波交流成分算出部は、交流成分復元部によって算出された復元値と、低周波交流成分予測部によって予測された低周波交流成分との差分に基づいて、次回以降の処理で処理済ブロックの情報として用いられる高周波交流成分を算出する。
ここで、第1の発明において、高周波交流成分予測部は、対象ブロックと処理済ブロックとの間における画素値の誤差が小さくなるように、対象ブロックを基準とした処理済ブロックの予測方向に応じて、処理済ブロックの高周波交流成分の符号を反転させた上で、上記重み付け予測を行うことが好ましい。ここで、上記交流成分は、水平方向のアダマール基底の成分を規定する水平成分を含むことが好ましい。この場合、高周波交流成分予測部は、対象ブロックの垂直方向に近接した処理済ブロックに関する水平成分と、対象ブロックの水平方向に近接した処理済ブロックに関する水平成分の符号を反転させた値とを加算することによって、水平成分に含まれる高周波交流成分に関する上記重み付け予測を行うことが望ましい。また、上記交流成分は、垂直方向のアダマール基底の成分を規定する垂直成分を含むことが好ましい。この場合、高周波交流成分予測部は、対象ブロックの垂直方向に近接した処理済ブロックに関する垂直成分の符号を反転させた値と、対象ブロックの水平方向に近接した処理済ブロックに関する垂直成分とを加算することによって、垂直成分に含まれる高周波交流成分に関する上記重み付け予測を行うことが望ましい。
また、第1の発明に係る交流成分予測システムは、画像を非可逆圧縮するエンコーダに適用してもよい。この場合、上記交流成分復元部は、減算器と、非可逆変換部と、エントロピー符号化部と、逆変換部と、加算器とを有することが好ましい。減算器は、予測処理部によって算出された予測値と、原画像における真値との差分を残差成分として算出する。非可逆変換部は、減算器によって算出された残差成分に非可逆変換を施す。エントロピー符号化部は、非可逆変換部から出力された残差成分にエントロピー符号化を施して、画像の圧縮データを出力する。逆変換部は、非可逆変換部から出力された残差成分に、非可逆変換とは逆の処理を施すことによって、残差成分を復元する。加算器は、予測処理部によって算出された予測値に、逆変換部から出力された残差成分を加算する。
また、第1の発明に係る交流成分予測システムは、非可逆圧縮された画像を伸張するデコーダに適用してもよい。この場合、上記交流成分復元部は、逆変換部と、加算器とを有する。逆変換部は、非可逆圧縮された画像の圧縮データに対して、画像圧縮時に施された非可逆変換およびエントロピー符号化の逆処理を行うことによって、原画像との残差成分を復元する。加算器は、予測処理部によって算出された予測値に、逆変換部から出力された残差成分を加算することによって、伸長画像を出力する。
一方、第2の発明は、画像平面上に設定されたブロック毎の繰り返し処理によって、ブロック単位で行われる交流成分予測をコンピュータに実行させる交流成分予測プログラムを提供する。このプログラムは、今回の処理で処理対象となる対象ブロックの参照領域に相当するブロックの直流成分を用いた交流成分予測によって、対象ブロックの低周波交流成分を予測する第1のステップと、対象ブロックの近傍に位置し、かつ、従前の処理で既に処理された処理済ブロックの高周波交流成分を用いた重み付け予測によって、対象ブロックの高周波交流成分を予測する第2のステップと、低周波交流成分と、高周波交流成分とを加算することによって、対象ブロックの交流成分の予測値を算出する第3のステップと、予測値と、原画像との残差成分とを加算することによって、対象ブロックの交流成分の復元値を算出する第4のステップと、復元値と、低周波交流成分との差分に基づいて、次回以降の処理で処理済ブロックの情報として用いられる高周波交流成分を算出する第5のステップとをコンピュータに実行させる。
ここで、第2の発明において、上記第2のステップは、対象ブロックと処理済ブロックとの間における画素値の誤差が小さくなるように、対象ブロックを基準とした処理済ブロックの予測方向に応じて、処理済ブロックの高周波交流成分の符号を反転させた上で、重み付け予測を行うステップであってもよい。ここで、上記交流成分は、水平方向のアダマール基底の成分を規定する水平成分を含むことが好ましい。この場合、上記第2のステップは、対象ブロックの垂直方向に近接した処理済ブロックに関する水平成分と、対象ブロックの水平方向に近接した処理済ブロックに関する水平成分の符号を反転させた値とを加算することによって、水平成分に含まれる高周波交流成分に関する重み付け予測を行うステップであることが望ましい。また、上記交流成分は、垂直方向のアダマール基底の成分を規定する垂直成分を含むことが好ましい。この場合、上記第2のステップは、対象ブロックの垂直方向に近接した処理済ブロックに関する垂直成分の符号を反転させた値と、対象ブロックの水平方向に近接した処理済ブロックに関する垂直成分とを加算することによって、垂直成分に含まれる高周波交流成分に関する重み付け予測を行うステップであることが望ましい。
また、第2の発明に係る交流成分予測プログラムは、画像を非可逆圧縮するエンコードプログラムに適用してもよい。この場合、上記第4のステップは、予測値と、原画像における真値との差分を残差成分として算出するステップと、残差成分に非可逆変換を施すステップと、残差成分にエントロピー符号化を施して、画像の圧縮データを出力するステップと、残差成分に非可逆変換とは逆の処理を施すことによって、残差成分を復元するステップと、予測値に残差成分を加算するステップとを有することが望ましい。
さらに、第2の発明に係る交流成分予測プログラムは、非可逆圧縮された画像を伸張するデコードプログラムに適用してもよい。この場合、上記第4のステップは、非可逆圧縮された画像の圧縮データに対して、画像圧縮時に施された非可逆変換およびエントロピー符号化の逆処理を行うことによって、原画像との残差成分を復元するステップと、予測値に残差成分を加算することによって、伸長画像を出力するステップとを有することが望ましい。
第1および第2の発明によれば、対象ブロックに関する交流成分の予測値として、交流成分予測によって予測された低周波交流成分そのものではなく、これに高周波交流成分を加算することによって、補正された値が用いられる。今回の予測で加味すべき高周波交流成分は、処理済ブロックの高周波交流成分、すなわち従前の処理で既に算出された値を用いた重み付け予測によって算出される。高周波交流成分は、予測値に残差成分を加算した交流成分の復元値(低周波交流成分および高周波交流成分の双方を含む)から低周波交流成分を除いたものに相当する。したがって、高周波交流成分の大きさは残差成分に依存し、予測が外れて原画像との残差成分が大きくなるほど高周波交流成分が大きくなる。従前の高周波交流成分から今回の高周波交流成分を予測し、これを今回の低周波交流成分に加算することによって、今回の予測値に従前の残差成分が反映される。また、今回の高周波交流成分を用いて次回以降の高周波交流成分を予測し、これを次回以降の低周波交流成分に加算することによって、次回以降の予測値に今回の残差成分が反映される。このような処理の繰り返しによって、あるブロックの残差成分が他のブロックに順次伝搬・反映されていく。その結果、交流成分予測だけでは捉えられない成分が予測値に加味されるので、予測画像が原画像に近づく傾向が高まり、予測精度の一層の向上を図ることが可能になる。
画像平面におけるブロックの順次処理の説明図 画像平面上のブロックと、アダマール空間の表現との関係図 RACPエンコーダの全体構成図 並列処理における動作タイミングチャート 逐次処理における動作タイミングチャート RACPエンコーダにおける階層処理部の構成図 ブロック中心位置および近傍予測点の位置的関係の説明図 3点を用いた近傍画素値の算出説明図(λ=1/2) 3点を用いた近傍画素値の算出説明図(λ=1/4) 3点を用いた近傍画素値の算出説明図(λ=1/8) 2点を用いた近傍画素値の算出説明図(λ=1/2) 水平成分(αhigh)の重み付け予測における符号反転の説明図 垂直成分(βhigh)の重み付け予測における符号反転の説明図 あるブロックを起点とした残差伝搬の説明図 RACPエンコードプログラムのフローチャート RACPデコーダの全体構成図 RACPデコーダにおける階層処理部の構成図 RACPデコードプログラムのフローチャート
以下、本発明に係る交流成分予測を適用した実施形態として、再帰的交流成分予測符号化(RACP:Recursive ACP)を例に説明する。
(RACPエンコーダ)
図3は、RACPエンコーダの全体構成図である。このエンコーダは、DC算出部1と、DC符号化部2と、階層処理部3a〜3cとを有し、本実施形態では、4階層によって構成されている。これらのユニット1,2,3a〜3cより出力されたデータTDCn,DCn(n=0,1,2)は、図示しないバッファ(記憶部)に一時的に随時格納される。
DC算出部1は、圧縮対象となる入力画像を予め設定されたサイズのブロックに分割し、それぞれのブロックの直流成分、すなわち、ブロック内に含まれる画素の平均値をTDC0〜TDC3として出力する。ここで、TDC0は8×8画素のブロック(以下「8×8ブロック」という)の直流成分、TDC1は4×4画素のブロック(以下「4×4ブロック」という)の直流成分、TDC2は2×2画素のブロック(以下「2×2ブロック」という)の直流成分である。また、TDC3は1×1画素のブロック(以下「1×1ブロック」という)の直流成分、すなわち、画像の最小単位である画素の画素値そのものである。なお、入力画像から直接算出される直流成分TDC0〜TDC3(真の値)は、ユニット2,3a〜3c内での処理を経て復元される直流成分DC0〜DC2(復元値)とは区別される点に留意されたい。両者の値は、符号化の過程で非可逆変換をともなうので、厳密には一致しない。
DC符号化部2および階層処理部3a〜3cは、8×8ブロック(最上位階層)、4×4ブロック(第2位階層)、2×2ブロック(第3位階層)、1×1ブロック(最下位階層)よりなる4階層構造において、自己に割り当てられた階層処理を行う。
最上位階層のDC符号化部2は、バッファから読み出された8×8ブロック毎の直流成分TDC0に対して、差分パルス符号変調(DPCM:Differential Pulse Code Modulation)およびエントロピー符号化を施す。差分パルス符号変調によって、画像平面上において互いに隣接したブロックに関する直流成分TDC0の差分が符号化される。そして、この符号化された差分に対して、量子化後、ハフマン符号化や算術符号化といったエントロピー符号化が施される。このような処理を経たデータは、圧縮データの一部となる画像の直流成分DC0として出力されるとともに、直下位の階層の階層処理部3aにも供給すべく、8×8ブロックの直流成分を復元(逆量子化)した値DC0として出力される。
3つの階層処理部3a〜3cは、DC算出部1によって生成された直流成分TDCn(n=1,2,3、以下同様)と、直上位の階層によって生成された直流成分DCn-1とを入力とした交流成分予測を含む処理によって、圧縮データの一部としての画像の交流成分ACnを出力する。それとともに、階層処理部3a〜3b(3cは除く)は、交流成分ACnより直流成分DCnを復元する。復元された直流成分DC0,1,2は、直下位の階層に供給するために出力される。
具体的には、第2位階層の階層処理部3aは、8×8ブロックを処理対象とした交流成分予測および残差成分の算出といった処理を経て、4×4ブロックの交流成分AC1と、4×4ブロックの直流成分DC1とを出力する。この階層では、交流成分予測で参照すべき情報として、最上位階層で生成された8×8ブロックの直流成分DC0が用いられる。それとともに、残差成分を算出するために、DC算出部1によって算出された4×4ブロックの直流成分TDC1が入力される。第3位階層の階層処理部3bは、4×4ブロックを処理対象とした交流成分予測等の処理を経て、2×2ブロックの交流成分AC2と、2×2ブロックの直流成分DC2とを出力する。この階層では、交流成分予測の参照情報として、第2位階層で生成された4×4ブロックの直流成分DC1とが用いられる。それとともに、残差成分を算出するために、DC算出部1によって算出された2×2ブロックの直流成分TDC2が入力される。最下位階層の階層処理部3cは、2×2ブロックを処理対象とした交流成分予測等の処理を経て、1×1ブロックの交流成分AC3を出力する(DC3の算出は不要)。この階層では、交流成分予測の参照情報として、第3位階層で生成された2×2ブロックの直流成分DC2が用いられる。それとともに、残差成分を算出するために、DC算出部1によって算出された1×1ブロックの直流成分TDC3が用いられる。
このように、処理対象となるブロックのサイズが異なる階層構造において、DC符号化部2および階層処理部3a〜3cが互いに連係することによって、交流成分予測を主体とした画像処理が再帰的に実行される。これによって、圧縮データとして、画像の直流成分DC0と、その交流成分AC1〜AC3とが出力される。なお、圧縮データには、これら以外にもハフマンテーブル等の付随情報も含まれる。
図1に示すように、交流成分予測の処理単位となるブロックは、圧縮対象となる画像(1フレームの画像またはその部分画像)を縦横に分割することで、画像平面上に複数設定される。ブロックのサイズは、階層が下位になるにしたがって段階的に小さくなるように設定されている。ある階層で処理対象となるブロックのサイズは、その直上位に位置する階層で細分化されたサブブロックのサイズと一致する。逆にいえば、上位階層のサブブロックのサイズは、その直下に位置する下位階層のブロックのサイズと一致する。ある階層における画像全体の処理は、処理対象となるブロックを画面上で順次シフトさせながら処理を繰り返し、画像中の全ブロックを処理することによって達成される。このシフト方向(スキャン方向)は、図示したように、水平方向に沿った線順次走査的なものであってもよいが、垂直方向に沿ったものも含めて任意に設定してよい。また、それぞれの階層におけるシフトの方向は、必ずしも同一である必要もない。図示したシフト方向の場合、処理対象となるブロックを”PBs”とすると、この対象ブロックPBsが属する水平ラインよりも上側が処理済領域となり、これよりも下側が未処理領域となる。また、対象ブロックPBsの水平ラインについては、対象ブロックPBsの左側が処理済領域となり、その右側が未処理領域となる。対象ブロックPBsの処理で参照される参照領域として、例えば、ブロックサイズが同一である8つのブロックPBt,PBtt,PBl,PBll,PBb,PBbb,PBr,PBrrが用いられる。これらの参照ブロックのうち、特にブロックPBt,PBl,PBb,PBrを「内側ブロック」といい、ブロックPBtt,PBll,PBbb,PBrrを「外側ブロック」という。内側ブロックPBtは、対象ブロックPBsの上方に隣接しているとともに、外側ブロックPBttは、内側ブロックPBtと対象ブロックPBsとを結ぶ上方の予測方向において、内側ブロックPBtの外側に隣接している。同様の関係で、ブロックPBl,PBllは左方の予測方向において、ブロックPBb,PBbbは下方の予測方向において、ブロックPBr,PBrrは右方の予測方向において、それぞれ隣接している。対象ブロックPBsの交流成分予測によって、これを4つに分割したサブブロックのそれぞれの平均画素値(サブブロックの直流成分)が算出される。以下、あるブロックを細分化したサブブロック際、左上のサブブロックを”00”,右上を”01”,右下を”11”,左下を”10”の添字を以て識別する。
RACPエンコーダの処理は、並行処理および逐次処理のどちらであってもよい。図4は、並行処理における動作タイミングチャートである。まず、DC算出部1が動作して、直流成分TDC0〜TDC3を生成する。そして、すべての直流成分TDC0〜TDC3の生成が終了したことを以て、DC符号化部2および階層処理部3a〜3cが並行して動作する。ただし、これらの動作が開始するタイミングは同じではなく、階層が下位になるほど開始タイミングが遅くなる。この遅延は、上位階層の順次シフトによる処理遅延に起因して生じる。図1を参照すると、ある階層でブロックPBsの処理を行う場合、その参照ブロックPBt〜PBrrの処理が直上位の階層で終了していることが条件(階層処理開始条件)となる。換言すれば、上位階層において、順次シフトが進行してブロックPBbbまでの処理が終了しない限り、下位階層におけるブロックPBsの処理が開始できない。これが下位階層における動作遅延が生じる所以である。ただし、図5に示すような逐次処理と比較すると、図4に示したパイプライン的な並行処理の方が高速である。一方、図5の逐次処理では、ある階層の処理が全て終了した時点で、直下位の階層の処理が開始される。したがって、逐次処理においても、上記階層処理開始条件を当然に満たす。
図6は、RACPエンコーダにおける階層処理部3(3a〜3cの総称)の構成図である。それぞれの階層における階層処理部3は、取り扱うブロックサイズが異なる点を除けば、基本的な構成および動作はほぼ同様である(最下位の階層処理部3cについては一部簡略化できる)。階層処理部3は、低周波交流成分予測部31と、高周波交流成分予測部32と、予測処理部33と、アダマール変換部34と、交流成分復元部35と、エントロピー符号化部36と、逆アダマール変換部37と、高周波交流成分算出部38とを主体に構成されている。
低周波交流成分予測部31には、対象ブロックPBの低周波交流成分予測に必要な情報がバッファから読み出されて供給される。本実施形態では、この処理に必要な情報として、図1に示したように、今回の処理対象となる対象ブロックPBsの直流成分DC(n-1)と、その周囲に位置する8つの参照ブロックPBt〜PBrr(参照領域)の直流成分DC(n-1)が用いられる。参照ブロックPBt〜PBrrの直流成分DC(n-1)は、そのブロックが処理済/未処理の区別に関わりなく、換言すれば、そのブロック内のサブブロックの情報が算出されているか否かに関わりなく、直上位の階層(n−1)で算出済みの直流成分DC(n-1)が一律に用いられる。
低周波交流成分予測部31は、参照ブロックPBt〜PBrrの直流成分DC(n-1)を用いた交流成分予測によって、対象ブロックPBsの低周波交流成分AClowを予測する。その際、上下左右の各予測方向に関して、内側ブロックの中心位置よりも対象ブロックPBsに近い位置に近傍予測点が設定され、この近傍予測点における近傍画素値が予測・算出される。交流成分予測は、各予測方向について個別に算出された近傍画素値を用いて行われる。
低周波交流成分予測部31は、対象ブロックPBsの参照領域に相当する参照ブロックPBt〜PBrrの直流成分DC(n-1)を用いた交流成分予測によって、対象ブロックPBsの低周波交流成分AClow={αlow,βlow,γlow}を予測する。この予測は、以下の数式1,2に基づいて行われる。以下、あるブロック(例えば”PBr”)の直流成分の値DC(n-1)を、そのブロックの添字(例えば添字”R”)を以て記載するものとする。
(数式1)
c00 = S+(αlow+βlow+γlow)
c01 = S+(−αlow+βlow−γlow)
c10 = S+(αlow−βlow−γlow)
c11 = S+(−αlow−βlow+γlow)
(数式2)
αlow = (L’−R’)/6
βlow = (T’−B’)/6
γlow = 0
L’ = L+(S−LL)/8
R’ = R+(S−RR)/8
T’ = T+(S−TT)/8
B’ = B+(S−BB)/8
ここで、c00〜c11は、対象ブロックPBsを細分化したサブブロックs00〜s11の予測画素値である。実空間とアダマール空間との間における写像の可逆性より、実空間の画素値c00〜c11を予測することは、対象ブロックPBsの直流成分Sが既知であることを前提に、アダマール空間の低周波交流成分AClow、すなわちαlow,βlow,γlowの各成分を予測することと等価である。ただし、線形予測が困難なγ成分を省略し、α,β成分だけを用いても、画素値c00〜c11を良好に近似できることは、従来技術として例示した先行技術文献から周知である。αlowは、水平方向のアダマール基底の成分を規定する水平成分に関する低周波交流成分であり、βlowは、垂直方向のアダマール基底の成分を規定する垂直成分に関する低周波交流成分である。また、γlowは、これら2つの基底と直交したそれ以外の成分に関する低周波交流成分である。また、数式2は、λ=1/2の場合における近傍画素値L’,R’,T’,L’の算出式である。このλに関しては、対象ブロックPBsから参照ブロックに至る方向で、対象ブロックと内側ブロックの間のブロック境界をλ=0とし、そこから内側ブロックの中心位置までの距離をλ=1とする。また、近傍画素値L’,R’,T’,B’は、内側ブロックの中心位置よりも対象ブロックPBsに近い近傍予測点について線形予測等によって予測された値である。
図7は、λ=1/2におけるブロック中心位置および近傍予測点の位置的関係の説明図である。それぞれのブロックの中心位置における中心画素値は、そのブロック自体の直流成分DC(n-1)とみなす。λの尺度と一致させるべく、ブロックを4分割したときの正方形の1辺の長さを1とし、サブブロックを更に4分割したときの正方形の1辺の長さを1/2とする。この場合、隣り合ったブロック同士の中心間距離は2となり、対象ブロックPBsの中心位置および各近傍予測点(その近傍画素値=L’,R’,T’,B’)間の距離はすべて3/2となる。それぞれの予測方向に関して、近傍予測点の近傍画素値(例えばR’)は、内側ブロックの中心画素値(例えばR)と、外側ブロックの中心画素値(例えばRR)とを少なくとも用い、かつ、ブロック同士の中心位置間の距離と、ブロックの中心位置および近傍予測点の間の距離とに基づいて予測・算出される。
図8は、λ=1/2における3点を用いた右方の予測方向に関する近傍画素値R’の算出説明図である。まず、対象ブロックPBsの中心画素値Sおよび右外側ブロックPBrrの中心画素値RRの差を、これらのブロックの中心間距離4で除算することにより、傾きθが算出される。この傾きθは、対象ブロックPBsおよび右外側ブロックPBrrの単位距離あたりの画素値の変化率に相当する。つぎに、同じ予測方向では画素値が一様に変化するという前提の下、右方の予測方向の傾きθに、右内側ブロックPBrの中心位置および右方の近傍予測点の間の距離1/2を乗算することにより、右内側ブロックPBrの中心画素値Rからの変化量Δpが算出される。そして、右内側ブロックPBrの中心画素値Rに変化量Δpを加算することにより、右方の近傍予測点の近傍画素値R’が算出される。同様の方法で、上方、λ=1/2で共通化された各近傍予測点の近傍画素値T’,L’,B’が算出される。
画像の空間的な相関性から、対象ブロックPBsに近い近傍予測点の近傍画素値T’〜R’は、これよりも遠い内側ブロックPBt〜PBrの中心画素値T〜Rよりも対象ブロックPBsの特性を色濃く反映している傾向があり、より真値に近いと考えることができる。したがって、中心画素値T〜Rそのものに代えて近傍画素値T’〜R’を用いることで、より予測精度の高い交流成分予測を行うことが可能になる。なお、画像平面上の縁部のように周辺領域の一部が欠落している場合、低周波交流成分予測部31は、例外的に、対象ブロックPBsの中心画素値Sをその部分の情報として用いる。また、実際の処理においては、上記数式1,2を統合して、単一の数式として扱ってもよいのは当然である。
低周波交流成分予測部31は、ブロック一辺の1/2よりも高い分解能(λ≦1)で、対象ブロックPBsにより近い近傍画素値T’〜R’を予測(典型的には線形予測)し、これを用いた交流成分予測を行う。したがって、λの値は1/2以外にも、λ≦1となる任意の値を設定してよい。特に、λを1/2よりも小さな値(1/4や1/8等)に設定すれば、サブブロックの分解能以上の精度を確保できる。図9は、λ=1/4における3点を用いた近傍画素値T’〜R’の算出説明図である。この場合、ブロック同士の中心位置間の距離と、ブロックの中心位置および近傍予測点の間の距離とを考慮した線形予測的な考え方から、近傍画素値T’〜R’および低周波交流成分AClow={αlow,βlow,γlow}は、数式3より算出される。
(数式3)
αlow = (L’−R’)/5
βlow = (T’−B’)/5
γlow = 0
L’ = L+(S−LL)×3/16
R’ = R+(S−RR)×3/16
T’ = T+(S−TT)×3/16
B’ = B+(S−BB)×3/16
図10は、λ=1/8における3点を用いた近傍画素値の算出説明図である。この場合、近傍画素値T’〜R’および低周波交流成分AClow={αlow,βlow,γlow}は、数式4より算出される。
(数式4)
αlow = (L’−R’)×4/18
βlow = (T’−B’)×4/18
γlow = 0
L’ = L+(S−LL)×7/32
R’ = R+(S−RR)×7/32
T’ = T+(S−TT)×7/32
B’ = B+(S−BB)×7/32
例示した3つのケース(λ=1/2,1/4,1/8)のように、対象ブロックPBsと同サイズの参照ブロックPBt〜PBrrのみを参照して交流成分予測を行う場合、λ=1/4の位置の画素を予測することが最適である。また、上述した3点を用いた線形予測にはやや劣るものの、図11に示すような2点を用いた線形予測にて近傍画素値T’〜R’を数式5のように算出してもよい。λ=1/2を一例に説明すると、例えば近傍画素値R’は、右内側・右外側ブロックPBr,PBrrの単位距離あたりの画素値の変化率(傾きθ=(R−RR)/2)に、内側ブロックの中心位置および近傍予測点の間の距離である1/2を乗算し、この乗算によって得られた値Δpを内側ブロックPBrの中心画素値Rに加算することによって得られる。
(数式5)
αlow = (L’−R’)/6
βlow = (T’−B’)/6
γlow = 0
L’ = (5L−LL)/4
R’ = (5R−RR)/4
T’ = (5T−TT)/4
B’ = (5B−BB)/4
また、例えば、特許第3700976号公報に開示されている以下の数式6に基づいた交流成分予測を行ってもよい。同数式6において、除算値8は、線形予測における隣接ブロックの距離に応じて一義的に特定される。
(数式6)
c00 = S+(U+L−B−R)/8
c01 = S+(U+R−B−L)/8
c10 = S+(B+L−U−R)/8
c11 = S+(B+R−U−L)/8
同数式6の手法では、対象ブロックPBsの参照領域として、対象ブロックPBsと同サイズである上下左右の参照ブロックPBt〜PBrのみが用いられ、ブロック毎の繰り返し処理によって随時生成されるサブブロックの情報(AC成分)は必要ない。また、対象ブロックPBsと同サイズのブロックのみを用いた手法以外にも、特許第3774201号公報や特許第4000157号公報に開示されているように、処理済領域(例えば図1のPBt,PBl)については、ブロックを細分化したサブブロックの情報(AC成分)を併用してもよい。さらに、対象ブロックPBsに直接隣接したブロックやサブブロックのみならず、そこから1ブロック離れたブロック等を含めて、参照領域は適宜設定すればよい。
ここに例示した交流成分予測のすべてに共通する点は、対象ブロックPBsの参照領域として、少なくとも対象ブロックPBsと同一サイズのブロックが用いられるという点であり、これが本実施形態に係る低周波交流成分の必要条件となる。低周波交流成分予測部31によって算出された低周波交流成分AClowは、予測処理部33および高周波交流成分算出部38に供給される。
一方、低周波交流成分予測部31と並列に設けられた高周波交流成分予測部32には、対象ブロックPBの高周波交流成分予測に必要な情報がバッファから読み出されて供給される。この処理に必要な情報は、対象ブロックPBsの近傍に位置し、かつ、従前の処理で既に処理された処理済ブロックの高周波交流成分AChigh(n)であり、本実施形態では、対象ブロックPBsの垂直/水平方向の近傍に位置する参照ブロックPBt,PBlに関するものが用いられる。垂直方向(上方)の処理済ブロックPBtに関する高周波交流成分AC(t)highは、これを対象ブロックPBsとした同一階層(n)での従前の処理において、高周波交流成分算出部38によって既に算出され、今回の処理を開始する時点ではバッファ内に格納されている。同様に、水平方向(左方)のブロックPBlに関する高周波交流成分AC(l)highは、これを対象ブロックPBsとした同一階層(n)での従前の処理において、高周波交流成分算出部38によって既に算出され、今回の処理を開始する時点ではバッファ内に格納されている。
対象ブロックPBsの高周波交流成分予測では、数式7に示すように、高周波交流成分AC(t)high,AC(l)highを用いた重み付け予測によって、対象ブロックPBsの高周波交流成分AChigh={αhigh,βhigh,γhigh}が予測される。そして、高周波交流成分予測部32によって予測された高周波交流成分AChighは、予測処理部33に供給される。ここで、同数式7の定数kは、重み付け予測における予測の強さを表す。この定数kが大きすぎると発散してしまうので、k<1とする必要がある。本実施形態では一例としてk=1/4に設定しているが、これ以外に1/2,1/8等の適宜の値を設定してもよい。
(数式7)
αhigh = (α(t)high−α(l)high)・k
βhigh = (β(l)high−β(t)high)・k
γhigh = 0
この重み付け予測では、算出済みの高周波交流成分AC(t)high,AC(l)highを単純に加算するのではなく、対象ブロックPBを基準とした処理済ブロックPBt,PBlの予測方向に応じて、高周波交流成分AC(t)high,AC(l)highの符号を適宜反転させている。
図12は、水平成分(αhigh)の重み付け予測における符号反転の説明図である。図2に示したように、水平方向のアダマール基底(α基底)では、+1,−1が水平方向に並んでいる。したがって、対象ブロックPBsの垂直方向(上方)に近接した処理済ブロックPBtに関しては、その交流成分を符号を反転させることなく、そのままの値(+α(t)high)を用いた方が上方の画素との誤差が小さくなる。また、対象ブロックPBsの水平方向(左方)に近接した処理済ブロックPBlに関しては、その交流成分の符号を反転させた値(−α(l)high)を用いた方が左方の画素との誤差が小さくなる。したがって、数式7に示した符号反転付の重み付け予測を行えば、対象ブロックPBsに関する水平方向の高周波交流成分αhighを適切に予測できる。
図13は、垂直成分(αhigh)の重み付け予測における符号反転の説明図である。図2に示したように、垂直方向のアダマール基底(β基底)では、+1,−1が垂直方向に並んでいる。したがって、対象ブロックPBsの垂直方向(上方)に近接した処理済ブロックPBtに関しては、その交流成分の符号を反転させた値(−β(t)high)を用いた方が上方の画素との誤差が小さくなる。また、対象ブロックPBsの水平方向(左方)に近接した処理済ブロックPBlに関しては、その交流成分を符号を反転させることなく、そのままの値(+β(l)high)を用いた方が左方の画素との誤差が小さくなる。したがって、数式7に示した符号反転付の重み付け予測を行えば、対象ブロックPBsに関する垂直方向の高周波交流成分βhighを適切に予測できる。
なお、高周波交流成分予測の別の手法として、垂直方向(上方)の高周波交流成分AC(t)highおよび水平方向の高周波交流成分AC(l)highのいずれか一方のみを用いて、対象ブロックPBsの高周波交流成AChighを予測してもよい。例えば、左方の成分AC(l)highのみを用いる場合には、単純にAC(t)high=0とし、係数kを例えば1/4から1/2に変えればよい。さらに、本実施形態では、γ成分についてはγlow,γhigh=0としているが、適宜の手法を用いてγ成分の予測を加えてもよい。γ成分の予測に関しては、例えば、本出願人が既に出願した特願2010−109079号にその詳細が開示されている。その概略は、まず、対象ブロックPBsの直流成分および参照情報を用いた線形予測によって、α成分およびβ成分が算出される。つぎに、対象ブロックPBsに関して、所定の処理済ブロックの直流成分と、先に算出されたα,β成分とを用いた重み付き加算によって、γ成分が算出される。重み付け加算は、対象ブロックPBsと処理済ブロックとの間における画素値の誤差を最小化するフィルタを用いて行われ、そのフィルタ係数は、これらのブロックの間における画素値の二乗誤差を極値または極値近傍にする値として予め設定されている。
予測処理部33は、数式8に示すように、低周波交流成分予測部31によって予測された低周波交流成分AClowと、高周波交流成分予測部32によって予測された高周波交流成分AChighとを加算することによって、対象ブロックPBsの交流成分の予測値ACpred={αpred,βpred,γpred}を算出する。予測処理部33によって算出された予測値ACpredは、交流成分復元部35に供給される。
(数式8)
αpred = αlow+αhigh
βpred = βlow+βhigh
γpred = γlow+γhigh
交流成分復元部35は、減算器35aと、非可逆変換部35bと、逆変換部35cと、加算器35dとを有する。交流成分復元部35が担う役割としては、交流成分の予測値ACpredと原画像との間に生じる残差成分ΔACの算出・変換、および、交流成分の復元という2つがある。
具体的には、減算器35aは、数式9に示すように、予測処理部33によって算出された予測値ACpred={αpred.βpred,γpred}と、原画像における真値TAC={Tα,Tβ.Tγ}との差分を残差成分ΔAC={Δα,Δβ,Δγ}として算出する。
(数式9)
Δα = Tα−αpred
Δβ = Tβ−βpred
Δγ = Tγ−γpred
ここで、交流成分の真値TACは、アダマール変換部34によって算出・供給される。すなわち、図3に示したDC算出部1によって算出されたTDC(n)のうち、対象ブロックPBsに関するもの(4値)がバッファから読み出され、これにアダマール変換を施すことによって、対象ブロックPBsに関する交流成分の真値TACが生成される。予測値ACpredが本来の画像(真値TAC)に近くなるほど、残差成分ΔACが小さくなる。残差成分ΔACが小さくなれば、統計的に見た残差成分ΔACの出現頻度が0近傍に偏る傾向が高まるので、エントロピー符号化を施す上で有利になる。
非可逆変換部35bは、減算器35aによって算出された残差成分ΔACに対して、例えば量子化といった非可逆変換を施し、エントロピー符号化部36および逆変換部35cに出力する。エントロピー符号化部36は、残差成分ΔACを非可逆変換したデータに対して、ハフマン符号化や算術符号化といったエントロピー符号化を施すことによって、最終的な出力である画像の圧縮データ(圧縮ACn)を生成する。
一方、逆変換部35cは、残差成分ΔACを非可逆変換したデータに対して、可逆変換部35bにおける非可逆変換とは逆の処理を施すことによって、残差成分ΔAC’={Δα’,Δβ’,Δγ’}を算出する。この残差成分ΔAC’は、本来の残差成分ΔACを復元した値だが、非可逆変換(元の値を完全に復元することはできない)が施されている関係上、本来の残差成分ΔACとは僅かに相違する。
加算器35dは、数式10に示すように、予測処理部33から供給された交流成分の予測値ACpredに、残差成分ΔAC’を加算することによって、交流成分の復元値AC’={α’,β’,γ’}を算出する。加算器35dの入力として本来の残差成分ΔACはなく、復元された残差成分ΔAC’を用いる理由は、デコード時の繰り返し処理によって誤差が累積することを防止し、伸張画像の再現性を担保するためである。
(数式10)
α' = αpred+Δα’
β’ = βpred+Δβ’
γ’ = γpred+Δγ’
逆アダマール変換部37は、加算器35dより出力された対象ブロックPBsの交流成分AC’(復元値)と、バッファから読み出された対象ブロックPBsの直流成分DC(n-1)とを入力とした逆アダマール変換を行い、対象ブロックPBsを細分化した各サブブロックの平均画素値DC(n)(サブブロックの直流成分)を算出する。算出された直流成分DC(n)は、バッファに一時的に格納される。バッファに格納された直流成分DC(n)は、直下位の階層における処理で随時読み出され、その処理に必要な情報として用いられる。
高周波交流成分算出部38は、数式11に示すように、交流成分復元部35によって復元された交流成分AC’と、低周波交流成分予測部31によって予測された低周波交流成分AClowとの差分に基づいて、この対象ブロックPBsの高周波交流成分AChigh(n)={αhigh(n),βhigh(n),γhigh(n)}を算出する。
(数式11)
αhigh(n) = α’−αlow
βhigh(n) = β’−βlow
γhigh(n) = γ’−γlow
高周波交流成分算出部38によって算出された高周波交流成分AChigh(n)は、バッファに一時的に格納される。バッファに格納された高周波交流成分AChigh(n)は、同一階層での次回以降の処理において随時読み出され、その処理に必要な処理済ブロックの情報として用いられる。
なお、以上の説明から明らかなように、対象ブロックPBsを対象とした今回の処理では、2種類の高周波交流成分AChigh,AChigh(n)が算出されるが、両者は異なる用途で用いられる点に留意されたい。高周波交流成分予測部32の出力である高周波交流成分AChighは、今回の処理で算出される対象ブロックPBsの予測値ACpred自体に反映すべき値である。これに対して、高周波交流成分算出部38の出力である高周波交流成分AChigh(n)は、それ以降の処理で高周波交流成分AChighを予測するために、換言すれば、対象ブロックPBsの予測残差ΔAC(≒ΔAC’)を他のブロックに反映するために用いられる。
このように、本実施形態に係るRACPエンコーダによれば、対象ブロックPBsに関する交流成分の予測値ACpredとして、低周波交流成分予測部31によって予測された低周波交流成分AClowそのものではなく、これに高周波交流成分予測部32によって予測された高周波交流成分AChighを加算することによって、補正された値が用いられる。すなわち、予測値ACpredは、低周波交流成分AClowを高周波交流成分AChighで補正することによって算出される。高周波交流成分予測部32は、今回の予測で加味すべき高周波交流成分AChigh(低周波交流成分予測では予測できない)を、処理済ブロックの高周波交流成分AChigh(n)、すなわち従前の処理で既に算出された値を用いた重み付け予測によって算出する。高周波交流成分AChigh(n)は、予測値ACpredに残差成分ΔAC(≒ΔAC’)を加算した復元値AC(≒AC’)から低周波交流成分AClowを除いたものに相当する。したがって、高周波交流成分AChigh(n)は残差成分ΔACに依存することになり、予測が外れて原画像との残差成分ΔACが大きくなるほど高周波交流成分AChigh(n)も大きくなる。従前の高周波交流成分AChigh(n)から今回の高周波交流成分AChighが予測され、これが今回の低周波交流成分AClowに加算される。これにより、今回の予測値ACpredに従前の残差成分ΔACが反映される。また、今回の処理で高周波交流成分算出部38が算出した高周波交流成分AChigh(n)を用いて、次回以降の高周波交流成分AChighが予測され、これが次回以降の低周波交流成分AClowに加算される。これにより、次回以降の予測値ACpred(将来値)に今回の残差成分ΔAC’(過去値)が反映される。このような処理の繰り返しによって、あるブロックの残差成分ΔACが高周波交流成分AChigh(n)として他のブロックに順次伝搬・反映されていく。
残差成分ΔACの伝搬について、図14を参照して詳述する。図14は、ある任意のブロックPB11を起点とした残差伝搬の説明図である。ブロックPB11の残差成分ΔAC11は、このブロックB11を参照するブロックPB12の高周波交流成分AChighを介して、ブロックPB12の予測値ACpredに反映された後、それ以降の水平方向のブロックPB13,PB14にも順次伝搬されていく。一方、この残差成分ΔAC11は、ブロックPB11を参照するブロックPB21の高周波交流成分AChighを介して、ブロックPB21の予測値ACpredに反映された後、それ以降の垂直方向のブロックPB31,PB41にも順次伝搬されていく。同様に、各ブロックPB21,PB31,PB41よりも右側に位置する水平方向のブロックにも残差成分ΔAC11が順次伝搬されていく。ここで、高周波交流成分AChighの予測手法として重み付け予測を用いている関係上、他のブロックに及ぼす残差成分ΔAC11の影響の度合いは、ブロックPB11から遠くなるほど低下する。上述した数式7より、残差成分ΔACの影響を受けるブロックが参照ブロックPB11から遠くなるほど、このブロックにより近い他の参照ブロックの影響の方が強くなっていくからである。画像に空間的な相関性があるということは、予測誤差の生じ方にも空間的な相関性が認められるということである。この知得に基づき、ブロックPB11に近いブロックほど、その予測値ACpredに残差成分ΔAC11を強く反映させる。これにより、通常の交流成分予測(低周波交流成分予測)だけでは空間的に近い画像領域内で同様に生じるであろう残差成分ΔACを、高周波交流成分AChighを加味することによって相殺できる。残差成分ΔAC11を他のブロックにどの程度強く反映させるかは、予測の強さを表す係数k(数式7を参照)によって決定される。逆に、ブロックPB11から遠いブロックほど、その予測値ACpredに対する残差成分ΔAC11の反映の度合いを低下させる。これにより、相関性が低いブロックに及ぼす残差成分ΔAC11の悪影響が抑制される。以上のような残差伝搬は、ブロックPB11以外のブロックについても、それを起点として同様に生じる。
このような残差成分ΔACの伝搬によって、交流成分予測だけでは捉えられない成分(従前の残差成分ΔACに起因したもの)が予測値ACpredに加味されるので、予測画像が原画像に近づく傾向が高まり、予測精度の一層の向上を図ることが可能になる。そして、予測精度が向上した分だけ、画像の圧縮率を高めることができる。特に、図4に示したようなパイプライン的な並行処理を行えば、全体的な処理時間を短縮できる。
(RACPエンコードプログラム)
つぎに、ハードウェアとして実現されるRACPエンコーダと同等の処理を、コンピュータのソフトウェア処理によって実現するためのRACPエンコードプログラムについて説明する。なお、ハードウェア処理とソフトウェア処理との間には本質的な相違はないので、ここでは概略的な説明に留め、その詳細は上述したRACPエンコーダに関する記載を参照するものとする。
図15は、RACPエンコードプログラムのフローチャートである。コンピュータによるソフトウェア処理では、図5に示したような逐次処理が基本となる。まず、ステップ1において、入力画像の画像平面上にブロック(4タイプ)が複数設定され、それぞれのブロックの平均画素値TDC0〜TDC3が算出される。算出された平均画素値TDC0〜3は、バッファに随時格納される。すべてのブロックの処理が終了するとステップ2に進む。
ステップ2において、8×8ブロックの平均画素値TDC0に対して、DC符号化、すなわち、差分パルス幅変調とエントロピー符号化とが施され、これによって、圧縮データの一部となる画像の直流成分DC0が生成・出力される。また、その復元値がDC0としてバッファに格納される。
ステップ3において、階層番号LNが1(初期値)にセットされる。LN=1は、処理を行うべき階層が最上位階層であることを示す。そして、1つの階層処理が終了する毎に1ずつインクリメントされ(ステップ16)、下位の階層へと順番に推移していく。そして、LN=3、すなわち最下位階層の処理が終わった時点で、全ての処理が終了する(ステップ15)。
ステップ4において、ブロック番号BNが1(初期値)にセットされる。先のステップ3における階層番号LNの設定にともない、その階層で処理対象となるブロックのサイズは一義的に特定され、全体のブロック数に応じた終了ブロック番号BNendも特定される。同一階層内におけるブロックの処理が終了する毎にブロック番号BNが1ずつインクリメントされ(ステップ14)、処理対象が所定の方向に順次シフトしていく。そして、終了ブロック番号BNendに相当するブロックの処理が終了した時点で、その階層における処理が終了する(ステップ13)。
ステップ5において、ブロック番号BNによって指定されたブロックを対象ブロックPBsとして、その低周波交流成分AClowが予測される。低周波交流成分AClowは、対象ブロックPBsの参照領域に相当するブロックの直流成分DC(n-1)(直上位の階層にて算出)を用いた交流成分予測によって算出される。なお、対象ブロックPBsと同一サイズのブロックのみを用いた交流成分予測のみならず、サブブロックの直流成分DC(n)(同一階層にて算出)を併用した交流成分予測を行ってもよいことは上述した通りである。
ステップ6において、対象ブロックPBsの高周波交流成分AChighが予測される。高周波交流成分AChighは、対象ブロックPBsの近傍に位置し、かつ、従前の処理で既に処理された処理済ブロックの高周波交流成分AChigh(n)(同一階層にて算出)を用いた重み付け予測によって算出される。この予測によって、上記処理済ブロックの残差成分ΔAC’が高周波交流成分AChighに反映される。
ステップ7において、対象ブロックPBsの低周波交流成分AClowと、対象ブロックPBsの高周波交流成分AChighとを加算することによって、対象ブロックPBsの交流成分の予測値ACpredが算出される。これにより、ステップ6で述べた上記処理済ブロックの残差成分ΔAC’は、高周波交流成分AChighを介して、予測値ACpredに反映されることになるので、予測精度の向上が期待できる。そして、ステップ8において、対象ブロックPBsの予測値ACpredと、対象ブロックPBsに対応した原画像の真値TACとの差分が残差成分ΔACとして算出される。
ステップ9では、ステップ8で算出された残差成分ΔACに対して、非可逆変換およびエントロピー符号化が施される。これによって、画像の圧縮データの一部としての圧縮AC(n)が生成される。ステップ9に続くステップ10において、非可逆変換が施された残差成分ΔACに対して、その逆処理が行われ、本来の残差成分ΔACを復元した復元値ΔAC’が算出される。
ステップ11では、ステップ7で算出された予測値ACpredに、残差成分ΔAC’(復元値)を加算することによって、対象ブロックPBsの交流成分AC’が復元される。そして、これを入力とした逆アダマール変換によって、対象ブロックPBsを細分化した各サブブロックの平均画素値DC(n)が算出される。
ステップ12では、ステップ11で算出された交流成分の復元値AC’と、ステップ5で算出された低周波交流成分AClowとの差分に基づいて、次回以降の処理で処理済ブロックの情報として用いられる高周波交流成分AChigh(n)が算出される。なお、ステップ10〜12の処理は、LN=3、すなわち最下位の階層処理ではスキップされる。
ステップ13において、ブロック番号BNが終了ブロック番号BNendに到達したか否かが判断される。終了ブロック番号BNendに到達するまでは、ステップ14においてブロック番号BNが1ずつインクリメントされていき、ステップ5〜14のループが繰り返される。そして、終了ブロック番号BNendに到達した場合、すなわち、画像平面内の全ブロックの処理が終了した場合には、ループを抜けてステップ15に進む。
ステップ15において、階層番号LNが3(最下位階層)に到達したか否かが判断される。LN=3に到達するまでは、ステップ16において階層番号LNが1ずつインクリメントされていき、それぞれの階層の処理としてステップ5〜14のループが繰り返される。これにより、階層が下位になるにしたがって、処理対象となるブロックのサイズが段階的に小さくなっていき、上述した一連の処理が再帰的に実行される。上位階層側において算出されたサブブロックの直流成分DCn(出力)は、下位階層側のブロックの直流成分DCn-1(入力)として用いられる。そして、LN=3で、かつ、BN=BNendに到達した場合、すなわち、最下位階層の全処理が終了した場合には、ステップ13,15の判断からループを抜け、これによって、本プログラムの処理が終了する。
本実施形態に係るRACPエンコードプログラムによれば、上述したRACPエンコーダと同様、予測精度の一層の向上を図ることができ、画像の圧縮率を高めることができる。
(RACPデコーダ)
図16は、上述したRACPエンコーダまたはRACPエンコードプログラムによって生成された圧縮データを伸張するRACPデコーダの全体構成図である。このデコーダは、DC復号化5と、3つの階層処理部6a〜6cとを主体に構成されている。これらのユニット5,6a〜6cより出力されたデータDCn(n=0,1,2,3)は、図示しないバッファ(記憶部)に一時的に格納される。
DC復号化5および階層処理部6a〜6cは、8×8ブロック(最上位階層)、4×4ブロック(第2位階層)、2×2ブロック(第3位階層)、1×1ブロック(最下位階層)の階層構造において、自己に割り当てられた階層処理を行う。最上位階層のDC復号化部5は、画像の直流成分DC0に関する圧縮データに対して、画像圧縮時に施された処理の逆処理を行うことによって、8×8ブロックの平均画素値DC0を生成し、これを第2位階層の階層処理部6aに供給する。
RACPデコーダの階層構造自体は、RACPエンコーダのそれとほぼ同様であるが、エンコーダにおける階層処理部3a〜3cの出力となる交流成分AC1〜AC3が、デコーダにおける階層処理部6a〜6cの入力となる点が相違する。これらの階層処理部6a〜6cは、画像の交流成分AC1〜AC3に関する圧縮データと、直上位の階層より供給された平均画素値DCn-1とに基づいて、平均画素値DCnを復元する。復元された平均画素値DCnは、必要に応じて直下位の階層に供給するために出力され、バッファに格納される。そして、最下位階層の階層処理部6cによって算出された1×1ブロックの平均画素値DC3の集合が最終的な伸張画像となる。なお、デコーダにおける順次シフトの方向は、エンコーダのそれに準じるものとする。また、デコーダの処理は、並列処理および逐次処理のどちらであってもよい。
図17は、RACPデコーダにおける階層処理部6(6a〜6cの総称)の構成図である。それぞれの階層における階層処理部6は、取り扱うブロックのサイズが異なる点を除けば、基本的な構成および動作はほぼ同様である(最下位の階層処理部6cについては一部簡略化できる)。階層処理部6は、低周波交流成分予測部61と、高周波交流成分予測部62と、予測処理部63と、交流成分復元部65と、逆アダマール変換部67と、高周波交流成分算出部68とを主体に構成されている。
低周波交流成分予測部61は、対象ブロックPBsの参照領域に相当するブロックの直流成分DC(n-1)を用いた交流成分予測によって、対象ブロックPBsの低周波交流成分を予測する。高周波交流成分予測部62は、対象ブロックPBsの近傍に位置し、かつ、従前の処理で既に処理された処理済ブロックの高周波交流成分AChigh(n)を用いた重み付け予測によって、対象ブロックPBsの高周波交流成分AChighを予測する。そして、予測処理部63は、低周波交流成分予測部61によって予測された低周波交流成分AClowと、高周波交流成分予測部62によって予測された高周波交流成分AChighとを加算することによって、対象ブロックPBsの交流成分の予測値ACpredを算出する。ここまでの処理は、図6に示したRACPエンコーダのユニット31〜33の処理と同様である。
交流成分復元部65は、予測処理部63によって算出された予測値ACpredと、原画像との残差成分ΔAC’(復元値)とを加算することによって、対象ブロックPBsの交流成分の復元値AC’を算出する。交流成分復元部65は、図6に示した逆変換部35cと同様の逆変換部65cと、同図に示した加算器35dと同様の加算器65dとを有するが、同図に示した減算器35aや非可逆変換部35bの如きものは存在しない。逆変換部65cは、非可逆圧縮された画像の圧縮データ(圧縮AC(n))に対して、画像圧縮時に施された非可逆変換およびエントロピー符号化の双方に関する逆処理を行うことによって、原画像との残差成分ΔAC’を復元する。加算器65dは、予測処理部63によって算出された予測値ACpredに、逆変換部65cから出力された残差成分ΔAC’を加算することによって、対象ブロックPBsの交流成分の復元値AC’を算出する。
逆アダマール変換部67は、加算器65dより出力された対象ブロックPBsの交流成分AC’(復元値)と、バッファから読み出された対象ブロックPBsの直流成分DC(n-1)とを入力とした逆アダマール変換を行い、対象ブロックPBsを細分化した各サブブロックの平均画素値DC(n)(サブブロックの直流成分)を算出する。算出された直流成分DC(n)は、バッファに一時的に格納される。バッファに格納された直流成分DC(n)は、直下位の階層における処理で随時読み出され、その処理に必要な情報として用いられる。
高周波交流成分算出部68は、交流成分復元部65によって復元された交流成分AC’と、低周波交流成分予測部31によって予測された低周波交流成分AClowとの差分に基づいて、この対象ブロックPBsの高周波交流成分AChigh(n)を算出する。算出された高周波交流成分AChigh(n)は、バッファに一時的に格納される。バッファに格納された高周波交流成分AChigh(n)は、同一階層での次回以降の処理において随時読み出され、その処理に必要な処理済ブロックの情報として用いられる。
このように、本実施形態に係るRACPデコーダによれば、上述したRACPデコーダまたはRACPエンコードプログラムによって生成された圧縮データを適切に伸張できる。特に、図4に示したようなパイプライン的な並行処理を行えば、全体的な処理時間を短縮できる。
(RACPデコードプログラム)
つぎに、ハードウェアとして実現されるRACPデコーダと同等の処理を、コンピュータのソフトウェア処理によって実現するためのRACPデコードプログラムについて説明する。なお、ハードウェア処理とソフトウェア処理との間には本質的な相違はないので、ここでは概略的な説明に留め、その詳細は上述したRACPデコーダ等に関する記載を参照するものとする。
図18は、RACPデコードプログラムのフローチャートである。コンピュータによるソフトウェア処理では、図5に示したような逐次処理が基本となる。まず、ステップ21において、画像の直流成分DC0の圧縮データに対して、DC復号化、すなわち、データ圧縮時に施された符号化処理の逆処理が施され、これによって、8×8ブロックの平均画素値DC0が復元され、これがバッファに格納される。
ステップ22,23において、RACPエンコードプログラムと同様に、階層番号LNが1(初期値)、ブロック番号BNが1(初期値)にそれぞれセットされる。つぎに、ステップ24,25において、ブロック番号BNによって指定されたブロックを対象ブロックPBsとして、その低周波交流成分AChighおよび高周波交流成分AChighがそれぞれ予測される。ステップ25に続くステップ26では、対象ブロックPBsの低周波交流成分AClowと、対象ブロックPBsの高周波交流成分AChighとを加算することによって、対象ブロックPBsの交流成分の予測値ACpredが算出される。
ステップ27では、画像の圧縮データである圧縮ACn(n)が伸張され、これによって、残差成分ΔAC’が復元される。ステップ28では、ステップ26で算出された交流成分の予測値ACpredに、ステップ27で算出された残差成分ΔAC’を加算することによって、対象ブロックPBsの交流成分の復元値AC’が復元される。そして、これを入力とした逆アダマール変換によって、対象ブロックPBsを細分化した各サブブロックの平均画素値DC(n)が算出される。そして、ステップ29では、ステップ18で算出された交流成分の復元値AC’と、ステップ24で算出された低周波交流成分AClowとの差分に基づいて、次回以降の処理で処理済ブロックの情報として用いられる高周波交流成分AChigh(n)が算出される。なお、ステップ29の処理は、LN=3、すなわち最下位の階層処理ではスキップされる。
ステップ30において、ブロック番号BNが終了ブロック番号BNendに到達したか否かが判断される。終了ブロック番号BNendに到達するまでは、ステップ31においてブロック番号BNが1ずつインクリメントされていき、ステップ24〜31のループが繰り返される。そして、終了ブロック番号BNendに到達した場合、すなわち、画像平面内の全ブロックの処理が終了した場合には、ステップ30の判断結果よりループを抜け、ステップ32に進む。
ステップ32において、階層番号LNが3(最下位階層)に到達したか否かが判断される。N=3に到達するまでは、ステップ33において階層番号LNが1ずつインクリメントされていき、それぞれの階層の処理としてステップ24〜31のループが繰り返される。これにより、階層が下位になるにしたがって、処理対象となるブロックのサイズが段階的に小さくなっていき、上述した一連の処理が再帰的に実行される。上位階層側において算出されたサブブロックの直流成分DCn(出力)は、下位階層側のブロックの直流成分DCn-1(入力)として用いられる。そして、LN=3で、かつ、BN=BNendに到達した場合、すなわち、最下位階層の処理が終了した場合には、ステップ30,32の判断からループを抜け、これによって、本プログラムの処理が終了する。
本実施形態に係るRACPデコードプログラムによれば、上述したRACPデコーダと同様の効果を奏する。
なお、以上の本実施形態に関する説明では、従前の残差成分ΔACに起因した高周波交流成分AChighに関しては、交流成分予測だけでは予測できず、その予測値AClowには含まれない成分であるという意味合いで、予測値AClow(低周波成分)に対する高周波成分と位置付けている。これを別の視点で捉えるならば、高周波交流成分AChighを、交流成分予測によって予測された交流成分AClowの補正成分とみなすこともできる。この場合、低交流周波成分AClowおよび高周波交流成分AChighの加算にて予測値ACpredを算出するプロセスは、交流成分予測によって予測された予測値AClowを、従前の残差成分ΔAC(≒AChigh(n))に起因した補正成分AChighで補正することによって、補正予測値ACpredを算出するプロセスであると言い換えることができる。
以上のように、本発明に係る交流成分予測手法は、予測精度の向上により画像の圧縮率を高める用途に対して、広く適用できる。
1 DC算出部
2 DC符号化部
3(3a〜3c) 階層処理部
5 DC復号化部
6(6a〜6c) 階層処理部
31,61 低周波交流成分予測部
32,62 高周波交流成分予測部
33,63 予測処理部
34 アダマール変換部
35,65 交流成分復元部
35a 減算器
35b 非可逆変換部
35c,65c 逆変換部
35d,65d 加算器
36 エントロピー符号化部
37,67 逆アダマール変換部
38,68 高周波交流成分算出部

Claims (12)

  1. 画像平面上に設定されたブロック毎の繰り返し処理によって、ブロック単位で交流成分予測を行う交流成分予測システムにおいて、
    今回の処理で処理対象となる対象ブロックの参照領域に相当するブロックの直流成分を用いた交流成分予測によって、前記対象ブロックの低周波交流成分を予測する低周波交流成分予測部と、
    前記対象ブロックの近傍に位置し、かつ、従前の処理で既に処理された処理済ブロックの高周波交流成分を用いた重み付け予測によって、前記対象ブロックの高周波交流成分を予測する高周波交流成分予測部と、
    前記低周波交流成分予測部によって予測された低周波交流成分と、前記高周波交流成分予測部によって予測された高周波交流成分とを加算することによって、前記対象ブロックの交流成分の予測値を算出する予測処理部と、
    前記予測処理部によって算出された予測値と、原画像との残差成分とを加算することによって、前記対象ブロックの交流成分の復元値を算出する交流成分復元部と、
    前記交流成分復元部によって算出された復元値と、前記低周波交流成分予測部によって予測された低周波交流成分との差分に基づいて、次回以降の処理で前記処理済ブロックの情報として用いられる高周波交流成分を算出する高周波交流成分算出部と
    を有することを特徴とする交流成分予測システム。
  2. 前記高周波交流成分予測部は、前記対象ブロックと前記処理済ブロックとの間における画素値の誤差が小さくなるように、前記対象ブロックを基準とした前記処理済ブロックの予測方向に応じて、前記処理済ブロックの高周波交流成分の符号を反転させた上で、前記重み付け予測を行うことを特徴とする請求項1に記載された交流成分予測システム。
  3. 前記交流成分は、水平方向のアダマール基底の成分を規定する水平成分を含み、
    前記高周波交流成分予測部は、前記対象ブロックの垂直方向に近接した前記処理済ブロックに関する前記水平成分と、前記対象ブロックの水平方向に近接した前記処理済ブロックに関する前記水平成分の符号を反転させた値とを加算することによって、前記水平成分に含まれる高周波交流成分に関する前記重み付け予測を行うことを特徴とする請求項2に記載された交流成分予測システム。
  4. 前記交流成分は、垂直方向のアダマール基底の成分を規定する垂直成分を含み、
    前記高周波交流成分予測部は、前記対象ブロックの垂直方向に近接した前記処理済ブロックに関する前記垂直成分の符号を反転させた値と、前記対象ブロックの水平方向に近接した前記処理済ブロックに関する前記垂直成分とを加算することによって、前記垂直成分に含まれる高周波交流成分に関する前記重み付け予測を行うことを特徴とする請求項2または3に記載された交流成分予測システム。
  5. 前記交流成分予測システムは、画像を非可逆圧縮するエンコーダであって、
    前記交流成分復元部は、
    前記予測処理部によって算出された予測値と、原画像における真値との差分を残差成分として算出する減算器と、
    前記減算器によって算出された残差成分に非可逆変換を施す非可逆変換部と、
    前記非可逆変換部から出力された残差成分にエントロピー符号化を施して、画像の圧縮データを出力するエントロピー符号化部と、
    前記非可逆変換部から出力された残差成分に、前記非可逆変換とは逆の処理を施すことによって、残差成分を復元する逆変換部と、
    前記予測処理部によって算出された予測値に、前記逆変換部から出力された残差成分を加算する加算器と
    を有することを特徴とする請求項1から4のいずれかに記載された交流成分予測システム。
  6. 前記交流成分予測システムは、非可逆圧縮された画像を伸張するデコーダであって、
    前記交流成分復元部は、
    非可逆圧縮された画像の圧縮データに対して、画像圧縮時に施された非可逆変換およびエントロピー符号化の逆処理を行うことによって、原画像との残差成分を復元する逆変換部と、
    前記予測処理部によって算出された予測値に、前記逆変換部から出力された残差成分を加算することによって、交流成分を復元する加算器と
    を有することを特徴とする請求項1から4のいずれかに記載された交流成分予測プログラム。
  7. 画像平面上に設定されたブロック毎の繰り返し処理によって、ブロック単位で行われる交流成分予測をコンピュータに実行させる交流成分予測プログラムにおいて、
    今回の処理で処理対象となる対象ブロックの参照領域に相当するブロックの直流成分を用いた交流成分予測によって、前記対象ブロックの低周波交流成分を予測する第1のステップと、
    前記対象ブロックの近傍に位置し、かつ、従前の処理で既に処理された処理済ブロックの高周波交流成分を用いた重み付け予測によって、前記対象ブロックの高周波交流成分を予測する第2のステップと、
    前記低周波交流成分と、前記高周波交流成分とを加算することによって、前記対象ブロックの交流成分の予測値を算出する第3のステップと、
    前記予測値と、原画像との残差成分とを加算することによって、前記対象ブロックの交流成分の復元値を算出する第4のステップと、
    前記復元値と、前記低周波交流成分との差分に基づいて、次回以降の処理で前記処理済ブロックの情報として用いられる高周波交流成分を算出する第5のステップと
    を実行させることを特徴とする交流成分予測プログラム。
  8. 前記第2のステップは、前記対象ブロックと前記処理済ブロックとの間における画素値の誤差が小さくなるように、前記対象ブロックを基準とした前記処理済ブロックの予測方向に応じて、前記処理済ブロックの高周波交流成分の符号を反転させた上で、前記重み付け予測を行うステップであることを特徴とする請求項7に記載された交流成分予測プログラム。
  9. 前記交流成分は、水平方向のアダマール基底の成分を規定する水平成分を含み、
    前記第2のステップは、前記対象ブロックの垂直方向に近接した前記処理済ブロックに関する前記水平成分と、前記対象ブロックの水平方向に近接した前記処理済ブロックに関する前記水平成分の符号を反転させた値とを加算することによって、前記水平成分に含まれる高周波交流成分に関する前記重み付け予測を行うステップであることを特徴とする請求項8に記載された交流成分予測プログラム。
  10. 前記交流成分は、垂直方向のアダマール基底の成分を規定する垂直成分を含み、
    前記第2のステップは、前記対象ブロックの垂直方向に近接した前記処理済ブロックに関する前記垂直成分の符号を反転させた値と、前記対象ブロックの水平方向に近接した前記処理済ブロックに関する前記垂直成分とを加算することによって、前記垂直成分に含まれる高周波交流成分に関する前記重み付け予測を行うステップであることを特徴とする請求項8または9に記載された交流成分予測プログラム。
  11. 前記交流成分予測プログラムは、画像を非可逆圧縮するエンコードプログラムであって、
    前記第4のステップは、
    前記予測値と、原画像における真値との差分を残差成分として算出するステップと、
    前記残差成分に非可逆変換を施すステップと、
    前記残差成分にエントロピー符号化を施して、画像の圧縮データを出力するステップと、
    前記残差成分に前記非可逆変換とは逆の処理を施すことによって、残差成分を復元するステップと、
    前記予測値に前記残差成分を加算するステップと
    を有することを特徴とする請求項7から10のいずれかに記載された交流成分予測プログラム。
  12. 前記交流成分予測プログラムは、非可逆圧縮された画像を伸張するデコードプログラムであって、
    前記第4のステップは、
    非可逆圧縮された画像の圧縮データに対して、画像圧縮時に施された非可逆変換およびエントロピー符号化の逆処理を行うことによって、原画像との残差成分を復元するステップと、
    前記予測値に前記残差成分を加算することによって、交流成分を復元するステップと
    を有することを特徴とする請求項7から10のいずれかに記載された交流成分予測プログラム。
JP2010118954A 2010-05-25 2010-05-25 交流成分予測システムおよび交流成分予測プログラム Active JP5007431B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118954A JP5007431B2 (ja) 2010-05-25 2010-05-25 交流成分予測システムおよび交流成分予測プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118954A JP5007431B2 (ja) 2010-05-25 2010-05-25 交流成分予測システムおよび交流成分予測プログラム

Publications (2)

Publication Number Publication Date
JP2011249954A JP2011249954A (ja) 2011-12-08
JP5007431B2 true JP5007431B2 (ja) 2012-08-22

Family

ID=45414708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118954A Active JP5007431B2 (ja) 2010-05-25 2010-05-25 交流成分予測システムおよび交流成分予測プログラム

Country Status (1)

Country Link
JP (1) JP5007431B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040793B2 (ja) * 2019-10-30 2022-03-23 株式会社アクセル 画像処理装置、画像処理方法、画像処理プログラム、及び画像処理システム
JP7393819B2 (ja) 2021-11-19 2023-12-07 株式会社アクセル 画像処理システム、符号化装置、復号装置、画像処理方法、画像処理プログラム、符号化方法、符号化プログラム、復号方法、及び復号プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700976B2 (ja) * 2002-08-14 2005-09-28 株式会社アクセル 画像処理装置および画像処理方法
JP3774210B2 (ja) * 2003-06-13 2006-05-10 株式会社東京機械製作所 下敷き材供給装置
JP4660698B2 (ja) * 2008-09-30 2011-03-30 株式会社アクセル 画像処理システムおよび画像処理プログラム

Also Published As

Publication number Publication date
JP2011249954A (ja) 2011-12-08

Similar Documents

Publication Publication Date Title
US20200351516A1 (en) Moving Picture Decoding Method and Moving Picture Encoding Method
JP5838258B2 (ja) データをロッシー圧縮符号化する方法および装置、および、データを再構築する対応する方法および装置
JP5158096B2 (ja) 符号化用データ生成装置、符号化用データ生成方法、復号装置および復号方法
JP5007431B2 (ja) 交流成分予測システムおよび交流成分予測プログラム
JPWO2012160626A1 (ja) 画像圧縮装置、画像復元装置、及びプログラム
JP4660698B2 (ja) 画像処理システムおよび画像処理プログラム
JP2006295804A (ja) 画像圧縮方法および画像伸張方法
JP5007430B2 (ja) 交流成分予測システムおよび交流成分予測プログラム
JP2009077183A (ja) データ圧縮装置、データ圧縮・伸張システム、およびデータ圧縮方法
JP3452115B2 (ja) 画像処理装置
JP3833224B2 (ja) 符号化方法及び装置、並びにコンピュータプログラム及びコンピュータ可読記憶媒体
Nandi et al. Fractal image compression using fast context independent HV partitioning scheme
JP5007432B2 (ja) 画像処理システムおよび画像処理プログラム
JP2015015595A (ja) 動画像符号化装置、符号化モード判定方法及び符号化プログラム
JP4862186B2 (ja) 予測処理システム
JP4730144B2 (ja) 復号化装置、逆量子化方法及びこれらのプログラム
JP4434974B2 (ja) データ圧縮装置、データ圧縮方法、データ圧縮プログラム、データ伸張装置
JP5108828B2 (ja) 画像符号化装置
CN112165617B (zh) 一种视频编码方法、装置、电子设备和存储介质
JP2011071825A (ja) 画像処理システムおよび画像処理プログラム
JP2011049942A (ja) 画像処理システムおよび画像処理プログラム
Bidgoli et al. A geometry-aware compression of 3D mesh texture with random access
JP4789020B2 (ja) 画像処理システムおよび画像処理プログラム
JP2001128182A (ja) 画像符号化方法および画像符号化プログラムを格納したコンピュータで読取可能な記録媒体
JP2009273064A (ja) エンコーダ評価方法、プログラム、及び、エンコーダ評価装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120224

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Ref document number: 5007431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250