JP5005369B2 - Electropolishing equipment - Google Patents

Electropolishing equipment Download PDF

Info

Publication number
JP5005369B2
JP5005369B2 JP2007017835A JP2007017835A JP5005369B2 JP 5005369 B2 JP5005369 B2 JP 5005369B2 JP 2007017835 A JP2007017835 A JP 2007017835A JP 2007017835 A JP2007017835 A JP 2007017835A JP 5005369 B2 JP5005369 B2 JP 5005369B2
Authority
JP
Japan
Prior art keywords
cooling water
electrolytic
sample
cleaning
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007017835A
Other languages
Japanese (ja)
Other versions
JP2008184639A (en
Inventor
清 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007017835A priority Critical patent/JP5005369B2/en
Publication of JP2008184639A publication Critical patent/JP2008184639A/en
Application granted granted Critical
Publication of JP5005369B2 publication Critical patent/JP5005369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

この発明は電解研磨方法に関し、特に金属材料の分析用試料を調製するのに適した方法に関する。   The present invention relates to an electropolishing method, and particularly to a method suitable for preparing a sample for analysis of a metal material.

例えば、製鋼工程において成分分析を行う場合、レンガ製の試料採取器を用いて溶鋼を汲み取り、凝固した鋼を切断して試料を作製し、試料表面をグラインダーやベルターなどで研磨して分析に供することが行われている。鋼製品については製品の任意の部位から試料を切り取り、溶鋼の試料の場合と同様にグラインダーやベルターなどで表面を研磨して分析に供することが行われている。これら表面研磨された試料は機器分析のための試料であり、一般にブロック試料と呼ばれている。他方、ドリルで鋼などに穴を穿って切粉を採取し、化学分析の試料として用いることも行われている。分析試料は大別してこの二種類である。   For example, when component analysis is performed in a steelmaking process, a molten steel is drawn up using a brick sampler, the solidified steel is cut to prepare a sample, and the sample surface is polished with a grinder or belter for analysis. Things have been done. For steel products, a sample is cut from an arbitrary part of the product, and the surface is polished with a grinder or a belter for use in analysis in the same manner as in the case of a molten steel sample. These surface-polished samples are samples for instrumental analysis and are generally called block samples. On the other hand, a drill is used to drill a hole in steel or the like to collect chips and use them as a sample for chemical analysis. There are two types of analysis samples.

ところで、鉄鋼材料や特殊金属材料(以下、単に「金属材料」という)に含まれる成分のなかでも、特に炭素、硫黄、酸素、窒素、水素などは金属材料の物性に大きく影響することから、これらの成分を分析することが行われる。   By the way, among the components contained in steel materials and special metal materials (hereinafter simply referred to as “metal materials”), especially carbon, sulfur, oxygen, nitrogen, hydrogen, etc. greatly affect the physical properties of metal materials. Analysis of the components is performed.

例えば、金属材料中の酸素分析を行う場合、分析用の試料を調製する必要がある。そこで、分析対象の金属材料から小型切断機で試料を切り取り、試料表面をヤスリで研磨し、ベルターなどで表面研磨した後、アルコールやアセトンなどの中で試料の超音波洗浄を行って脱水・脱脂し、分析に供するようにしている。酸素分析の場合、試料の大気酸化を防止する必要があるので、ブロック試料として加工して分析に用いるのが一般的である。これを一般的に乾式法という。   For example, when performing oxygen analysis in a metal material, it is necessary to prepare a sample for analysis. Therefore, the sample is cut from the metal material to be analyzed with a small cutting machine, the sample surface is polished with a file, and the surface is polished with a belt or the like, followed by ultrasonic cleaning of the sample in alcohol or acetone for dehydration and degreasing. And used for analysis. In the case of oxygen analysis, since it is necessary to prevent atmospheric oxidation of the sample, it is generally processed as a block sample and used for analysis. This is generally called a dry method.

酸素分析用の試料を調製する場合、前述のように、ヤスリやベルダーなどを用いて表面研磨すると、試料に摩擦熱が加わり、大気中の酸素に起因して表面酸化してしまい、試料に含まれる酸素量を正確に定量することが難しい。特に、酸素量が微量域(10ppmレベル)にあるときには大気酸化の影響で正しい測定値が得られない。   When preparing a sample for oxygen analysis, if the surface is polished using a file or a bellder as described above, frictional heat is applied to the sample and the surface is oxidized due to oxygen in the atmosphere. It is difficult to accurately quantify the amount of oxygen produced. In particular, when the oxygen amount is in a minute range (10 ppm level), a correct measurement value cannot be obtained due to the effect of atmospheric oxidation.

他方、試料調製中に可能な限り大気酸化をさせない方法として、電解研磨法がある。電解研磨法は試料を予め任意の試料重量に調整し、これを電解液中に浸漬し、陽極と陰極の両電極の間に電圧を印加して電解するという方法である。   On the other hand, there is an electropolishing method as a method for preventing atmospheric oxidation as much as possible during sample preparation. The electrolytic polishing method is a method in which a sample is adjusted to an arbitrary sample weight in advance, immersed in an electrolytic solution, and subjected to electrolysis by applying a voltage between both the anode and the cathode.

試料表面を電解研磨する場合、電解研磨中は試料が常に電解液の中にあるので、大気との接触がなく、試料の酸化が起こりにくい。   When the surface of the sample is electropolished, the sample is always in the electrolytic solution during electropolishing, so there is no contact with the atmosphere and the sample is less likely to be oxidized.

特開平05−214600号公報JP 05-214600 A 特開平09−324300号公報JP 09-324300 A

しかし、電解研磨によって分析用の試料を研磨する場合、次のような問題があった。
1.陽極及び陰極には白金電極を用いるが、試料のうち、白金電極と接触している部分は試料表面の溶解むらを生じ、均一で平滑な表面とはならない。
2.電解中に槽内の電解液が不均一となってしまう。
3.電解中における電極への通電によって電解液の温度が上昇して試料の温度も上昇し、試料を電解液から取り出したときに大気酸化が起こるおそれがある。
4.電解中には電流の流れは陽極から陰極への一方向となるが、電解液中の不純物質が試料の表面に析出してくるおそれがある。
5.試料に炭素が含まれている場合、試料が焼鈍された状態であると、試料中の炭素がセメンタイト(Fe3C)の形態で存在し、電解研磨によっても溶解しない。
However, when an analytical sample is polished by electrolytic polishing, there are the following problems.
1. Platinum electrodes are used for the anode and the cathode, but the portion of the sample that is in contact with the platinum electrode causes uneven dissolution of the sample surface and does not become a uniform and smooth surface.
2. During the electrolysis, the electrolyte in the tank becomes non-uniform.
3. When the electrode is energized during electrolysis, the temperature of the electrolytic solution rises and the temperature of the sample also rises. When the sample is taken out of the electrolytic solution, atmospheric oxidation may occur.
4). During electrolysis, the current flows in one direction from the anode to the cathode. However, impurities in the electrolyte may be deposited on the surface of the sample.
5. When the sample contains carbon, if the sample is in an annealed state, the carbon in the sample exists in the form of cementite (Fe3C) and does not dissolve even by electropolishing.

本発明はかかる問題点に鑑み、分析用試料の調製に適した電解研磨方法を提供することを課題とする。   In view of such problems, an object of the present invention is to provide an electrolytic polishing method suitable for preparing an analytical sample.

そこで、本発明に係る電解研磨方法は、研磨対象物の表面を電解研磨するにあたり、電解槽に一対の電極を設けるとともに、電解槽内に電解液を入れ、回転子の回転によって電解液を攪拌し、上記一対の電極の一方を籠状電極とし、この籠状電極に研磨対象物を搭載し、籠状電極を電解液中で上下動させながら、上記一対の電極間に通電して電解研磨を行うようにしたことを特徴とする。   Therefore, in the electrolytic polishing method according to the present invention, in electrolytic polishing the surface of the object to be polished, the electrolytic bath is provided with a pair of electrodes, the electrolytic solution is placed in the electrolytic bath, and the electrolytic solution is stirred by the rotation of the rotor. Then, one of the pair of electrodes is a saddle-shaped electrode, and an object to be polished is mounted on the saddle-shaped electrode. While the saddle-shaped electrode is moved up and down in the electrolytic solution, current is passed between the pair of electrodes for electrolytic polishing. It is characterized by having performed.

本発明の第1の特徴は一方の電極を籠状とし、籠状電極に研磨対象物(以下、「研磨対象物」を単に「試料」ともいう)を搭載して籠状電極を上下動させるようにした点にある。これにより、試料のあらゆる部分が籠状電極と接触するので、溶解むらを生じることはなく、均一で平滑な表面に研磨できる。   The first feature of the present invention is that one of the electrodes has a bowl-like shape, and an object to be polished (hereinafter, “polishing object” is also simply referred to as “sample”) is mounted on the bowl-like electrode to move the bowl-shaped electrode up and down. It is in the point which did. As a result, every part of the sample comes into contact with the bowl-shaped electrode, so that there is no unevenness of dissolution and the surface can be polished to a uniform and smooth surface.

本発明の第2の特徴は電解槽内に回転子を投入し、回転子を回転させることによって電解液を攪拌するようにした点にある。これにより、電解中に槽内の電解液が不均一となることはなく、電解研磨を安定に行うことができる。   The second feature of the present invention resides in that the rotor is put into the electrolytic cell and the electrolyte is stirred by rotating the rotor. Thereby, the electrolytic solution in the tank does not become non-uniform during electrolysis, and the electropolishing can be performed stably.

電解中には試料の温度も上昇するため、電解液の温度が上昇して試料を電解液から取り出したときに大気酸化が起こるおそれがある。そこで、電解槽の周囲を冷却水で冷却し、電解液が冷却水温度以上の温度にならないようにするのがよい。   Since the temperature of the sample also rises during electrolysis, atmospheric oxidation may occur when the temperature of the electrolyte rises and the sample is taken out of the electrolyte. Therefore, it is preferable to cool the periphery of the electrolytic cell with cooling water so that the electrolyte does not reach a temperature higher than the cooling water temperature.

電解中には電流の流れを一方向にすると、電解液中の不純物質が試料の表面に析出してくるおそれがある。そこで、一対の電極に対する通電の方向を所定の時間間隔で切り換えるようにするのがよい。   If the current flow is unidirectional during electrolysis, impurities in the electrolyte solution may be deposited on the surface of the sample. Therefore, it is preferable to switch the energization direction for the pair of electrodes at a predetermined time interval.

炭素を含む試料が焼鈍された状態にあると、試料中の炭素がセメンタイト(Fe3C)の形態で存在し、電解研磨によっても溶解しない。そこで、炭素を含有する試料を溶体化処理し、炭素を固溶した試料に対して電解研磨を行うようにするのがよい。炭素は溶体化処理をしても溶解されないが、単一元素として存在しているので、極性の切り換え方式によって電解中に炭素が脱落させることができ、超音波洗浄中にも脱落する。   When the sample containing carbon is in an annealed state, the carbon in the sample exists in the form of cementite (Fe3C) and does not dissolve even by electropolishing. Therefore, it is preferable to subject the sample containing carbon to a solution treatment, and to perform electrolytic polishing on the sample in which the carbon is dissolved. Although carbon is not dissolved even after solution treatment, it exists as a single element. Therefore, carbon can be removed during electrolysis by the polarity switching method, and is also removed during ultrasonic cleaning.

試料はそのまま電解研磨してもよいが、平滑な表面を得る上で、表面をヤスリ又はベルターによって機械研磨したものを用いるのがよい。   The sample may be electrolytically polished as it is, but in order to obtain a smooth surface, it is preferable to use a surface whose surface is mechanically polished with a file or a belt.

電解研磨の終了後は直ちに、試料を電解液から取り出し、水洗し、アルコール又はアセトンなどの有機溶媒を用いて超音波洗浄し、脱水・脱脂を行うと、表面酸化を少なくできる。なお、いずれの工程も数秒程度の時間を与えればよく、長い時間超音波洗浄を行うと、超音波によって洗浄液が加熱され、表面酸化の原因となるおそれがある。洗浄工程中は試料表面は乾燥させてはならず、洗浄液で濡れた状態とする。試料表面が洗浄液で濡れていると、試料を大気中に取り出しても洗浄液が気化して試料表面を覆い、しかも気化するときに試料から気化熱を奪い試料を冷却することになるので、大気酸化は抑制される。   Immediately after the completion of the electropolishing, the sample is taken out from the electrolytic solution, washed with water, ultrasonically washed with an organic solvent such as alcohol or acetone, and dehydration / degreasing, whereby surface oxidation can be reduced. It should be noted that in any process, it is sufficient to give a time of several seconds. If ultrasonic cleaning is performed for a long time, the cleaning liquid is heated by the ultrasonic wave, which may cause surface oxidation. During the cleaning process, the surface of the sample must not be dried and is in a wet state with the cleaning liquid. If the sample surface is wet with the cleaning solution, the cleaning solution will evaporate and cover the sample surface even when the sample is taken out into the atmosphere. Is suppressed.

即ち、分析用試料を調製するにあたっては電解研磨された後の試料を水洗した後、有機溶媒中で超音波洗浄して脱水・脱脂するのがよい。試料の乾燥は冷風乾燥がよいが、有機溶媒にアセトンを使用したときにはアセトンの沸点が53°Cと低いので、そのまま分析を行うくらいが大気酸化防止対策としてよい。   That is, in preparing a sample for analysis, it is preferable that the electropolished sample is washed with water and then ultrasonically washed in an organic solvent for dehydration and degreasing. The sample may be dried with cold air, but when acetone is used as the organic solvent, the boiling point of acetone is as low as 53 ° C., so that the analysis can be performed as it is as a measure against atmospheric oxidation.

また、本発明に係る電解研磨装置は、研磨対象物の表面を電解研磨するのに適した電解研磨装置において、電解液が入れられる電解槽と、該電解槽の槽底に投入され、その回転によって電解液を攪拌する回転子と、上記電解槽の槽底外側に設けられ、回転軸に上記回転子を磁着する磁石が取付けられた駆動モータと、上記電解槽中の電解液に浸漬され、一方の電極が研磨対象物を搭載し得る籠状をなす一対の電極と、上記籠状電極を上下動させる上下動機構と、上記一対の電極間に電流を通電する通電回路と、を備えたことを特徴とする。   Further, an electropolishing apparatus according to the present invention is an electropolishing apparatus suitable for electropolishing the surface of an object to be polished. An electrolytic bath in which an electrolytic solution is put, and the bottom of the electrolytic bath are charged and rotated. A rotor that stirs the electrolyte solution, a drive motor that is provided on the outside of the bottom of the electrolytic cell, and on which a magnet for magnetizing the rotor is attached to a rotating shaft, and is immersed in the electrolytic solution in the electrolytic cell. A pair of electrodes having a bowl shape on which one electrode can mount an object to be polished, a vertical movement mechanism for moving the bowl electrode up and down, and an energization circuit for passing current between the pair of electrodes. It is characterized by that.

本発明の電解研磨装置では電解槽の周囲に冷却水を入れた冷却水槽又は冷却水を流通させる冷却水通路を設けるのがよい。また、通電回路は、一対の電極に対する通電の方向を一定の時間間隔で切り換えるように構成するのがよい。   In the electropolishing apparatus of the present invention, it is preferable to provide a cooling water tank containing cooling water or a cooling water passage for circulating the cooling water around the electrolytic tank. The energization circuit may be configured to switch the energization direction for the pair of electrodes at a constant time interval.

また、電解研磨装置には、洗浄冷却水が入れられる洗浄冷却水槽と、該洗浄冷却水槽内に浸漬され、有機溶媒が入れられる洗浄槽と、上記洗浄冷却水槽内の洗浄冷却水を介して上記洗浄槽内の研磨対象物に超音波を与えて超音波洗浄する超音波発生器と、を更に備えるのがよい。   Further, the electrolytic polishing apparatus includes a cleaning cooling water tank in which the cleaning cooling water is placed, a cleaning tank immersed in the cleaning cooling water tank and in which an organic solvent is placed, and the cleaning cooling water in the cleaning cooling water tank. It is preferable to further include an ultrasonic generator that applies ultrasonic waves to the object to be polished in the cleaning tank to perform ultrasonic cleaning.

さらに、電解槽の上方を開閉可能な閉空間に構成するカバーと、カバー内の電解液の蒸気を吸着する吸着器と、を備えるのがよい。吸着器にはガラスウールにアルカリ性剤をしみ込ませた脱臭剤と活性炭を内蔵するのがよい。   Furthermore, it is good to provide the cover comprised in the closed space which can open and close the upper direction of an electrolytic cell, and the adsorption device which adsorb | sucks the vapor | steam of the electrolyte solution in a cover. The adsorber should contain a deodorant obtained by impregnating a glass wool with an alkaline agent and activated carbon.

以下、本発明を図面に示す具体例に基づいて詳細に説明する。図1ないし図5は本発明に係る電解研磨装置の好ましい実施形態を示す。図において、電解研磨装置のハウジング10は側面大略L字状をなし、ハウジング10の上面前半部には左半部に平面四角形状の冷却水槽11が設けられ、右半部に平面四角形状の超音波洗浄冷却水槽12が設けられている。   Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. 1 to 5 show a preferred embodiment of an electropolishing apparatus according to the present invention. In the figure, the housing 10 of the electropolishing apparatus has a substantially L-shaped side surface, and a flat quadrangular cooling water tank 11 is provided on the left half of the upper half of the upper surface of the housing 10, and a flat quadrangular ultra-high shape is provided on the right half. A sonic cleaning cooling water tank 12 is provided.

冷却水槽11内には電解槽13が設けられ、電解槽13内には電解液が入れられ、又電解槽13内には一対の白金電極14、15が浸漬され、一方の白金電極15は編み籠状に形成され、試料Pが搭載され、他方の白金電極14は電解槽13又はハウジング10に適切な治具によって支持されている。   An electrolytic tank 13 is provided in the cooling water tank 11, an electrolytic solution is placed in the electrolytic tank 13, and a pair of platinum electrodes 14 and 15 are immersed in the electrolytic tank 13, and one platinum electrode 15 is knitted. The sample P is formed in a bowl shape, and the other platinum electrode 14 is supported on the electrolytic cell 13 or the housing 10 by an appropriate jig.

編み籠状の白金電極(以下、籠型電極という)15は吊り部材16によって吊り下げられ、吊り部材16の上端はアーム17の先端に取付けられ、アーム17の基部はロッド18に取付けられ、ロッド18はブッシュ19によって取付けブラケット20にスライド自在に支持され、取付けブラケット20はハウジング10に取付けられている。   A braided platinum electrode (hereinafter referred to as a saddle electrode) 15 is suspended by a suspension member 16, the upper end of the suspension member 16 is attached to the tip of an arm 17, and the base of the arm 17 is attached to a rod 18. 18 is slidably supported on a mounting bracket 20 by a bush 19, and the mounting bracket 20 is attached to the housing 10.

ロッド18の下端は楕円形状のカム21の外周カム面に摺接され、カム21はギアードモータ22の回転軸22Aに固定されており、こうしてカム21の回転によって支柱18が上下され籠型電極15を上下動させる上下動機構23が構成されている。   The lower end of the rod 18 is slidably contacted with the outer peripheral cam surface of the elliptical cam 21, and the cam 21 is fixed to the rotating shaft 22 </ b> A of the geared motor 22, and thus the column 18 is moved up and down by the rotation of the cam 21. A vertical movement mechanism 23 for moving the vertical movement is configured.

また、冷却水槽11内には冷却水が入れられ、これによって電解槽13内の電解液の温度上昇が抑制されるようになっている。   In addition, cooling water is placed in the cooling water tank 11 so that the temperature rise of the electrolytic solution in the electrolytic tank 13 is suppressed.

さらに、電解槽13の槽底には磁着可能な材料で作製された回転子25が投入され、又冷却水槽11の槽底外側には磁石26が設けられ、磁石26は駆動モータ27の回転軸に固定されており、磁石26の回転によって回転子25が回転されて電解槽13内の電解液を攪拌するようになっている。   Furthermore, a rotor 25 made of a material that can be magnetized is placed on the bottom of the electrolytic bath 13, and a magnet 26 is provided on the outside of the bottom of the cooling water bath 11, and the magnet 26 rotates the drive motor 27. The rotor 25 is rotated by the rotation of the magnet 26 so that the electrolyte in the electrolytic cell 13 is agitated.

白金電極14及び籠型電極15には通電線が接続され、通電線には極性の切換え器28、ON・OFFスイッチ30及び電源29が接続されており、白金電極14及び籠型電極15の間には電流が流されるとともに、設定された時間間隔で通電の方向が切り換えられるようになっている。   An energization line is connected to the platinum electrode 14 and the saddle electrode 15, and a polarity switch 28, an ON / OFF switch 30 and a power source 29 are connected to the energization line, and between the platinum electrode 14 and the saddle electrode 15. In addition, a current is passed through the switch, and the direction of energization is switched at set time intervals.

洗浄冷却水槽12内には洗浄冷却水が入れられるとともに、第1、第2の洗浄槽31、32が浸漬され、第1の洗浄槽31及び第2の洗浄槽32には有機溶媒が入れられ、洗浄冷却水槽12の下側には超音波発生器33が設けられている。   The cleaning cooling water tank 12 is filled with cleaning cooling water, the first and second cleaning tanks 31 and 32 are immersed, and the first cleaning tank 31 and the second cleaning tank 32 are filled with an organic solvent. An ultrasonic generator 33 is provided below the cleaning cooling water tank 12.

また、ハウジング10の上面後半部は段部が立ち上がり形成され、段部上面は傾斜され、傾斜面にはON・OFFスイッチ30、パイロットランプ35、極性切換えタイマー36、直流電圧計37、直流電流計38、出力調整器39及び超音波洗浄器のスイッチ40がレイアウトされている。   In addition, a stepped portion is formed on the rear half of the upper surface of the housing 10, and the upper surface of the stepped portion is inclined. On the inclined surface, an ON / OFF switch 30, a pilot lamp 35, a polarity switching timer 36, a DC voltmeter 37, and a DC ammeter 38 are provided. The output regulator 39 and the ultrasonic cleaner switch 40 are laid out.

さらに、ハウジング10の側部には脱臭器41が設けられ、脱臭器41内には脱臭剤及び活性炭が内蔵されるとともに、吸引ファン及び駆動モータ(図示せず)が設けられ、脱臭器41の吸引口42は電解槽13の上方に設けられるとともに、電解槽13及び冷却水槽11の上方は透明なカバー43がこれらを覆うように設けられる一方、脱臭処理された排気は排気口44から排気されるようになっている。   Further, a deodorizer 41 is provided on the side of the housing 10, and a deodorizer and activated carbon are built in the deodorizer 41, and a suction fan and a drive motor (not shown) are provided. The suction port 42 is provided above the electrolytic bath 13, and a transparent cover 43 is provided above the electrolytic bath 13 and the cooling water bath 11 so as to cover them, while the deodorized exhaust gas is exhausted from the exhaust port 44. It has become so.

分析用の試料Pを調製する場合、試料Pを切断し、ヤスリ及びベルターなどで表面を研磨した後、必要に応じて溶体化処理を行い、炭素を固溶させる。こうして準備が済むと、試料Pを籠型電極15内に搭載し、スイッチ30をONにする。すると、白金電極14と籠型電極15との間に電流が流れ、試料Pが電解研磨される。   When preparing the sample P for analysis, the sample P is cut, the surface is polished with a file and a belter, etc., and then subjected to a solution treatment as necessary to solidify the carbon. When the preparation is completed, the sample P is mounted in the saddle electrode 15 and the switch 30 is turned on. Then, a current flows between the platinum electrode 14 and the saddle electrode 15 and the sample P is electropolished.

タイマー36が設定された時間になると、極性切換え器28によって極性が切り換えられ、白金電極14と籠型電極15との間に流れる電流の方向が切り換えられる。   When the timer 36 reaches the set time, the polarity is switched by the polarity switcher 28, and the direction of the current flowing between the platinum electrode 14 and the saddle electrode 15 is switched.

このとき、電圧計37及び電流計38を監視し、通電電流が適切な値となるように、出力調整器37で調整する。電解研磨中における電圧は1.5V以下、電流は1A以下とし、あまり激しい電解反応が起こらないようにする。   At this time, the voltmeter 37 and the ammeter 38 are monitored and adjusted by the output regulator 37 so that the energization current becomes an appropriate value. During electropolishing, the voltage is 1.5 V or less and the current is 1 A or less so as not to cause a very vigorous electrolytic reaction.

また、籠型電極15は上下動機構23によって上下動され、又回転子25はモータ27と磁石26とによって回転され、電解槽13内の電解液を攪拌する。   The vertical electrode 15 is moved up and down by a vertical movement mechanism 23, and the rotor 25 is rotated by a motor 27 and a magnet 26 to stir the electrolytic solution in the electrolytic cell 13.

電解研磨が済むと、試料Pを第1の洗浄槽31に投入した後引き上げて第2の洗浄槽32に投入し、脱水及び脱脂を行う。このとき、超音波発生器33を作動させ、脱水及び脱脂時に超音波を与えて超音波洗浄を行わせる。   After the electrolytic polishing is completed, the sample P is put into the first cleaning tank 31 and then pulled up and put into the second cleaning tank 32 to perform dehydration and degreasing. At this time, the ultrasonic generator 33 is operated to apply ultrasonic waves during dehydration and degreasing to perform ultrasonic cleaning.

こうして洗浄が済むと、例えばドライヤーから冷風を吹き付けて有機溶媒を除去し、分析を行う。   When the washing is completed, the organic solvent is removed by blowing cold air from a dryer, for example, and the analysis is performed.

例えば、本例の装置を用い、次のような条件の下に試料を調製した。
供試料;高純度鉄(約1g)
電解液;濃塩酸
電解電流値;0、2A
電解時間;約5秒毎に極性を切り換えながら電解研磨を3回繰り返し、合計30秒間電解研磨を行った。
洗浄;水、エチルアルコール、アセトンを使用し、各数秒間行う。
For example, using the apparatus of this example, a sample was prepared under the following conditions.
Sample; high-purity iron (about 1 g)
Electrolyte solution: Concentrated hydrochloric acid Electrolytic current value: 0, 2A
Electrolysis time: Electropolishing was repeated three times while switching the polarity every about 5 seconds, and the electropolishing was performed for a total of 30 seconds.
Washing: Use water, ethyl alcohol and acetone for several seconds each.

1.試料の表面観察
試料をヤスリ研磨しているので、電解研磨前には表面に凹凸状が観察されたが、電解研磨後は表面が平滑となり、マクロ組織が観察された。
1. Surface observation of sample Since the sample was filed, irregularities were observed on the surface before electropolishing, but the surface became smooth after electropolishing and a macrostructure was observed.

2.XSPによる表面酸素測定
図6はXSPによる表面酸素量を試料深さ方向に定量した結果を示す。このように、極表面層の酸素量は41〜47%と高く、これを積分して試料重量比で換算すると、約2ppmに相当する。これは試料を最終段階で冷風乾燥して大気に晒した結果であると考えられる。従って、できる限り大気に触れないような対策が重要となると考えられる。
2. Measurement of surface oxygen by XSP FIG. 6 shows the result of quantifying the amount of surface oxygen by XSP in the sample depth direction. Thus, the amount of oxygen in the extreme surface layer is as high as 41 to 47%, and when this is integrated and converted in terms of the sample weight ratio, it corresponds to about 2 ppm. This is considered to be a result of the sample being dried in the cold air in the final stage and exposed to the atmosphere. Therefore, it is important to take measures to avoid exposure to the atmosphere as much as possible.

3.酸素分析結果の1例
図7はヤスリ研磨法と電解研磨法による酸素の比較分析結果を示す。電解研磨法ではアセトンによる洗浄の最終段階で、ドライヤーによる冷風乾燥Aを行って酸素分析した結果(A法)と、乾燥せずに酸素分析を行った結果(B法)を示す。なお、酸素分析は不活性ガス雰囲気高温溶融抽出−赤外線吸収測定法を用いた。このように、酸素分析を行う最終段階まで、大気酸化には厳重な注意を要することが確認された。この点で本例の電解研磨方法は分析試料の調製に最適であった。
3. Example of Oxygen Analysis Results FIG. 7 shows a comparative analysis result of oxygen by the file polishing method and the electrolytic polishing method. In the electropolishing method, the results of oxygen analysis by performing cold air drying A with a drier at the final stage of cleaning with acetone (Method A) and the results of performing oxygen analysis without drying (Method B) are shown. In addition, the oxygen analysis used the inert gas atmosphere high temperature melt extraction-infrared absorption measuring method. In this way, it was confirmed that strict caution was required for atmospheric oxidation until the final stage of oxygen analysis. In this respect, the electropolishing method of this example was optimal for the preparation of the analytical sample.

なお、本例では図4に示す上下動機構23を採用したが、他の方式を採用することもできる。   In this example, the vertical movement mechanism 23 shown in FIG. 4 is adopted, but other methods can be adopted.

本発明に係る電解研磨装置の好ましい実施形態の全体構成を示す概略斜視図である。It is a schematic perspective view which shows the whole structure of preferable embodiment of the electropolishing apparatus which concerns on this invention. 上記実施形態を示す正面図である。It is a front view which shows the said embodiment. 上記実施形態を示す平面図である。It is a top view which shows the said embodiment. 上記実施形態における上下動機23の1例を示す斜視図である。It is a perspective view which shows one example of the vertical motive 23 in the said embodiment. 上記実施形態における電気系の構成を示す図である。It is a figure which shows the structure of the electric system in the said embodiment. 本例の作用を説明するための図である。It is a figure for demonstrating the effect | action of this example. 本例の作用を説明するための図である。It is a figure for demonstrating the effect | action of this example.

符号の説明Explanation of symbols

10 ハウジング
11 冷却水槽
12 超音波洗浄冷却水槽
13 電解槽
14 白金電極
15 籠型電極
23 上下動機構
25 回転子
26 磁石
27 駆動モータ
31 第1の洗浄槽
32 第2の洗浄槽
33 超音波発生器
41 脱臭器
43 カバー
DESCRIPTION OF SYMBOLS 10 Housing 11 Cooling water tank 12 Ultrasonic washing cooling water tank 13 Electrolytic tank 14 Platinum electrode 15 Vertical electrode 23 Vertical movement mechanism 25 Rotor 26 Magnet 27 Drive motor 31 1st washing tank 32 2nd washing tank 33 Ultrasonic generator 41 Deodorizer 43 Cover

Claims (4)

研磨対象物の表面を電解研磨するのに適した電解研磨装置において、
電解液が入れられる電解槽(13)と、
該電解槽(13)の槽底に投入され、その回転によって電解液を攪拌する回転子(25)と、
上記電解槽(13)の槽底外側に設けられ、回転軸に上記回転子(25)を磁着する磁石(26)が取付けられた駆動モータ(27)と、
上記電解槽(13)中の電解液に浸漬され、一方の電極(15)が研磨対象物を搭載し得る籠状をなす一対の電極(14,15)と、
上記籠状電極(15)を上下動させる上下動機構(23)と、
上記一対の電極(14,15)間に電流を通電する通電回路と、
有機溶媒が入れられ、超音波洗浄によって電解研磨後の研磨対象物を脱水・脱脂する洗浄槽(31,32)と、
洗浄冷却水が入れられ、上記洗浄槽(31,32)が浸漬され、上記洗浄冷却水によって上記洗浄槽(31,32)を冷却する洗浄冷却水槽(12)と、
該洗浄冷却水槽(12)内の洗浄冷却水を介して上記洗浄槽(31,32)内の有機溶剤に超音波を与えることによって研磨対象物を超音波洗浄する超音波発生器(33)と、
を備えたことを特徴とする電解研磨装置。
In an electropolishing apparatus suitable for electropolishing the surface of an object to be polished,
An electrolytic cell (13) in which an electrolytic solution is placed;
A rotor (25) that is put into the tank bottom of the electrolytic cell (13) and stirs the electrolytic solution by its rotation;
A drive motor (27) provided on the outside of the bottom of the electrolytic cell (13) and having a magnet (26) for magnetizing the rotor (25) attached to a rotating shaft;
A pair of electrodes (14, 15) that are immersed in an electrolytic solution in the electrolytic cell (13) and in which one electrode (15) has a bowl-like shape on which an object to be polished can be mounted;
A vertical movement mechanism (23) for moving the bowl-shaped electrode (15) up and down;
An energization circuit for energizing a current between the pair of electrodes (14, 15) ;
A cleaning tank (31, 32) in which an organic solvent is placed, and the object to be polished after electrolytic polishing is dehydrated and degreased by ultrasonic cleaning;
A washing cooling water tank (12) in which washing cooling water is put, the washing tank (31, 32) is immersed, and the washing tank (31, 32) is cooled by the washing cooling water;
An ultrasonic generator (33) for ultrasonically cleaning an object to be polished by applying ultrasonic waves to the organic solvent in the cleaning tank (31, 32) via the cleaning cooling water in the cleaning cooling water tank (12); ,
An electropolishing apparatus comprising:
上記電解槽(13)の周囲を冷却する冷却水槽(11)又は上記電解槽の周囲に冷却水を流通させる冷却水通路が設けられている請求項1記載の電解研磨装置。 The cooling water tank (11) for cooling the periphery of the cell (13) or the electrolyzer electrolytic polishing apparatus according to claim 1 Symbol placement cooling water passage for circulating the cooling water is provided around the. 上記通電回路は、上記一対の電極に対する通電の方向を一定の時間間隔で切り換えるようになっている請求項1記載の電解研磨装置。 The energization circuit, the pair of the electrode so as to switch the direction of current at regular time intervals and claim 1 Symbol placement of electrolytic polishing apparatus. 上記電解槽の上方を開閉可能な閉空間に構成するカバーと、該カバー内の電解液の蒸気を吸着する吸着器と、を備えた請求項1記載の電解研磨装置。 The cover that constitutes the upper electrolytic cell between openable closed, electrolytic polishing apparatus according to claim 1 Symbol placement with a, and adsorber that adsorbs the vapor of electrolyte in the cover.
JP2007017835A 2007-01-29 2007-01-29 Electropolishing equipment Expired - Fee Related JP5005369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017835A JP5005369B2 (en) 2007-01-29 2007-01-29 Electropolishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017835A JP5005369B2 (en) 2007-01-29 2007-01-29 Electropolishing equipment

Publications (2)

Publication Number Publication Date
JP2008184639A JP2008184639A (en) 2008-08-14
JP5005369B2 true JP5005369B2 (en) 2012-08-22

Family

ID=39727881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017835A Expired - Fee Related JP5005369B2 (en) 2007-01-29 2007-01-29 Electropolishing equipment

Country Status (1)

Country Link
JP (1) JP5005369B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174988B1 (en) 2010-06-29 2012-08-17 현대제철 주식회사 Device for making electrolytic polishing of surface
JP6256399B2 (en) * 2015-03-26 2018-01-10 Jfeスチール株式会社 Electropolishing apparatus and electropolishing method
CN110230067B (en) * 2019-07-15 2021-06-04 齐河承泽照明金属涂装有限公司 A pickling bath washs auxiliary assembly for surface treatment process
CN113670699A (en) * 2021-08-18 2021-11-19 西安建筑科技大学 Ferrite heat-resistant stainless steel EBSD sample and preparation method thereof
CN114088497B (en) * 2021-12-02 2023-09-19 北京星航机电装备有限公司 Preparation device and method of titanium alloy EBSD sample

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849217U (en) * 1971-10-13 1973-06-28
JP3411391B2 (en) * 1994-06-08 2003-05-26 ソマックス株式会社 Electrode for electrolysis and device for attaching the electrode to electrolyte bath
JP3055434B2 (en) * 1995-07-14 2000-06-26 株式会社村田製作所 Plating equipment for chip-type electronic components
JP4651837B2 (en) * 2001-03-09 2011-03-16 シチズンホールディングス株式会社 Tableware and manufacturing method thereof
JP4124744B2 (en) * 2004-01-26 2008-07-23 山口県 Method for electrolytic polishing of titanium or titanium alloy

Also Published As

Publication number Publication date
JP2008184639A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP5005369B2 (en) Electropolishing equipment
Akkermans et al. Sono-electroanalysis: Application to the detection of lead in wine
RU2009107436A (en) INSTALLATION FOR REMOVING THE COVERING AND METHOD OF ITS OPERATION
RU2323279C1 (en) Plant for electrolytic-plasma polishing
KR20200076047A (en) surface treatment apparatus and surface treatment method of test peice
JP6256399B2 (en) Electropolishing apparatus and electropolishing method
JPH0671544B2 (en) Method and apparatus for stirring liquid in liquid tank
JP2004132879A (en) Highly sensitive gas analysis system, and gas analysis method using it
JP2011231354A (en) Electrolytic polishing device
JP2006514712A (en) Electro-polishing method for nickel-titanium alloy dental instruments
DE59208592D1 (en) METHOD, MEANS AND DEVICE FOR ELECTRODIALYTIC REGENERATION OF THE ELECTROLYTE OF A GALVANIC BATH OR THE LIKE.
Lv et al. Characterization of bubble behavior in aluminum reduction cells
Ghanem et al. Microwave activation of processes in mesopores: the thiourea electrooxidation at mesoporous platinum
CN218629777U (en) Experimental equipment for water source field detection
JP2009534530A (en) Surface treatment equipment, especially by electrolysis for metal parts
JP3593395B2 (en) Cleaning method in penetration test
JP5725910B2 (en) Pickling treatment method and pickling treatment apparatus
CN219886219U (en) Metal button electroplating device
JP2006176885A (en) Working method with hydroxy group in ultrapure water
RU2320786C2 (en) Plant for electrolytic-discharge treatment
CN113897662B (en) Movable device and method for electropolishing TC4 titanium alloy
JP2013133507A (en) Electrolytic polishing method of aluminum member, and aluminum member
JP4337827B2 (en) Processing method with hydroxyl groups in ultrapure water
JP2000345392A5 (en)
SU392148A1 (en) INSTALLATION FOR ELECTROCHEMICAL POLISHING AND POISONING OF GRINDS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees