JP2011231354A - Electrolytic polishing device - Google Patents

Electrolytic polishing device Download PDF

Info

Publication number
JP2011231354A
JP2011231354A JP2010100718A JP2010100718A JP2011231354A JP 2011231354 A JP2011231354 A JP 2011231354A JP 2010100718 A JP2010100718 A JP 2010100718A JP 2010100718 A JP2010100718 A JP 2010100718A JP 2011231354 A JP2011231354 A JP 2011231354A
Authority
JP
Japan
Prior art keywords
polished
measured
polishing
cylindrical container
electropolishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010100718A
Other languages
Japanese (ja)
Other versions
JP5455769B2 (en
Inventor
Tomosuke Yumura
友亮 湯村
Etsuro Shimizu
悦郎 志水
Keiichi Moriya
慶一 守屋
Yoshiji Hamano
佳次 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010100718A priority Critical patent/JP5455769B2/en
Publication of JP2011231354A publication Critical patent/JP2011231354A/en
Application granted granted Critical
Publication of JP5455769B2 publication Critical patent/JP5455769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve reduction in polishing time and smoothing of a polished surface by efficiently polishing the surface of a member to be measured (a member to be polished).SOLUTION: In the lower end edge of a cylindrical container 11 to the inside of which is fed an electrolyte solution 18, a seal 12 is arranged to prevent leakage. A motor 14 rotates a sliding member 16 to rub the surface of an electrolytic polishing region 1a, and a stirring member 17 stirs the electrolyte solution 18, which is energized by a direct current power source 19. Rubbing with a sliding member 16 can effectively remove a nonconducting film to equally feed the electrolyte solution 18 to the electrolytic polishing region 1a, thus being capable of achieving improvement in the speed of electrolytic polishing and smoothing of a polished surface.

Description

本発明は電解研磨装置に関し、被測定部材(被研磨部材)を効率的に研磨することができるように工夫したものである。   The present invention relates to an electrolytic polishing apparatus, which is devised so that a member to be measured (member to be polished) can be efficiently polished.

金属部品に加工や溶接をすることにより発生する残留応力は、割れ等の原因となることがある。また、残留応力は圧縮応力となると、疲労破壊を抑制したり対摩耗性を向上させたりするので、機械部品によっては積極的に付与することもある。   Residual stress generated by processing or welding a metal part may cause cracking or the like. Further, when the residual stress becomes a compressive stress, fatigue fracture is suppressed or wear resistance is improved, so that it may be positively applied depending on mechanical parts.

このような残留応力の大きさや深さを非破壊で検査する方法として、X線応力測定方法がある。
X線応力測定方法とは、被測定部材に応力が作用すると結晶に弾性変形が生じて結晶格子面の間隔の収縮(圧縮応力の場合)や膨張(引っ張り応力の場合)となって現れるため、X線回折を利用して格子面間隔を測定することにより、残留応力を測定する方法である。
As a method for inspecting the magnitude and depth of such residual stress in a nondestructive manner, there is an X-ray stress measurement method.
The X-ray stress measurement method means that when a stress acts on the member to be measured, the crystal is elastically deformed and appears as contraction (in the case of compressive stress) or expansion (in the case of tensile stress) of the crystal lattice plane interval. This is a method of measuring residual stress by measuring the lattice spacing using X-ray diffraction.

上記のX線応力測定方法を実施する際には、被測定部材の表面が平滑であることが必要である。また、深さ方向の各部分での残留応力を測定するために、被測定部材を測定深さまで研磨して、その深さ位置でX線応力測定をする必要がある。   When carrying out the above X-ray stress measurement method, the surface of the member to be measured needs to be smooth. Further, in order to measure the residual stress in each part in the depth direction, it is necessary to polish the member to be measured to the measurement depth and perform X-ray stress measurement at the depth position.

ここで、X線応力測定のために、被測定部材の表面を平滑にしたり、所定深さまで研磨したりする従来の手法を図3、図4を参照して説明する。   Here, a conventional method of smoothing the surface of the member to be measured or polishing to a predetermined depth for measuring the X-ray stress will be described with reference to FIGS.

図3及び図4に示すように、金属から成る被測定部材(被研磨部材)1の表面に、ガムテープ等で形成した底面が平面となっている皿状のマスキング部材2を貼付する。マスキング部材2の底面には、例えば直径が8〜10mmの孔2aを形成しており、この孔2aの部分において、被測定部材1の表面が露出するようになっている。   As shown in FIGS. 3 and 4, a dish-shaped masking member 2 having a flat bottom surface formed of gum tape or the like is attached to the surface of a member to be measured (a member to be polished) 1 made of metal. A hole 2a having a diameter of, for example, 8 to 10 mm is formed on the bottom surface of the masking member 2, and the surface of the member 1 to be measured is exposed at the hole 2a.

このようなマスキング部材2の内部に、電解液3を入れるとともに、直流電源4により、被測定部材1に正電圧(+電圧)を印加し、ピンセット5に負電圧(−電圧)を印加する。
電解液3としては、例えば塩化アンモニウム過飽和水溶液や、塩酸とアルコールとの混合液を採用している。
The electrolytic solution 3 is placed inside the masking member 2, and a positive voltage (+ voltage) is applied to the member 1 to be measured by the DC power supply 4, and a negative voltage (−voltage) is applied to the tweezers 5.
As the electrolytic solution 3, for example, an ammonium chloride supersaturated aqueous solution or a mixed solution of hydrochloric acid and alcohol is employed.

作業者はゴム手袋をして、ピンセット5で綿6を把持し、ピンセット5を電解液3中に浸漬しつつ、孔2aから露出した被測定部材1の表面を綿6で擦る。
このように、ピンセット5を電解液3中に浸漬することにより通電がされて、孔2aから露出した被測定部材1の電解研磨が行われる。また、孔2aから露出した被測定部材1の表面を綿6で擦ることにより、電解研磨に伴い発生する不導体膜を除去することができ、継続した電圧印加を確保して電解研磨を促進している。
The operator wears rubber gloves, grips the cotton 6 with the tweezers 5, and rubs the surface of the member 1 to be measured exposed from the hole 2 a with the cotton 6 while immersing the tweezers 5 in the electrolytic solution 3.
In this way, the tweezers 5 are energized by immersing them in the electrolytic solution 3, and the member 1 to be measured exposed from the hole 2a is electropolished. Further, by rubbing the surface of the member 1 to be measured exposed from the hole 2a with the cotton 6, the nonconductive film generated along with the electropolishing can be removed, and the continuous voltage application is ensured to promote the electropolishing. ing.

上記の作業により被測定部材(被研磨部材)1のうち、孔2aから露出する部分の表面が電解研磨されたら、電解液3をマスキング部材2から排出し、更にマスキング部材2を被測定部材1から取り外し、被測定部材1の表面を洗浄してから、被測定部材1の表面のうち電解研磨した部分に対してX線応力測定をする。   When the surface of the portion exposed from the hole 2a of the member to be measured (member to be polished) 1 is electrolytically polished by the above operation, the electrolytic solution 3 is discharged from the masking member 2, and the masking member 2 is further removed from the member 1 to be measured. Then, after cleaning the surface of the member 1 to be measured, X-ray stress measurement is performed on the electropolished portion of the surface of the member 1 to be measured.

その後、再び図3及び図4のような状態をセッティングして、被測定部材1の表面のうち、前回において電解研磨をした部分に、今回の新たなマスキング部材2の孔2aを位置合わせして、前回と同様にして、同じ部分を電解研磨して所定深さ(例えば100μm、または、0.25mm)まで深くする。
被測定部材1のうち孔2aから露出した部分が、電解研磨により深くなり、別の装置により計測した深さが所定深さになったら、電解液3をマスキング部材2から排出し、更にマスキング部材2を被測定部材1から取り外し、被測定部材1の表面を洗浄してから、被測定部材1の表面のうち電解研磨した部分に対してX線応力測定をする。
Thereafter, the state as shown in FIGS. 3 and 4 is set again, and the hole 2a of the new masking member 2 of this time is aligned with the portion of the surface of the member 1 to be measured that has been previously electropolished. In the same manner as the previous time, the same portion is electropolished and deepened to a predetermined depth (for example, 100 μm or 0.25 mm).
When the portion of the member to be measured 1 exposed from the hole 2a becomes deeper by electrolytic polishing and the depth measured by another apparatus reaches a predetermined depth, the electrolytic solution 3 is discharged from the masking member 2, and further the masking member 2 is removed from the member 1 to be measured, and the surface of the member 1 to be measured is washed, and then the X-ray stress measurement is performed on the electropolished portion of the surface of the member 1 to be measured.

その後、同様な操作を繰り返し、深さ方向の異なる複数の深さ位置において、X線応力測定をする。   Thereafter, the same operation is repeated, and X-ray stress measurement is performed at a plurality of depth positions having different depth directions.

特開平7−204935号公報JP 7-204935 A 特開平2−301600号公報JP-A-2-301600 特開平7−248305号公報JP 7-248305 A

ところで図3,図4に示す従来技術では、人間の手でピンセット5を握り、ピンセット5の先に把持した綿6で被測定部材1の表面を擦っているため、面倒で疲労の大きな作業になっていた。   By the way, in the prior art shown in FIGS. 3 and 4, since the tweezers 5 are gripped by a human hand and the surface of the member 1 to be measured is rubbed with the cotton 6 gripped at the tip of the tweezers 5, the work is troublesome and causes a lot of fatigue. It was.

また研磨量は、電流値と通電時間によって推定しているが、ピンセット5を作業者が握って作業しているため、通電量が一定化しなかったり、不導体膜の除去が一定または均一でなかったりすることがあり、推定した通りに研磨量が得られなかったり、研磨面が平坦にならないことがある。この場合には、所定の深さまで研磨するのに、図3,図4に示すセッティング状態を複数回行う必要があることもあった。   The polishing amount is estimated based on the current value and the energization time. However, since the operator holds the tweezers 5 and works, the energization amount is not constant and the removal of the non-conductive film is not constant or uniform. As estimated, the polishing amount may not be obtained or the polished surface may not be flat. In this case, in order to polish to a predetermined depth, it may be necessary to perform the setting state shown in FIGS. 3 and 4 a plurality of times.

更に、上記の電解研磨をするには、直流電源4が設置されている試験室に、被測定部材1を搬入してきて試験を行わなければならず、簡易に電解研磨を行うことはできなかった。   Furthermore, in order to perform the above-described electrolytic polishing, the member to be measured 1 must be carried into the test chamber in which the DC power supply 4 is installed and the test must be performed, and the electrolytic polishing cannot be easily performed. .

本発明は、上記従来技術に鑑み、人間による作業を極力省き、効率的な研磨(研磨時間の短縮、研磨面の平滑化)を可能とする電解研磨装置を提供することを目的とする。   An object of the present invention is to provide an electropolishing apparatus that eliminates human work as much as possible and enables efficient polishing (reduction of polishing time and smoothing of a polished surface).

上記課題を解決する本発明の構成は、
一方の開口端縁にシール材が施されており、前記シール材が被研磨部材の表面に接する状態で前記被研磨部材の表面に配置されると共に、内部空間に電解液が注入される筒型容器と、
前記筒型容器の内部に配置されて、前記被研磨部材の表面を擦る摺動部材と、
前記筒型容器に設置されると共に、前記摺動部材を摺動させる摺動手段とを有することを特徴とする。
この場合において、
前記摺動手段は、モータと、モータの回転力を前記摺動部材に伝達する回転軸とで構成されていることを特徴とし、
前記回転軸には、前記電解液を攪拌する攪拌部材が取り付けられていることを特徴とし、
前記被研磨部材に正電圧を印加すると共に、前記電解液に負電圧を印加する直流電源を更に有することを特徴とする。
The configuration of the present invention for solving the above problems is as follows.
A cylindrical shape in which a sealing material is applied to one opening edge, the sealing material is disposed on the surface of the member to be polished in contact with the surface of the member to be polished, and an electrolyte is injected into the internal space A container,
A sliding member disposed inside the cylindrical container and rubbing the surface of the member to be polished;
It is installed in the said cylindrical container, It has a sliding means to slide the said sliding member, It is characterized by the above-mentioned.
In this case,
The sliding means comprises a motor and a rotating shaft that transmits the rotational force of the motor to the sliding member,
The rotating shaft is provided with a stirring member for stirring the electrolyte solution,
The apparatus further includes a direct current power source for applying a positive voltage to the member to be polished and applying a negative voltage to the electrolytic solution.

本発明によれば、摺動部材により被測定部材(被研磨部材)の表面を摺動部材により擦っているため、研磨面の不導体膜が除去され、安定した給電が可能となり、効率的な研磨(研磨時間の短縮、研磨面の平滑化)が可能となり、また、作業者の負担が軽減できる。   According to the present invention, since the surface of the member to be measured (the member to be polished) is rubbed by the sliding member by the sliding member, the non-conductive film on the polishing surface is removed, stable power feeding is possible, and efficient Polishing (shortening the polishing time and smoothing the polishing surface) is possible, and the burden on the operator can be reduced.

本発明の実施例1に係る電解研磨装置を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows the electropolishing apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係るエッチング装置を示す構成図。The block diagram which shows the etching apparatus which concerns on Example 2 of this invention. 従来の電解研磨手法に用いるマスキング部材を示す斜視図。The perspective view which shows the masking member used for the conventional electrolytic polishing method. 従来の電解研磨装置を示す構成図。The block diagram which shows the conventional electropolishing apparatus.

以下、本発明の実施の形態について、実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples.

図1は本発明の実施例1に係る電解研磨装置10を示す。この電解研磨装置10は、金属から成る被測定部材(被研磨部材)1の電解研磨領域1aを電解研磨する装置である。   FIG. 1 shows an electropolishing apparatus 10 according to Embodiment 1 of the present invention. The electropolishing apparatus 10 is an apparatus for electropolishing an electropolishing region 1a of a member to be measured (a member to be polished) 1 made of metal.

電解研磨装置10の円筒型容器11は、被測定部材1の表面に立てた状態で配置されるものであり、円筒型容器11の一方の開口端縁(図1では下側の開口端縁)には、シール材12が配置されている。
シール材12としては、ゴム材や油粘土等を使用することができ、このシール材12を備えているため、被測定部材1の表面が平面でない場合であっても、シール材12が被測定部材1の表面に密着状態で接するため、後述する電解液の漏れを防ぐことができる。
The cylindrical container 11 of the electropolishing apparatus 10 is arranged in a standing state on the surface of the member 1 to be measured, and one opening edge of the cylindrical container 11 (lower opening edge in FIG. 1). The seal material 12 is disposed on the surface.
As the sealing material 12, rubber material, oil clay, or the like can be used. Since the sealing material 12 is provided, the sealing material 12 is measured even when the surface of the measured member 1 is not flat. Since the surface of the member 1 is in close contact with the surface of the member 1, it is possible to prevent the leakage of the electrolyte described later.

円筒型容器11の他方の端面(図1では上側端面)には、蓋材13が配置され、この蓋材13の上には、モータ14が配置されている。回転軸15は蓋材13を貫通して、モータ14のモータ軸に連結されている。回転軸15の下端には、スポンジや耐熱綿などの摺動部材16が取り付けられている。
このため、摺動部材16は、円筒型容器11の内部に配置されることとなり、モータ14の回転が回転軸15を介して伝達されてくることにより、摺動部材16が回転して被測定部材1の表面のうち円筒型容器11の内部に露出した部分(電解研磨領域1aの表面)を擦る。
なお、摺動部材15としては、摺動して被測定部材(被研磨部材)1を擦ってもその表面に傷をつけることがない程度に軟らかく、しかも後述する電解液を含浸する材質のものを採用している。
A lid member 13 is disposed on the other end surface of the cylindrical container 11 (upper end surface in FIG. 1), and a motor 14 is disposed on the lid member 13. The rotating shaft 15 passes through the lid member 13 and is connected to the motor shaft of the motor 14. A sliding member 16 such as sponge or heat-resistant cotton is attached to the lower end of the rotating shaft 15.
For this reason, the sliding member 16 is disposed inside the cylindrical container 11, and the rotation of the motor 14 is transmitted via the rotating shaft 15, whereby the sliding member 16 rotates and the device under measurement is measured. Of the surface of the member 1, a portion exposed inside the cylindrical container 11 (the surface of the electropolishing region 1a) is rubbed.
The sliding member 15 is made of a material that is soft enough not to scratch the surface of the member to be measured (the member to be polished) 1 by sliding and is impregnated with an electrolyte described later. Is adopted.

更に、回転軸15には、プロペラ状またはスクリュー状の攪拌部材17が取り付けられている。
電解研磨をするときには、円筒型容器11の内部に電解液18を注入する。電解液18としては、例えば塩化アンモニウム過飽和水溶液や、塩酸とアルコールとの混合液を用いる。
Further, a propeller-like or screw-like stirring member 17 is attached to the rotating shaft 15.
When electrolytic polishing is performed, an electrolytic solution 18 is injected into the cylindrical container 11. As the electrolytic solution 18, for example, an ammonium chloride supersaturated aqueous solution or a mixed solution of hydrochloric acid and alcohol is used.

直流電源19は、被測定部材1に正電圧(+電圧)を印加し、電解液18に負電圧(−電圧)を印加する。   The DC power source 19 applies a positive voltage (+ voltage) to the member 1 to be measured, and applies a negative voltage (− voltage) to the electrolytic solution 18.

電解研磨を行うときには、モータ14により、摺動部材16を回転させて電解研磨領域1aの表面を擦って不導体膜を連続的且つ効果的に除去し、電圧印加をして通電することにより電解研磨領域1aの表面を電解研磨する。また、攪拌部材17により電解液18を攪拌してその濃度の均一化を図っている。
電解研磨量は電流値と研磨時間(電流通電時間)により推定することができる。このとき、
(1)摺動部材16を回転させて電解研磨領域1aの表面を擦って不導体膜を連続的且つ効果的に除去していること、
(2)攪拌部材17により、電解液18を攪拌してその濃度を均一化していること、
により、上記推定による電解研磨量はより正確なものとなる。しかも、電解液18が電解研磨領域1aの表面にムラなく接触するため、研磨面は平坦になる(深さが一定になる)。
When performing electropolishing, the motor 14 rotates the sliding member 16 to rub against the surface of the electropolishing region 1a to remove the non-conductive film continuously and effectively. The surface of the polishing region 1a is electropolished. In addition, the electrolyte member 18 is stirred by the stirring member 17 to make the concentration uniform.
The amount of electrolytic polishing can be estimated from the current value and the polishing time (current conduction time). At this time,
(1) The sliding member 16 is rotated and the surface of the electropolishing region 1a is rubbed to remove the nonconductive film continuously and effectively.
(2) The electrolyte member 18 is stirred by the stirring member 17 to make the concentration uniform;
Thus, the amount of electropolishing by the above estimation becomes more accurate. Moreover, since the electrolytic solution 18 contacts the surface of the electropolishing region 1a evenly, the polishing surface becomes flat (the depth is constant).

このように電解研磨領域1aに発生する不導体膜の除去が確実に行われるため、安定した給電が可能となり、効率的な研磨、即ち、研磨時間の短縮や研磨面の平滑化を図ることが可能となる。
また研磨を自動的に行うことができ、作業者の疲労が軽減される。
Thus, since the non-conductive film generated in the electropolishing region 1a is reliably removed, stable power feeding is possible, and efficient polishing, that is, shortening the polishing time and smoothing the polishing surface can be achieved. It becomes possible.
In addition, polishing can be performed automatically, and operator fatigue is reduced.

上記の作業により被測定部材1の電解研磨領域1aの表面が電解研磨されたら、電解液18を円筒型容器11の内部から排出し、更に円筒型容器11を含む電解研磨装置10を被測定部材1から取り外し、被測定部材1の表面を洗浄してから、電解研磨された電解研磨領域1aの表面に対してX線応力測定をする。   When the surface of the electropolishing region 1a of the member 1 to be measured is electrolytically polished by the above operation, the electrolytic solution 18 is discharged from the inside of the cylindrical container 11, and the electropolishing apparatus 10 including the cylindrical container 11 is further measured After removing from 1 and cleaning the surface of the member 1 to be measured, X-ray stress measurement is performed on the surface of the electropolished region 1a that has been electropolished.

上記のX線応力測定をした後、再び図1のような状態をセッティングして、被測定部材1の電解液研磨領域1aを、円筒型容器11の内部に臨ませ、前回と同様にして、同じ部分を電解研磨して所定深さ(例えば100μm、または、0.25mm)まで深くする。
被測定部材1の電解研磨領域1aが、電解研磨により深くなり、所定深さになったら、電解液18を円筒型容器11の内部から排出し、更に円筒型容器11を含む電解研磨装置10を被測定部材1から取り外し、被測定部材1の表面を洗浄してから、電解研磨された電解研磨領域1aの表面に対してX線応力測定をする。
その後、同様な操作を繰り返し、深さ方向の異なる複数の深さ位置において、X線応力測定をする。
このようにして、深さ方向の各位置において、X線応力測定をすることができる。
After the above X-ray stress measurement, the state as shown in FIG. 1 is set again, and the electrolytic solution polishing region 1a of the member 1 to be measured faces the inside of the cylindrical container 11, The same portion is electropolished and deepened to a predetermined depth (for example, 100 μm or 0.25 mm).
When the electropolishing region 1a of the member 1 to be measured is deepened by electropolishing and reaches a predetermined depth, the electrolytic solution 18 is discharged from the inside of the cylindrical container 11, and the electropolishing apparatus 10 including the cylindrical container 11 is further removed. After removing from the member 1 to be measured and cleaning the surface of the member 1 to be measured, X-ray stress measurement is performed on the surface of the electropolished region 1a that has been electropolished.
Thereafter, the same operation is repeated, and X-ray stress measurement is performed at a plurality of depth positions having different depth directions.
In this way, X-ray stress measurement can be performed at each position in the depth direction.

しかも、ポータブルタイプの電解研磨装置10を、被測定部材1が存在する所に持っていって、その現場において電解研磨及びX線応力測定をすることも可能となる。   In addition, the portable type electropolishing apparatus 10 can be held where the member to be measured 1 exists, and electropolishing and X-ray stress measurement can be performed at the site.

本実施例1において、被測定部材(被研磨部材)1をSUS316ブロック材とし、円筒型容器11の内部の直径を8mmとし、印加電圧を10Vとし、電解液18を塩化アンモニウム過飽和水溶液とし、研磨時間を2分として、実証的に動作したときの研磨状態は次の通りであった。
深さ方向の電解研磨量は2.53mm。
研磨面の表面粗さは、算術平均粗さRaが0.68[μm]、最大高さ粗さRzが3.8[μm]であった。
In this Example 1, the member to be measured (member to be polished) 1 is a SUS316 block material, the inside diameter of the cylindrical container 11 is 8 mm, the applied voltage is 10 V, the electrolytic solution 18 is an ammonium chloride supersaturated aqueous solution, and polishing is performed. The polishing state when operated empirically with a time of 2 minutes was as follows.
The amount of electropolishing in the depth direction is 2.53 mm.
The surface roughness of the polished surface was an arithmetic average roughness Ra of 0.68 [μm] and a maximum height roughness Rz of 3.8 [μm].

ちなみに、摺動部材16により擦ることなく、電解液18を攪拌するだけとし、他の条件を上記例と同様にして、実証的に動作した場合における研磨状態は、次の通りであった。
深さ方向の電解研磨量は0.06mm。
研磨面の表面粗さは、算術平均粗さRaが0.94[μm]、最大高さ粗さRzが5.3[μm]であった。
Incidentally, the polishing state when the electrolyte solution 18 was only stirred without being rubbed by the sliding member 16 and operated in an empirical manner under the same conditions as in the above example was as follows.
The depth of electropolishing in the depth direction is 0.06 mm.
As for the surface roughness of the polished surface, the arithmetic average roughness Ra was 0.94 [μm], and the maximum height roughness Rz was 5.3 [μm].

更に、摺動部材16により擦ることなく、しかも電解液18を攪拌せず、他の条件を上記例と同様にして、実証的に動作した場合における研磨状態は、次の通りであった。
深さ方向の電解研磨量は0.03mm。
研磨面の表面粗さは、算術平均粗さRaが1.39[μm]、最大高さ粗さRzが7.0[μm]であった。
Further, the polishing state in the case of empirically operating without rubbing by the sliding member 16 and without stirring the electrolyte solution 18 under the same conditions as in the above example was as follows.
The amount of electropolishing in the depth direction is 0.03 mm.
The surface roughness of the polished surface was an arithmetic average roughness Ra of 1.39 [μm] and a maximum height roughness Rz of 7.0 [μm].

上記の実証的な動作状態から分かるように、本実施例1では、摺動部材16により電解研磨領域1aの表面を擦ると共に攪拌部材17により電解液18を攪拌することにより、不導体膜が効果的に除去されて給電が安定すると共に電解液18の濃度が均一化し、大きな研磨量が得られることが分かる。また表面粗さも最も小さいことが分かる。   As can be seen from the above-described empirical operating state, in Example 1, the nonconductive film is effective by rubbing the surface of the electropolishing region 1a with the sliding member 16 and stirring the electrolytic solution 18 with the stirring member 17. As a result, the power supply is stabilized and the concentration of the electrolytic solution 18 becomes uniform, and a large polishing amount can be obtained. It can also be seen that the surface roughness is the smallest.

なお上記例では、モータ14により摺動部材16を回転させるようにしているが、他の機械機構を採用して、摺動部材16を往復移動させるようにすることも可能である。
また、電解液貯溜用のタンクや、電解液を給排する機構を備えた電解液給排装置を、円筒型容器11に付設し、研磨をする際には電解液給排装置から円筒型容器11内に電解液18を供給し、研磨を終わったときには、円筒型容器11内の電解液18を電解液給排装置側に吸引するように構成することも可能である。
In the above example, the sliding member 16 is rotated by the motor 14, but it is also possible to employ another mechanical mechanism to reciprocate the sliding member 16.
In addition, an electrolytic solution storage tank and an electrolytic solution supply / discharge device having a mechanism for supplying / discharging the electrolytic solution are attached to the cylindrical container 11, and when polishing, the electrolytic solution supply / discharge device is connected to the cylindrical container. It is also possible to supply the electrolytic solution 18 into the inside 11 and to suck the electrolytic solution 18 in the cylindrical container 11 toward the electrolytic solution supply / discharge device when polishing is finished.

次に本発明の応用例である実施例2に係るエッチング装置100を、図2を参照して説明する。
このエッチング装置100を使用する前提を先に説明する。
Next, an etching apparatus 100 according to a second embodiment which is an application example of the present invention will be described with reference to FIG.
The premise of using this etching apparatus 100 will be described first.

例えば、羽根車の製造過程において羽根の一部に変形が生じたときには、ガスバーナーにて加熱し整形を行うことがある。このような整形をした場合には、加熱による鋭敏化の有無(範囲)を確認するため、当該部について数多くのスンプ組織試験を実施する必要がある。
金属材料(例えばステンレス鋼)の鋭敏化度を検出する方法の一つとして、しゅう酸エッチング試験方法がある(JIS G 0571)。
この試験方法では、試験溶液温度を20〜50℃とし、試験溶液を10%しゅう酸試験溶液とし、試験時間を1A/90sec/1cm2として、試験部分をエッチングし、エッチングした現れた粒界面に対してスンプ組織試験をしている。
For example, when a part of the blade is deformed in the manufacturing process of the impeller, the gas turbine may be heated and shaped. When such shaping is performed, in order to confirm the presence or absence (range) of sensitization by heating, it is necessary to perform a number of sump tissue tests on the part.
One method for detecting the degree of sensitization of a metal material (for example, stainless steel) is an oxalic acid etching test method (JIS G 0571).
In this test method, the test solution temperature is set to 20 to 50 ° C., the test solution is set to 10% oxalic acid test solution, the test time is set to 1 A / 90 sec / 1 cm 2 , and the test portion is etched. A sump tissue test is being conducted.

図2に戻り、エッチング装置100について説明をする。このエッチング装置100は、試料101のエッチング領域101aをエッチングする装置である。
エッチング装置100の円筒型容器102は、試料101の表面に立てた状態で配置されるものであり、円筒型容器102の一方の開口端縁(図2では下側の開口端縁)には、シール材103が配置されている。
シール材103としては、ゴム材や油粘土等を使用することができ、このシール材103を備えているため、試料101の表面が平面でない場合であっても、シール材103が試料101の表面に密着状態で接するため、後述するエッチング溶液の漏れを防ぐことができる。
Returning to FIG. 2, the etching apparatus 100 will be described. The etching apparatus 100 is an apparatus that etches the etching region 101 a of the sample 101.
The cylindrical container 102 of the etching apparatus 100 is arranged in a standing state on the surface of the sample 101, and one opening edge (lower opening edge in FIG. 2) of the cylindrical container 102 includes A sealing material 103 is disposed.
As the sealing material 103, rubber material, oil clay, or the like can be used. Since the sealing material 103 is provided, the sealing material 103 is the surface of the sample 101 even when the surface of the sample 101 is not flat. Since it is in close contact with the substrate, it is possible to prevent leakage of an etching solution described later.

円筒型容器102の他方の端面側(図2では上側端面側)には、エッチング溶液供給管104a,104bが接続されており、このエッチング溶液供給管104a,104bを介して、10%しゅう酸溶液であるエッチング溶液105を円筒型容器102内に供給する。
また、円筒型容器102の中心部には、エッチング溶液排出管106が配置されており、円筒型容器102内に貯溜されたエッチング溶液105を、円筒型容器102の外部に排出する。
Etching solution supply pipes 104a and 104b are connected to the other end face side (the upper end face side in FIG. 2) of the cylindrical container 102, and a 10% oxalic acid solution is passed through the etching solution supply pipes 104a and 104b. An etching solution 105 is supplied into the cylindrical container 102.
Further, an etching solution discharge pipe 106 is disposed at the center of the cylindrical container 102, and the etching solution 105 stored in the cylindrical container 102 is discharged to the outside of the cylindrical container 102.

エッチング溶液排出管106の下方にはプロペラ状またはスクリュー状の回転部材107が配置されており、この回転部材107は、図示しない回転機構により回転する。回転部材107が回転すると、エッチング溶液105は、試料101の表面のうち円筒型容器102内に臨む部分、つまりエッチング領域101aの表面に向けて、流される。   A propeller-like or screw-like rotating member 107 is disposed below the etching solution discharge pipe 106, and this rotating member 107 is rotated by a rotating mechanism (not shown). When the rotating member 107 rotates, the etching solution 105 flows toward the portion of the surface of the sample 101 that faces the cylindrical container 102, that is, the surface of the etching region 101a.

制御部108は、試料101に通電しつつ、エッチング溶液105の温度を検出すると共に、エッチング領域101aがエッチング溶液105に晒されている時間を計測する。これにより、エッチング領域101aの表面がエッチングされる。しかも、回転部材107の回転により、エッチング溶液105をエッチング領域に向けて流しているため、良好なエッチングができる。   The controller 108 detects the temperature of the etching solution 105 while energizing the sample 101 and measures the time during which the etching region 101 a is exposed to the etching solution 105. Thereby, the surface of the etching region 101a is etched. In addition, since the etching solution 105 is caused to flow toward the etching region by the rotation of the rotating member 107, good etching can be performed.

このエッチング装置100を、検査対象物である羽根の当該部に取り付けることにより、容易且つ確実にエッチングを行うことができる。
エッチングが完了したら、エッチング装置100を取り外し、当該部を洗浄してから、スンプ組織試験を行う。
Etching can be performed easily and reliably by attaching the etching apparatus 100 to the portion of the blade that is the inspection object.
When the etching is completed, the etching apparatus 100 is removed, and the part is washed, and then a sump structure test is performed.

1 被測定部材(被研磨部材)
2 マスキング部材
3 電解液
4 直流電源
5 ピンセット
6 綿
10 電解研磨装置
11 円筒型容器
12 シール材
13 蓋材
14 モータ
15 回転軸
16 摺動部材
17 攪拌部材
18 電解液
19 直流電源
100 エッチング装置
101 試料
101a エッチング領域
102 円筒型容器
103 シール材
104a,104b エッチング溶液供給管
105 エッチング溶液
106 エッチング溶液排出管
107 回転部材
108 制御部
1 member to be measured (member to be polished)
DESCRIPTION OF SYMBOLS 2 Masking member 3 Electrolyte solution 4 DC power supply 5 Tweezers 6 Cotton 10 Electropolishing apparatus 11 Cylindrical container 12 Sealing material 13 Cover material 14 Motor 15 Rotating shaft 16 Sliding member 17 Stirring member 18 Electrolytic solution 19 DC power supply 100 Etching device 101 Sample 101a Etching area 102 Cylindrical container 103 Sealing material 104a, 104b Etching solution supply pipe 105 Etching solution 106 Etching solution discharge pipe 107 Rotating member 108 Control unit

Claims (4)

一方の開口端縁にシール材が施されており、前記シール材が被研磨部材の表面に接する状態で前記被研磨部材の表面に配置されると共に、内部空間に電解液が注入される筒型容器と、
前記筒型容器の内部に配置されて、前記被研磨部材の表面を擦る摺動部材と、
前記筒型容器に設置されると共に、前記摺動部材を摺動させる摺動手段と、
を有することを特徴とする電解研磨装置。
A cylindrical shape in which a sealing material is applied to one opening edge, the sealing material is disposed on the surface of the member to be polished in contact with the surface of the member to be polished, and an electrolyte is injected into the internal space A container,
A sliding member disposed inside the cylindrical container and rubbing the surface of the member to be polished;
A sliding means installed in the cylindrical container and sliding the sliding member;
An electropolishing apparatus comprising:
請求項1において、
前記摺動手段は、モータと、モータの回転力を前記摺動部材に伝達する回転軸とで構成されていることを特徴とする電解研磨装置。
In claim 1,
The electropolishing apparatus, wherein the sliding means includes a motor and a rotating shaft that transmits a rotational force of the motor to the sliding member.
請求項2において、
前記回転軸には、前記電解液を攪拌する攪拌部材が取り付けられていることを特徴とする電解研磨装置。
In claim 2,
An electropolishing apparatus, wherein a stirring member for stirring the electrolytic solution is attached to the rotating shaft.
請求項1乃至請求項3の何れか一項において、
前記被研磨部材に正電圧を印加すると共に、前記電解液に負電圧を印加する直流電源を更に備えていることを特徴とする電解研磨装置。
In any one of Claims 1 thru | or 3,
An electropolishing apparatus further comprising a direct current power source for applying a positive voltage to the member to be polished and applying a negative voltage to the electrolytic solution.
JP2010100718A 2010-04-26 2010-04-26 Electropolishing equipment Expired - Fee Related JP5455769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100718A JP5455769B2 (en) 2010-04-26 2010-04-26 Electropolishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100718A JP5455769B2 (en) 2010-04-26 2010-04-26 Electropolishing equipment

Publications (2)

Publication Number Publication Date
JP2011231354A true JP2011231354A (en) 2011-11-17
JP5455769B2 JP5455769B2 (en) 2014-03-26

Family

ID=45320976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010100718A Expired - Fee Related JP5455769B2 (en) 2010-04-26 2010-04-26 Electropolishing equipment

Country Status (1)

Country Link
JP (1) JP5455769B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160619A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Method for electrolytic etching and method for maintenance of structural member
JP2015127439A (en) * 2013-12-27 2015-07-09 マルイ鍍金工業株式会社 Partial polishing jig
JP2015206868A (en) * 2014-04-18 2015-11-19 株式会社リコー Toner conveying device and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313291A (en) * 1976-07-22 1978-02-06 Hitachi Zosen Corp Process for electrolytic buffing
JPS5313290A (en) * 1976-07-22 1978-02-06 Hitachi Zosen Corp Process for electrolytic buffing
JPS63121700A (en) * 1986-11-10 1988-05-25 Chugoku Denka Kogyo Kk Surface treatment of work
JPH1180993A (en) * 1997-09-10 1999-03-26 Ebara Corp Semiconductor wafer plating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313291A (en) * 1976-07-22 1978-02-06 Hitachi Zosen Corp Process for electrolytic buffing
JPS5313290A (en) * 1976-07-22 1978-02-06 Hitachi Zosen Corp Process for electrolytic buffing
JPS63121700A (en) * 1986-11-10 1988-05-25 Chugoku Denka Kogyo Kk Surface treatment of work
JPH1180993A (en) * 1997-09-10 1999-03-26 Ebara Corp Semiconductor wafer plating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160619A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Method for electrolytic etching and method for maintenance of structural member
JP2015127439A (en) * 2013-12-27 2015-07-09 マルイ鍍金工業株式会社 Partial polishing jig
JP2015206868A (en) * 2014-04-18 2015-11-19 株式会社リコー Toner conveying device and image forming apparatus

Also Published As

Publication number Publication date
JP5455769B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US8608858B2 (en) Substrate cleaning apparatus and method for determining timing of replacement of cleaning member
CN111584354B (en) Etching method
JP5455769B2 (en) Electropolishing equipment
JP2004143599A (en) Method for partially stripping coating from surface of substrate, and related article and composition thereto
CN105092580A (en) Observation method for industrial pure zirconium microstructure
JP2011517629A (en) Gravure printing cylinder processing method and processing apparatus
JP5818411B2 (en) High corrosion resistance surface treatment method
JP2018040018A (en) Metallic surface electrolytic polishing device and metal electrolytic polishing method
JP5005369B2 (en) Electropolishing equipment
JP6256399B2 (en) Electropolishing apparatus and electropolishing method
US20050067304A1 (en) Electrode assembly for analysis of metal electroplating solution, comprising self-cleaning mechanism, plating optimization mechanism, and/or voltage limiting mechanism
JP2012004294A (en) Substrate processing apparatus and substrate processing method
TWI400359B (en) Pickling simulation device
CN113661276A (en) Electropolishing method
KR100778237B1 (en) On-line analysis system for heavy metals
JP2003342800A (en) Polishing method, polishing apparatus and method of producing semiconductor device
KR20070109178A (en) Accelerator for etching on sample
KR101834956B1 (en) Corrosion apparatus for sample
TW202127022A (en) Methods and apparatus for detecting corrosion of conductive objects
JP5984920B2 (en) Non-cyanide-based electropolishing
KR101510043B1 (en) Electropolishing device
WO2022015266A2 (en) A measuring system
TWI261629B (en) Surface treatment process for enhancing the release of metal ions from sacrificial electrode and sacrificial electrode prepared by said process
JP5490470B2 (en) Nozzle cleaning device
TWI576471B (en) Method and device for polishing surface of metal object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

LAPS Cancellation because of no payment of annual fees