JP2006176885A - Working method with hydroxy group in ultrapure water - Google Patents

Working method with hydroxy group in ultrapure water Download PDF

Info

Publication number
JP2006176885A
JP2006176885A JP2006032309A JP2006032309A JP2006176885A JP 2006176885 A JP2006176885 A JP 2006176885A JP 2006032309 A JP2006032309 A JP 2006032309A JP 2006032309 A JP2006032309 A JP 2006032309A JP 2006176885 A JP2006176885 A JP 2006176885A
Authority
JP
Japan
Prior art keywords
ultrapure water
processing
workpiece
oxide film
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032309A
Other languages
Japanese (ja)
Inventor
Yuzo Mori
勇藏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006032309A priority Critical patent/JP2006176885A/en
Publication of JP2006176885A publication Critical patent/JP2006176885A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Chemical Treatment Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a completely new working method with hydroxy groups in ultrapure water where, based on the recognition that, at the time when the concentration of OH<SP>-</SP>in ultrapure water is increased, by utilizing the OH<SP>-</SP>, working can be sufficiently performed, clean working can be performed using OH<SP>-</SP>in ultrapure water without leaving impurities in the working face of a work. <P>SOLUTION: Using only ultrapure water excepting a trace amount of inevitable impurities, electric current is made to flow between a pair or more electrodes arranged at intervals in ultrapure water. Thus, the ultrapure water is electrolyzed, so as to increase an ion product, and a work dipped into the ultrapure water in which the concentration of hydroxy groups or the ions of hydroxy groups is increased is subjected to removal working or oxide film formation working by chemical elution reaction or oxidation reaction with the hydroxy groups or the ions of the hydroxy groups. The work is Si, and an oxide film is formed on the surface thereof. Alternatively, the work is Cu, and the Cu is subjected to removal working. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超純水中の水酸基による加工方法に係わり、更に詳しくは超純水のみを用いて、そのイオン積を増大させて水酸基又は水酸基イオンによって被加工物を除去加工若しくは酸化被膜形成加工することができる加工方法に関する。   The present invention relates to a processing method using a hydroxyl group in ultrapure water, and more specifically, using only ultrapure water, the ionic product is increased to remove a workpiece by hydroxyl group or hydroxyl ion or to form an oxide film. It relates to a processing method that can be performed.

近年、科学技術の発展のもとに新材料の開発が次々と進んでいるが、それらの新材料に対する有効な加工技術は未だ確立されておらず、常に新材料開発の後を追う立場となっている。   In recent years, the development of new materials has progressed one after another with the development of science and technology, but effective processing technology for these new materials has not been established yet, and it is always in a position to follow the development of new materials. ing.

また、最近ではあらゆる機器の構成要素において微細化且つ高精度化が進み、サブミクロン領域での物作りが一般的となるにつれて、加工法自体が材料の特性に与える影響はますます大きくなっている。このような状況下では、従来の機械加工のように工具が被加工物を物理的に破壊しながら除去していく加工法では、加工によって被加工物に欠陥を多く生み出してしまうため、被加工物の特性は劣化する。従って、いかに材料の特性を損なうことなく加工を行うことができるかが問題となってくる。   In addition, as the miniaturization and high precision of the components of all devices have recently progressed and the manufacturing in the sub-micron region has become common, the influence of the processing method itself on the material properties has become even greater. . Under these circumstances, the machining method in which the tool removes the workpiece while physically destroying it, as in conventional machining, creates many defects in the workpiece due to machining. The properties of things deteriorate. Therefore, it becomes a problem how the processing can be performed without impairing the characteristics of the material.

この問題を解決する手段として先ず開発された特殊加工法に、化学研磨や電解加工、電解研磨がある。これらの加工法は従来の物理的な加工とは対照的に、化学的溶出反応を起こすことによって除去加工を行うものである。従って、塑性変形による加工変質層や転位等の欠陥は発生せず、前述の材料の特性を損なわずに加工を行うといった問題は解消される。   As a means for solving this problem, firstly developed special processing methods include chemical polishing, electrolytic processing, and electrolytic polishing. In contrast to conventional physical processing, these processing methods perform removal processing by causing a chemical elution reaction. Accordingly, defects such as a work-affected layer and dislocation due to plastic deformation do not occur, and the problem of processing without damaging the properties of the above-mentioned material is solved.

そして、更に注目されているのが、原子間の化学的な相互作用を利用した加工法である。これは、微粒子や化学反応性の高いラジカル等を利用したものである。これらの加工法は、被加工物と原子オーダでの化学反応により除去加工を行うため原子オーダの加工制御が可能である。この加工法の例としては、本発明者が開発したEEM(Elastic Emission Machining)(特許文献1)やプラズマCVM(Chemical Vaporization Machining )(特許文献2等)がある。EEMは、微粒子と被加工物間の化学反応を利用したもので、材料の特性を損なうことなく原子オーダの加工を実現している。また、プラズマCVMは、大気圧プラズマ中で生成したラジカルと被加工物とのラジカル反応を利用したもので、原子オーダの加工を実現している。
特開平1−236939号公報 特開平1−125829号公報
Further, a processing method using chemical interaction between atoms is attracting more attention. This utilizes fine particles or radicals with high chemical reactivity. Since these processing methods perform removal processing by a chemical reaction between the workpiece and the atomic order, it is possible to control the processing of the atomic order. Examples of this processing method include EEM (Elastic Emission Machining) (Patent Document 1) and Plasma CVM (Chemical Vaporization Machining) (Patent Document 2 etc.) developed by the present inventors. EEM uses a chemical reaction between fine particles and a workpiece, and realizes atomic order processing without impairing material properties. The plasma CVM utilizes radical reaction between a radical generated in atmospheric pressure plasma and a workpiece, and realizes atomic order processing.
JP-A-1-236939 Japanese Patent Laid-Open No. 1-125829

ところで、前述の電解加工や電解研磨では、従来は被加工物と電解液(NaCl、NaNO3、HF、HCl、HNO3、NaOH等の水溶液)との電気化学的相互作用によって加工が進行するとされている。また、電解液を使用する限り、その電解液で被加工物が汚染されることは避けられない。 By the way, in the above-mentioned electrolytic processing and electrolytic polishing, processing is conventionally advanced by electrochemical interaction between a workpiece and an electrolytic solution (aqueous solutions of NaCl, NaNO 3 , HF, HCl, HNO 3 , NaOH, etc.). ing. Moreover, as long as the electrolytic solution is used, it is inevitable that the workpiece is contaminated with the electrolytic solution.

そこで、本発明者は、中性及びアルカリ性の電解液では水酸基(OH-)が加工に作用していると考え、それならば微量ながらOH-が存在している水によっても加工はできるとの仮定に至った。超純水中のOH-を利用して加工ができれば、加工面に不純物を残さない清浄な加工が行え、その用途は半導体製造分野をはじめ、非常に広いと予測される。しかし、超純水中に含まれるOH-濃度は、非常に希薄で、25℃、1気圧において10-7mol/l程度であることは周知の事実であり、例えば超純水中にSiを浸漬することで、エッチングが行われているといった内容の報告はこれまでのところない。 Therefore, the present inventor considers that the hydroxyl group (OH ) acts on the processing in the neutral and alkaline electrolytes, and if that is the case, the processing can be performed even with a small amount of water containing OH −. It came to. If processing can be performed using OH in ultrapure water, clean processing without leaving impurities on the processed surface can be performed, and its use is expected to be very wide including in the semiconductor manufacturing field. However, it is a well-known fact that the OH concentration contained in ultrapure water is very dilute and is about 10 −7 mol / l at 25 ° C. and 1 atm. For example, Si is contained in ultrapure water. So far, there has been no report of the content that etching is performed by immersion.

本発明が前述の状況に鑑み、解決しようとするところは、超純水中のOH-濃度を増大させれば、このOH-を利用して充分に加工することができるとの認識に基づき、超純水中のOH-を用いて被加工物の加工面に不純物を残さずに清浄な加工が行える全く新しい加工方法を提供する点にある。 Based on the recognition that the present invention can be sufficiently processed using OH if the OH concentration in the ultrapure water is increased in view of the above situation. It is to provide an entirely new processing methods capable of performing clean processing without leaving impurities on the processed surface of the workpiece using a - ultrapure water OH.

本発明は、前述の課題解決のために、微量の不可避不純物を除き超純水のみを用い、超純水中に間隔を置いて配設した一対又はそれ以上の電極間に電流を流し、超純水を電気分解してイオン積を増大させ、この水酸基又は水酸基イオンの濃度が増大した超純水中に浸漬した被加工物を、水酸基又は水酸基イオンによる化学的溶出反応若しくは酸化反応によって除去加工若しくは酸化被膜形成加工することを特徴とする超純水中の水酸基による加工方法を構成した(請求項1)。   In order to solve the above-mentioned problems, the present invention uses only ultrapure water except for a small amount of inevitable impurities, and allows a current to flow between a pair of or more electrodes arranged at intervals in ultrapure water. Electrolyzes pure water to increase the ion product, and removes the workpiece immersed in ultrapure water with an increased concentration of hydroxyl groups or hydroxyl ions by chemical elution reaction or oxidation reaction with hydroxyl groups or hydroxyl ions Alternatively, a processing method using a hydroxyl group in ultrapure water, characterized in that an oxide film is formed (claim 1).

ここで、前記被加工物を陽極とし、又は被加工物の電位を高く維持して、該被加工物の表面に水酸基イオンを引き寄せてなることが好ましい(請求項2)。   Here, it is preferable that the workpiece is an anode, or the potential of the workpiece is kept high, and hydroxyl ions are attracted to the surface of the workpiece.

更に、陽極とした被加工物に対して、所定のギャップを設けて回転可能な回転電極を配して陰極とし、該回転電極を回転させてギャップ間に一定な水の流れを作りながら被加工物を加工してなることがより好ましい(請求項3)。   Furthermore, a work piece that is an anode is provided with a rotating electrode that can be rotated with a predetermined gap provided as a cathode, and the work is performed while rotating the rotating electrode to create a constant flow of water between the gaps. More preferably, the product is processed (claim 3).

また、前記被加工物がSiであり、その表面にSi酸化膜を形成してなること(請求項4)、あるいは前記被加工物がCuであり、該Cuを除去加工してなること(請求項5)が好ましい。   Further, the workpiece is made of Si and an Si oxide film is formed on the surface thereof (Claim 4), or the workpiece is Cu and the Cu is removed (Claim). Item 5) is preferred.

以上にしてなる本発明の超純水中の水酸基による加工方法によれば、以下の顕著な効果を奏する。
(1)OH-イオンと被加工物の化学的作用による加工であるため、被加工物の特性を損なうことはない。
(2)電解加工等で使用する水溶液と違い超純水中にはH+ 、OH-及びH2Oのみが存在し、金属イオン等の不純物は存在しないので、外部からの不純物の遮断が完全であれば、完全に清浄な雰囲気中での加工が可能である。
(3)超純水のみを使用するため加工コストの大幅な低減も可能である。
According to the processing method using the hydroxyl group in the ultrapure water of the present invention as described above, the following remarkable effects can be obtained.
(1) Since the processing is based on the chemical action of OH - ions and the workpiece, the properties of the workpiece are not impaired.
(2) electrolytic processing in ultrapure water Unlike aqueous solution used in such H +, OH - and H only 2 O is present, since there are impurities such as metal ions, completely cut off the impurities from the outside Then, processing in a completely clean atmosphere is possible.
(3) Since only ultrapure water is used, the processing cost can be significantly reduced.

本発明の超純水を利用した各種材料の加工方法の原点は、従来の電解加工での反応機構に対する疑問にある。電解加工(Electrolytic Machining)は、電気化学的溶解作用(陽極溶出又は電解溶出)を材料の所要部に集中・制限することにより、所要の形状、寸法、表面状態を得る加工方法である。具体的には、電解液中において所要の形状に作られた陰極を被加工物である陽極とギャップ0.02〜0.7mmで対向させ、5〜20Vの直流電圧(電流密度は30〜200A/cm2)を印加させて加工を行うものである。これらの条件によって、電解溶出を陽極の極近傍に集中・制限させて起こすことにより、被加工物を工具である陰極の形状を反転した形状に加工するのである。 The origin of the processing method of various materials using the ultrapure water of the present invention is in doubt about the reaction mechanism in conventional electrolytic processing. Electrolytic machining (Electrolytic Machining) is a machining method that obtains the required shape, dimensions, and surface condition by concentrating and limiting the electrochemical dissolution action (anodic elution or electrolytic elution) to the required part of the material. Specifically, a cathode formed in a required shape in the electrolytic solution is opposed to an anode as a workpiece with a gap of 0.02 to 0.7 mm, and a DC voltage of 5 to 20 V (current density is 30 to 200 A). / Cm 2 ) is applied to perform processing. Under these conditions, electrolytic elution is caused to concentrate and restrict in the vicinity of the anode, thereby processing the workpiece into a shape obtained by reversing the shape of the cathode, which is a tool.

次に、従来の電解加工における反応機構の定説を簡単に説明する。例えば、電解液にNaCl水溶液を用いてFeの電解加工を行った場合、その両極での反応過程は一般には以下のようになるとされている。
(陽)Fe→Fe2++2e 更に Fe2++2Cl-→FeCl2・・(1)
(陰)2Na++2H2O+2e→2NaOH+H2・・・・・・・・・(2)
こうして陰極で発生したFeCl2と陽極で発生したNaOHとが液中で反応して
FeCl2+2NaOH→Fe(OH)2 +2Na++2Cl-・・(3)
となる。こうして式(1)から式(3)を辺々加えると、前反応式は、
Fe+2H2O→Fe(OH)2+H2・・・・・・・・・・・・・(4)
となる。
Next, the conventional theory of reaction mechanism in conventional electrolytic processing will be briefly described. For example, when Fe electrolytic processing is performed using a NaCl aqueous solution as the electrolytic solution, the reaction process at both electrodes is generally as follows.
(Positive) Fe → Fe 2+ + 2e Further Fe 2+ + 2Cl → FeCl 2 .. (1)
(Shade) 2Na + + 2H 2 O + 2e → 2NaOH + H 2 (2)
Thus, FeCl 2 generated at the cathode and NaOH generated at the anode react in the liquid, and FeCl 2 + 2NaOH → Fe (OH) 2 + 2Na + + 2Cl (3)
It becomes. Thus, when formula (1) to formula (3) are added side by side, the pre-reaction formula is
Fe + 2H 2 O → Fe (OH) 2 + H 2 (4)
It becomes.

そこで、疑問とするのは、式(3)であり、この式においては、NaOHがこのままの形でFeCl2と反応しているように見える。しかし、NaOHについてNaはイオン化傾向が大きいため、電解液中においてはNaOHは次の式(5)のようにNa+とOH-とに電離していると考えられる。即ち、
NaOH→Na++OH-・・・・・・・・・・・・・・・・・・(5)
となる。この過程を考慮すると、式(2)、式(3)は、それぞれ
2H2O+2e→2OH-+H2・・・・・・・・・・・・・・・(6)
FeCl2+2OH-→Fe(OH)2+2Cl-・・・・・・・(7)
となり、式(1)、式(6)、式(7)を辺々加えると、式(4)が同様に導かれる。
Therefore, what is questioned is equation (3), in which NaOH appears to react with FeCl 2 as it is. However, since NaOH has a large ionization tendency with respect to NaOH, it is considered that NaOH is ionized into Na + and OH as shown in the following formula (5). That is,
NaOH → Na + + OH - ·················· (5)
It becomes. Considering this process, the formula (2) and the formula (3) are respectively expressed as 2H 2 O + 2e → 2OH + H 2 (6)
FeCl 2 + 2OH → Fe (OH) 2 + 2Cl (7)
Then, when Expression (1), Expression (6), and Expression (7) are added side by side, Expression (4) is similarly derived.

この式(1)から式(3)の反応過程と、式(1)→式(6)→式(7)の反応過程の両者を比較すると、前者においてNaOH自身がその反応に寄与しており、一方後者においてはNaOHが電離することによって生じたOH-が反応に寄与していることが分かる。即ち、後者はOH-が存在すれば反応は進行すると考えられるのである。ここで、OH-は溶液中だけでなく、単に純水な水の中にも微量(25℃において10-7mol/l)ではあるが存在する。従って、上述の考えを基にすれば、超純水中のOH-を利用することでアルカリ溶液中と同様の材料の加工は可能だということになる。 Comparing both the reaction process of the formula (1) to the formula (3) and the reaction process of the formula (1) → the formula (6) → the formula (7), NaOH itself contributes to the reaction in the former. On the other hand, in the latter, it can be seen that OH generated by the ionization of NaOH contributes to the reaction. That is, the latter is considered to proceed if OH - is present. Here, OH is present in a trace amount (10 −7 mol / l at 25 ° C.) not only in the solution but also in pure water. Therefore, based on the above-mentioned idea, it is possible to process the same material as in the alkaline solution by using OH in ultrapure water.

しかし、前述の如く、超純水中のOH-は微量であるので、実用的な加工を可能にするには、何らかの方法でOH-濃度を増大させなければならない。本発明は、他の溶液を加えることなく、超純水中のOH-濃度を増大させて、極度に清浄化された環境での材料の加工を行うことにある。従って、本発明の加工では被加工物表面の汚染は生じない。 However, as described above, since the amount of OH − in ultrapure water is very small, in order to enable practical processing, the OH concentration must be increased by some method. The present invention consists in processing the material in an extremely cleaned environment by increasing the OH - concentration in ultrapure water without adding other solutions. Therefore, contamination of the workpiece surface does not occur in the processing of the present invention.

本発明の加工原理は、超純水中の水分子を電離し、生成された水酸基又は水酸基イオンを被加工物表面に供給し、被加工物原子と水酸基又は水酸基イオンとの反応によって、材料表面に清浄な酸化膜を形成したり、あるいは材料表面原子を除去し、その集積によって目的とする形状を得るものである。   The processing principle of the present invention is to ionize water molecules in ultrapure water, supply the generated hydroxyl group or hydroxyl ion to the surface of the workpiece, and react the workpiece atom with the hydroxyl group or hydroxyl ion to generate a surface of the material. Then, a clean oxide film is formed, or material surface atoms are removed, and a desired shape is obtained by accumulation thereof.

つまり、加工工具となる水酸基又は水酸基イオンを、被加工物表面近くに設置された電極表面やイオン交換機能又は触媒機能を有する固体表面での化学反応によって生成すれば、このような水酸基又は水酸基イオンを発生する固体材料表面近傍の被加工物表面が優先的に加工される。従って、水酸基あるいは水酸基イオンを発生させる材料の形状を被加工物表面に転写する、いわゆる転写加工が可能である。また、水酸基あるいは水酸基イオンを発生させる材料の形状が線状である場合には、板状材料の切断加工が可能である。そして、水酸基又は水酸基イオンの供給量等の加工パラメーターを調節することによって、材料表面で誘起される反応が酸化反応であるか、除去加工反応であるかを選択することが可能である。   In other words, if hydroxyl groups or hydroxyl ions that serve as processing tools are generated by chemical reactions on the surface of an electrode placed near the surface of the workpiece or a solid surface having an ion exchange function or catalytic function, such hydroxyl groups or hydroxyl ions The surface of the workpiece in the vicinity of the surface of the solid material that generates the is preferentially processed. Therefore, so-called transfer processing is possible in which the shape of a material that generates hydroxyl groups or hydroxyl ions is transferred to the surface of the workpiece. Moreover, when the shape of the material that generates hydroxyl groups or hydroxyl ions is linear, the plate-like material can be cut. It is possible to select whether the reaction induced on the surface of the material is an oxidation reaction or a removal processing reaction by adjusting processing parameters such as the supply amount of hydroxyl groups or hydroxyl ions.

本発明の加工方法において、加工速度(加工能率)を高めるために、水酸基増加処理が重要である。水酸基増加処理には、熱的に平衡な状態でOH-を増加させる方法と、熱的に非平衡な(熱的平衡を利用しない)状態でOH-を増加させる方法とがある。加工という観点から水酸基増加処理を見れば、OH-を局在させて加工領域を制限するには熱的平衡を利用しない方法でOH-を増加させることが好ましいが、熱的に平衡な状態でOH-を増加させても、OH-のみを分離あるいは集積して被加工物の加工面に供給できれば同様に加工領域を制限することが可能である。 In the processing method of the present invention, a hydroxyl group increasing treatment is important in order to increase the processing speed (processing efficiency). A hydroxyl group increases processing, OH at thermal equilibrium state - and a method of increasing the - OH in a method of increasing a thermal nonequilibrium (not utilize thermal equilibrium) state. Looking at the hydroxyl increasing process from the viewpoint of processing, OH - at a method which does not utilize the thermal equilibrium to limit the machining area by localized OH - although it is preferred to increase the in thermal equilibrium state Even if OH is increased, if only OH can be separated or accumulated and supplied to the processing surface of the workpiece, the processing region can be similarly limited.

その水酸基増加処理としては、超純水中に間隔を置いて配設した一対又はそれ以上の電極間に電流を流し、超純水を電気分解してなる処理(電解処理)、あるいは超純水を高温、高圧に維持してなる処理(高温高圧処理)、あるいは超純水を高温、高圧に維持しながら、超純水中に間隔を置いて配設した一対又はそれ以上の電極間に電流を流し、超純水を電気分解してなる処理(高温高圧・電解処理)、あるいは超純水中に配設したイオン交換機能を有する固体表面での電気化学反応を利用してなる処理(イオン交換処理)、超純水中に配設した触媒機能を有する固体表面での反応を利用してなる処理(触媒処理)、あるいは超純水に誘電損失の可及的小さな周波数の高周波電圧を印加して水プラズマを生成し、水を電離又は解離させてなる処理(プラズマ処理)が採用できる。   As the hydroxyl group increasing treatment, a treatment (electrolytic treatment) in which ultrapure water is electrolyzed by passing an electric current between one or more electrodes arranged at intervals in ultrapure water, or ultrapure water Is a process that maintains high temperature and high pressure (high temperature and high pressure treatment), or current between a pair of electrodes or more disposed at intervals in ultra pure water while maintaining ultra pure water at high temperature and high pressure. Treatment by electrolyzing ultrapure water (high temperature, high pressure, electrolytic treatment), or treatment using an electrochemical reaction on a solid surface with ion exchange function disposed in ultrapure water (ion Exchange treatment), treatment using a reaction on a solid surface having a catalytic function disposed in ultrapure water (catalyst treatment), or applying high frequency voltage with a frequency as low as possible in dielectric loss to ultrapure water Water plasma is generated and water is ionized or dissociated. Physical (plasma treatment) can be adopted.

そして、前述の水酸基増加処理と併用して、前記被加工物を陽極とし、又は被加工物の電位を高く維持して、電界によって該被加工物の表面に水酸基イオンを引き寄せて、被加工物近傍の水酸基イオンの濃度を高めて加工することが実用的である。また、生成したOH-とH+とが再結合してH2Oに戻るのを抑制するために、強電界をかけて被加工物にOH-を引き寄せるか、水素吸蔵合金を用いるなどでH+イオンを強制的に除外する方法が有力である。 In combination with the above-described hydroxyl group increasing treatment, the workpiece is used as an anode, or the potential of the workpiece is kept high, and hydroxyl ions are attracted to the surface of the workpiece by an electric field, and the workpiece It is practical to increase the concentration of nearby hydroxyl ions for processing. Further, in order to prevent the generated OH and H + from recombining and returning to H 2 O, a strong electric field is applied to attract OH to the work piece or a hydrogen storage alloy is used. + A method to force exclusion of ions is effective.

次に、各水酸基増加処理について説明する。先ず、電解処理は、超純水中に間隔を置いて配設した一対又はそれ以上の電極間に電流を流し、超純水を電気分解してなる処理であるが、通常は陽極側を被加工物とした一対の電極を用い、両電極間に直流バイアス電圧を印加して行うのである。ここで、被加工物表面に単位時間に作用するOH-を増加させるには、電極間の電界強度を増加させる、即ち電極間にかける直流バイアスを高くするか、電極間のギャップを小さくすれば良い。この場合、超純水中に存在するイオンはH+、OH-のみであり、よって直流バイアスを印加した場合、陽極近傍にはOH-が多数存在することになる。この陽極近傍のOH-によって、陽極となっている被加工物を加工するのである。被加工物の加工量は、一般にファラデーの法則によって決まり、被加工物の1グラム等量の元素を電解溶出させるのに必要な電気量はF(ファラデー定数)クーロンであり、電流密度が高い程、加工速度が速いことになる。 Next, each hydroxyl group increase process is demonstrated. First, the electrolytic treatment is a treatment in which an electric current is passed between one or more electrodes disposed at intervals in ultrapure water to electrolyze the ultrapure water. Usually, the anode side is covered. This is done by using a pair of electrodes as a workpiece and applying a DC bias voltage between the electrodes. Here, in order to increase OH acting on the workpiece surface per unit time, the electric field strength between the electrodes is increased, that is, the DC bias applied between the electrodes is increased or the gap between the electrodes is decreased. good. In this case, the ions existing in the ultrapure water are only H + and OH , and therefore, when a DC bias is applied, many OH exist in the vicinity of the anode. The workpiece to be the anode is processed by OH − in the vicinity of the anode. The amount of work to be processed is generally determined by Faraday's law, and the amount of electricity required to elute 1 gram equivalent of the element in the work is F (Faraday constant) coulomb, the higher the current density. The processing speed will be fast.

高温高圧処理は、超純水を高温、高圧に維持してなる処理であり、液体の状態では水のイオン積が圧力及び温度に依存してその絶対量が変化することを利用するものである。図1は、100kbar (1010Pa)、1000℃までの超高温、超高圧領域において水の電気伝導度を測定することによって得られた水のイオン積Kwと密度ρの関係のグラフである。尚、イオン積とpHとの関係は、
pH(H2O)=−log〔H+〕=−logKw1/2
で与えられる。
The high-temperature and high-pressure treatment is a treatment in which ultrapure water is maintained at a high temperature and high pressure, and utilizes the fact that the ionic product of water changes in its absolute amount depending on the pressure and temperature in the liquid state. . FIG. 1 is a graph showing the relationship between the ionic product Kw of water and the density ρ obtained by measuring the electrical conductivity of water in an ultrahigh temperature and ultrahigh pressure region up to 100 kbar (10 10 Pa), 1000 ° C. The relationship between ion product and pH is
pH (H 2 O) = − log [H + ] = − log Kw 1/2
Given in.

イオン積と圧力、温度の関係の傾向は概ね以下のようである。先ず、1〜10kbar の範囲で圧力一定の条件においては、イオン積は温度の上昇に伴い増加するが、その傾きは徐々に減少し、ある温度で極限値に達した後は温度の上昇に伴い減少する。30〜100kbar の範囲で圧力一定の条件においては、イオン積は単調増加する。次に、温度一定の条件においては、イオン積は圧力の増加に伴い増加する。また、密度一定の条件においても、イオン積は温度、圧力の上昇に伴い増加する。例えば、密度1.0g/cm3で室温(25℃)から200℃まで上昇させた場合、水のイオン積Kwは10-14から約10-10.118程度に増加する一方で圧力は3kbar (3×108Pa、約3000気圧)に上昇する。 The trend of the relationship between ion product, pressure and temperature is as follows. First, under the condition of constant pressure in the range of 1 to 10 kbar, the ion product increases as the temperature rises, but the slope gradually decreases, and after reaching a limit value at a certain temperature, the ion product increases. Decrease. Under the condition of constant pressure in the range of 30 to 100 kbar, the ion product increases monotonously. Next, under a constant temperature condition, the ion product increases as the pressure increases. Even under a constant density condition, the ion product increases as the temperature and pressure increase. For example, when the density is increased from room temperature (25 ° C.) to 200 ° C. at a density of 1.0 g / cm 3 , the water ion product Kw increases from about 10 −14 to about 10 −10.118 while the pressure is 3 kbar (3 × 10 8 Pa, about 3000 atm).

高温高圧・電解処理は、超純水を高温、高圧に維持しながら、超純水中に間隔を置いて配設した一対又はそれ以上の電極間に電流を流し、超純水を電気分解してなる処理であり、前述の電解処理と高温高圧処理とを組合せたものである。   High-temperature, high-pressure / electrolytic treatment is to electrolyze ultrapure water by passing a current between one or more electrodes arranged at intervals in ultrapure water while maintaining ultrapure water at high temperature and high pressure. This is a combination of the above-described electrolytic treatment and high-temperature and high-pressure treatment.

イオン交換処理は、超純水中に配設したイオン交換機能を有する固体表面での電気化学反応を利用してなる処理であり、イオン交換樹脂膜又は透水性の仕切膜間にイオン交換樹脂粒若しくは固体電解質を充填したものなどを利用できる。そして、イオン交換機能を有する固体表面の両側に陽極と陰極を配設して、固体表面で生成したOH-を陽極側に、H+を陰極側に引き寄せて分離し、陽極として用いた被加工物又は陽極の近傍に配設した被加工物をOH-によって加工するのである。また、触媒処理は、触媒機能を有する固体表面で水分子を励起若しくは活性化し、陽極と陰極間に印加した電圧によって水分子を電離若しくは解離させる処理である。 The ion exchange treatment is a treatment using an electrochemical reaction on a solid surface having an ion exchange function disposed in ultrapure water, and the ion exchange resin particles between the ion exchange resin membrane or the water-permeable partition membrane. Or what filled a solid electrolyte etc. can be utilized. Then, an anode and a cathode are arranged on both sides of the solid surface having an ion exchange function, and OH generated on the solid surface is drawn to the anode side and H + is drawn to the cathode side to be separated and used as an anode. The workpiece disposed in the vicinity of the workpiece or the anode is processed with OH . The catalyst treatment is a treatment in which water molecules are excited or activated on a solid surface having a catalytic function, and the water molecules are ionized or dissociated by a voltage applied between the anode and the cathode.

プラズマ処理は、超純水に誘電損失の可及的小さな周波数の高周波電圧を印加して水プラズマを生成し、水を電離又は解離させてなる処理であり、典型的な非平衡状態でOH-を生成する方法である。この場合、プラズマ中のOH-を強電界をかけるなどで強制的に被加工物の加工面に作用させて加工するのである。また、水蒸気状態の超純水に高周波電圧を印加してプラズマを発生させることも考慮される。 The plasma treatment is a treatment in which water plasma is generated by applying a high frequency voltage with a frequency as low as possible in dielectric loss to ultrapure water, and water is ionized or dissociated. In a typical non-equilibrium state, OH Is a method of generating In this case, OH in the plasma is forced to act on the processed surface of the workpiece by applying a strong electric field or the like. It is also considered that plasma is generated by applying a high-frequency voltage to water-purified ultrapure water.

ここで、本発明の加工原理は、超純水中のOH-によって被加工物を加工するのであるが、加工が化学的溶出反応による除去加工であるか、あるいは酸化反応による酸化被膜形成加工であるかは、水酸基の供給量などの加工パラメーターを調節することによって選択することが可能である。しかし、この加工パラメーターは、水酸基増加処理の方法によっても異なり、現在のところ両加工を選択するための加工パラメーターの範囲は特定できない。 Here, the processing principle of the present invention is that the workpiece is processed by OH − in ultrapure water, but the processing is removal processing by chemical elution reaction or oxide film formation processing by oxidation reaction. It can be selected by adjusting processing parameters such as the amount of hydroxyl group supplied. However, this processing parameter differs depending on the method of hydroxyl group increasing treatment, and at present, the range of processing parameters for selecting both processing cannot be specified.

次に、実際に被加工物を加工した具体例に基づいて本発明を更に説明する。水酸基増加処理として、実施例1は電解処理、実施例2は高温高圧処理、実施例3はイオン交換処理を採用し、被加工物としてSiを始め、その他の数種類の金属を用いて加工の実証試験を行った。   Next, the present invention will be further described based on a specific example in which a workpiece is actually processed. Example 1 employs electrolytic treatment, Example 2 employs high-temperature and high-pressure treatment, Example 3 employs ion exchange treatment, and demonstrates the machining using Si as the workpiece and several other types of metals. A test was conducted.

(実施例1−1)
図2に示すように、陽極側をSi、陰極側を回転電極とした加工装置を用いて実証試験を行った。回転電極を使用する利点としては、電極間に一定な水の流れを作ることで、安定した場での加工ができること、電極間に常に新しい水を供給することで、場を清浄に保つことができることなどが挙げられる。前者については、平板状の両電極が微小なギャップ(1mm以下)で対峙していると、両電極板の表面から発生した気泡がギャップ間に溜まってしまい、安定な場での加工が期待できないからである。この点については、従来の電解加工においても、電解液の流れを作って気泡を除去している。
(Example 1-1)
As shown in FIG. 2, a verification test was performed using a processing apparatus in which the anode side was Si and the cathode side was a rotating electrode. The advantages of using a rotating electrode are that a constant flow of water is created between the electrodes, processing in a stable field is possible, and constantly supplying fresh water between the electrodes keeps the field clean. What can be done. As for the former, if the two flat electrodes face each other with a small gap (1 mm or less), bubbles generated from the surfaces of both electrode plates accumulate between the gaps, so that stable processing cannot be expected. Because. Regarding this point, even in the conventional electrolytic processing, the flow of the electrolytic solution is created to remove the bubbles.

本実施例の加工装置は、図2に示すように、Si板からなる試料1と、回転電極2とをギャップを設けて水槽3に満たした超純水4中に浸漬し、試料1はXYステージ5に固定されたサポート部材6に保持され、回転電極2はZステージ7に固定されたモータ8の回転軸9(Z軸方向)の先端に固定されている。前記試料1の加工面は、XY面と直交させて配設し、例えばYZ面と平行に配設している。従って、XYステージ5とZステージ7とを駆動することによって、試料1と回転電極2とのギャップ間隔を含め相対的位置を変更できるようになっている。そして、前記試料1と回転電極2は、それぞれ電源10にリード線11,11等を介して電気的に接続され、試料1には正電圧が印加され、回転電極2は接地電位に維持されている。前記試料1と回転電極2との間に流れる電流は電流計12で測定している。また、前記水槽3を含め機構部分の殆どを気密チャンバー13内に収容し、該気密チャンバー13の内部はArガスでパージしている。   As shown in FIG. 2, the processing apparatus of the present example immerses the sample 1 made of an Si plate and the rotating electrode 2 in ultrapure water 4 filled with a water tank 3 with a gap provided, and the sample 1 is XY. The rotating electrode 2 is held by a support member 6 fixed to the stage 5, and the rotating electrode 2 is fixed to the tip of the rotating shaft 9 (Z-axis direction) of the motor 8 fixed to the Z stage 7. The processed surface of the sample 1 is disposed perpendicular to the XY plane, for example, parallel to the YZ plane. Therefore, by driving the XY stage 5 and the Z stage 7, the relative position including the gap interval between the sample 1 and the rotating electrode 2 can be changed. The sample 1 and the rotating electrode 2 are electrically connected to a power source 10 via lead wires 11 and 11 respectively, a positive voltage is applied to the sample 1, and the rotating electrode 2 is maintained at the ground potential. Yes. The current flowing between the sample 1 and the rotating electrode 2 is measured by an ammeter 12. Further, most of the mechanical part including the water tank 3 is accommodated in an airtight chamber 13, and the inside of the airtight chamber 13 is purged with Ar gas.

前記回転電極2の材料としては、OH-やH+によって侵されないものを用いる必要があり、AuやPtが最も好ましい。本実施例では、Al球の表面に無電解めっきによってNiを10μmの厚さにコーティングし、その上に電解めっきによってAuをコーティングしたものを回転電極2として用いた。 As the material of the rotating electrode 2, it is necessary to use a material that is not affected by OH - or H + , and Au or Pt is most preferable. In this example, the surface of the Al sphere coated with Ni to a thickness of 10 μm by electroless plating and Au coated thereon by electrolytic plating was used as the rotating electrode 2.

先ず、両電極間(陽極の試料1と陰極の回転電極2との間)に印加する直流バイアスを一定にし、ギャップを変化させて電界強度を増加させてSiに作用するOH-の量を増加させた場合のSiの変化の様子を観察した。加工条件及び加工結果を次の表1に示す。 First, the DC bias applied between both electrodes (between the anode sample 1 and the cathode rotating electrode 2) is made constant, the gap is changed, the electric field strength is increased, and the amount of OH acting on Si is increased. The state of the change of Si when it was made to observe was observed. The processing conditions and processing results are shown in Table 1 below.

Figure 2006176885
Figure 2006176885

ここで、表1中の酸化膜の膜厚は、触針式粗さ計((株)東京精密製、サーフコム)を用いて測定した。その結果、試料1に形成された酸化膜は、回転電極2が最も接近している中心部分が最も膜厚が厚く成長しており、中心から遠ざかるにつれて酸化膜の成長は小さくなっていた。これは、回転電極を用いたため、回転電極の中心から遠ざかるにつれてギャップが大きくなり、それに伴って電界強度が弱まった分布になっており、その結果としてSiに作用するOH-の単位時間当たりの量が減少したためと推測される。上記の結果、少なくとも電流密度が0.9mA/cm2程度以下では、酸化被膜形成加工であることが分かる。 Here, the thickness of the oxide film in Table 1 was measured using a stylus roughness meter (Surfcom, manufactured by Tokyo Seimitsu Co., Ltd.). As a result, the oxide film formed on the sample 1 grows thickest in the central portion where the rotating electrode 2 is closest, and the growth of the oxide film decreases as the distance from the center increases. Since the rotating electrode is used, the gap increases as the distance from the center of the rotating electrode increases, and the electric field strength decreases accordingly. As a result, the amount of OH acting on Si per unit time Is estimated to have decreased. From the above results, it can be seen that the oxide film forming process is performed at least when the current density is about 0.9 mA / cm 2 or less.

(実施例1−2)
次に、電流密度を増加させるとともに、Siに作用するOH-の濃度を一様にするために、平行平板電極を用いた加工を試みた。図3にその加工装置の概略を示している。この加工装置は、四フッ化エチレン樹脂(PTFE)製の容器20に満たした超純水21中に、両極ともSi製の平板からなる試料22,22を絶縁体のスペーサ23を介して平行に固定した状態で浸漬し、一方の試料22に電源24から正電圧を印加し、他方の試料22を零電位に維持し、前記容器20の開口部は蓋25で覆った上にガス不透過性の袋26で密閉した構造を有し、その内部をArガスでパージしている。尚、図中27は温度計である。
(Example 1-2)
Next, in order to increase the current density and make the concentration of OH acting on Si uniform, processing using parallel plate electrodes was attempted. FIG. 3 shows an outline of the processing apparatus. In this processing apparatus, samples 22 and 22 made of Si flat plates are placed in parallel through an insulating spacer 23 in ultrapure water 21 filled in a container 20 made of tetrafluoroethylene resin (PTFE). It is immersed in a fixed state, a positive voltage is applied to one sample 22 from a power source 24, the other sample 22 is maintained at zero potential, and the opening of the container 20 is covered with a lid 25 and is gas impermeable. The inside of the bag 26 is purged with Ar gas. In the figure, reference numeral 27 denotes a thermometer.

前述の実施例1−1と同様に、両試料22,22に直流バイアスを印加して、加工を試みた。その加工条件と加工結果を以下の表2に示し、この電流密度でも加工は酸化被膜形成加工であった。   In the same manner as in Example 1-1 described above, a DC bias was applied to both samples 22 and 22, and processing was attempted. The processing conditions and processing results are shown in Table 2 below, and the processing was oxide film formation processing even at this current density.

Figure 2006176885
Figure 2006176885

(実施例1−3)
次に、電流密度を更に増加させる目的で、陰極を針状の電極として加工を試みた。図4は、その加工装置の概略を示す。この加工装置は、密閉容器30内に配した水槽31に超純水32を満たし、保持台33に固定したSi製の平板からなる試料34を超純水32に浸漬するとともに、金線からなる針状電極35を該試料34に垂直に所定のギャップを設けて保持台33に固定して同様に超純水32中に浸漬し、電源36から試料34に正電圧を印加するとともに、針状電極35を零電位に維持し、更に前記密閉容器30をArガスでパージする構造のものである。尚、図中37は温度計である。
(Example 1-3)
Next, in order to further increase the current density, an attempt was made to process the cathode as a needle-like electrode. FIG. 4 shows an outline of the processing apparatus. In this processing apparatus, a water tank 31 disposed in an airtight container 30 is filled with ultrapure water 32, a sample 34 made of a Si flat plate fixed to a holding base 33 is immersed in the ultrapure water 32, and is made of a gold wire. The needle-like electrode 35 is fixed to the holding table 33 with a predetermined gap perpendicular to the sample 34 and similarly immersed in ultrapure water 32, and a positive voltage is applied from the power source 36 to the sample 34. The electrode 35 is maintained at zero potential, and the sealed container 30 is purged with Ar gas. In the figure, reference numeral 37 denotes a thermometer.

前述の実施例1−1と同様に、両試料34と針状電極35間に直流バイアスを印加して、加工を試みた。その加工条件と加工結果を以下の表3に示し、この電流密度でも加工は酸化被膜形成加工であった。   In the same manner as in Example 1-1 described above, processing was attempted by applying a DC bias between both the sample 34 and the needle electrode 35. The processing conditions and processing results are shown in Table 3 below, and the processing was oxide film forming processing even at this current density.

Figure 2006176885
Figure 2006176885

以上の結果より、被加工物がSiについては、電流密度が0.11〜7.9mA/cm2の範囲では、加工は酸化被膜形成加工であった。現在、半導体工業においてSi酸化膜は、ゲート絶縁膜やキャパシタ絶縁膜などSiデバイスの製造の様々な分野に利用されている。このSi酸化膜の生成法は様々あるが、今日のデバイス製造に用いられるSi酸化膜は、主としてSiを高温の雰囲気中に曝すことで均一に形成される熱酸化膜である。これまでSi酸化膜の生成法としては、乾燥酸化、加湿酸化、水蒸気酸化、加圧酸化、プラズマ酸化、電解陽極酸化などが知られている。 From the above results, when the workpiece was Si, the processing was oxide film forming processing when the current density was in the range of 0.11 to 7.9 mA / cm 2 . Currently, in the semiconductor industry, Si oxide films are used in various fields of manufacturing Si devices such as gate insulating films and capacitor insulating films. There are various methods for generating this Si oxide film, but the Si oxide film used in today's device manufacturing is a thermal oxide film that is uniformly formed mainly by exposing Si to a high temperature atmosphere. Conventionally, dry oxidation, humidified oxidation, steam oxidation, pressure oxidation, plasma oxidation, electrolytic anodic oxidation, and the like are known as methods for forming a Si oxide film.

電解陽極酸化を除く他の方法では、酸化膜の特性はほぼ同様であるのに対し、電解陽極酸化による方法では酸化膜の密度は他の方法よりもかなり小さく、抵抗率も他の方法と比べて4桁も小さい。これは、電解陽極酸化法では、電解液中の電解質がSi酸化膜に大きく影響を与えるためと考えられる。本発明の加工方法で陽極に生じたSi酸化膜は、超純水中での陽極電極反応によるものである。そこで、本発明による酸化膜と熱酸化膜とをFT−IR(Fourier Transfer−Infrared Spectroscopy )(日本分光製、FT/IR−3型)と、AES(Auger Electron Spectroscopy )によって分析した。FT−IRの分析結果からは、本発明の酸化膜は、一般にデバイス製造に用いられている熱酸化膜よりもSi−O結合の量が少ないことが分かった。しかし、一方ではAESの分析結果からは、本発明の酸化膜は熱酸化膜に匹敵する構造を持つということが分かった。従って、酸化被膜形成加工の加工条件を最適にすることにより、超純水中でSiの電極反応を行えば、熱酸化膜に匹敵するSi酸化膜が得られる可能性がある。   In the other methods except electrolytic anodic oxidation, the characteristics of the oxide film are almost the same, whereas in the electrolytic anodic oxidation method, the density of the oxide film is considerably smaller than the other methods and the resistivity is also compared with the other methods. 4 digits smaller. This is presumably because, in the electrolytic anodic oxidation method, the electrolyte in the electrolytic solution greatly affects the Si oxide film. The Si oxide film formed on the anode by the processing method of the present invention is due to the anode electrode reaction in ultrapure water. Therefore, the oxide film and the thermal oxide film according to the present invention were analyzed by FT-IR (Fourier Transfer-Infrared Spectroscopy) (manufactured by JASCO, FT / IR-3 type) and AES (Auger Electron Spectroscopy). From the results of FT-IR analysis, it was found that the oxide film of the present invention generally has a smaller amount of Si—O bonds than the thermal oxide film used for device manufacture. However, on the other hand, it was found from the analysis result of AES that the oxide film of the present invention has a structure comparable to the thermal oxide film. Therefore, by optimizing the processing conditions for forming the oxide film, if an Si electrode reaction is performed in ultrapure water, a Si oxide film comparable to the thermal oxide film may be obtained.

(実施例1−4)
前述の実施例1−3の加工装置を使用し、試料としてCu、Mo、Fe、Alの加工を試みた。その加工条件と加工結果を以下の表4に示し、この加工条件ではCu、Moは除去加工、Fe、Alは酸化被膜形成加工であった。
(Example 1-4)
Using the processing apparatus of Example 1-3 described above, processing of Cu, Mo, Fe, and Al as samples was attempted. The processing conditions and processing results are shown in Table 4 below. Under these processing conditions, Cu and Mo were removal processing, and Fe and Al were oxide film formation processing.

Figure 2006176885
Figure 2006176885

ここで、加工終了直後に加工されたCu、Moの表面がそれぞれ茶褐色及び黒色に変化していた。これらは、Cuの酸化物CuO及びMoの酸化物MoOであると思われる。特に、Cuは加工中に緑色のもやが水中に現れ、またMoの加工終了後の水の一部に青色のもやがかかっていた。従って、加工されたCu及びMoの表面は酸化されていたと推測される。これらの結果から超純水中での電極反応による加工メカニズムの一つのモデルが考えられる。即ち、超純水中においては、物質は先ずOH-やH2 Oが関係することによって酸化が生じ、その酸化物が更にOH-やH2Oが関係した何らかの原因で脱離することで除去加工に変わるというモデルである。 Here, the surfaces of Cu and Mo processed immediately after the processing were changed to brown and black, respectively. These appear to be the Cu oxide CuO and the Mo oxide MoO. In particular, Cu had a green haze appearing in the water during processing, and a part of the water after the processing of Mo had a blue haze. Therefore, it is estimated that the processed Cu and Mo surfaces were oxidized. From these results, one model of processing mechanism by electrode reaction in ultrapure water can be considered. That is, in ultrapure water, the substance is first oxidized due to the relationship with OH - and H 2 O, and the oxide is further removed by some reason related to OH - and H 2 O. It is a model that changes to processing.

本実施例では、超純水を高温、高圧に維持して超純水中のOH-濃度を増大させ、超純水中に浸漬した被加工物を加工することを試みた。図1に示すように、室温付近の温度25℃で、大気圧における密度1.0g/cm3の水を、密度を一定にしたまま200℃まで温度を上昇させると圧力は3000気圧になることが分かる。そこで、本加工装置は、図5に示すように、圧力容器40の内部反応室41内に超純水42を満たした四フッ化エチレン樹脂製の容器43を配置し、超純水42中にSi製の試料44を浸漬し、また圧力容器40の外周には加熱用のセラミックヒーター45を巻回し、更にそれを断熱材46で覆った構造のものであり、セラミックヒーター45にはスライダック47を介して電流を供給するものである。尚、温度は圧力容器40に接触させた熱電対48で測定する。前記圧力容器40は、3000気圧に耐えるように設計されており、収容空間41を有する容器本体40aと蓋体40bを8本のボルト40cで締結し、容器本体40aと蓋体40bとは銅製のガスケット40dで密閉したものである。また、容器本体40aと蓋体40bとは、ステンレス鋼(SUS304)で作製し、ボルト40cは、線膨張率がステンレス鋼よりも小さいHPM2鋼で作製し、温度が上昇したときに、熱膨張率の違いによって締付力が増加する自繋構造となっている。 In this example, the ultrapure water was maintained at a high temperature and a high pressure to increase the OH concentration in the ultrapure water, and an attempt was made to process the workpiece immersed in the ultrapure water. As shown in FIG. 1, when the temperature is raised to 200 ° C. with a constant density of 1.0 g / cm 3 of water at atmospheric pressure at a temperature of 25 ° C. near room temperature, the pressure becomes 3000 atm. I understand. Therefore, in this processing apparatus, as shown in FIG. 5, a container 43 made of tetrafluoroethylene resin filled with ultrapure water 42 is disposed in the internal reaction chamber 41 of the pressure vessel 40, and A sample 44 made of Si is immersed, and a heating ceramic heater 45 is wound around the outer periphery of the pressure vessel 40 and further covered with a heat insulating material 46. The ceramic heater 45 is provided with a slidac 47. A current is supplied through this. The temperature is measured with a thermocouple 48 brought into contact with the pressure vessel 40. The pressure vessel 40 is designed to withstand 3000 atm. The vessel main body 40a having the accommodation space 41 and the lid body 40b are fastened by eight bolts 40c, and the vessel main body 40a and the lid body 40b are made of copper. Sealed with a gasket 40d. The container body 40a and the lid body 40b are made of stainless steel (SUS304), and the bolt 40c is made of HPM2 steel having a linear expansion coefficient smaller than that of stainless steel. When the temperature rises, the coefficient of thermal expansion is increased. It has a self-linking structure that increases the tightening force due to the difference.

前記試料44としては、厚さ400μm、縦横の長さが1×2cmのSiウェハーを用いる。前処理として、先ずエチルアルコールでSiウェハー表面の油分やその他の汚れを拭き取り、次に5%フッ酸で30秒間洗浄して酸化膜の除去を行った。そして、最後に超純水(流水)中で10秒間洗浄を行い、十分に乾燥させた。加工前に、このSiウェハーの重量をmgオーダーで測定した。加工条件及び加工結果として加工前重量と加工後重量を次の表5に示している。   As the sample 44, a Si wafer having a thickness of 400 μm and a length and width of 1 × 2 cm is used. As pretreatment, first, oil and other dirt on the surface of the Si wafer were wiped off with ethyl alcohol, and then washed with 5% hydrofluoric acid for 30 seconds to remove the oxide film. And finally, it wash | cleaned for 10 second in ultrapure water (running water), and made it fully dry. Prior to processing, the weight of the Si wafer was measured on the mg order. Table 5 shows the weight before processing and the weight after processing as processing conditions and processing results.

Figure 2006176885
Figure 2006176885

ここで、加工時間については、熱電対モニターが200℃を指示してから内部反応室中の超純水の温度が200℃になるまで待ち(10分間)、それから1時間の加工を行った。また、表中の厚さ減少量は、質量差/(密度×表面積)で計算した。   Here, regarding the processing time, after the thermocouple monitor indicated 200 ° C., it waited for the temperature of ultrapure water in the internal reaction chamber to reach 200 ° C. (10 minutes), and then processing was performed for 1 hour. The thickness reduction amount in the table was calculated by mass difference / (density × surface area).

図6(a)及び(b)に示すような加工装置を用いてCu板の加工を試みた。この加工装置は、容器50内に満たした超純水51中に、陰極となる白金電極板52と陽極となるCu製の試料53を一定のギャップを保持して浸漬するとともに、両電極間に陽イオン交換膜(Nafion117)54を配設し、前記容器50の全体を気密容器55内に収容して、その内部をArガスでパージする構造である。更に詳しくは、内部を開口したギャップスペーサー56の一側面側に前記陽イオン交換膜54を挟んで白金電極板52を固定し、ギャップスペーサー56の他側面側に前記試料53を固定し、この状態で超純水51中に浸漬する。この場合、ギャップスペーサー56の開口56aの内部にも超純水51が満たされる。そして、電源57から前記白金電極板52と試料53間に、加工中に電流値が一定となるように直流電圧を印加した。加工条件と加工結果を次の表6に示す。   An attempt was made to process a Cu plate using a processing apparatus as shown in FIGS. In this processing apparatus, a platinum electrode plate 52 serving as a cathode and a Cu sample 53 serving as an anode are immersed in ultrapure water 51 filled in a container 50 while maintaining a certain gap, and between the electrodes. A cation exchange membrane (Nafion 117) 54 is provided, the entire container 50 is accommodated in an airtight container 55, and the inside is purged with Ar gas. More specifically, the platinum electrode plate 52 is fixed on one side of the gap spacer 56 having an opening inside with the cation exchange membrane 54 interposed therebetween, and the sample 53 is fixed on the other side of the gap spacer 56. Soak in ultrapure water 51. In this case, the ultrapure water 51 is also filled in the opening 56 a of the gap spacer 56. A DC voltage was applied from the power source 57 between the platinum electrode plate 52 and the sample 53 so that the current value was constant during processing. The processing conditions and processing results are shown in Table 6 below.

Figure 2006176885
Figure 2006176885

ここで、表6中の加工1においては、陽イオン交換膜を乾燥したまま超純水に浸漬して加工を行った結果、陽イオン交換膜を加工終了後に観察すると、陽イオン交換膜は超純水との接触部だけが水を吸収して試料側に膨張していた。その結果、陽イオン交換膜と試料とのギャップは殆どなかった。それに対して、表6中の加工2においては、陽イオン交換膜を予め超純水に十分な時間浸漬して膜の膨張を一様にした後、更に超純水で十分に洗浄した後にギャップスペーサーにセッティングした。その結果、加工1では40mAの電流値を確保するために印加した電圧は数10Vであったのに対し、加工2では30mAの電流値を確保するために印加した電圧は600〜1400Vになった。   Here, in processing 1 in Table 6, as a result of processing by immersing the cation exchange membrane in ultrapure water while being dried, the cation exchange membrane is super Only the contact portion with pure water absorbed water and expanded to the sample side. As a result, there was almost no gap between the cation exchange membrane and the sample. On the other hand, in the processing 2 in Table 6, after the cation exchange membrane was previously immersed in ultrapure water for a sufficient time to make the expansion of the membrane uniform, the gap was further washed thoroughly with ultrapure water. I set it on the spacer. As a result, the voltage applied to secure a current value of 40 mA in machining 1 was several tens of volts, whereas the voltage applied to secure a current value of 30 mA in machining 2 was 600 to 1400 V. .

このイオン交換処理によってOH-濃度を増加させる加工方法では、イオン交換材を表面に有する特定形状の工具を陰極とし、被加工物を陽極として加工をすれば、工具の形状を被加工物に転写する加工(転写加工)や、イオン交換材を表面に有するワイヤー電極を陰極として用いれば、陽極の被加工物を切断する加工(切断加工)が可能である。 In this processing method of increasing the OH concentration by ion exchange treatment, if the tool with a specific shape having an ion exchange material on the surface is used as the cathode and the workpiece is used as the anode, the shape of the tool is transferred to the workpiece. If a wire electrode having an ion exchange material on its surface is used as the cathode, a process for cutting the workpiece of the anode (cutting process) is possible.

温度と圧力をパラメーターとした水の密度とイオン積との関係を示すグラフである。It is a graph which shows the relationship between the density of water and ion product which made temperature and pressure a parameter. 水酸基増加処理として電解処理を採用し、回転電極を用いた加工装置の簡略断面図である。It is a simplified cross-sectional view of a processing apparatus that employs electrolytic treatment as a hydroxyl group increasing treatment and uses a rotating electrode. 水酸基増加処理として電解処理を採用し、平行平板電極を用いた加工装置の簡略断面図である。FIG. 3 is a simplified cross-sectional view of a processing apparatus that employs electrolytic treatment as a hydroxyl group increasing treatment and uses parallel plate electrodes. 水酸基増加処理として電解処理を採用し、針状電極を用いた加工装置の簡略断面図である。It is a simplified cross-sectional view of a processing apparatus that employs an electrolytic treatment as a hydroxyl group increasing treatment and uses a needle-like electrode. 水酸基増加処理として高温高圧処理を採用した加工装置の簡略断面図である。It is a simplified cross-sectional view of a processing apparatus that employs high-temperature and high-pressure treatment as a hydroxyl group increasing treatment. 水酸基増加処理としてイオン交換処理を採用した加工装置を示し、(a)は装置の簡略断面図、(b)は電極周辺構造を示す分解斜視図である。The processing apparatus which employ | adopted the ion exchange process as a hydroxyl group increase process is shown, (a) is a simplified sectional view of an apparatus, (b) is an exploded perspective view which shows an electrode periphery structure.

符号の説明Explanation of symbols

1 試料(被加工物)
2 回転電極
3 水槽
4 超純水
5 XYステージ
6 サポート部材
7 Zステージ
8 モータ
9 回転軸
10 電源
11 リード線
12 電流計
13 気密チャンバー
20 容器
21 超純水
22 試料(被加工物)
23 スペーサ
24 電源
25 蓋
26 袋
27 温度計
30 密閉容器
31 水槽
32 超純水
33 保持台
34 試料(被加工物)
35 針状電極
36 電源
37 温度計
40 圧力容器
40a 容器本体
40b 蓋体
40c ボルト
40d ガスケット
41 内部反応室
42 超純水
43 容器
44 試料(被加工物)
45 セラミックヒーター
46 断熱材
47 スライダック
48 熱電対
50 容器
51 超純水
52 白金電極板
53 試料(被加工物)
54 陽イオン交換膜
55 気密容器
56 ギャップスペーサー
56a 開口
57 電源
1 Sample (workpiece)
2 Rotating electrode 3 Water tank 4 Ultrapure water 5 XY stage 6 Support member 7 Z stage 8 Motor 9 Rotating shaft 10 Power supply 11 Lead wire 12 Ammeter 13 Airtight chamber 20 Container 21 Ultrapure water 22 Sample (workpiece)
23 Spacer 24 Power supply 25 Lid 26 Bag 27 Thermometer 30 Sealed container 31 Water tank 32 Ultrapure water 33 Holding stand 34 Sample (Workpiece)
35 Needle electrode 36 Power source 37 Thermometer 40 Pressure vessel 40a Container body 40b Lid 40c Bolt 40d Gasket 41 Internal reaction chamber 42 Ultrapure water 43 Container 44 Sample (workpiece)
45 Ceramic heater 46 Insulating material 47 Slidac 48 Thermocouple 50 Container 51 Ultrapure water 52 Platinum electrode plate 53 Sample (workpiece)
54 Cation Exchange Membrane 55 Airtight Container 56 Gap Spacer 56a Opening 57 Power Supply

Claims (5)

微量の不可避不純物を除き超純水のみを用い、超純水中に間隔を置いて配設した一対又はそれ以上の電極間に電流を流し、超純水を電気分解してイオン積を増大させ、この水酸基又は水酸基イオンの濃度が増大した超純水中に浸漬した被加工物を、水酸基又は水酸基イオンによる化学的溶出反応若しくは酸化反応によって除去加工若しくは酸化被膜形成加工することを特徴とする超純水中の水酸基による加工方法。 Use only ultrapure water, excluding trace amounts of inevitable impurities, and pass an electric current between one or more electrodes arranged at intervals in ultrapure water to electrolyze the ultrapure water and increase the ion product. The workpiece immersed in ultrapure water having an increased concentration of hydroxyl groups or hydroxyl ions is subjected to removal processing or oxide film formation processing by chemical elution reaction or oxidation reaction with hydroxyl groups or hydroxyl ions. Processing method using hydroxyl groups in pure water. 前記被加工物を陽極とし、又は被加工物の電位を高く維持して、該被加工物の表面に水酸基イオンを引き寄せてなる請求項1記載の超純水中の水酸基による加工方法。 The processing method using a hydroxyl group in ultrapure water according to claim 1, wherein the workpiece is used as an anode, or the potential of the workpiece is maintained high to attract hydroxyl ions to the surface of the workpiece. 陽極とした被加工物に対して、所定のギャップを設けて回転可能な回転電極を配して陰極とし、該回転電極を回転させてギャップ間に一定な水の流れを作りながら被加工物を加工してなる請求項2記載の超純水中の水酸基による加工方法。 A work piece made into an anode is provided with a predetermined gap and a rotatable rotating electrode arranged as a cathode, and the work piece is moved while rotating the rotating electrode to create a constant flow of water between the gaps. The processing method by the hydroxyl group in the ultrapure water of Claim 2 formed by processing. 前記被加工物がSiであり、その表面にSi酸化膜を形成してなる請求項1〜3何れかに記載の超純水中の水酸基による加工方法。 The processing method using a hydroxyl group in ultrapure water according to any one of claims 1 to 3, wherein the workpiece is Si and a Si oxide film is formed on the surface thereof. 前記被加工物がCuであり、該Cuを除去加工してなる請求項1〜3何れかに記載の超純水中の水酸基による加工方法。
The processing method using a hydroxyl group in ultrapure water according to any one of claims 1 to 3, wherein the workpiece is Cu, and the Cu is removed.
JP2006032309A 2006-02-09 2006-02-09 Working method with hydroxy group in ultrapure water Pending JP2006176885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032309A JP2006176885A (en) 2006-02-09 2006-02-09 Working method with hydroxy group in ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032309A JP2006176885A (en) 2006-02-09 2006-02-09 Working method with hydroxy group in ultrapure water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21251796A Division JP3837783B2 (en) 1996-08-12 1996-08-12 Processing method with hydroxyl groups in ultrapure water

Publications (1)

Publication Number Publication Date
JP2006176885A true JP2006176885A (en) 2006-07-06

Family

ID=36731245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032309A Pending JP2006176885A (en) 2006-02-09 2006-02-09 Working method with hydroxy group in ultrapure water

Country Status (1)

Country Link
JP (1) JP2006176885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084934A1 (en) 2011-12-06 2013-06-13 国立大学法人大阪大学 Method for manufacturing solid oxide and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084934A1 (en) 2011-12-06 2013-06-13 国立大学法人大阪大学 Method for manufacturing solid oxide and device therefor
KR20140098129A (en) 2011-12-06 2014-08-07 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Method for manufacturing solid oxide and device therefor
US11220757B2 (en) 2011-12-06 2022-01-11 Osaka Uiversity Method for manufacturing solid oxide and device therefor

Similar Documents

Publication Publication Date Title
JP3837783B2 (en) Processing method with hydroxyl groups in ultrapure water
Ngai et al. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide
US7651625B2 (en) Catalyst-aided chemical processing method and apparatus
JP4855983B2 (en) Method for producing diamond electrode
Han et al. Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine
JP2010236091A (en) Corrosion-resistant conductive member, method of manufacturing the same and fuel cell
CN106119927B (en) The method that electrochemical treatments prepare anisotropy water-oil separating copper mesh
Folquer et al. Study of copper dissolution and passivation processes by electrochemical impedance spectroscopy
KR20080037721A (en) Process for producing crystalline titanium oxide coating film through electrolytic anodizing
TW200306284A (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
JP4337827B2 (en) Processing method with hydroxyl groups in ultrapure water
JP6221067B2 (en) Formic acid production apparatus and method
Takenouchi Behavior of hydrogen nanobubbles in alkaline electrolyzed water and its rinse effect for sulfate ion remained on nickel-plated surface
US20110168546A1 (en) Material of electrode for electrolysis, electrode for electrolysis and manufacturing method of the electrode
Zhan et al. Fabrication of homogeneous nanoporous structure on 4H‐/6H‐SiC wafer surface via efficient and eco‐friendly electrolytic plasma‐assisted chemical etching
JP2006176885A (en) Working method with hydroxy group in ultrapure water
JP6616438B2 (en) Feeder
JP6415133B2 (en) Method for producing conductive diamond electrode
KR101487111B1 (en) Method for producing electrically-conducting material with modified surface
Baohong et al. A new cleaning process combining non-ionic surfactant with diamond film electrochemical oxidation for polished silicon wafers
Chee et al. 12 Applications of Liquid Cell TEM in Corrosion Science
Nei et al. Sonovoltammetry of Oxygen at Cu‐Ni Alloy Electrodes: Activation of Alloy Electrodes and Sono‐Ring‐Disk Voltammetry
KR102344878B1 (en) Cleaning apparatus for removing oxide and method of cleaning using the same
Rybalka et al. Electrochemical behavior of stainless steel in aerated NaCl solutions by electrochemical impedance and rotating disk electrode methods
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Effective date: 20071106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013