JP6616438B2 - Feeder - Google Patents

Feeder Download PDF

Info

Publication number
JP6616438B2
JP6616438B2 JP2018021928A JP2018021928A JP6616438B2 JP 6616438 B2 JP6616438 B2 JP 6616438B2 JP 2018021928 A JP2018021928 A JP 2018021928A JP 2018021928 A JP2018021928 A JP 2018021928A JP 6616438 B2 JP6616438 B2 JP 6616438B2
Authority
JP
Japan
Prior art keywords
power feeding
feeding body
noble metal
power supply
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021928A
Other languages
Japanese (ja)
Other versions
JP2019137891A (en
Inventor
佐 有本
順一 今井
潤 斉藤
哲也 上田
翔 竹之内
大輔 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2018021928A priority Critical patent/JP6616438B2/en
Priority to KR1020207003293A priority patent/KR102088243B1/en
Priority to PCT/JP2018/043478 priority patent/WO2019155731A1/en
Priority to TW108104033A priority patent/TWI695091B/en
Publication of JP2019137891A publication Critical patent/JP2019137891A/en
Application granted granted Critical
Publication of JP6616438B2 publication Critical patent/JP6616438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

本発明は、給電体、並びにそれを用いた電解セルおよび電解装置に関する。   The present invention relates to a power feeding body, and an electrolysis cell and an electrolysis apparatus using the same.

近年、水を電解して様々な機能を有する電解水を生成したり、水素などのガスを発生させる電解装置が使用されている。例えば、純水などを電気分解して水素および酸素を発生させる水電解装置においては、固体電解質膜を有する電解セルが所定組並べ合わされたものが用いられている。電解セルの構造としては、固体電解質膜と、当該固体電解質膜を挟持するよう配置された給電体とを備えたものが知られている。   In recent years, electrolyzers that electrolyze water to produce electrolyzed water having various functions and generate gas such as hydrogen have been used. For example, in a water electrolysis apparatus that generates hydrogen and oxygen by electrolyzing pure water or the like, a unit in which a predetermined set of electrolytic cells having solid electrolyte membranes are arranged is used. As a structure of the electrolytic cell, a structure including a solid electrolyte membrane and a power feeding body arranged so as to sandwich the solid electrolyte membrane is known.

従来から、水電解装置における給電体には、発生した水素や酸素などのガスを逃がすために、メッシュや繊維体など、多孔質のものが用いられている。例えば、金属板基材にエキスパンドやパンチングによって多数の孔を開口した多孔構造の給電体が用いられている。また、特許文献1には、固体電解質膜と電極との間に未焼結のチタン繊維体を介装する手法が開示されている。   Conventionally, porous materials such as meshes and fiber bodies have been used as power supply bodies in water electrolysis apparatuses in order to release generated gases such as hydrogen and oxygen. For example, a power supply body having a porous structure in which a large number of holes are opened in a metal plate base material by expanding or punching is used. Patent Document 1 discloses a technique in which an unsintered titanium fiber body is interposed between a solid electrolyte membrane and an electrode.

特開2004−315933号公報JP 2004-315933 A

水電解装置を連続的に運転して電解を行う場合、様々な要因により、固体電解質膜に損傷が生じ、それにより電解効率の低下や、装置寿命の低減が生じることがある。例えば、多孔構造の給電体の孔は大きい方がガスを逃がし易くなるという利点があるが、一方で、孔が形成されない部分の面積が小さくなると、電気抵抗が大きくなるため電解効率の低下や発熱が生じ易くなり、装置寿命の低下に繋がる場合がある。   When electrolysis is performed by continuously operating a water electrolysis apparatus, the solid electrolyte membrane may be damaged due to various factors, which may result in a decrease in electrolysis efficiency and a reduction in apparatus life. For example, there is an advantage that the larger the pores of the porous power supply body, the easier it is for gas to escape, but on the other hand, if the area of the part where the holes are not formed becomes smaller, the electric resistance increases, so the electrolytic efficiency decreases and heat generation May easily occur, leading to a reduction in the device life.

また、エキスパンドやパンチングによって加工した多孔構造の給電体は、加工によるバリや孔のエッジなど凹凸が固体電解質膜に当接する面に生じ易く、それにより当接部分の面積が小さくなり易い。このため、当接部分に応力が集中したり、接触抵抗の増大により電流が集中したりすることにより、固体電解質膜を損傷し易く、装置寿命の低減に繋がるという技術的な課題を有している。また、上述した繊維体を用いた構成でも、繊維体と固体電解質膜とが当接する面積が小さくなることから、同様の技術的な課題を有している。   Further, in a power supply body having a porous structure processed by expanding or punching, irregularities such as burrs and hole edges due to processing are likely to occur on the surface that contacts the solid electrolyte membrane, and thereby the area of the contact portion tends to be reduced. For this reason, there is a technical problem in that stress concentrates on the contact portion or current concentrates due to increase in contact resistance, which easily damages the solid electrolyte membrane and leads to a reduction in device life. Yes. Further, even in the configuration using the above-described fiber body, since the area where the fiber body and the solid electrolyte membrane are in contact with each other is small, there is a similar technical problem.

本発明は、上記の技術的な課題に鑑みてなされたものであり、長時間安定して使用可能な給電体、並びにそれを用いた電解セルおよび電解装置を提供することを課題とする。   This invention is made | formed in view of said technical subject, and makes it a subject to provide the electric power feeding body which can be used stably for a long time, and the electrolysis cell and electrolysis apparatus using the same.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、電解セルの固体電解質膜の少なくとも一方の面に接して配置される給電体において、単位面積あたりの貫通孔数および固体電解質膜に接して配置される面の表面粗さを特定範囲に設定することによって、固体電解質膜の損傷を抑え、電解装置の高寿命化を達成でき、長時間安定して使用可能な給電体を提供できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the number of through-holes per unit area and the solid electrolyte in the power supply body disposed in contact with at least one surface of the solid electrolyte membrane of the electrolytic cell By setting the surface roughness of the surface arranged in contact with the membrane within a specific range, it is possible to suppress damage to the solid electrolyte membrane, achieve a long life of the electrolyzer, and provide a power supply that can be used stably for a long time. The present invention has been completed by finding out that it can be provided.

すなわち、本発明は以下の通りである。
1.TiまたはTi合金からなる基材と、前記基材の一の表面上に貴金属からなる貴金属層とを備え、電解セルの固体電解質膜の少なくとも一方の面に前記貴金属層が接して配置される、給電体であって、
前記給電体は、前記貴金属層の表面から対向する他の表面まで貫通する貫通孔が1平方cm四方に200箇所以上設けられており、
前記固体電解質膜に接して配置される面の表面粗さ(Ra)が、0.5μm以下である、
給電体。
2.前記貫通孔が1平方cm四方に5000箇所以下設けられている、前記1に記載の給電体。
3.厚さが0.05mm以上0.35mm以下である、前記1または2に記載の給電体。
4.下記式で示される開口率が50%以上90%以下である、前記1〜3のいずれか1に記載の給電体。
開口率(%)=貫通孔面積の合計/基板面積×100
5.前記貴金属層の厚さが0.01μm以上0.3μm以下である、前記1〜4のいずれか1に記載の給電体。
6.前記貴金属層が、PtからなるPt層である、前記1〜5のいずれか1に記載の給電体。
7.前記貫通孔は、前記固体電解質膜に接して配置される面から前記給電体の厚さ方向に向かって開口面積が小さくなるテーパ構造である、前記1〜6のいずれか1に記載の給電体。
8.エッチング処理により前記貫通孔を形成したTiもしくはTi合金に対して、前記貴金属をコーティングして得られる、前記1〜7のいずれか1に記載の給電体。
9.前記1〜8のいずれか1に記載の給電体と、
前記給電体と対向して配置される対向給電体と、
前記給電体および前記対向給電体との間に挟持される固体電解質膜と、
を備える電解セル。
10.前記9に記載の電解セルと、
前記電解セルを収容する電解槽と、
前記電解槽に被電解水を通水する手段と、
前記電解槽内の被電解水に電圧を印加して電流を流す手段と、
を少なくとも設ける、電解装置。
That is, the present invention is as follows.
1. A substrate made of Ti or a Ti alloy, and a noble metal layer made of a noble metal on one surface of the substrate, and the noble metal layer is disposed in contact with at least one surface of the solid electrolyte membrane of the electrolytic cell; A power feeder,
The power feeding body has 200 or more through holes penetrating from the surface of the noble metal layer to another surface facing the noble metal layer in one square cm square,
The surface roughness (Ra) of the surface disposed in contact with the solid electrolyte membrane is 0.5 μm or less.
Feeder.
2. 2. The power feeding body according to 1, wherein the through-hole is provided at 5000 or less in 1 square cm square.
3. 3. The power supply body according to 1 or 2 above, wherein the thickness is 0.05 mm or more and 0.35 mm or less.
4). The power feeding body according to any one of 1 to 3, wherein an aperture ratio represented by the following formula is 50% or more and 90% or less.
Opening ratio (%) = total through-hole area / substrate area × 100
5. The power feeding body according to any one of 1 to 4, wherein the noble metal layer has a thickness of 0.01 μm or more and 0.3 μm or less.
6). The power feeding body according to any one of 1 to 5, wherein the noble metal layer is a Pt layer made of Pt.
7). The power feeding body according to any one of 1 to 6, wherein the through hole has a tapered structure in which an opening area decreases from a surface disposed in contact with the solid electrolyte membrane toward a thickness direction of the power feeding body. .
8). 8. The power feeding body according to any one of 1 to 7, obtained by coating the noble metal on Ti or a Ti alloy in which the through hole is formed by an etching process.
9. The power supply body according to any one of 1 to 8,
A counter power supply disposed opposite to the power supply;
A solid electrolyte membrane sandwiched between the power feeding body and the counter power feeding body;
An electrolysis cell comprising:
10. The electrolysis cell according to 9,
An electrolytic cell that houses the electrolytic cell;
Means for passing electrolyzed water through the electrolytic cell;
Means for applying a voltage to the water to be electrolyzed in the electrolytic cell to flow current;
An electrolyzer provided with at least.

本発明に係る給電体は、単位面積あたりの貫通孔数と、固体電解質膜に接して配置される面の表面粗さが特定範囲に設定されているため、電解装置における電解セルにおいて固体電解質膜の損傷を抑えることが可能となり、電解装置の高寿命化を達成でき、長時間安定して使用可能な給電体を提供できる。また、本発明に係る給電体を水電解装置に用いることで、電解水の溶存水素量や溶存効率が良好な電解水が得られる。   In the power feeding body according to the present invention, the number of through holes per unit area and the surface roughness of the surface disposed in contact with the solid electrolyte membrane are set in a specific range. It is possible to suppress the damage of the electrolysis apparatus, to achieve a long life of the electrolysis apparatus, and to provide a power supply that can be used stably for a long time. In addition, by using the power feeding body according to the present invention for a water electrolysis device, electrolyzed water with good dissolved hydrogen content and dissolved efficiency can be obtained.

図1は、本発明に係る給電体の一実施形態を示す模式図である。図1(A)は給電体が基材11、貴金属層12、貫通孔13を有することを示す図であり、図1(B)は給電体の貫通孔13を示す図であり、図1(C)は給電体の貫通孔13のテーパ構造を示す断面図である。FIG. 1 is a schematic view showing an embodiment of a power feeding body according to the present invention. FIG. 1A is a view showing that the power supply body has a base material 11, a noble metal layer 12, and a through hole 13, and FIG. 1B is a view showing the through hole 13 of the power supply body. C) is a cross-sectional view showing a taper structure of the through hole 13 of the power feeding body. 図2は、本発明に係る給電体と固体電解質膜の接合状態を簡易的に示す模式図である。FIG. 2 is a schematic view simply showing a joined state of the power feeder and the solid electrolyte membrane according to the present invention. 図3は、本発明に係る電解セルの一実施形態を簡易的に示す模式図である。FIG. 3 is a schematic view simply showing one embodiment of the electrolysis cell according to the present invention. 図4は、本発明に係る電解装置の一実施形態を示す模式図である。FIG. 4 is a schematic view showing an embodiment of the electrolysis apparatus according to the present invention. 図5は、実施例の給電体の顕微鏡写真である。図5(A)はエッチング法で作製した実施例1の給電体、図5(B)はエッチング法で作製した実施例2の給電体、図5(C)はエッチング法で作製した実施例3の給電体の顕微鏡写真である。FIG. 5 is a photomicrograph of the power feeder of the example. FIG. 5A shows a power supply body of Example 1 manufactured by an etching method, FIG. 5B shows a power supply body of Example 2 manufactured by an etching method, and FIG. 5C shows Example 3 manufactured by an etching method. It is a microscope picture of this electric power feeder. 図6は、比較例の給電体の顕微鏡写真である。図6(A)はエッチング法で作製した比較例1の給電体、図6(B)は機械加工で作製した比較例2のエキスパンド形状の給電体の顕微鏡写真、図6(C)は機械加工で作製した比較例3のエキスパンド形状の給電体の顕微鏡写真、図6(D)は比較例4の繊維焼結体である給電体の顕微鏡写真である。FIG. 6 is a micrograph of a power feeder of a comparative example. 6A is a power supply of Comparative Example 1 manufactured by etching, FIG. 6B is a micrograph of an expanded power supply of Comparative Example 2 manufactured by machining, and FIG. 6C is mechanical processing. FIG. 6D is a photomicrograph of the power feeder that is a fiber sintered body of Comparative Example 4. FIG. 図7は、実施例で作製した電解セルを示す模式図である。FIG. 7 is a schematic view showing an electrolytic cell produced in the example.

以下に、本発明を実施するための形態を説明する。   Below, the form for implementing this invention is demonstrated.

[給電体]
本発明に係る給電体は、TiまたはTi合金からなる基材と、前記基材の一の表面上に貴金属からなる貴金属層とを備える。給電体は、固体電解質膜と電極とを通電させる働きをし、かつ供給された水を固体電解質膜に接触させ、貫通孔を介して発生したガスを排出する働きをする。
本発明に係る給電体は図2に示すとおり、固体電解質膜の少なくとも一方の面に接して配置され用いられる。すなわち、本発明に係る給電体は、固体電解質膜の陽極側の面に配置される陽極給電体として用いてもよいし、固体電解質膜の陰極側の面に配置される陰極給電体として用いてもよい。
なお、後述するとおり、本発明に係る給電体はPt等の貴金属を含有する貴金属層を有しており、この場合、本発明に係る給電体は、当該貴金属層を介して固体電解質膜の少なくとも一方の面に接して配置され用いられる。
[Power feeder]
The power feeding body according to the present invention includes a base material made of Ti or a Ti alloy, and a noble metal layer made of a noble metal on one surface of the base material. The power supply body functions to energize the solid electrolyte membrane and the electrode, and contacts the supplied water with the solid electrolyte membrane and discharges the gas generated through the through hole.
As shown in FIG. 2, the power supply body according to the present invention is disposed and used in contact with at least one surface of the solid electrolyte membrane. That is, the power feeding body according to the present invention may be used as an anode power feeding body disposed on the anode side surface of the solid electrolyte membrane, or may be used as a cathode power feeding body disposed on the cathode side surface of the solid electrolyte membrane. Also good.
As will be described later, the power supply body according to the present invention has a noble metal layer containing a noble metal such as Pt. In this case, the power supply body according to the present invention is at least a solid electrolyte membrane through the noble metal layer. It is arranged and used in contact with one surface.

本発明に係る給電体の一実施形態は、図1(A)に示すとおり、基材11と、基材11の少なくとも一の面上に貴金属からなる貴金属層12とを有し、複数の貫通孔13が設けられた板状の給電体1である。   As shown in FIG. 1A, an embodiment of the power supply body according to the present invention includes a base material 11 and a noble metal layer 12 made of a noble metal on at least one surface of the base material 11, and has a plurality of penetrations. This is a plate-like power supply body 1 provided with holes 13.

本発明に係る給電体において、基材はTiまたはTi合金からなる。上記Ti合金としては、例えば、Tiと、Al、V、Mo、Pd、Mn、Sn、Feの少なくとも一つの金属との合金等が挙げられる。
導電性、耐腐食性に優れるという観点では、Tiのみからなることが好ましい。
In the power supply body according to the present invention, the base material is made of Ti or a Ti alloy. Examples of the Ti alloy include alloys of Ti and at least one metal selected from Al, V, Mo, Pd, Mn, Sn, and Fe.
From the viewpoint of excellent electrical conductivity and corrosion resistance, it is preferable to be composed of only Ti.

本発明に係る給電体は、基材上に貴金属からなる貴金属層を備える。貴金属層を有することにより、水素脆化等により基材の劣化を抑制することができる。貴金属層は、基材面のうち、少なくとも電解セルの固体電解質膜に接する面に設けられる。なお、必要に応じて、他の面にも設けられていてもよい。貴金属層に用いられる貴金属としては、例えば、Pt、Au、Pd、Ru、Ir、Rh及びこれらの合金等が挙げられる。なかでも、貴金属層はPtからなるPt層であることが好ましい。   The power feeding body according to the present invention includes a noble metal layer made of a noble metal on a base material. By having the noble metal layer, deterioration of the substrate due to hydrogen embrittlement or the like can be suppressed. The noble metal layer is provided on at least the surface of the substrate surface that is in contact with the solid electrolyte membrane of the electrolytic cell. In addition, you may provide in the other surface as needed. Examples of the noble metal used for the noble metal layer include Pt, Au, Pd, Ru, Ir, Rh, and alloys thereof. Especially, it is preferable that a noble metal layer is a Pt layer which consists of Pt.

本発明に係る給電体の一実施形態は、図1(B)に示すとおり、貫通孔13が設けられている。貫通孔13は、前記貴金属層の表面から対向する他の表面まで貫通している。本発明に係る給電体において、貫通孔が設けられていることにより、供給された水を固体電解質膜に接触させたり、発生したガスを排出させたりすることが可能となる。本発明に係る給電体において、貫通孔は、給電体1平方cm四方に200箇所以上設けられていることが重要である。これにより、給電体に設けられる貫通孔の数が多くなり、貫通孔により形成される給電体の形状が細かくなるため、給電体全体に均一に電圧がかかることになる。そのため、電解電圧が安定し、固体電解質膜の損傷が抑えられる。   As shown in FIG. 1B, an embodiment of the power supply body according to the present invention is provided with a through hole 13. The through-hole 13 penetrates from the surface of the noble metal layer to another surface facing it. In the power feeding body according to the present invention, by providing the through hole, it is possible to bring the supplied water into contact with the solid electrolyte membrane or to discharge the generated gas. In the power supply body according to the present invention, it is important that 200 or more through-holes are provided in 1 square cm square of the power supply body. As a result, the number of through holes provided in the power supply body increases, and the shape of the power supply body formed by the through holes becomes fine, so that a voltage is uniformly applied to the entire power supply body. Therefore, the electrolysis voltage is stabilized and damage to the solid electrolyte membrane is suppressed.

なお、貫通孔は、例えば、円形、正方形、またはその他の矩形形状を有していてもよく、それら以外の何らかの形状であってもよい。また、複数の貫通孔は、給電体の表面において一定の間隔でマトリックス状に並んで配置されていてもよく、不規則に配置されていてもよい。
なお、給電体における、貫通孔に挟まれる最も狭い部分の幅は、20〜150μmであることが好ましい。幅が上述の範囲であることによって、膜の電解面積を確保しつつ、安定な通電性を確保できる。上記の幅は、20μm以上であることが好ましく、40μm以上であることがより好ましい。また、上記の幅は、150μm以下であることが好ましく、100μm以下であることがより好ましい。図1(B)では、貫通孔は一定の間隔でマトリックス状に並んで配置されており、貫通孔に挟まれる部分の幅も一定であるため、線径14が上記の幅に該当する。
The through hole may have, for example, a circular shape, a square shape, or other rectangular shape, or may have some other shape. The plurality of through holes may be arranged in a matrix at regular intervals on the surface of the power supply body, or may be arranged irregularly.
In addition, it is preferable that the width | variety of the narrowest part pinched | interposed into a through-hole in an electric power feeding body is 20-150 micrometers. When the width is in the above range, stable electroconductivity can be ensured while ensuring the electrolytic area of the membrane. The width is preferably 20 μm or more, and more preferably 40 μm or more. The width is preferably 150 μm or less, and more preferably 100 μm or less. In FIG. 1B, the through holes are arranged in a matrix at regular intervals, and the width of the portion sandwiched between the through holes is also constant, so the wire diameter 14 corresponds to the above width.

貫通孔は、給電体1平方cm四方に200箇所以上設けられ、400箇所以上設けられることがより好ましい。一方で、貫通孔の数が多くなると、形状などの求められる品質を維持したうえで貫通孔を形成することが技術的に困難となる可能性がある。貫通孔は、給電体1平方cm四方に、5000箇所以下設けられることが好ましく、4500箇所以下設けられることがより好ましい。   More than 200 through holes are provided in the power supply body 1 cm 2 square, and more preferably, 400 or more are provided. On the other hand, when the number of through holes increases, it may be technically difficult to form the through holes while maintaining the required quality such as shape. The through holes are preferably provided at 5000 places or less, more preferably at 4500 places or less, in a square 1 square centimeter of the power feeding body.

図1(C)は給電体の貫通孔13の断面図である。図1(C)に示すように、本発明に係る給電体に設けられる貫通孔13は、固体電解質膜に接して配置される面から当該給電体の厚さ方向に向かって開口面積が小さくなるテーパ構造であることが好ましい。貫通孔が上記テーパ構造であることにより、膜の開口面積を大きく、かつ給電体断面積を大きくすることができ、より安定に電流を流すことができる。またテーパ構造となることで、鋭利な角部分が無くなることにより、膜の破損を起こりにくくすることができる。   FIG. 1C is a cross-sectional view of the through hole 13 of the power feeding body. As shown in FIG. 1C, the through-hole 13 provided in the power feeding body according to the present invention has an opening area that decreases from the surface arranged in contact with the solid electrolyte membrane in the thickness direction of the power feeding body. A taper structure is preferable. Since the through hole has the tapered structure, the opening area of the film can be increased and the cross-sectional area of the power feeder can be increased, so that a current can flow more stably. Further, since the tapered structure is eliminated, the sharp corner portion is eliminated, so that the film can be hardly damaged.

本発明に係る給電体は、下記式で示される開口率が、50%以上90%以下であることが好ましい。開口率が上記範囲であることによって、ガス発生面積が大きくなり電流の集中が起こりにくいため、固体高分子膜電極の寿命を長く保つことができる。また開口率が上記範囲のものを電解水製造用途に用いると、高い溶存水素の発生効率を得ることができる。当該開口率は、50%以上であることが好ましく、60%以上であることがより好ましい。また、開口率は、90%以下であることが好ましく、85%以下であることがより好ましい。
・開口率(%)=貫通孔面積の合計/基板面積×100
The power supply body according to the present invention preferably has an aperture ratio represented by the following formula of 50% or more and 90% or less. When the aperture ratio is in the above range, the gas generation area is increased and current concentration is less likely to occur, so that the life of the solid polymer membrane electrode can be kept long. Moreover, when the thing with an aperture ratio of the said range is used for an electrolyzed water manufacture use, the generation | occurrence | production efficiency of high dissolved hydrogen can be obtained. The aperture ratio is preferably 50% or more, and more preferably 60% or more. Moreover, it is preferable that an aperture ratio is 90% or less, and it is more preferable that it is 85% or less.
Opening ratio (%) = total through-hole area / substrate area × 100

「貫通孔面積の合計」とは、SEMにて給電体表面像を画像処理し、給電体表面像における貫通孔の面積の合計を計測して得られる値を意味し、「基板面積」とは、SEMにて給電体表面像を画像処理し、貫通孔を含めた給電体表面像全体の面積を計測して得られる値を意味する。   The “total through-hole area” means a value obtained by performing image processing on the power feeder surface image with the SEM and measuring the total area of the through-holes in the power feeder surface image. This means a value obtained by image-processing the power supply surface image with the SEM and measuring the area of the entire power supply surface image including the through hole.

本発明に係る給電体において、固体電解質膜に接して配置される面は、その表面粗さ(Ra)が0.5μm以下であることが重要である。このように、本発明に係る給電体は、固体電解質膜に接して配置される面の表面粗さが低く、平坦に近いことにより、圧力の集中を抑制でき、物理的な膜の破損を防止できる。   In the power feeding body according to the present invention, it is important that the surface disposed in contact with the solid electrolyte membrane has a surface roughness (Ra) of 0.5 μm or less. As described above, the power supply body according to the present invention has a low surface roughness in contact with the solid electrolyte membrane and is nearly flat, thereby suppressing pressure concentration and preventing physical membrane damage. it can.

当該表面粗さは0.5μm以下であり、0.4μm以下であることが好ましい。このような範囲の表面粗さを有する給電体を実現するためには、基材の表面に研磨や電解研磨などの処理を施すことにより、あらかじめ平坦化する処理を行なってもよい。   The surface roughness is 0.5 μm or less, preferably 0.4 μm or less. In order to realize a power supply body having a surface roughness in such a range, a planarization process may be performed in advance by performing a process such as polishing or electrolytic polishing on the surface of the substrate.

上記表面粗さは、JIS B0601に準じて、粗さ曲線を描き、下記式により算出することができる。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。   The surface roughness can be calculated according to the following formula by drawing a roughness curve according to JIS B0601. In the following formula, L is the measurement length, and x is the deviation from the average line to the measurement curve.

具体的には表面粗さRaは次のようにして求めるものとする。すなわち、給電体の断面曲線からその平均線の方向に測定長さL(50μm)の部分を抜き取り、この抜き取り部分の平均線をx軸、縦倍率の方向をy軸として粗さ曲線 y=f(x)で表わしたとき、上記式で与えられた値を〔μm〕で表わす。表面粗さRaは、給電体表面から10本の粗さ曲線を求め、これらの粗さ曲線から求めた抜き取り部分の表面粗さの平均値で表わす。   Specifically, the surface roughness Ra is obtained as follows. That is, a portion having a measurement length L (50 μm) is extracted from the cross-sectional curve of the power supply member in the direction of the average line, and the roughness curve with the average line of the extracted portion as the x axis and the direction of the vertical magnification as the y axis is y = f When represented by (x), the value given by the above equation is represented by [μm]. The surface roughness Ra is obtained by obtaining 10 roughness curves from the surface of the power supply body and expressing the average surface roughness of the extracted portions obtained from these roughness curves.

上述の測定は、例えば、走査型共焦点レーザ顕微鏡(オリンパス株式会社製、製品名:LEXT OLS3000)を用いて行うことができる。詳細は実施例にて後述する。
また、表面粗さは、走査型電子顕微鏡を用いて表面観察をして、粗さ曲線を取得することで測定することもできる。
The above-described measurement can be performed using, for example, a scanning confocal laser microscope (manufactured by Olympus Corporation, product name: LEXT OLS3000). Details will be described later in Examples.
The surface roughness can also be measured by observing the surface using a scanning electron microscope and obtaining a roughness curve.

本発明に係る給電体は、厚さが0.05mm以上0.35mm以下であることが好ましい。給電体の厚さが上記範囲であることによって、発生した水素等の微細なガスが貫通孔内に留まることなく、供給される水中に分散させることができるため、ガスによる遮蔽が原因となる電流密度の集中が少なくなり固体電解質膜の損傷を防ぐことができる。また、発生した水素ガスの溶存効率も高めることが出来る。給電体の厚さは、0.05mm以上であることが好ましく、0.07mm以上であることがより好ましい。また、給電体の厚さは、0.35mm以下であることが好ましく、0.20mm以下であることがより好ましい。   The power feeding body according to the present invention preferably has a thickness of 0.05 mm or more and 0.35 mm or less. When the thickness of the power supply body is in the above range, the generated gas such as hydrogen can be dispersed in the supplied water without staying in the through-holes. The concentration of density is reduced and damage to the solid electrolyte membrane can be prevented. Moreover, the dissolution efficiency of the generated hydrogen gas can be increased. The thickness of the power feeding body is preferably 0.05 mm or more, and more preferably 0.07 mm or more. In addition, the thickness of the power feeding body is preferably 0.35 mm or less, and more preferably 0.20 mm or less.

本発明に係る給電体において、基材表面に設けられる貴金属層の厚さは、0.01μm以上0.3μm以下であることが好ましい。貴金属層の厚さが上記範囲であることによって、基材の酸化や水素脆化を抑えることができる。貴金属層の厚さは、0.01μm以上であることが好ましく、0.03μm以上であることがより好ましい。   In the power supply body according to the present invention, the thickness of the noble metal layer provided on the substrate surface is preferably 0.01 μm or more and 0.3 μm or less. Oxidation and hydrogen embrittlement of the substrate can be suppressed when the thickness of the noble metal layer is in the above range. The thickness of the noble metal layer is preferably 0.01 μm or more, and more preferably 0.03 μm or more.

本発明に係る給電体は、上述した構成を有する給電体を製造できるのであれば、その製造方法は特に制限されるものではないが、エッチング法により製造することが好ましい。エッチング法によれば、給電体の表面の微細加工することが可能であるため、給電体に所望の形状の貫通孔を形成することが可能となる。エッチング法のうち、フォトエッチング法は、フォトリソグラフィー法とエッチング法を用いるパターン形成方法である。   If the electric power feeder which concerns on this invention can manufacture the electric power feeder which has the structure mentioned above, the manufacturing method in particular will not be restrict | limited, However, It is preferable to manufacture by the etching method. According to the etching method, since the surface of the power supply body can be finely processed, a through hole having a desired shape can be formed in the power supply body. Among the etching methods, the photoetching method is a pattern forming method using a photolithography method and an etching method.

フォトエッチング法では、加工対象の基材または、貴金属層を設けた基材に、感光性レジスト材料を塗布し、遮光部と透光部とで、本発明に係る給電体の単位面積当たりの貫通孔数を満たす適当なパターンが形成されているフォトマスクのパターンを感光性レジスト材料に露光して転写し、ポジレジスト材料の場合は露光部、ネガレジスト材料の場合は未露光部のいずれか一方のみからレジスト材料を除去してレジストパターンを形成する。その後、そのレジストのパターンの開口部において露出されている基材または、貴金属層を設けた基材の表面を、エッチングして板材の材料の除去を行ってから、残っているレジストを剥離して板材にマスクパターンと同一または反転したパターンを形成する。エッチングには、ウェットエッチングとドライエッチングがあるが、いずれでも製作可能である。
また、上述した、テーパ構造を有する貫通孔は、例えば、マスク面積を変更した複数回のエッチングにより形成することができる。
In the photo-etching method, a photosensitive resist material is applied to a base material to be processed or a base material provided with a noble metal layer, and the power supply unit according to the present invention penetrates per unit area between the light-shielding portion and the light-transmitting portion. A photomask pattern on which a suitable pattern that satisfies the number of holes is formed is exposed and transferred to a photosensitive resist material. Either an exposed part in the case of a positive resist material or an unexposed part in the case of a negative resist material The resist material is removed from only to form a resist pattern. After that, the surface of the base material exposed at the opening of the resist pattern or the base material provided with the noble metal layer is etched to remove the plate material, and then the remaining resist is peeled off. A pattern identical or inverted to the mask pattern is formed on the plate material. Etching includes wet etching and dry etching, and any of them can be manufactured.
Further, the above-described through-hole having a tapered structure can be formed by, for example, a plurality of etchings with a changed mask area.

[電解セル]
本発明に係る電解セルは、上記本発明に係る給電体と、前記給電体と対向して配置される対向給電体と、前記給電体および前記対向給電体との間に挟持される固体電解質膜とを少なくとも備える。
図3は、本発明に係る電解セルの一実施形態を簡易的に示したものである。本実施形態の電解セル3は、固体電解質膜31の両側に陽極電極板34および陰極電極板35として機能する複極式の電極板を備え、固体電解質膜31と電極板との間には、本発明に係る給電体として、陽極給電体32および陰極給電体33がそれぞれ介装されて構成される。
陽極給電体32および陰極給電体33は、表面粗さが、0.5μm以下である面と固体電解質膜31とが接し、当該面の反対の面と電極板とが接して配置される。
[Electrolysis cell]
The electrolytic cell according to the present invention includes a power feeding body according to the present invention, a counter power feeding body disposed to face the power feeding body, and a solid electrolyte membrane sandwiched between the power feeding body and the counter power feeding body. And at least.
FIG. 3 simply shows one embodiment of the electrolysis cell according to the present invention. The electrolytic cell 3 of the present embodiment includes a bipolar electrode plate that functions as an anode electrode plate 34 and a cathode electrode plate 35 on both sides of the solid electrolyte membrane 31, and between the solid electrolyte membrane 31 and the electrode plate, As the power feeding body according to the present invention, an anode power feeding body 32 and a cathode power feeding body 33 are interposed.
The anode power supply body 32 and the cathode power supply body 33 are arranged such that the surface having a surface roughness of 0.5 μm or less and the solid electrolyte membrane 31 are in contact with each other and the surface opposite to the surface is in contact with the electrode plate.

固体電解質膜は、電気分解により陽極側で発生した水素イオン(H)を陰極側へと移動させる役割を有する陽イオン交換膜である。固体電解質膜としては、電気透析や燃料電池の分野において従来から用いられているものを適用でき、例えば、特願2016−216376号明細書等に記載の炭化水素系陽イオン交換膜やフッ素系重合体からなる陽イオン交換膜等が挙げられる。 The solid electrolyte membrane is a cation exchange membrane having a role of moving hydrogen ions (H + ) generated on the anode side by electrolysis to the cathode side. As the solid electrolyte membrane, those conventionally used in the fields of electrodialysis and fuel cells can be applied. For example, hydrocarbon-based cation exchange membranes and fluorine-based heavy membranes described in Japanese Patent Application No. 2006-216376 are disclosed. Examples thereof include a cation exchange membrane made of a coalescence.

また、固体電解質膜は、その表裏に電解触媒として、陽極側および陰極側の触媒層を設けていてもよい。触媒層の材料としては、例えば、白金、イリジウム、酸化白金、及び酸化イリジウム等の白金族金属等が挙げられる。   The solid electrolyte membrane may be provided with an anode-side and cathode-side catalyst layer on the front and back sides as an electrocatalyst. Examples of the material for the catalyst layer include platinum group metals such as platinum, iridium, platinum oxide, and iridium oxide.

また、電極板には、外部端子と電極板とを電気的に接続するターミナルを設けてもよい(図示せず)。ターミナルは、例えば、Ti製のものを使用することができ、実施例で作製した図7の電解セルに示すように、電極板の一側縁から主面に対して略垂直に立ち上がるように形成されていてもよい。   The electrode plate may be provided with a terminal (not shown) for electrically connecting the external terminal and the electrode plate. For example, a terminal made of Ti can be used. As shown in the electrolytic cell of FIG. 7 produced in the example, the terminal is formed so as to rise substantially perpendicularly from the one side edge of the electrode plate to the main surface. May be.

[電解装置]
本発明はまた、上記電解セルを有する電解装置を提供する。本発明に係る電解装置は、上記電解セルと、上記電解セルを収容する電解槽と、当該電解槽に被電解水を通水する手段と、該電解槽内の被電解水に電圧を印加して電流を流す手段とを少なくとも設ける。電解槽は、上記電解セルにおける固体電解質膜により隔離された陽極室と陰極室とを有している。電解槽内には、被電解水を効率良く分解させるために、適宜所望の流路を形成していてもよい。また、電解槽に被電解水を通水する手段、及び電解槽内の被電解水に電圧を印加して電流を流す手段については、その手段が特に制限されるものではなく、従来公知の方法を任意に適用できる。
[Electrolysis equipment]
The present invention also provides an electrolysis apparatus having the above electrolysis cell. The electrolytic apparatus according to the present invention applies a voltage to the electrolytic cell, the electrolytic cell containing the electrolytic cell, means for passing the electrolytic water through the electrolytic cell, and the electrolytic water in the electrolytic cell. And at least means for supplying current. The electrolytic cell has an anode chamber and a cathode chamber separated by a solid electrolyte membrane in the electrolytic cell. In the electrolytic cell, a desired flow path may be appropriately formed in order to efficiently decompose the water to be electrolyzed. Further, the means for passing the electrolyzed water to the electrolytic cell and the means for applying a voltage to the electrolyzed water in the electrolytic cell to flow the current are not particularly limited, and a conventionally known method Can be applied arbitrarily.

図4は、本発明に係る電解装置の一実施形態を示したものである。
電解装置41は、水道水等の被電解水を浄化する浄水カートリッジ42と、浄化された水が供給される電解槽43と、電解装置41各部の制御を司る制御部419とを備えている。なお、本発明に係る電解装置41においては浄水カートリッジ42を有していなくてもよく、浄水カートリッジ42を有しない場合は、被電解水は電解槽43に直接通水される。
FIG. 4 shows an embodiment of the electrolysis apparatus according to the present invention.
The electrolysis apparatus 41 includes a water purification cartridge 42 that purifies electrolyzed water such as tap water, an electrolysis tank 43 that is supplied with purified water, and a control unit 419 that controls each part of the electrolysis apparatus 41. Note that the electrolysis apparatus 41 according to the present invention may not have the water purification cartridge 42, and in the case of not having the water purification cartridge 42, the electrolyzed water is directly passed through the electrolysis tank 43.

電解槽43に通水された被電解水は、そこで電気分解される。被電解水を電解槽43に通水する手段については、後述する。電解槽43には、互いに対向して配置された陽極給電体416a及び陰極給電体416bと、陽極給電体416a及び陰極給電体416bとの間に配された固体電解質膜415を備えている。   The electrolyzed water passed through the electrolytic bath 43 is electrolyzed there. A means for passing the electrolyzed water through the electrolytic bath 43 will be described later. The electrolytic cell 43 includes an anode power supply body 416a and a cathode power supply body 416b disposed to face each other, and a solid electrolyte membrane 415 disposed between the anode power supply body 416a and the cathode power supply body 416b.

固体電解質膜415は、電解槽43を陰極室44と陽極室410とに区分する。固体電解質膜415は、被電解水の電気分解により生じた陽イオンを陽極室410から陰極室44へと通過させ、固体電解質膜415を介して陰極47と陽極49とが電気的に接続される。陰極47と陽極49との間に電圧が印加されると、電解槽43内で被電解水が電気分解され、電解水が得られる。すなわち、陰極室44では電解水素水が、陽極室410では酸性水がそれぞれ生成される。   The solid electrolyte membrane 415 divides the electrolytic cell 43 into a cathode chamber 44 and an anode chamber 410. The solid electrolyte membrane 415 allows cations generated by electrolysis of water to be electrolyzed to pass from the anode chamber 410 to the cathode chamber 44, and the cathode 47 and the anode 49 are electrically connected via the solid electrolyte membrane 415. . When a voltage is applied between the cathode 47 and the anode 49, the water to be electrolyzed is electrolyzed in the electrolytic cell 43 to obtain electrolyzed water. That is, electrolytic hydrogen water is generated in the cathode chamber 44, and acidic water is generated in the anode chamber 410.

陰極47及び陽極49の極性及び電解槽43の被電解水に印加される電圧は、制御部419によって制御される。   The polarity of the cathode 47 and the anode 49 and the voltage applied to the electrolyzed water in the electrolytic cell 43 are controlled by the control unit 419.

また、本発明に係る電解装置は、さらに、電解槽43内の陽極給電体416a及び陰極給電体416bに印加する電圧の極性切替手段を設けることが好ましい。例えば、制御部419に、陰極47及び陽極49の極性を切り替えるための極性切替回路(図示せず)が設けられていてもよい。すなわち、電解装置41は、電解槽43内の固体電解質膜415における陽極給電体416a及び陰極給電体416bに印加する電圧の極性切替手段を備えてもよい。電圧の極性切替手段を設けることにより、水道水等の被電解水を用いて電気分解を行った際の固体電解質膜415へのスケールの付着を抑制することができる。 In addition, the electrolysis apparatus according to the present invention preferably further includes means for switching polarity of a voltage applied to the anode power supply body 416a and the cathode power supply body 416b in the electrolytic cell 43. For example, the control unit 419 may be provided with a polarity switching circuit (not shown) for switching the polarity of the cathode 47 and the anode 49. That is, the electrolysis apparatus 41 may include a polarity switching unit for a voltage applied to the anode power supply body 416a and the cathode power supply body 416b in the solid electrolyte membrane 415 in the electrolytic cell 43. By providing the voltage polarity switching means, it is possible to suppress the scale from adhering to the solid electrolyte membrane 415 when electrolysis is performed using the electrolyzed water such as tap water.

電解槽43に被電解水を通水する手段の一例について説明する。被電解水が流入する電解槽43の上流側には、第1流路切替弁418が設けられている。第1流路切替弁418は、浄水カートリッジ42と電解槽43とを連通する給水路417に設けられている。浄水カートリッジ42によって浄化された水は、給水路417の第1給水路417a及び第2給水路417bを介して第1流路切替弁418に流入し、陽極室410又は陰極室44に供給される。   An example of means for passing the electrolyzed water through the electrolytic bath 43 will be described. A first flow path switching valve 418 is provided on the upstream side of the electrolytic bath 43 into which the water to be electrolyzed flows. The first flow path switching valve 418 is provided in a water supply path 417 that communicates the water purification cartridge 42 and the electrolytic cell 43. The water purified by the water purification cartridge 42 flows into the first flow path switching valve 418 via the first water supply path 417a and the second water supply path 417b of the water supply path 417, and is supplied to the anode chamber 410 or the cathode chamber 44. .

陰極室44で生成された電解水素水は、陰極室出口46から第1流路431に通水され、流路切替弁422を介して吐水口431bから回収される。なお、陽極室410で生成された酸性水は、陽極室出口412から第2流路432に通水され、流路切替弁422を介して排水口432aから排出される。   The electrolytic hydrogen water generated in the cathode chamber 44 is passed through the first channel 431 from the cathode chamber outlet 46 and is collected from the water outlet 431 b via the channel switching valve 422. The acidic water generated in the anode chamber 410 is passed from the anode chamber outlet 412 to the second flow path 432 and discharged from the drain outlet 432a via the flow path switching valve 422.

以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not restrict | limited to the following example.

[給電体の厚み(mm)、貴金属層の厚み(μm)の測定]
蛍光X線膜厚分析機(日立ハイテクサイエンス製 SEA6000VX)にて、給電体および貴金属層であるPt層の厚みの測定を非破壊にて行った。
[Measurement of thickness of feed body (mm) and thickness of precious metal layer (μm)]
Using a fluorescent X-ray film thickness analyzer (SEA6000VX, manufactured by Hitachi High-Tech Science), the thickness of the Pt layer, which is the power feeder and the noble metal layer, was measured nondestructively.

[線径の測定]
線径はSEM(KEYENCE製 VE−8800)にて、各給電体表面像を画像処理し、計測した。
[Measurement of wire diameter]
The wire diameter was measured by image-processing each power feeder surface image with SEM (VE-8800 manufactured by KEYENCE).

[開口率の測定(%)]
開口率はSEM(KEYENCE製 VE−8800)にて、各給電体表面像を画像処理し、貫通孔面積および基板面積を計測し、下記式により開口率を求めた。
・開口率(%)=貫通孔面積の合計/基板面積×100
[Measurement of aperture ratio (%)]
As for the aperture ratio, each power feeder surface image was subjected to image processing with SEM (VE-8800 manufactured by KEYENCE), the through-hole area and the substrate area were measured, and the aperture ratio was determined by the following formula.
Opening ratio (%) = total through-hole area / substrate area × 100

[単位面積当たりの貫通孔数(個/cm)の測定]
貫通孔はSEM(KEYENCE製 VE−8800)にて、各給電体表面像を画像処理し、単位面積あたりの個数を計測した。
[Measurement of the number of through holes per unit area (pieces / cm 2 )]
The through-holes were image-processed on each power supply surface image with SEM (VE-8800 manufactured by KEYENCE), and the number per unit area was measured.

[表面粗さ(μm)の測定]
給電体の表面粗さは、JIS B 0601(2013)に準じて、走査型共焦点レーザ顕微鏡(オリンパス株式会社製、製品名:LEXT OLS3000)を用い、粗さ曲線を描き、下式により算出した。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。
[Measurement of surface roughness (μm)]
The surface roughness of the power feeder was calculated according to the following formula using a scanning confocal laser microscope (manufactured by Olympus Corporation, product name: EXT OLS3000) in accordance with JIS B 0601 (2013). . In the following formula, L is the measurement length, and x is the deviation from the average line to the measurement curve.

具体的には次のようにして給電体の表面粗さを求めた。すなわち、給電体の断面曲線からその平均線の方向に測定長さL(50μm)の部分を抜き取り、この抜き取り部分の平均線をx軸、縦倍率の方向をy軸として粗さ曲線 y=f(x)で表わしたとき、上記式で与えられた値を〔μm〕で表わす。表面粗さは、給電体表面から10本の粗さ曲線を求め、これらの粗さ曲線から求めた抜き取り部分の表面粗さの平均値で表わした。   Specifically, the surface roughness of the power feeder was determined as follows. That is, a portion having a measurement length L (50 μm) is extracted from the cross-sectional curve of the power supply member in the direction of the average line, and the roughness curve with the average line of the extracted portion as the x axis and the direction of the vertical magnification as the y axis is y = f When represented by (x), the value given by the above equation is represented by [μm]. The surface roughness was expressed as an average value of the surface roughness of the extracted portion obtained from 10 roughness curves obtained from the surface of the power supply body.

[溶存水素量(ppb)、溶存効率(%)の測定]
給電体を電解セルに組み込み、水道水を0.25L/分でセルに流し、電流0.45A(5A/dm)の電流を流し電解を行った。陰極側から排出された水道水の溶存水素を溶存水素計(東亜ディーケーケー(株)製、DH−35A)にて測定を行った。
[Measurement of dissolved hydrogen amount (ppb) and dissolved efficiency (%)]
The power feeding body was incorporated into the electrolytic cell, tap water was passed through the cell at 0.25 L / min, and electrolysis was performed by passing a current of 0.45 A (5 A / dm 2 ). Dissolved hydrogen of tap water discharged from the cathode side was measured with a dissolved hydrogen meter (DH-35A, manufactured by Toa DKK Co., Ltd.).

[電解寿命(時間)の測定]
給電体を電解セルに組み込み、水道水を0.25L/分でセルに流し、電流0.45A(5A/dm)の電流を流し電解を行った。この際、固体高分子膜のスケール除去のため、10分に1回の+極と−極の極性の切替を行った。寿命試験では、初期電圧から電圧値が5V以上に増加した場合、もしくは膜が破損し陽極側と陰極側の給電体が短絡し、電圧値が0.1V以下になった場合の運転開始からの経過時間を寿命として測定した。
[Measurement of electrolytic life (hours)]
The power feeding body was incorporated into the electrolytic cell, tap water was passed through the cell at 0.25 L / min, and electrolysis was performed by passing a current of 0.45 A (5 A / dm 2 ). At this time, in order to remove the scale of the solid polymer film, the polarity of the positive electrode and the negative electrode was switched once every 10 minutes. In the life test, when the voltage value increased to 5 V or more from the initial voltage, or when the membrane was damaged and the anode-side and cathode-side power feeders were short-circuited and the voltage value became 0.1 V or less, the operation was started. The elapsed time was measured as the lifetime.

次に、試料の製造方法を説明する。
[実施例1]
(エッチング処理)
基材として、5cm×5cm、平均厚さ1mmの純チタンプレート(神戸製鋼所社製)を用いた。この純チタンプレートに高耐薬品性ドライフィルムレジスト(三菱製紙社製KN15)を使用し、両面にラミネートした。これを露光機にて300mj/cmで露光を行い、1wt%のNaCO水溶液に5分間浸漬させ、現像した。その後、150℃、30分のベーク処理を行い、エッチング用のレジストの形成を行った。レジスト形成を行ったTi板をフッ素系エッチング液(フッ化水素アンモニウム5wt%、硝酸5wt%)で30℃、20分間のエッチング処理を行った後、有機アンミン系剥離液(三菱ガス化学社製クリーンエッチ(R−100))で50℃、1分間浸漬し、レジストの剥離処理を行った。
Next, a sample manufacturing method will be described.
[Example 1]
(Etching process)
A pure titanium plate (manufactured by Kobe Steel Co., Ltd.) having a size of 5 cm × 5 cm and an average thickness of 1 mm was used as the substrate. A high chemical resistance dry film resist (KN15 manufactured by Mitsubishi Paper Industries Co., Ltd.) was used on this pure titanium plate and laminated on both sides. This was exposed at 300 mj / cm 2 with an exposure machine, immersed in a 1 wt% Na 2 CO 2 aqueous solution for 5 minutes, and developed. Thereafter, a baking process was performed at 150 ° C. for 30 minutes to form an etching resist. The Ti plate on which the resist was formed was etched with a fluorine etching solution (ammonium hydrogen fluoride 5 wt%, nitric acid 5 wt%) at 30 ° C. for 20 minutes, and then an organic ammine stripping solution (cleaned by Mitsubishi Gas Chemical Co., Ltd.) Etching (R-100)) was performed at 50 ° C. for 1 minute to remove the resist.

(貴金属層の形成)
エッチング処理後の基材に、下記条件でPtめっきを施し、基材表面上にPtからなる貴金属層を形成し、給電体を作製した。超音波脱脂液で基材表面を脱脂し、5wt%フッ化アンモニウム水溶液にてTi表面のエッチングを行った。その後、Ti材料をPtめっき液(Pt5wt%、硫酸50g/L、pH=1)中に入れて、0.5A/dm、15分の条件でPtの電気めっきを行い、白金層を形成した。
得られた給電体の各物性値は表1に示すとおりである。また、顕微鏡写真を図5(A)に示す。
(Formation of noble metal layer)
The base material after the etching treatment was subjected to Pt plating under the following conditions, a noble metal layer made of Pt was formed on the base material surface, and a power feeding body was produced. The substrate surface was degreased with an ultrasonic degreasing solution, and the Ti surface was etched with a 5 wt% ammonium fluoride aqueous solution. Thereafter, the Ti material was put in a Pt plating solution (Pt 5 wt%, sulfuric acid 50 g / L, pH = 1), and Pt was electroplated under the conditions of 0.5 A / dm 2 and 15 minutes to form a platinum layer. .
Each physical property value of the obtained power feeding body is as shown in Table 1. A micrograph is shown in FIG.

[実施例2]
表1に示す点を変更したことを除いては、実施例1と同様にして給電体を作製した。得られた給電体の各物性値は表1に示すとおりである。また、顕微鏡写真を図5(B)に示す。
[Example 2]
A power feeder was produced in the same manner as in Example 1 except that the points shown in Table 1 were changed. Each physical property value of the obtained power feeding body is as shown in Table 1. A micrograph is shown in FIG.

[実施例3]
表1に示す点を変更したことを除いては、実施例1と同様にして給電体を作製した。得られた給電体の各物性値は表1に示すとおりである。また、顕微鏡写真を図5(C)に示す。
[Example 3]
A power feeder was produced in the same manner as in Example 1 except that the points shown in Table 1 were changed. Each physical property value of the obtained power feeding body is as shown in Table 1. A micrograph is shown in FIG.

[比較例1]
表1に示す点を変更したことを除いては、実施例1と同様にして給電体を作製した。得られた給電体の各物性値は表1に示すとおりである。また、顕微鏡写真を図6(A)に示す。
[比較例2、3]
給電体として、機械加工で製作したチタンエキスパンドにPtめっきを行った給電体を用いた。給電体の物性値は表1に示すとおりである。また、顕微鏡写真を図6(B)、(C)に示す。
[Comparative Example 1]
A power feeder was produced in the same manner as in Example 1 except that the points shown in Table 1 were changed. Each physical property value of the obtained power feeding body is as shown in Table 1. A micrograph is shown in FIG.
[Comparative Examples 2 and 3]
As a power feeder, a power feeder obtained by performing Pt plating on a titanium expand manufactured by machining was used. The physical properties of the power feeder are as shown in Table 1. Micrographs are shown in FIGS. 6B and 6C.

[比較例4]
給電体として、Ti繊維焼結体(ベカルト東綱メタルファイバー(株)製)にPtめっきを行った給電体を用いた。給電体の物性値は表1に示すとおりである。また、顕微鏡写真を図6(D)に示す。
[Comparative Example 4]
As a power feeding body, a power feeding body obtained by performing Pt plating on a Ti fiber sintered body (manufactured by Bekato Toshin Metal Fiber Co., Ltd.) was used. The physical properties of the power feeder are as shown in Table 1. A micrograph is shown in FIG.

上記作製した実施例1〜3、比較例1〜4の給電体を用いて、以下の手順で図7に示す電解セルを作製した。
Nafion117(Dupont社製)の中央部(30×30mm)部の両面に0.5μm厚のPt触媒層を設けて製作した固体高分子膜電極に、両側から上記給電体(30×30mm)を当接して配置した。このとき、給電体には、固体高分子膜電極に接する面とは反対側の面に、電力供給のためのチタン製のターミナルを設けている。更に、この給電体の両側に、図中に矢印で示した方向に水の流入および流出が可能な流路を形成した塩化ビニル製のケースを配置した。
ターミナル部には、不図示の直流電源を接続した。また、ケースに設けられた流路に不図示の水導入用のチューブを介して、水道などの水供給源を接続し、更に、電解セルに流入する水量の計測が可能な流量計を設けた。
Using the power feeders of Examples 1 to 3 and Comparative Examples 1 to 4 prepared above, the electrolytic cell shown in FIG.
The power feeding body (30 × 30 mm 2 ) is applied from both sides to a solid polymer membrane electrode manufactured by providing a Pt catalyst layer having a thickness of 0.5 μm on both sides of a central portion (30 × 30 mm 2 ) of Nafion 117 (manufactured by Dupont). Were placed in contact. At this time, the power feeding body is provided with a titanium terminal for power supply on the surface opposite to the surface in contact with the solid polymer membrane electrode. Further, on both sides of the power supply body, vinyl chloride cases having flow paths capable of flowing in and out of water in the directions indicated by arrows in the figure were arranged.
A DC power source (not shown) was connected to the terminal portion. In addition, a water supply source such as tap water is connected to the flow path provided in the case via a water introduction tube (not shown), and a flow meter capable of measuring the amount of water flowing into the electrolysis cell is provided. .

作製した電解セルを用いて、以下の条件で水の電解を行い、溶存水素量を測定した。
・電解部サイズ:30×30mm
・電流密度:5.0A/dm
・流量:0.25L/min
・水温(水道水):21−22℃
結果を表1に示す。
Using the produced electrolytic cell, water was electrolyzed under the following conditions, and the amount of dissolved hydrogen was measured.
・ Electrolytic part size: 30 × 30mm 2
Current density: 5.0 A / dm 2
・ Flow rate: 0.25 L / min
・ Water temperature (tap water): 21-22 ° C
The results are shown in Table 1.


以上の結果から明らかなように、給電体の貫通孔が1平方cm四方に200箇所以上、かつ、給電体の表面粗さ(Ra)が0.5μm以下の際に高寿命で高い溶存水素発生効率を得ることができる。   As is clear from the above results, long-life and high dissolved hydrogen generation occurs when the number of through-holes in the power supply is 200 or more in 1 square cm square and the surface roughness (Ra) of the power supply is 0.5 μm or less. Efficiency can be obtained.

1,21 給電体
11 基材
12 貴金属層
13 貫通孔
14 線径
22,31,413,415 固体電解質膜
3 電解セル
32,416a 陽極給電体
33,416b 陰極給電体
34 陽極電極板
35 陰極電極板
41 電解装置
42 浄水カートリッジ
43 電解槽
44 陰極室
45 陰極室入口
46 陰極室出口
47 陰極
49 陽極
410 陽極室
411 陽極室入口
412 陽極室出口
417 給水路
417a 第1給水路
417b 第2給水路
418 第1流路切替弁
419 制御部
422 流路切替弁
431 第1流路
431b 吐水口
432 第2流路
432a 排水口
DESCRIPTION OF SYMBOLS 1,21 Feed body 11 Base material 12 Precious metal layer 13 Through-hole 14 Wire diameter 22, 31, 413, 415 Solid electrolyte membrane 3 Electrolytic cell 32, 416a Anode feed body 33, 416b Cathode feed body 34 Anode electrode plate 35 Cathode electrode plate 41 Electrolyzer 42 Water purification cartridge 43 Electrolytic tank 44 Cathode chamber 45 Cathode chamber inlet 46 Cathode chamber outlet 47 Cathode 49 Anode 410 Anode chamber 411 Anode chamber inlet 412 Anode chamber outlet 417 Water supply path 417a First water supply path 417b Second water supply path 418 First 1 channel switching valve 419 Control unit 422 Channel switching valve 431 1st channel 431b Water outlet 432 2nd channel 432a Drain port

Claims (9)

TiまたはTi合金からなる基材と、前記基材の一の表面上に貴金属からなる貴金属層とを備え、電解セルの固体電解質膜の少なくとも一方の面に前記貴金属層が接して配置される、給電体であって、
前記給電体は、厚さが0.05mm以上0.35mm以下であり、
前記給電体は、前記貴金属層の表面から対向する他の表面まで貫通する貫通孔が1平方cm四方に200箇所以上設けられており、
前記固体電解質膜に接して配置される面の表面粗さ(Ra)が、0.5μm以下である、
給電体。
A substrate made of Ti or a Ti alloy, and a noble metal layer made of a noble metal on one surface of the substrate, and the noble metal layer is disposed in contact with at least one surface of the solid electrolyte membrane of the electrolytic cell; A power feeder,
The power supply body has a thickness of 0.05 mm or more and 0.35 mm or less,
The power feeding body has 200 or more through holes penetrating from the surface of the noble metal layer to another surface facing the noble metal layer in one square cm square,
The surface roughness (Ra) of the surface disposed in contact with the solid electrolyte membrane is 0.5 μm or less.
Feeder.
前記貫通孔が1平方cm四方に5000箇所以下設けられている、請求項1に記載の給電体。   The power feeding body according to claim 1, wherein the through-hole is provided at 5000 or less in 1 square cm square. 下記式で示される開口率が50%以上90%以下である、請求項1または2に記載の給電体。
開口率(%)=貫通孔面積の合計/基板面積×100
The power feeding body according to claim 1 or 2, wherein the aperture ratio represented by the following formula is 50% or more and 90% or less.
Opening ratio (%) = total through-hole area / substrate area × 100
前記貴金属層の厚さが0.01μm以上0.3μm以下である、請求項1〜のいずれか1項に記載の給電体。 The power feeding body according to any one of claims 1 to 3 , wherein a thickness of the noble metal layer is 0.01 µm or more and 0.3 µm or less. 前記貴金属層が、PtからなるPt層である、請求項1〜のいずれか1項に記載の給電体。 The power feeding body according to any one of claims 1 to 4 , wherein the noble metal layer is a Pt layer made of Pt. 前記貫通孔は、前記固体電解質膜に接して配置される面から前記給電体の厚さ方向に向かって開口面積が小さくなるテーパ構造である、請求項1〜のいずれか1項に記載の給電体。 The said through-hole is a taper structure from which the opening area becomes small toward the thickness direction of the said electric power feeding body from the surface arrange | positioned in contact with the said solid electrolyte membrane, The any one of Claims 1-5 . Feeder. エッチング処理により前記貫通孔を形成したTiもしくはTi合金に対して、前記貴金属をコーティングして得られる、請求項1〜のいずれか1項に記載の給電体。 Of Ti or Ti alloy to form the through hole by etching, obtained by coating the precious metal, the feed body according to any one of claims 1-6. 請求項1〜のいずれか1項に記載の給電体と、
前記給電体と対向して配置される対向給電体と、
前記給電体および前記対向給電体との間に挟持される固体電解質膜と、
を備える電解セル。
The power feeding body according to any one of claims 1 to 7 ,
A counter power supply disposed opposite to the power supply;
A solid electrolyte membrane sandwiched between the power feeding body and the counter power feeding body;
An electrolysis cell comprising:
請求項に記載の電解セルと、
前記電解セルを収容する電解槽と、
前記電解槽に被電解水を通水する手段と、
前記電解槽内の被電解水に電圧を印加して電流を流す手段と、
を少なくとも設ける、電解装置。
Electrolysis cell according to claim 8 ,
An electrolytic cell that houses the electrolytic cell;
Means for passing electrolyzed water through the electrolytic cell;
Means for applying a voltage to the water to be electrolyzed in the electrolytic cell to flow current;
An electrolyzer provided with at least.
JP2018021928A 2018-02-09 2018-02-09 Feeder Active JP6616438B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018021928A JP6616438B2 (en) 2018-02-09 2018-02-09 Feeder
KR1020207003293A KR102088243B1 (en) 2018-02-09 2018-11-27 Full
PCT/JP2018/043478 WO2019155731A1 (en) 2018-02-09 2018-11-27 Power feeding body
TW108104033A TWI695091B (en) 2018-02-09 2019-02-01 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021928A JP6616438B2 (en) 2018-02-09 2018-02-09 Feeder

Publications (2)

Publication Number Publication Date
JP2019137891A JP2019137891A (en) 2019-08-22
JP6616438B2 true JP6616438B2 (en) 2019-12-04

Family

ID=67548833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021928A Active JP6616438B2 (en) 2018-02-09 2018-02-09 Feeder

Country Status (4)

Country Link
JP (1) JP6616438B2 (en)
KR (1) KR102088243B1 (en)
TW (1) TWI695091B (en)
WO (1) WO2019155731A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424467B2 (en) 2020-03-16 2024-01-30 三菱マテリアル株式会社 Sponge-like titanium sheet material, electrode for water electrolysis, water electrolysis device
JP7052130B1 (en) * 2021-08-17 2022-04-11 田中貴金属工業株式会社 Electrode for chlorine generation and its manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171719B1 (en) * 1996-11-26 2001-01-09 United Technologies Corporation Electrode plate structures for high-pressure electrochemical cell devices
WO2001048852A1 (en) * 1999-12-23 2001-07-05 The Regents Of The University Of California Flow channel device for electrochemical cells
JP4881511B2 (en) 2000-03-28 2012-02-22 株式会社神鋼環境ソリューション Feeder
GB2393736A (en) * 2002-10-01 2004-04-07 Qinetiq Ltd A Cathode for use in an Electroplating Cell
JP2004218058A (en) * 2003-01-17 2004-08-05 Honda Motor Co Ltd Feed conductor for cathode, and water electrolysis cell using the same
JP2004315933A (en) 2003-04-18 2004-11-11 Kobelco Eco-Solutions Co Ltd Feed conductor and electrolytic cell
JP2006176835A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Method for manufacturing water electrolysis apparatus
JP2010065271A (en) 2008-09-10 2010-03-25 Mitsubishi Heavy Ind Ltd Feed conductor, water electrolysis stack equipped with the feed conductor, and water electrolysis device equipped with the water electrolysis stack
JP5400413B2 (en) * 2009-02-18 2014-01-29 本田技研工業株式会社 Electrolyzer
KR101181657B1 (en) * 2009-10-30 2012-09-19 문상봉 Membrane-electrode-current distributor assembly and its preparation method
US9133556B2 (en) * 2010-02-10 2015-09-15 Permelec Electrode Ltd. Activated cathode for hydrogen evolution
CN206768237U (en) * 2015-09-15 2017-12-19 株式会社东芝 Electrode, electrode unit and electrolysis unit
JP6639638B2 (en) * 2016-03-18 2020-02-05 株式会社東芝 Electrolysis electrode, electrode unit, and electrolyzed water generator

Also Published As

Publication number Publication date
TWI695091B (en) 2020-06-01
TW201934807A (en) 2019-09-01
WO2019155731A1 (en) 2019-08-15
KR20200015832A (en) 2020-02-12
JP2019137891A (en) 2019-08-22
KR102088243B1 (en) 2020-05-15

Similar Documents

Publication Publication Date Title
JP5529839B2 (en) Stainless steel member, method for producing the same, separator for use in polymer electrolyte fuel cell, and method for producing the same
JP2009195884A (en) Apparatus for generating electrolytic water
JP2010236091A (en) Corrosion-resistant conductive member, method of manufacturing the same and fuel cell
US11316172B2 (en) Fuel cell and method of manufacturing metal porous body
TWI453302B (en) Sulfuric acid electrolysis process
JP6616438B2 (en) Feeder
JP7021669B2 (en) Method for manufacturing metal porous body, solid oxide fuel cell and metal porous body
JP4488059B2 (en) Manufacturing method of fuel cell separator
JP2003245669A (en) Electrolytic hydrogen dissolved water generator
JP2013216940A (en) Method for plating metallic material, and composite electrode of solid polyelectrolyte membrane and catalytic metal
JP2010097840A (en) Fuel cell separator and method for manufacturing thereof
EP2436804A1 (en) Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell
KR20220158061A (en) Method of processing metal substrates for producing electrodes
JP2000256898A (en) Copper plating method of wafer
JPH06340991A (en) Activated cathode for electrolytic cell and preparation thereof
JP2009087909A (en) Manufacturing method of separator for fuel cell
WO2020217668A1 (en) Metal porous body, electrode for electrolysis, hydrogen production device, fuel cell, and method for producing metal porous body
Ahmed et al. Electrochemical chromic acid regeneration process with fuel-cell electrode assistance. Part I: Removal of contaminants
JPH0885894A (en) Electrode
KR101709602B1 (en) Method of Aluminium Coating Layer with Anti-oxidation Using Micro arc Electrolytic Oxidation
CN113474493B (en) Porous body, electrochemical cell, and method for producing porous body
JP2001262388A (en) Electrode for electrolysis
JP2021155776A (en) Electrolytic device
WO2019106879A1 (en) Metallic porous body, fuel cell, and method for producing metallic porous body
JP2002367621A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181025

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190912

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191107

R150 Certificate of patent or registration of utility model

Ref document number: 6616438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250