JP2002367621A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell

Info

Publication number
JP2002367621A
JP2002367621A JP2001168734A JP2001168734A JP2002367621A JP 2002367621 A JP2002367621 A JP 2002367621A JP 2001168734 A JP2001168734 A JP 2001168734A JP 2001168734 A JP2001168734 A JP 2001168734A JP 2002367621 A JP2002367621 A JP 2002367621A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
solid polymer
stainless steel
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001168734A
Other languages
Japanese (ja)
Inventor
Tsutomu Miyano
勉 宮野
Takeshi Shimizu
剛 清水
Keiji Izumi
圭二 和泉
Yoshikazu Morita
芳和 守田
Shinichi Kamoshita
真一 鴨志田
Toshiki Kanazuki
俊樹 金月
Takeshi Takahashi
剛 高橋
Yuichi Yatsugami
裕一 八神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nisshin Steel Co Ltd filed Critical Toyota Motor Corp
Priority to JP2001168734A priority Critical patent/JP2002367621A/en
Publication of JP2002367621A publication Critical patent/JP2002367621A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell having a metal separator 5 restrained from corrosion, maintaining high power generating efficiency for long time. SOLUTION: The solid polymer fuel cell has a structure of interposing an oxidation electrode 2 and a fuel electrode 3, arranged on both surfaces of the solid polymer film 1, between metal separators 5. Products of erosion are preliminarily removed from the solid polymer film 1, the oxidation electrode 2, and the fuel electrode 3 by the cleaning using boiling water, or by the electrolytic reaction of water generated by humid atmosphere or electricity conduction in the water solution, and a stainless steel, on the surface of which, a Ni layer is formed, is used as a metal separator 5. As the products of erosion are preliminarily removed from a thin film electrode assembly, pH is not lowered when the operation of the fuel cell is started, and as the essential excellent electron conductive property of Ni is maintained for long time, a solid polymer fuel cell with small loss of Joule heat is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、クリーンな動力源とし
て注目されている固体高分子型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell which has attracted attention as a clean power source.

【0002】[0002]

【従来の技術】燃料電池のなかでも、固体高分子型の燃
料電池は、100℃以下の温度で動作可能であり、短時
間で起動する長所を備えている。また、各部材が固体か
らなるため、構造が簡単でメンテナンスが容易であり、
振動や衝撃に曝される用途にも適用できる。更に、出力
密度が高いため小型化に適し、燃料効率が高く、騒音が
小さい等の長所を備えている。これらの長所から、電気
自動車搭載用としての用途が検討されている。ガソリン
自動車と同等の走行距離を出せる燃料電池を自動車に搭
載できると、NOx,SOxの発生がほとんどなく、CO
2の発生が半減する等、環境に対して非常にクリーンな
動力源になる。
2. Description of the Related Art Among fuel cells, a polymer electrolyte fuel cell can operate at a temperature of 100 ° C. or less and has an advantage that it can be started in a short time. Also, since each member is made of solid, the structure is simple and maintenance is easy,
It can be applied to applications exposed to vibration and shock. Furthermore, it has advantages such as high power density, suitable for miniaturization, high fuel efficiency, and low noise. From these advantages, applications for electric vehicles are being studied. If a fuel cell capable of providing the same mileage as a gasoline-powered vehicle can be mounted on the vehicle, NO x and SO x will hardly be generated and CO
It becomes a very clean power source for the environment, such as halving the occurrence of 2 .

【0003】固体高分子型燃料電池は、分子中にプロト
ン交換基をもつ固体高分子樹脂膜がプロトン伝導性電解
質として機能することを利用したものであり、他の形式
の燃料電池と同様に固体高分子膜の一側に水素等の燃料
ガスを流し、他側に空気等の酸化性ガスを流す構造にな
っている。具体的には、図1に示すように両面に白金系
触媒が塗布された固体高分子膜1は、担持した触媒にガ
スを供給し、また発生する電流を取り出すガス拡散電極
(酸化極2及び燃料極3)が接合され、それぞれガスケ
ット4を介してセパレータ5を対向させている。酸化極
2側のセパレータ5には空気供給口6,空気排出口7が
形成され、燃料極3側のセパレータ5には水素供給口
8,水素排出口9が形成されている。
[0003] The solid polymer fuel cell utilizes the fact that a solid polymer resin membrane having a proton exchange group in the molecule functions as a proton conductive electrolyte. The structure is such that a fuel gas such as hydrogen flows on one side of the polymer film and an oxidizing gas such as air flows on the other side. More specifically, as shown in FIG. 1, a solid polymer membrane 1 having a platinum-based catalyst coated on both surfaces supplies a gas to the supported catalyst and extracts a generated current from a gas diffusion electrode (oxidizing electrode 2 and The fuel electrodes 3) are joined, and the separators 5 face each other via the gaskets 4. An air supply port 6 and an air discharge port 7 are formed in the separator 5 on the oxidation electrode 2 side, and a hydrogen supply port 8 and a hydrogen discharge port 9 are formed in the separator 5 on the fuel electrode 3 side.

【0004】セパレータ5には、水素g及び酸素又は空
気oの導通及び均一分配のため、水素g及び酸素又は空
気oの流動方向に延びる複数の溝10が形成されてい
る。発電時の発熱は、給水口11から送り込んだ冷却水
wをセパレータ5の内部に循環させた後、排水口12か
ら排出させる水冷機構により除去される。水素供給口8
から燃料極3とセパレータ5との間隙に送り込まれた水
素gは、電子を放出したプロトンとなって固体高分子膜
1を透過し、酸化極2側で電子を受け、酸化極2とセパ
レータ5との間隙を通過する酸素又は空気oによって燃
焼する。そこで、酸化極2及び燃料極3に接触する各セ
パレータ5,5に電流を流し、負荷を接続するとき、電
力を取り出すことができる。
[0004] The separator 5 is formed with a plurality of grooves 10 extending in the flow direction of the hydrogen g and the oxygen or air o for the conduction and uniform distribution of the hydrogen g and the oxygen or air o. Heat generated during power generation is removed by a water cooling mechanism that circulates the cooling water w sent from the water supply port 11 through the inside of the separator 5 and then discharges the cooling water w from the drain port 12. Hydrogen supply port 8
The hydrogen g that has been fed into the gap between the fuel electrode 3 and the separator 5 through the solid polymer membrane 1 as protons that have emitted electrons, passes through the solid polymer membrane 1, receives electrons on the oxidation electrode 2 side, and Combustion by oxygen or air o passing through the gap. Therefore, when a current is applied to each of the separators 5 and 5 that are in contact with the oxidizing electrode 2 and the fuel electrode 3 and a load is connected, power can be taken out.

【0005】燃料電池1セル当りの発電量が極く僅かな
ため、図1(b)に示すようにセパレータ5,5で挟ま
れた固体高分子膜を1単位とし、複数のセルを積層する
ことによって取出し可能な電力量を大きくしている。多
数のセルを積層した構造では、酸化極2及び燃料極3と
各セパレータ5,5との接触抵抗が発電効率に大きな影
響を及ぼす。発電効率を向上させるために、導電性が良
好で、酸化極2及び燃料極3との接触抵抗の低いセパレ
ータが要求され、リン酸型燃料電池と同様に黒鉛製セパ
レータが従来から使用されている。
Since the amount of power generation per cell of the fuel cell is extremely small, a plurality of cells are stacked with one unit of a solid polymer film sandwiched between separators 5 and 5 as shown in FIG. This increases the amount of power that can be extracted. In a structure in which a large number of cells are stacked, the contact resistance between the oxidizing electrode 2 and the fuel electrode 3 and each of the separators 5 has a great effect on the power generation efficiency. In order to improve the power generation efficiency, a separator having good conductivity and low contact resistance with the oxidizing electrode 2 and the fuel electrode 3 is required, and a graphite separator is conventionally used similarly to the phosphoric acid type fuel cell. .

【0006】[0006]

【発明が解決しようとする課題】黒鉛製セパレータは、
材料費や加工費が高く、全体として燃料電池の価格を高
騰させると共に、生産性を低下させる原因になってい
る。しかも、材質的に脆い黒鉛製のセパレータでは、振
動や衝撃が加えられると破損する虞れが大きい。そこ
で、プレス加工やパンチング加工等によって金属板から
セパレータを作ることが特開平8−180883号公報
で提案されている。しかし、酸素又は空気oが通過する
酸化極2側は、酸性度がpH2〜3の酸性雰囲気にあ
る。このような強酸性雰囲気に耐え、しかもセパレータ
に要求される特性を満足する金属材料は、これまでのと
ころ実用化されていない。
SUMMARY OF THE INVENTION Graphite separators are:
The material cost and processing cost are high, which raises the price of the fuel cell as a whole and lowers the productivity. In addition, a graphite separator that is brittle in material is likely to be damaged when subjected to vibration or impact. Therefore, it has been proposed in Japanese Patent Application Laid-Open No. Hei 8-180883 to produce a separator from a metal plate by pressing or punching. However, the oxidation electrode 2 side through which oxygen or air o passes is in an acidic atmosphere having an acidity of pH 2 to 3. A metal material that withstands such a strongly acidic atmosphere and satisfies the characteristics required for the separator has not been put to practical use so far.

【0007】たとえば、強酸に耐える金属材料としてス
テンレス鋼等の耐酸性材料が考えられる。これらの材料
は、表面に形成した強固な不動態皮膜によって耐酸性を
呈するが、不動態皮膜によって表面抵抗や接触抵抗が高
くなる。接触抵抗が高くなると、接触部分で多量のジュ
ール熱が発生し、大きな熱損失となり、燃料電池の発電
効率を低下させる。表面に酸化皮膜や不動態皮膜を形成
しない金属材料として、Au,Pt等の貴金属が知られ
ている。Auは、酸性雰囲気にも耐える材料であるが、
非常に高価であることから燃料電池のセパレータ材とし
ては実用的でない。Ptも酸化皮膜が形成されがたく酸
性雰囲気にも耐える材料であるが、Auと同様に非常に
高価であることから実用的な材料とはいえない。他方、
Niは、AuやPtに比較すると非常に安価で且つ優れ
た電子伝導体であるが、pH2〜3の酸性雰囲気におけ
る耐食性が十分でない。
[0007] For example, an acid-resistant material such as stainless steel is considered as a metal material that can withstand a strong acid. These materials exhibit acid resistance due to a strong passivation film formed on the surface, but the passivation film increases surface resistance and contact resistance. When the contact resistance increases, a large amount of Joule heat is generated at the contact portion, resulting in a large heat loss, which lowers the power generation efficiency of the fuel cell. As a metal material which does not form an oxide film or a passive film on the surface, noble metals such as Au and Pt are known. Au is a material that can withstand acidic atmosphere,
Since it is very expensive, it is not practical as a fuel cell separator material. Pt is also a material that does not easily form an oxide film and withstands an acidic atmosphere, but cannot be said to be a practical material because it is very expensive like Au. On the other hand,
Ni is a very inexpensive and excellent electronic conductor as compared with Au and Pt, but does not have sufficient corrosion resistance in an acidic atmosphere of pH 2-3.

【0008】[0008]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、燃料電池雰囲気
の腐食性を弱めてNiの優れた電子伝導体としての特性
を活用可能にすることにより、金属製セパレータの腐食
を抑制し、発電効率が高い固体高分子型燃料電池を安価
に提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem, and utilizes the characteristics of Ni as an excellent electronic conductor by reducing the corrosiveness of the fuel cell atmosphere. It is an object of the present invention to provide a polymer electrolyte fuel cell with high power generation efficiency at a low cost by suppressing corrosion of a metal separator by making it possible.

【0009】本発明の固体高分子型燃料電池は、その目
的を達成するため、固体高分子膜の両面に配置された酸
化極及び燃料極を金属製セパレータで挟んだ構造をも
ち、固体高分子膜,酸化極及び燃料極が予め腐食生成物
を除去したものであり、金属製セパレータが表面にNi
層が形成されたステンレス鋼板であることを特徴とす
る。腐食生成物を予め除去する方法としては、沸騰水中
での洗浄,湿潤雰囲気又は水溶液中での通電によって生
じる水の電気分解反応等が採用される。金属製セパレー
タとしては、表面粗さRa:0.4〜1.5μmに粗面
化されたステンレス鋼板の表面に0.5〜30g/m2
の付着量でNi層を形成したものが好ましい。
In order to achieve the object, the polymer electrolyte fuel cell of the present invention has a structure in which an oxidizing electrode and a fuel electrode disposed on both sides of a solid polymer membrane are sandwiched by metal separators. The membrane, the oxidizing electrode, and the fuel electrode are those from which corrosion products have been removed in advance, and the metal separator
It is a stainless steel plate on which a layer is formed. As a method for removing corrosion products in advance, washing in boiling water, electrolysis of water generated by energization in a humid atmosphere or an aqueous solution, or the like is employed. As a metal separator, a surface roughness Ra: 0.5 to 30 g / m 2 is applied to the surface of a stainless steel plate roughened to 0.4 to 1.5 μm.
It is preferable that a Ni layer is formed with an adhesion amount of.

【0010】[0010]

【作用】固体高分子型燃料電池の運転中、電池の構成物
質である薄膜電極アセンブリから硫酸イオンが溶出す
る。硫酸イオンは、主として薄膜電極アセンブリ中の触
媒層にPt系触媒を固定するときに使用された樹脂に由
来するものであるが、溶出によって燃料電池雰囲気のp
Hを低下させる。そこで、本出願人は、固体高分子膜
1,ガス透過性の酸化極2や燃料極3等の電極構成部材
を水溶液と接触させた状態で通電することにより、燃料
電池を組み立てる前に予め不純物を除去する方法を提案
した(特願2000−093707号)。
During operation of a polymer electrolyte fuel cell, sulfate ions are eluted from a thin film electrode assembly which is a constituent material of the cell. Sulfate ions are mainly derived from the resin used when fixing the Pt-based catalyst to the catalyst layer in the thin-film electrode assembly.
Lower H. Therefore, the present applicant energizes the electrode constituent members such as the solid polymer membrane 1, the gas-permeable oxidizing electrode 2 and the fuel electrode 3 in contact with the aqueous solution, so that the impurities can be set before the fuel cell is assembled. Was proposed (Japanese Patent Application No. 2000-093707).

【0011】本発明者等によるその後の研究過程で、予
め不純物を除去しておくことにより燃料電池雰囲気の腐
食性が緩和され、Ni層を形成したステンレス鋼製セパ
レータの使用が可能となり、Niが本来有する優れた電
子伝導体としての特性を活用できることを見出した。そ
の結果、多数のセルを積層してもカーボン電極との間の
接触抵抗が長期間にわたって低く維持され、接触抵抗の
増加に起因するジュール発熱が抑えられ、発電効率の高
い燃料電池に組み立てられる。
In the subsequent research process by the present inventors, by removing impurities in advance, the corrosiveness of the fuel cell atmosphere is reduced, and a stainless steel separator having a Ni layer can be used. It has been found that the inherent properties of an excellent electronic conductor can be utilized. As a result, even if a large number of cells are stacked, the contact resistance with the carbon electrode is kept low for a long period of time, the Joule heat generated due to the increase in the contact resistance is suppressed, and the fuel cell is assembled with high power generation efficiency.

【0012】[0012]

【実施の形態】金属製セパレータの基材としては、燃料
電池雰囲気で必要とする耐食性を呈する限り鋼種に特段
の制約が加わるものではなく、フェライト系,オーステ
ナイト系,二相系等、各種のステンレス鋼板が使用され
る。燃料電池に必要な耐食性を確保する上では、12質
量%以上のCrを含むステンレス鋼板が好ましい。ま
た、燃料電池の組立て及び軽量化を考慮すると、板厚
0.1〜0.4mmのステンレス鋼板が好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a base material of a metal separator, there is no particular restriction on the type of steel as long as it exhibits the corrosion resistance required in a fuel cell atmosphere. Steel plates are used. In order to secure the corrosion resistance required for the fuel cell, a stainless steel sheet containing 12% by mass or more of Cr is preferable. In consideration of assembly and weight reduction of the fuel cell, a stainless steel plate having a plate thickness of 0.1 to 0.4 mm is preferable.

【0013】ステンレス鋼板の表面に、電気めっき法,
無電解めっき法等でNi層を形成する。下地のステンレ
ス鋼とNi層との密着性を確保する上では、析出効率を
15%以下に調整したNiストライクめっきで中間層を
形成した後、Ni本めっきすることが好ましい。電気め
っき法でNi層を形成する場合、ワット浴,全塩化物
浴、全硫酸塩浴等のめっき浴が使用される。Ni層は、
ステンレス鋼板の全表面を被覆して接触抵抗を下げるた
め、好ましくは0.5g/m2以上の付着量で形成す
る。接触抵抗を低下させるNi層の効果は付着量に応じ
て上昇するが、80g/m2で飽和し、それ以上厚く形
成しても経済的でない。
The surface of a stainless steel plate is electroplated,
A Ni layer is formed by an electroless plating method or the like. In order to secure the adhesion between the underlying stainless steel and the Ni layer, it is preferable to form the intermediate layer by Ni strike plating with the deposition efficiency adjusted to 15% or less, and then perform Ni main plating. When the Ni layer is formed by the electroplating method, a plating bath such as a Watts bath, a total chloride bath, a total sulfate bath or the like is used. The Ni layer
In order to lower the contact resistance by covering the entire surface of the stainless steel plate, the coating is preferably formed with an adhesion amount of 0.5 g / m 2 or more. The effect of the Ni layer to lower the contact resistance increases according to the amount of deposition, but it saturates at 80 g / m 2 and it is not economical to form a thicker layer.

【0014】Ni層の形成に先立ってステンレス鋼板の
表面を粗面化しておくと、ステンレス鋼板に対するNi
層の密着性が向上する。粗面化は、ステンレス鋼板の接
触抵抗を下げる上でも有効である。粗面化による接触抵
抗の低下は本発明者等が特願2000−276893号
で提案したことであるが、たとえば粗面化したステンレ
ス鋼板の表面に凹凸形態が残る程度にNi層を形成する
と、表面凹凸によってカーボン電極との間で良好な密着
状態が得られ、且つNiの高電子伝導性等が相乗的に作
用しステンレス鋼板の接触抵抗が一層低下する。Ni層
形成後にも凹凸形態を維持する上では、表面粗さがR
a:0.4〜1.5μmとなるようにステンレス鋼板を
粗面化することが好ましい。
If the surface of the stainless steel sheet is roughened before the formation of the Ni layer, the Ni
The adhesion of the layer is improved. Roughening is also effective in reducing the contact resistance of a stainless steel plate. The reduction of contact resistance due to surface roughening is proposed by the present inventors in Japanese Patent Application No. 2000-276893. For example, when a Ni layer is formed to such an extent that irregularities remain on the surface of a roughened stainless steel sheet, Due to the surface irregularities, a good adhesion state is obtained with the carbon electrode, and high electron conductivity of Ni acts synergistically to further reduce the contact resistance of the stainless steel plate. In order to maintain the concavo-convex shape even after the Ni layer is formed, the surface roughness is R
a: It is preferable to roughen the stainless steel plate so as to have a thickness of 0.4 to 1.5 μm.

【0015】ステンレス鋼板の粗面化にはたとえば塩化
第二鉄水溶液中での交番電解エッチングが採用され、好
ましくはRa:0.4〜1.5μmの表面粗さに調整さ
れる。交番電解エッチングされたステンレス鋼板の表面
には微細なピットが形成され、ステンレス鋼板が粗面化
される。Ra:0.4〜1.5μmの表面粗さは、本発
明者等による調査・研究の結果から得られた条件であ
り、粗面化処理後にNi層を形成したステンレス鋼板が
カーボン電極に良好な密着状態で接触し、接触抵抗を効
果的に低下させる。また、Ra:0.4μm以上に粗面
化することにより、Ni層の密着性も向上する。しか
し、Ra:1.5μmを超えて過度に粗面化すると、ス
テンレス鋼板表面に形成されるピットが不均一分布にな
り、Ni層の密着性が却って低下する。
For the surface roughening of the stainless steel sheet, for example, alternating electrolytic etching in an aqueous ferric chloride solution is employed, and the surface roughness is preferably adjusted to Ra: 0.4 to 1.5 μm. Fine pits are formed on the surface of the alternating electrolytically etched stainless steel plate, and the stainless steel plate is roughened. Ra: The surface roughness of 0.4 to 1.5 μm is a condition obtained from the results of investigation and research by the present inventors, and a stainless steel sheet having a Ni layer formed after the surface roughening treatment is good for a carbon electrode. Contact in an intimate contact state, effectively reducing contact resistance. Further, by roughening the surface to Ra: 0.4 μm or more, the adhesion of the Ni layer is also improved. However, if the surface is excessively roughened with Ra: more than 1.5 μm, pits formed on the surface of the stainless steel plate become unevenly distributed, and the adhesion of the Ni layer is rather lowered.

【0016】粗面化されたステンレス鋼板の表面に前述
した方法でNi層が形成されるが、Ni層は0.5〜3
0g/m2の付着量で形成することが好ましい。Ni層
の付着量が0.5g/m2以上になると、ステンレス鋼
板表面の凹凸全体がNi層で覆われ、Ni本来の高電子
伝導性に由来する接触抵抗低下効果が顕著になる。しか
し、30g/m2を超える付着量でNi層を形成する
と、粗面化されたステンレス鋼板表面にある凹凸がNi
層で埋められ、カーボン電極にステンレス鋼板の良好な
密着状態で接触させる凹凸形態の効果が損なわれ、接触
抵抗の低減に及ぼす粗面化処理の効果が低下する。
A Ni layer is formed on the surface of the roughened stainless steel plate by the method described above.
It is preferable to form with an adhesion amount of 0 g / m 2 . When the adhesion amount of the Ni layer is 0.5 g / m 2 or more, the entire unevenness on the surface of the stainless steel plate is covered with the Ni layer, and the effect of lowering the contact resistance due to the inherent high electron conductivity of Ni becomes remarkable. However, when the Ni layer is formed with an adhesion amount exceeding 30 g / m 2 , the unevenness on the surface of the roughened stainless steel plate becomes Ni.
The effect of the concavo-convex shape filled with the layer and brought into contact with the carbon electrode in a good contact state of the stainless steel plate is impaired, and the effect of the surface roughening treatment for reducing the contact resistance is reduced.

【0017】Ni層が形成されたステンレス鋼板は、沸
騰水中での洗浄によって予め腐食生成物を除去した後、
或いは湿潤雰囲気又は水溶液中での通電によって生じる
水の電気分解に伴って予め腐食生成物を除去した後、薄
膜電極アセンブリに組み込まれる。沸騰水を用いた洗浄
によって不純物を除去する場合、沸騰させた純水中に固
体高分子膜1,酸化極2及び燃料極3を5分程度浸漬す
る。沸騰水に不純物が溶け出すので、純水を適宜取り替
えながら沸騰水浸漬を繰り返すことにより、薄膜電極ア
センブリ中の不純物濃度が低下する。好ましくは、沸騰
水浸漬を3回以上繰り返す。
The stainless steel sheet on which the Ni layer has been formed is obtained by removing corrosion products in advance by washing in boiling water,
Alternatively, after corrosion products are removed in advance by electrolysis of water generated by energization in a humid atmosphere or an aqueous solution, they are incorporated into a thin-film electrode assembly. When impurities are removed by washing using boiling water, the solid polymer membrane 1, the oxidizing electrode 2 and the fuel electrode 3 are immersed in boiling pure water for about 5 minutes. Since impurities dissolve in boiling water, repeated immersion in boiling water while appropriately replacing pure water reduces the impurity concentration in the thin-film electrode assembly. Preferably, boiling water immersion is repeated three times or more.

【0018】水の電気分解反応によって不純物を除去す
る場合、固体高分子膜1の両側に配置した酸化極2及び
燃料極3をカーボン等の非腐食性セパレータ材料で挟み
込んで薄膜電極アセンブリを組み立てた後、セル内部を
水に接触させた状態で薄膜電極アセンブリに外部から電
圧を印加する。電圧印加によって生じる水の電気分解反
応に伴い電極構成部材から不純物が溶け出しやすい環境
になる。電気分解反応は、電極構成部材から溶出する不
純物の濃度が10ppmに低下するまで継続することが
好ましい。
When impurities are removed by the electrolysis reaction of water, a thin film electrode assembly is assembled by sandwiching the oxidizing electrode 2 and the fuel electrode 3 disposed on both sides of the solid polymer membrane 1 with a non-corrosive separator material such as carbon. Thereafter, a voltage is externally applied to the thin-film electrode assembly while the inside of the cell is in contact with water. The environment is such that impurities easily dissolve out of the electrode components due to the electrolysis reaction of water generated by the application of voltage. It is preferable that the electrolysis reaction be continued until the concentration of the impurities eluted from the electrode component drops to 10 ppm.

【0019】このようにして不純物濃度を低下させた電
極構成部材と、Ni層を形成したステンレス鋼製セパレ
ータ5で組み立てられた燃料電池では、発電時に薄膜電
極アセンブリからの不純物の溶出が抑えられるので、N
i層の腐食を促進させる低pH領域にならない。そのた
め、Ni本来の優れた電子伝導性が得られ、カーボン電
極との接触抵抗も低く維持されるため、発電効率の高い
固体高分子燃料電池となる。
In the fuel cell assembled with the electrode constituent member having the reduced impurity concentration and the stainless steel separator 5 having the Ni layer formed thereon, the elution of impurities from the thin-film electrode assembly during power generation is suppressed. , N
It does not enter the low pH range that promotes corrosion of the i-layer. As a result, excellent electronic conductivity inherent to Ni is obtained, and the contact resistance with the carbon electrode is maintained low, resulting in a polymer electrolyte fuel cell with high power generation efficiency.

【0020】[0020]

【実施例】金属製セパレータ5の基材として表1の組成
をもち、BA仕上げしたステンレス鋼板A及び電解エッ
チングにより表面を粗面化したステンレス鋼板Bを使用
し、それぞれにNi層を形成したステンレス鋼板製セパ
レータ5を用意した。
EXAMPLE A stainless steel sheet A having the composition shown in Table 1 and a BA-finished stainless steel sheet A and a stainless steel sheet B whose surface was roughened by electrolytic etching and having a Ni layer was used as a base material of the metal separator 5. A steel plate separator 5 was prepared.

【0021】 [0021]

【0022】電解エッチングでは、Fe3+:55g/
l,液温57.5℃の塩化第二鉄水溶液を使用し、アノ
ード電流密度3.0kA/m2,カソード電流密度0.
5kA/m2,処理時間60秒,交番電解サイクル5H
zの条件で交番電解した。エッチングされたステンレス
鋼板の表面を観察したところ、平均径2μm,平均深さ
1μmの半球状ピットが表面全域にわたって均一に形成
されており、表面粗さがRa:0.5μmであった。
In the electrolytic etching, Fe 3+ : 55 g /
1, using an aqueous ferric chloride solution having a liquid temperature of 57.5 ° C., an anode current density of 3.0 kA / m 2 and a cathode current density of 0.
5kA / m 2 , treatment time 60 seconds, alternating electrolysis cycle 5H
Alternating electrolysis was performed under the conditions of z. Observation of the surface of the etched stainless steel plate revealed that hemispherical pits having an average diameter of 2 μm and an average depth of 1 μm were uniformly formed over the entire surface, and the surface roughness was Ra: 0.5 μm.

【0023】Ni層の形成には、予めNiストライクメ
ッキした後、Ni本メッキする方法を採用した。Niス
トライクメッキは、NiSO4・6H2O:400g/
l,Na2SO4:100g/lを含む液温:55℃,p
H1.5のめっき浴を使用し、電気めっき時の電流密度
を5A/dm2に設定し、12秒間通電した。本めっき
では、NiCl2・6H2O:300g/l,H3BO3
30g/lを含む液温:55℃,pH2.0のめっき浴
を使用し、電気めっき時の電流密度を10A/dm2
設定した。この条件下で、ステンレス鋼板Aでは通電時
間を290秒とすることにより総付着量44.5g/m
2のNi層を、ステンレス鋼板Bでは通電時間を58秒
とすることにより付着量9.0g/m2のNi層を形成
した。
For the formation of the Ni layer, a method was used in which Ni strike plating was performed in advance and then Ni main plating was performed. Ni strike plating, NiSO 4 · 6H 2 O: 400g /
l, Na 2 SO 4 : 100 g / l containing solution temperature: 55 ° C, p
Using a plating bath of H1.5, the current density at the time of electroplating was set to 5 A / dm 2, and electricity was supplied for 12 seconds. In this plating, NiCl 2 · 6H 2 O: 300g / l, H 3 BO 3:
A plating bath having a solution temperature of 55 ° C. and a pH of 2.0 containing 30 g / l was used, and the current density during electroplating was set at 10 A / dm 2 . Under these conditions, for the stainless steel sheet A, the total adhesion amount was 44.5 g / m2 by setting the energization time to 290 seconds.
The second Ni layer to form a Ni layer of coating weight 9.0 g / m 2 by the the energization time stainless steel B 58 seconds.

【0024】〔沸騰水浸漬による不純物除去〕沸騰した
純水に固体高分子膜1,酸化極2及び燃料極3を5分間
浸漬した後、純水を取り替えて沸騰純水浸漬を3回繰り
返すことにより不純物を除去した。次いで、固体高分子
膜1に酸化極2及び燃料極3を重ね合わせて薄膜電極ア
センブリとし、Ni層が形成されたステンレス鋼製セパ
レータA,Bと組み合わせ燃料電池セルを構成した。加
湿した水素及び酸素を燃料電池セルに供給し、燃料電池
を起動した。燃料電池セルから排出される水のpH,F
eイオン濃度及びNiイオン濃度を測定することによ
り、セル内部の酸性度及びセパレータ5の腐食を評価し
た。比較のため、不純物を除去しない薄膜電極アセンブ
リについても、同様にNi層を形成したステンレス鋼板
製セパレータ5を挟んで燃料電池セルを構成し、同じ条
件下で排水のpH,Feイオン濃度及びNiイオン濃度
を測定した。
[Removal of impurities by boiling water immersion] After immersing the solid polymer membrane 1, the oxide electrode 2 and the fuel electrode 3 in boiling pure water for 5 minutes, replacing the pure water and repeating the boiling pure water immersion three times. To remove impurities. Next, the oxidation electrode 2 and the fuel electrode 3 were superimposed on the solid polymer membrane 1 to form a thin-film electrode assembly, which was combined with stainless steel separators A and B on which a Ni layer was formed to constitute a fuel cell. Humidified hydrogen and oxygen were supplied to the fuel cell, and the fuel cell was started. PH, F of water discharged from fuel cell
By measuring the e ion concentration and the Ni ion concentration, the acidity inside the cell and the corrosion of the separator 5 were evaluated. For comparison, a thin-film electrode assembly from which impurities were not removed was also provided with a fuel cell including a separator 5 made of a stainless steel plate having a Ni layer formed thereon, and the pH, Fe ion concentration and Ni ion The concentration was measured.

【0025】図2の測定結果にみられるように、本発明
に従った燃料電池では、起動時に燃料電池セルから排出
される水のpH低下が酸化極2側、燃料極3側共に大幅
に抑制されていた。他方、前以て不純物を除去すること
なくステンレス鋼板製セパレータ5を組み込んだ燃料電
池では、起動時にpHが大きく低下した。更に、電流密
度を0.5A/m2の一定値に維持して燃料電池を10
0時間運転した後、薄膜電極アセンブリからステンレス
鋼板製セパレータ5を取り出し腐食状況を調査した。そ
の結果、不純物を予め除去しなかった薄膜電極アセンブ
リに接触させたステンレス鋼板製セパレータ5と比較し
て、不純物を除去した薄膜電極アセンブリに接触させた
ステンレス鋼板製セパレータ5では腐食が検出されなか
った。この腐食抑制は、燃料電池起動時にpH低下が抑
制されていることに起因するものと推察される。
As can be seen from the measurement results shown in FIG. 2, in the fuel cell according to the present invention, a decrease in pH of water discharged from the fuel cell at the time of start-up is greatly suppressed on both the oxidizing electrode 2 side and the fuel electrode 3 side. It had been. On the other hand, in the fuel cell in which the stainless steel plate separator 5 was incorporated without removing impurities beforehand, the pH dropped significantly at the time of startup. Further, by maintaining the current density at a constant value of 0.5 A / m 2 ,
After the operation for 0 hour, the stainless steel plate separator 5 was taken out from the thin film electrode assembly and the state of corrosion was investigated. As a result, no corrosion was detected in the stainless steel plate separator 5 in contact with the thin film electrode assembly from which impurities were removed, as compared with the stainless steel plate separator 5 in contact with the thin film electrode assembly in which impurities were not removed in advance. . This corrosion suppression is presumed to be due to the suppression of the pH drop at the time of starting the fuel cell.

【0026】Ni層の腐食が抑制されていることからN
i本来の優れた電子伝導体としての特性が維持され、セ
パレータ5表面の接触抵抗も図3に示すように増加しな
かった。他方、予め不純物を除去しなかった薄膜電極ア
センブリに接触するステンレス鋼板製セパレータ5で
は、運転100時間経過後の接触抵抗が大幅に上昇して
いた。なかでも、ステンレス鋼板表面を粗面化してNi
層を形成したステンレス鋼板Bでは、BA仕上げしたス
テンレス鋼板Aに比較して試験前後共に低い接触抵抗を
示した。
Since corrosion of the Ni layer is suppressed, N
The original characteristics as an excellent electron conductor were maintained, and the contact resistance on the surface of the separator 5 did not increase as shown in FIG. On the other hand, in the separator 5 made of stainless steel plate that comes into contact with the thin-film electrode assembly from which impurities were not removed in advance, the contact resistance after 100 hours of operation was significantly increased. Among them, the stainless steel plate surface is roughened and Ni
The stainless steel sheet B on which the layer was formed exhibited lower contact resistance both before and after the test as compared with the stainless steel sheet A finished with BA.

【0027】ステンレス鋼板A,B何れをセパレータ基
材とした場合でも、燃料電池セルから排出された水には
Feイオン及びNiイオンが検出されなかった。他方、
予め不純物を除去しなかった薄膜電極アセンブリにステ
ンレス鋼板を接触させて構成した燃料電池セルから排出
された水には、0.2ppmのFeイオン及び0.2p
pmのNiイオンが検出された。
Regardless of which of the stainless steel plates A and B was used as the separator substrate, Fe ions and Ni ions were not detected in the water discharged from the fuel cell. On the other hand,
Water discharged from a fuel cell constituted by bringing a stainless steel plate into contact with a thin-film electrode assembly from which impurities have not been removed in advance contains 0.2 ppm of Fe ions and 0.2 p
pm Ni ions were detected.

【0028】〔水の電気分解反応による不純物除去〕固
体高分子膜1に酸化極2及び燃料極3を重ね合わせた薄
膜電極アセンブリをカーボン製セパレータと組み合わせ
て燃料電池セルを構成した。燃料電池セル内部を湿潤雰
囲気に維持した後、両極間に直流電圧を印加して電流密
度0.1A/dm2で10時間通電することにより水を
電気分解した。更に、印加電圧を逆にして同一条件で通
電した。通電による水の電気分解で不純物を除去した
後、薄膜電極アセンブリからカーボン製セパレータを取
り外し、Ni層が形成されたステンレス鋼製セパレータ
5に置き換えた。組み立てられた燃料電池セルに加湿し
た水素及び酸素を供給して燃料電池を起動させ、同様に
燃料電池セルから排出される水のpH,Feイオン濃度
及びNiイオン濃度を測定した。図4の測定結果にみら
れるように、起動時に燃料電池セルから排出される水の
pH低下が酸化極2側,燃料極3側共に大幅に抑制され
ていた。
[Removal of Impurities by Electrolysis Reaction of Water] A fuel cell was constructed by combining a thin-film electrode assembly in which an oxidation electrode 2 and a fuel electrode 3 were superimposed on a solid polymer membrane 1 with a carbon separator. After maintaining the inside of the fuel cell in a humid atmosphere, water was electrolyzed by applying a DC voltage between both electrodes and applying a current at a current density of 0.1 A / dm 2 for 10 hours. Further, current was supplied under the same conditions with the applied voltage reversed. After the impurities were removed by electrolysis of water by energization, the carbon separator was removed from the thin-film electrode assembly and replaced with a stainless steel separator 5 on which a Ni layer was formed. The fuel cell was started by supplying humidified hydrogen and oxygen to the assembled fuel cell, and the pH, Fe ion concentration and Ni ion concentration of water discharged from the fuel cell were measured in the same manner. As can be seen from the measurement results in FIG. 4, a decrease in the pH of water discharged from the fuel cell at the time of startup was significantly suppressed on both the oxidizing electrode 2 side and the fuel electrode 3 side.

【0029】更に、電流密度を0.5A/dm2の一定
値に維持して燃料電池を100時間運転した後、薄膜電
極アセンブリから取り出したステンレス鋼製セパレータ
5を観察したところ、セパレータ5の表面に腐食が検出
されず、この場合にも燃料電池起動時におけるpHの低
下がないことで腐食抑制が図られたことが窺われる。N
i層の腐食が抑制されていることからNi本来の優れた
電子伝導体としての特性が維持され、セパレータ5表面
の接触抵抗も図5に示すように増加しなかった。なかで
も、ステンレス鋼板表面を粗面化してNi層を形成した
ステンレス鋼板Bでは、BA仕上げしたステンレス鋼板
Aに比較して試験前後共に低い接触抵抗を示した。ま
た、ステンレス鋼板A,B何れをセパレータ基材とした
場合でも、燃料電池セルから排出された水にはFeイオ
ン及びNiイオンが検出されなかった。
Further, after operating the fuel cell for 100 hours while maintaining the current density at a constant value of 0.5 A / dm 2 , the stainless steel separator 5 taken out of the thin film electrode assembly was observed. Corrosion was not detected at this time, and in this case also, it can be seen that corrosion was suppressed because there was no decrease in pH when the fuel cell was started. N
Since the corrosion of the i-layer was suppressed, the characteristics of Ni as an excellent electron conductor were maintained, and the contact resistance on the surface of the separator 5 did not increase as shown in FIG. Above all, the stainless steel sheet B in which the surface of the stainless steel sheet was roughened to form a Ni layer showed lower contact resistance before and after the test than the stainless steel sheet A finished with BA. In addition, when any of the stainless steel plates A and B was used as the separator substrate, Fe ions and Ni ions were not detected in the water discharged from the fuel cell.

【0030】以上の結果から、沸騰水を用いた洗浄や水
の電気分解によって不純物を予め除去した固体高分子膜
1,酸化極2,燃料極3と、Ni層を形成したステンレ
ス鋼板製セパレータ5とを組み合わせることにより、セ
パレータ5が腐食されず、低い接触抵抗、ひいては高い
発電効率をもつ固体高分子型燃料電池が構成されること
が確認された。
From the above results, the solid polymer membrane 1, oxide electrode 2, fuel electrode 3 from which impurities were previously removed by washing with boiling water or electrolysis of water, and a stainless steel plate separator 5 having a Ni layer formed thereon It has been confirmed that by combining the above, the polymer electrolyte fuel cell having the low contact resistance and the high power generation efficiency without corrosion of the separator 5 is formed.

【0031】[0031]

【発明の効果】以上に説明したように、本発明の固体高
分子型燃料電池は、予め不純物を除去した薄膜電極アセ
ンブリにNi層が形成されたステンレス鋼板を接触させ
ることによって組み立てられている。そのため、燃料電
池運転中に腐食成分の流出による燃料電池雰囲気のpH
低下が抑えられ、Ni本来の優れた電子伝導性が長期間
にわたって維持され、複数の燃料電池セルを積層した状
態でも接触抵抗に起因するジュール発熱が少なく、発電
効率の高い固体高分子型燃料電池となる。
As described above, the polymer electrolyte fuel cell according to the present invention is assembled by bringing the stainless steel plate on which the Ni layer is formed into contact with the thin film electrode assembly from which impurities have been removed in advance. Therefore, during operation of the fuel cell, the pH of the fuel cell
A polymer electrolyte fuel cell that suppresses the decrease, maintains the original excellent electronic conductivity of Ni for a long period of time, generates little Joule heat due to contact resistance even in a state where a plurality of fuel cells are stacked, and has high power generation efficiency Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】 固体高分子膜を電解質として使用した燃料電
池の内部構造を示す断面図(a)及び分解斜視図(b)
FIG. 1 is a sectional view (a) and an exploded perspective view (b) showing an internal structure of a fuel cell using a solid polymer membrane as an electrolyte.

【図2】 沸騰水浸漬で不純物を予め除去した薄膜電極
アセンブリをもつ燃料電池を起動したとき酸化極側
(a)及び燃料極側(b)から排出される水のpH変化
を示したグラフ
FIG. 2 is a graph showing a change in pH of water discharged from an oxidation electrode side (a) and a fuel electrode side (b) when a fuel cell having a thin-film electrode assembly from which impurities have been removed by boiling water immersion is started.

【図3】 同燃料電池を100時間運転した後でセパレ
ータ表面の接触抵抗を運転前と比較したグラフ
FIG. 3 is a graph comparing the contact resistance of the separator surface after operation of the fuel cell for 100 hours with that before operation.

【図4】 水の電気分解反応によって不純物を予め除去
した薄膜電極アセンブリをもつ燃料電池を起動したとき
酸化極側(a)及び燃料極側(b)から排出される水の
pH変化を示したグラフ
FIG. 4 shows a change in pH of water discharged from an oxidation electrode side (a) and a fuel electrode side (b) when a fuel cell having a thin-film electrode assembly from which impurities have been removed in advance by an electrolysis reaction of water is started. Graph

【図5】 同燃料電池を100時間運転した後でセパレ
ータ表面の接触抵抗を運転前と比較したグラフ
FIG. 5 is a graph comparing the contact resistance of the separator surface after operation of the fuel cell for 100 hours with that before operation.

【符号の説明】[Explanation of symbols]

1:固体高分子膜 2:酸化極 3:燃料極
5:セパレータ
1: solid polymer membrane 2: oxidized electrode 3: fuel electrode
5: Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 剛 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 和泉 圭二 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 守田 芳和 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 鴨志田 真一 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 金月 俊樹 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 高橋 剛 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 八神 裕一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H026 AA06 BB00 CC03 CX05 EE02 EE08 EE18 HH00 HH05  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Tsuyoshi Shimizu 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd. (72) Inventor Keiji Izumi 5 Ishizu Nishimachi 5 Sakai City, Osaka Prefecture Nissin Steel Co., Ltd. In Technical Research Institute (72) Inventor Yoshikazu Morita 5, Nisshin Steel Corporation, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd. (72) Inventor Shinichi Kamoshida 5, Ishizu Nishimachi, Sakai City, Osaka Nisshin Steel Corporation Technical Research Center ( 72) Inventor Toshiki Kanetsugu 5 Ishizu Nishicho, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd.Technical Research Institute (72) Inventor Go Takahashi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Yagami Yuichi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 5H026 AA06 BB00 CC03 CX05 EE02 EE08 E E18 HH00 HH05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子膜の両面に配置された酸化極
及び燃料極を金属製セパレータで挟んだ構造をもち、固
体高分子膜,酸化極及び燃料極が予め腐食性物質を除去
したものであり、金属製セパレータが表面にNi層が形
成されたステンレス鋼板であることを特徴とする固体高
分子型燃料電池。
1. A structure in which an oxidizing electrode and a fuel electrode disposed on both sides of a solid polymer film are sandwiched between metal separators, and the solid polymer film, the oxidizing electrode and the fuel electrode have previously been removed from corrosive substances. Wherein the metal separator is a stainless steel plate having a Ni layer formed on the surface thereof.
【請求項2】 沸騰水を用いた洗浄又は湿潤湿潤雰囲気
又は水溶液中での通電で生じる水の電気分解反応によっ
て腐食性物質が予め除去された固体高分子膜,酸化極,
燃料極を使用する請求項1記載の固体高分子型燃料電
池。
2. A solid polymer membrane from which a corrosive substance has been removed in advance by an electrolysis reaction of water generated by washing with boiling water or energization in a humid atmosphere or an aqueous solution, an oxidized electrode,
2. The polymer electrolyte fuel cell according to claim 1, wherein a fuel electrode is used.
【請求項3】 表面粗さRa:0.4〜1.5μmに粗
面化されたステンレス鋼板の表面に0.5〜30g/m
2の付着量でNi層が形成されたものを金属製セパレー
タとして使用する請求項1又は2記載の固体高分子型燃
料電池。
3. Surface roughness Ra: 0.5 to 30 g / m 2 on the surface of a stainless steel sheet roughened to 0.4 to 1.5 μm.
3. The polymer electrolyte fuel cell according to claim 1, wherein a metal separator having a Ni layer formed with an adhesion amount of 2 is used as a metal separator.
JP2001168734A 2001-06-04 2001-06-04 Solid polymer fuel cell Withdrawn JP2002367621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168734A JP2002367621A (en) 2001-06-04 2001-06-04 Solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168734A JP2002367621A (en) 2001-06-04 2001-06-04 Solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2002367621A true JP2002367621A (en) 2002-12-20

Family

ID=19010915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168734A Withdrawn JP2002367621A (en) 2001-06-04 2001-06-04 Solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2002367621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448082C (en) * 2004-08-27 2008-12-31 亚太燃料电池科技股份有限公司 Transient starting and regulating temperature device for fuel battery humidifying module
JP2021529887A (en) * 2019-06-14 2021-11-04 ポスコPosco Austenitic stainless steel with excellent electrical conductivity and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448082C (en) * 2004-08-27 2008-12-31 亚太燃料电池科技股份有限公司 Transient starting and regulating temperature device for fuel battery humidifying module
JP2021529887A (en) * 2019-06-14 2021-11-04 ポスコPosco Austenitic stainless steel with excellent electrical conductivity and its manufacturing method

Similar Documents

Publication Publication Date Title
WO2002013300A1 (en) Stainless steel substrate treatment
US20030170526A1 (en) Substrate treatment
AU2001272664A1 (en) Stainless steel substrate treatment
WO2003079477A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JP2004296381A (en) Metal separator for fuel cell and its manufacturing method
JP2000106197A (en) Fuel cell and separator for fuel cell
JP2003297380A (en) Stainless steel separator for fuel cell
US20230008403A1 (en) Electrolysis electrode
JP3667679B2 (en) Stainless steel separator for low-temperature fuel cells
JP2001093538A (en) Stainless steel cryogenic fuel cell separator
KR100714385B1 (en) Separator for low-temperature type fuel cell and production method thereof
JPH11162478A (en) Separator for fuel cell
JP2007257883A (en) Fuel cell separator and its manufacturing method
JP4629914B2 (en) Low temperature fuel cell separator and method for producing the same
JP2002367621A (en) Solid polymer fuel cell
JP2004071321A (en) Metal separator for fuel cell and manufacturing method therefor
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2001283874A (en) Preprocessing method of solid polymer fuel cell component and manufacturing method of fuel cell using metal separator
JP4093743B2 (en) Low temperature fuel cell separator
JP2003297379A (en) Manufacturing method of separator for low temperature fuel cell
JP2005243595A (en) Separator for solid polymer fuel cell, and the solid polymer fuel cell using the same
CA2418302A1 (en) Plate treatment
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3780410B2 (en) Electrode for metal plating
JP4093742B2 (en) Low temperature fuel cell separator and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070416

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805