JP4093742B2 - Low temperature fuel cell separator and method for producing the same - Google Patents

Low temperature fuel cell separator and method for producing the same Download PDF

Info

Publication number
JP4093742B2
JP4093742B2 JP2001319553A JP2001319553A JP4093742B2 JP 4093742 B2 JP4093742 B2 JP 4093742B2 JP 2001319553 A JP2001319553 A JP 2001319553A JP 2001319553 A JP2001319553 A JP 2001319553A JP 4093742 B2 JP4093742 B2 JP 4093742B2
Authority
JP
Japan
Prior art keywords
stainless steel
separator
steel plate
fuel cell
contact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001319553A
Other languages
Japanese (ja)
Other versions
JP2003123784A (en
Inventor
剛 清水
勉 宮野
圭二 和泉
芳和 守田
真一 鴨志田
裕一 八神
三喜男 和田
剛 高橋
義明 梶川
幸多 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd, Toyota Motor Corp filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2001319553A priority Critical patent/JP4093742B2/en
Publication of JP2003123784A publication Critical patent/JP2003123784A/en
Application granted granted Critical
Publication of JP4093742B2 publication Critical patent/JP4093742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【産業上の利用分野】
本発明は、固体高分子型燃料電池を始め、低温稼動可能な燃料電池のセパレータに関する。
【0002】
【従来の技術】
燃料電池のなかでも、固体高分子型の燃料電池は、100℃以下の温度で動作可能であり、短時間で起動する長所を備えている。また、各部材が固体からなるため、構造が簡単でメンテナンスが容易で、振動や衝撃に曝される用途にも適用できる。更に、出力密度が高いため小型化に適し、燃料効率が高く、騒音が小さい等の長所を備えている。これらの長所から、電気自動車搭載用としての用途が検討されている。ガソリン自動車と同等の走行距離を出せる燃料電池を自動車に搭載できると、NOx,SOxの発生がほとんどなく、CO2の発生が半減する等、環境に対して非常にクリーンな動力源になる。
【0003】
固体高分子型燃料電池は、分子中にプロトン交換基をもつ固体高分子樹脂膜がプロトン導電性電解質として機能することを利用したものであり、他の形式の燃料電池と同様に固体高分子膜の一側に水素等の燃料ガスを流し、他側に空気等の酸化性ガスを流す構造になっている。
具体的には、固体高分子膜1の両側に酸化極2及び燃料極3を接合し、それぞれガスケット4を介しセパレータ5を対向させている(図1a)。酸化極2側のセパレータ5に空気供給口6,空気排出口7が形成され、燃料極3側のセパレータ5に水素供給口8,水素排出口9が形成されている。
【0004】
セパレータ5には、水素g及び酸素又は空気oの導通及び均一分配のため、水素g及び酸素又は空気oの流動方向に延びる複数の溝10が形成されている。また、発電時に発熱があるため、給水口11から送り込んだ冷却水wをセパレータ5の内部に循環させた後、排水口12から排出させる水冷機構をセパレータ5に内蔵させている。
水素供給口8から燃料極3とセパレータ5との間隙に送り込まれた水素gは、電子を放出したプロトンとなって固体高分子膜1を透過し、酸化極2側で電子を受け、酸化極2とセパレータ5との間隙を通過する酸素又は空気oによって燃焼する。そこで、酸化極2と燃料極3との間に負荷をかけるとき、電力を取り出すことができる。
【0005】
燃料電池は、1セル当りの発電量が極く僅かである。そこで、セパレータ5,5で挟まれた固体高分子膜を1単位とし、複数のセルを積層すること(図1b)により取出し可能な電力量を大きくしている。多数のセルを積層した構造では、セパレータ5の抵抗が発電効率に大きな影響を及ぼす。発電効率を向上させるためには、導電性が良好で接触抵抗の低いセパレータが要求され、リン酸塩型燃料電池と同様に黒鉛質のセパレータが使用されている。
【0006】
黒鉛質のセパレータは、黒鉛ブロックを所定形状に切り出し、切削加工によって各種の孔や溝を形成している。そのため、材料費や加工費が高く、全体として燃料電池の価格を高騰させると共に、生産性を低下させる原因になっている。しかも、材質的に脆い黒鉛でできたセパレータでは、振動や衝撃が加えられると破損する虞が大きい。そこで、プレス加工やパンチング加工等によって金属板からセパレータを作ることが特開平8−180883号公報で提案されている。
【0007】
【発明が解決しようとする課題】
酸素又は空気oが通過する酸化極2側は、酸性度がpH2〜3の酸性雰囲気にある。このような強酸性雰囲気に耐え、しかもセパレータに要求される特性を満足する金属材料は、これまでのところ実用化されていない。
酸性雰囲気に耐え、接触抵抗の低い金属材料としてAu,Pt等の貴金属が知られているが、非常に高価な材料であることから燃料電池用セパレータとして実用的な材料とはいえない。Niは、Au,Ptに比較すると非常に安価で、優れた電子伝導体でもあるが、pH2〜3の酸性雰囲気における耐食性が不足する。
【0008】
他方、強酸に耐える金属材料としては、ステンレス鋼に代表される耐酸性材料が考えられる。従来の耐酸性材料は、表面に形成した強固な不動態皮膜によって耐酸性を呈するが、不動態皮膜によって表面抵抗や接触抵抗が高くなる。接触抵抗が高くなると、接触部分で多量のジュール熱が発生し、大きな熱損失となり、燃料電池の発電効率を低下させる。
表面抵抗や接触抵抗に及ぼす不動態皮膜の影響が抑制されると、ステンレス鋼本来の優れた耐食性を活用し、黒鉛質に代わるステンレス鋼製セパレータが使用可能になる。このような観点から、本出願人は、表面全域にわたって多数の微細なピットを設けることにより表面接触抵抗が減少することを見出し、特願2000−276893号として出願した。多数の微細なピットは、たとえば塩化第二鉄水溶液中でステンレス鋼板を交番電解エッチングすることにより形成される。
【0009】
【課題を解決するための手段】
本発明は、接触抵抗の低下に有効な粗面化処理を更に発展させたものであり、粗面化処理後にFe還元雰囲気中での加熱処理で緻密なバリア薄膜を形成することにより、接触抵抗及び耐食性を一層改善したステンレス鋼製低温型燃料電池用セパレータを提供することを目的とする。
【0010】
本発明の低温型燃料電池用セパレータは、その目的を達成するため、塩化第二鉄水溶液中で、電流密度:10.0kA/m以下,通電時間:0.05〜1秒のアノード電解と、電流密度:0.05〜3kA/m,通電時間:0.01秒以上のカソード電解との交番サイクル0.5〜10Hzの条件での交番電解処理によってステンレス鋼板の少なくとも片面全域に多数のピットが形成され、ピットの周縁に微細突起が林立した表面形態をもち、粗面化処理後の、−20℃以下の露点でH濃度10体積%以上のH−N雰囲気での400〜900℃の加熱処理によって緻密なバリア薄膜がステンレス鋼の両面に形成されていることを特徴とする。
この低温型燃料電池用セパレータは、ステンレス鋼板を塩化第二鉄水溶液中で交番電解処理して周縁に微細突起が林立した多数のピットを表面全域に形成した後、ステンレス鋼板をFe還元雰囲気中、400〜900℃の温度で加熱処理して緻密なバリア薄膜をステンレス鋼板の両面に形成することにより製造される。
【0011】
【作用】
本発明者等は、粗面化処理されたステンレス鋼板の低温型燃料電池用セパレータとしての適用性について種々調査検討した。
粗面化処理されたセパレータは、多数の微細突起が林立した表面形態になっている。このセパレータを燃料電池に組み込むと、微細突起が燃料極,酸化極に押し込められ、良好な接触状態でセパレータが燃料極,酸化極に接触するため、接触抵抗が低下する。
【0012】
しかし、粗面化処理によってセパレータの表面積が大きくなるため、酸化性環境下での金属イオンの溶出量が増加する。実際、粗面化処理したステンレス鋼板を長時間放置すると、脆弱な吸着層が表面に形成される。このステンレス鋼板をセパレータとして燃料電池に組み込むと、電池セル内にある酸性溶液との接触によって吸着層がセパレータ表面から容易に離脱し、腐食反応が進行しやすくなる。腐食反応によってセパレータから酸性溶液に金属イオンが溶出すると、溶出金属イオンが燃料電池の高分子膜に浸透し、プロトンの輸送率を低下させる原因になる。
【0013】
本発明では、粗面化処理後のFe還元雰囲気中での加熱処理でバリア薄膜をステンレス鋼板の両面に形成することによって、セパレータの腐食,ひいては発電効率に有害な金属イオンが電池セル内に溶出することを防止している。
Fe還元雰囲気中でステンレス鋼板を加熱すると、Feの酸化物が還元され、Crを主体とする緻密なバリア薄膜がステンレス鋼板の表面に形成され、耐食性が向上する。バリア薄膜は、接触抵抗の低下にも有効である。接触抵抗の低下は、極薄いバリア薄膜を介して生じるトンネル電流によるものと推察される。
【0014】
接触抵抗の低下に有効なバリア薄膜は、Siが表層に濃化している安定な不動態皮膜をもつBA仕上げ材では形成されない。すなわち、BA仕上げ材をFe還元雰囲気中で加熱処理しても、Siの酸化物が除去されることなく加熱処理後にも接触抵抗の高い不動態皮膜がステンレス鋼板の表面に残存する。他方、酸洗仕上げや研磨仕上げを施したステンレス鋼板では、鋼板表面からSi濃化層が除去されているので、Feの酸化物除去及びCrリッチバリア薄膜の生成がFe還元雰囲気中での加熱処理によって進行する。バリア薄膜の生成は、粗面化処理によって更に促進される。
Fe還元雰囲気中での加熱処理によって生成したバリア薄膜は、Cr濃度が高く緻密なバリア薄膜となる。また、Cr濃化層の直下にCr欠乏層が生じないことから、ステンレス鋼本来の優れた耐食性が得られる。このようにして生成したバリア薄膜は、低い接触抵抗を維持しながらも、電池セル内の酸性溶液に対して十分な耐食性を呈する。
【0015】
【実施の形態】
セパレータ基材としては、酸化性酸や非酸化性の酸による腐食に耐えることが必要なため、オーステナイト系,フェライト系,二相系等のステンレス鋼板が使用される。
ステンレス鋼板は、電解エッチング,化学エッチング,超音波ホーニング,ショットブラスト等で粗面化処理される。なかでも、特願2000−276893号で提案したように、塩化第二鉄水溶液を用いた交番電解エッチングによるとき、アノード電解及びカソード電解が繰り返され、周縁に微細突起のある多数の微細ピットが表面全域にわたって形成され、接触抵抗が大きく低下する。交番電解エッチングは、アノード電流密度10.0kA/m2以下,アノード通電時間0.05〜1秒,カソード電流密度0.05〜3kA/m2,カソード通電時間0.01秒以上,交番サイクル0.5〜10Hzの条件が好ましい。
粗面化処理は、ステンレス鋼板の片面又は両面に施すことができる。片面を粗面化処理する場合、粗面化処理された表面を酸化極に対向させてステンレス鋼製セパレータを燃料電池に組み込む。
【0016】
粗面化処理後、Fe還元雰囲気中での加熱処理によって安定で緻密なバリア薄膜をステンレス鋼板の両面に形成する。Fe還元雰囲気としては、酸化鉄の還元を促進させるため、−20℃以下の露点でH2濃度10体積%以上のH2−N2雰囲気が好ましい。このH2−N2雰囲気中でステンレス鋼板を400〜900℃に加熱するとき、Feの酸化物が還元されCrリッチなバリア薄膜が鋼板表面に形成される。加熱時間は、雰囲気の還元能力,加熱温度等にもよるが120秒以下で十分である。
生成したバリア薄膜は、Cr濃度が高く緻密で薄いバリア薄膜となる。また、Cr濃化層の直下にCr欠乏層が生じないため、不動態化処理による接触抵抗の増加が少なく、耐酸性も更に向上する。バリア薄膜が形成されたステンレス鋼板は、接触抵抗を低く維持しながらも、電池セル内の腐食雰囲気に曝されても優れた耐酸性を呈するセパレータとして使用される。
【0017】
ステンレス鋼製セパレータは、粗面化面を酸化極に対向させて燃料電池に組み込まれる。
燃料電池セル内で燃料極側は、常に水素が供給され続け、溶存酸素がほとんど存在しない状態にあり、しかもH2→2H++2e-の反応が生じる電位に維持されている。そのため、燃料極側では、セパレータ表面の酸化に起因して接触抵抗が増大することがなく、むしろ燃料電池の稼動に伴って接触抵抗が低減する傾向にある。したがって、初期接触抵抗が10〜20mΩ・cm2でも十分に使用可能なレベルにあり、Fe還元雰囲気中での加熱処理でバリア薄膜を形成したステンレス鋼板表面は当該要件を十分に満足する。
酸化極側は、空気又は酸素が供給され、O2+4e-→2O2-の反応が生じる電位に保たれている。そのため、セパレータ表面の酸化によって接触抵抗が増大する傾向にあり、初期接触抵抗が低いほど好ましい。この点、Fe還元雰囲気中での加熱処理によって生成したバリア薄膜は、耐食性,耐酸化性に優れ、燃料電池を長時間稼動した後でも、10〜20mΩ・cm2の低いレベルに接触抵抗が維持される。
このようにして、粗面化処理及びFe還元雰囲気中での加熱処理を組み合わせることによって、低接触抵抗及び耐食性を高レベルで両立させたステンレス鋼製セパレータが提供される。
【0018】
【実施例】
表1に示すステンレス鋼板A(SUS304・2D仕上げ材),ステンレス鋼板B(SUS430・2B仕上げ材)及びステンレス鋼C(フェライト系、2D仕上げ材)を表2に示す条件下で交番電解エッチングすることにより粗面化処理した。
【0019】

Figure 0004093742
【0020】
Figure 0004093742
【0021】
セパレータ基材Aを露点−30℃以下,50%H2−50%N2のFe還元雰囲気中で加熱処理した。加熱条件としては、昇温速度10℃/秒で最高到達温度まで加熱し、最高到達温度に30秒保持した。
加熱処理されたセパレータ基材AをpH2,浴温90℃の硫酸水溶液に168時間浸漬し、浸漬前後の重量測定から腐食減量を算出した。また、加熱処理後のステンレス鋼板から切り出した試験片に荷重10kgf/cm2でカーボン電極を接触させ、ステンレス鋼板/カーボン電極間の接触抵抗を測定した。
【0022】
図2の調査結果にみられるように、最高到達温度400℃以上の加熱処理によって腐食減量が大幅に低減しており、燃料電池用セパレータとしての目標腐食減量0.2g/m2以下を十分に満足する耐食性を呈した。接触抵抗も、最高到達温度400〜900℃の加熱処理で大幅に低下していた。
比較のため、粗面化処理を施すことなく同様な条件下で加熱処理したステンレス鋼Aについて、腐食減量及び接触抵抗を調査した。図3の調査結果にみられるように、耐食性は粗面化処理の有無によって大きく変動しなかったが、粗面化処理した場合に比較して接触抵抗が高い値を示した。
【0023】
加熱処理されたステンレス鋼板の接触抵抗が粗面化処理の有無によって変わる原因を調査するため、加熱処理後のステンレス鋼Aの表面をAES分析し、酸化皮膜最表層部における合金成分の相対強度比を求めた。各合金成分の相対強度比が加熱処理時の最高到達温度依存性を、図4(粗面化処理後に加熱処理),図5(粗面化処理することなく加熱処理)に示す。
図4と図5との対比から明らかなように、粗面化処理したステンレス鋼は未加熱段階ですでにFe濃度が低く、Cr濃度が高い状態にあり、最高到達温度の上昇に伴ってFe濃度の低下,Cr濃度の上昇が生じていた。そのため、比較的低い温度にあってもCrリッチのバリア薄膜が生じることが窺われ、バリア薄膜が緻密な組織になるものと推察される。
【0024】
粗面化処理,Fe還元雰囲気中での加熱処理が耐食性の向上及び接触抵抗の低下に及ぼす影響は、ステンレス鋼B,Cでも同様であった。表3は、最高到達温度を一定値600℃に設定した以外は同様な条件下で粗面化処理、加熱処理を施したステンレス鋼B,Cの各処理段階におけるセパレータ基材としての性能を示す。
【0025】
Figure 0004093742
【0026】
【実施例2】
実施例1と同様に粗面化処理及び加熱処理を施したステンレス鋼板を酸化極,燃料極のセパレータとして燃料電池に組み込んだ。
各燃料電池セルに加湿した水素及び酸素を供給しながら電流密度を一定値0.5A/m2として燃料電池を100時間連続運転した後、燃料電池セルからセパレータを取り出し、セパレータ表面を観察して腐食状況を調査すると共に、接触抵抗を測定した。調査結果を表4に示す。
【0027】
腐食生成物が観察されたセパレータは、2D仕上げのまま酸化極に組み込んだセパレータだけであった。この2D仕上げまま材を使用したセパレータでは、燃料極側,酸化極側共に要求特性を満足しなかった。2D仕上げ後に加熱処理したステンレス鋼板を使用したセパレータでは、燃料極側の接触抵抗は低レベルに維持されていたが、酸化極側での接触抵抗が大幅に増加した。また、粗面化処理後に加熱処理を施さないステンレス鋼板を使用したセパレータは、燃料極側,酸化極側共に使用可能な要求特性を満足していたが、若干高い接触抵抗であった。
他方、粗面化処理後に加熱処理を施したステンレス鋼板を用いたセパレータでは、燃料電池を100時間連続運転した後でも十分に低い接触抵抗を維持していた。低い接触抵抗は、ジュール発熱による損失が少なく、発電効率の高い燃料電池が作製されることを意味している。
【0028】
Figure 0004093742
【0029】
【発明の効果】
以上に説明したように、本発明の低温型燃料電池用セパレータは、ステンレス鋼板を基材とし、粗面化処理後にFe還元雰囲気中での加熱処理することにより表面に緻密なバリア薄膜を形成させている。そのため、接触抵抗が低く、耐酸性も優れたセパレータとして燃料電池セルに組み込み、多数の電池セルを積層した場合、熱損失による発電効率の低下が抑えられ、耐久性に優れた燃料電池が得られる。
【図面の簡単な説明】
【図1】 固体高分子膜を電解質として使用した燃料電池の内部構造を説明する断面図(a)及び分解斜視図(b)
【図2】 粗面化処理したステンレス鋼(SUS304,2D仕上げ材)をFe還元雰囲気中での加熱処理したときの耐食性,接触抵抗に加熱処理時の最高到達温度が及ぼす影響を表したグラフ
【図3】 粗面化処理していないステンレス鋼(SUS304,2D仕上げ材)をFe還元雰囲気中での加熱処理したときの耐食性,接触抵抗に加熱処理時の最高到達温度が及ぼす影響を表したグラフ
【図4】 粗面化処理後に加熱処理されたステンレス鋼(SUS304,2D仕上げ材)の酸化皮膜最表層の成分変動を示すグラフ
【図5】 粗面化処理を経ずに加熱処理されたステンレス鋼(SUS304,2D仕上げ材)の酸化皮膜最表層の成分変動を示すグラフ[0001]
[Industrial application fields]
The present invention relates to a separator for a fuel cell capable of operating at a low temperature, including a polymer electrolyte fuel cell.
[0002]
[Prior art]
Among the fuel cells, the polymer electrolyte fuel cell can operate at a temperature of 100 ° C. or less and has an advantage of starting in a short time. In addition, since each member is made of a solid, the structure is simple, maintenance is easy, and it can be applied to applications that are exposed to vibration and impact. Furthermore, it has advantages such as high power density, suitable for downsizing, high fuel efficiency, and low noise. Due to these advantages, applications for mounting on electric vehicles are being studied. If a fuel cell that can run the same distance as a gasoline vehicle can be installed in the vehicle, there will be almost no generation of NO x and SO x and the generation of CO 2 will be halved. .
[0003]
The polymer electrolyte fuel cell utilizes the fact that a polymer electrolyte membrane having a proton exchange group in the molecule functions as a proton conductive electrolyte. Like other types of fuel cells, the polymer electrolyte fuel cell A fuel gas such as hydrogen is allowed to flow on one side and an oxidizing gas such as air is allowed to flow on the other side.
Specifically, the oxidation electrode 2 and the fuel electrode 3 are joined to both sides of the solid polymer film 1, and the separators 5 are opposed to each other through the gasket 4 (FIG. 1a). An air supply port 6 and an air discharge port 7 are formed in the separator 5 on the oxidation electrode 2 side, and a hydrogen supply port 8 and a hydrogen discharge port 9 are formed on the separator 5 on the fuel electrode 3 side.
[0004]
The separator 5 is formed with a plurality of grooves 10 extending in the flow direction of hydrogen g and oxygen or air o for conduction and uniform distribution of hydrogen g and oxygen or air o. In addition, since heat is generated during power generation, the cooling water w fed from the water supply port 11 is circulated in the separator 5 and then a water cooling mechanism for discharging the water from the drain port 12 is built in the separator 5.
The hydrogen g fed into the gap between the fuel electrode 3 and the separator 5 from the hydrogen supply port 8 becomes protons that have released electrons, passes through the solid polymer film 1, receives electrons on the oxidation electrode 2 side, and receives the oxidation electrode. It burns with oxygen or air o passing through the gap between the separator 2 and the separator 5. Therefore, when a load is applied between the oxidation electrode 2 and the fuel electrode 3, electric power can be taken out.
[0005]
The fuel cell has very little power generation per cell. Therefore, the solid polymer film sandwiched between the separators 5 and 5 is set as one unit, and the amount of electric power that can be taken out is increased by stacking a plurality of cells (FIG. 1b). In a structure in which a large number of cells are stacked, the resistance of the separator 5 greatly affects the power generation efficiency. In order to improve the power generation efficiency, a separator having good conductivity and low contact resistance is required, and a graphite separator is used as in the phosphate fuel cell.
[0006]
The graphite separator cuts out a graphite block into a predetermined shape and forms various holes and grooves by cutting. For this reason, material costs and processing costs are high, which increases the price of fuel cells as a whole and causes productivity to decrease. Moreover, a separator made of graphite that is brittle in material has a high risk of breakage when subjected to vibration or impact. In view of this, Japanese Patent Application Laid-Open No. 8-180883 proposes making a separator from a metal plate by pressing or punching.
[0007]
[Problems to be solved by the invention]
The oxidation electrode 2 side through which oxygen or air o passes is in an acidic atmosphere with an acidity of pH 2-3. A metal material that can withstand such a strong acidic atmosphere and satisfies the characteristics required for the separator has not been put to practical use so far.
Noble metals such as Au and Pt are known as metal materials that can withstand an acidic atmosphere and have low contact resistance. However, since they are very expensive materials, they are not practical materials for fuel cell separators. Ni is very cheap compared to Au and Pt and is an excellent electronic conductor, but lacks corrosion resistance in an acidic atmosphere of pH 2-3.
[0008]
On the other hand, as a metal material resistant to strong acid, an acid resistant material represented by stainless steel can be considered. Conventional acid-resistant materials exhibit acid resistance due to a strong passive film formed on the surface, but the surface resistance and contact resistance are increased by the passive film. When the contact resistance increases, a large amount of Joule heat is generated at the contact portion, resulting in a large heat loss, which reduces the power generation efficiency of the fuel cell.
When the influence of the passive film on the surface resistance and contact resistance is suppressed, the stainless steel separator can be used instead of graphite by utilizing the excellent corrosion resistance inherent in stainless steel. From such a viewpoint, the present applicant has found that surface contact resistance is reduced by providing a large number of fine pits over the entire surface, and has filed an application as Japanese Patent Application No. 2000-276893. Many fine pits are formed by, for example, alternating electrolytic etching of a stainless steel plate in a ferric chloride aqueous solution.
[0009]
[Means for Solving the Problems]
The present invention is a further development of a roughening treatment effective for lowering contact resistance. By forming a dense barrier thin film by heat treatment in an Fe reducing atmosphere after the roughening treatment, the contact resistance is improved. Another object of the present invention is to provide a stainless steel low-temperature fuel cell separator with further improved corrosion resistance.
[0010]
In order to achieve the object, the separator for a low-temperature fuel cell according to the present invention comprises anode electrolysis in a ferric chloride aqueous solution with a current density of 10.0 kA / m 2 or less and an energization time of 0.05 to 1 second. , Current density: 0.05 to 3 kA / m 2 , energization time: a large number of at least one side of the stainless steel plate by alternating electrolytic treatment under conditions of alternating cycle 0.5 to 10 Hz with cathode electrolysis of 0.01 seconds or more 400 in a H 2 —N 2 atmosphere with a dew point of −20 ° C. or lower and a H 2 concentration of 10% by volume or higher after roughening treatment, having a surface form in which pits are formed and fine protrusions are forested on the periphery of the pits. A dense barrier thin film is formed on both surfaces of stainless steel by heat treatment at ˜900 ° C.
This separator for low-temperature fuel cells is made by alternating electrolytic treatment of a stainless steel plate in a ferric chloride aqueous solution to form a large number of pits with fine protrusions on the periphery, and then the stainless steel plate in an Fe reducing atmosphere. It is manufactured by heat-treating at a temperature of 400 to 900 ° C. to form dense barrier thin films on both surfaces of the stainless steel plate.
[0011]
[Action]
The present inventors conducted various investigations and studies on the applicability of the roughened stainless steel sheet as a separator for low-temperature fuel cells.
The roughened separator has a surface form in which a large number of fine protrusions are forested. When this separator is incorporated in the fuel cell, the fine protrusions are pushed into the fuel electrode and the oxidation electrode, and the separator comes into contact with the fuel electrode and the oxidation electrode in a good contact state, so that the contact resistance is lowered.
[0012]
However, since the surface area of the separator is increased by the roughening treatment, the amount of metal ions eluted in an oxidizing environment increases. In fact, when the roughened stainless steel plate is left for a long time, a fragile adsorption layer is formed on the surface. When this stainless steel plate is incorporated in a fuel cell as a separator, the adsorption layer is easily detached from the surface of the separator due to contact with the acidic solution in the battery cell, and the corrosion reaction is likely to proceed. When metal ions are eluted from the separator into the acidic solution due to the corrosion reaction, the eluted metal ions penetrate into the polymer membrane of the fuel cell, causing a decrease in proton transport rate.
[0013]
In the present invention, the barrier thin films are formed on both surfaces of the stainless steel plate by the heat treatment in the Fe reducing atmosphere after the roughening treatment, so that metal ions harmful to the corrosion of the separator and thus power generation efficiency are eluted in the battery cell. To prevent it.
When the stainless steel plate is heated in an Fe reducing atmosphere, the oxide of Fe is reduced, a dense barrier thin film mainly composed of Cr is formed on the surface of the stainless steel plate, and the corrosion resistance is improved. The barrier thin film is also effective in reducing contact resistance. The decrease in contact resistance is presumed to be due to a tunnel current generated through an extremely thin barrier thin film.
[0014]
A barrier thin film effective for lowering contact resistance is not formed with a BA finish having a stable passive film in which Si is concentrated on the surface layer. That is, even when the BA finish is heat-treated in an Fe reducing atmosphere, a passive film having a high contact resistance remains on the surface of the stainless steel plate even after the heat treatment without removing the Si oxide. On the other hand, in a stainless steel plate that has been pickled or polished, the Si concentrated layer is removed from the surface of the steel plate, so that the removal of Fe oxide and the formation of a Cr-rich barrier thin film are heat treatments in an Fe reducing atmosphere. Proceed by. The generation of the barrier thin film is further promoted by the roughening treatment.
The barrier thin film produced by the heat treatment in the Fe reducing atmosphere is a dense barrier thin film having a high Cr concentration. Further, since the Cr-deficient layer is not formed immediately below the Cr-concentrated layer, the excellent corrosion resistance inherent in stainless steel can be obtained. Thus, the produced | generated barrier thin film exhibits sufficient corrosion resistance with respect to the acidic solution in a battery cell, maintaining a low contact resistance.
[0015]
Embodiment
As the separator base material, it is necessary to withstand corrosion by an oxidizing acid or a non-oxidizing acid, and therefore, austenitic, ferritic, and duplex stainless steel plates are used.
Stainless steel sheets are roughened by electrolytic etching, chemical etching, ultrasonic honing, shot blasting, or the like. In particular, as proposed in Japanese Patent Application No. 2000-276893, when alternating electrolytic etching using a ferric chloride aqueous solution is performed, anode electrolysis and cathode electrolysis are repeated, and a large number of fine pits having fine protrusions on the periphery are formed on the surface. Formed over the entire area, the contact resistance is greatly reduced. Alternating electrolytic etching has an anode current density of 10.0 kA / m 2 or less, an anode energization time of 0.05 to 1 second, a cathode current density of 0.05 to 3 kA / m 2 , a cathode energization time of 0.01 seconds or more, and an alternating cycle of 0 A condition of 5 to 10 Hz is preferable.
The roughening treatment can be performed on one side or both sides of the stainless steel plate. When one surface is roughened, a stainless steel separator is incorporated into the fuel cell with the roughened surface facing the oxidation electrode.
[0016]
After the roughening treatment, a stable and dense barrier thin film is formed on both surfaces of the stainless steel plate by heat treatment in an Fe reducing atmosphere. The Fe reducing atmosphere is preferably an H 2 —N 2 atmosphere having a dew point of −20 ° C. or lower and an H 2 concentration of 10% by volume or higher in order to promote reduction of iron oxide. When the stainless steel plate is heated to 400 to 900 ° C. in this H 2 —N 2 atmosphere, the Fe oxide is reduced and a Cr-rich barrier thin film is formed on the steel plate surface. Although the heating time depends on the reducing ability of the atmosphere, the heating temperature, etc., 120 seconds or less is sufficient.
The produced barrier thin film becomes a dense and thin barrier thin film with a high Cr concentration. In addition, since a Cr-deficient layer is not formed immediately below the Cr-concentrated layer, the contact resistance is not increased by the passivation treatment, and the acid resistance is further improved. The stainless steel plate on which the barrier thin film is formed is used as a separator that exhibits excellent acid resistance even when exposed to a corrosive atmosphere in a battery cell while maintaining low contact resistance.
[0017]
The stainless steel separator is incorporated into the fuel cell with the roughened surface facing the oxidation electrode.
In the fuel cell, the fuel electrode side is always supplied with hydrogen, is in a state where there is almost no dissolved oxygen, and is maintained at a potential at which a reaction of H 2 → 2H + + 2e occurs. Therefore, on the fuel electrode side, the contact resistance does not increase due to the oxidation of the separator surface, but rather the contact resistance tends to decrease with the operation of the fuel cell. Therefore, even if the initial contact resistance is 10 to 20 mΩ · cm 2 , it is at a level that can be sufficiently used, and the stainless steel plate surface on which the barrier thin film is formed by the heat treatment in the Fe reducing atmosphere sufficiently satisfies the requirement.
The oxidation electrode side is supplied with air or oxygen and is kept at a potential at which a reaction of O 2 + 4e → 2O 2− occurs. Therefore, the contact resistance tends to increase due to oxidation of the separator surface, and the lower the initial contact resistance, the better. In this regard, the barrier thin film produced by heat treatment in an Fe reducing atmosphere has excellent corrosion resistance and oxidation resistance, and the contact resistance is maintained at a low level of 10 to 20 mΩ · cm 2 even after the fuel cell is operated for a long time. Is done.
Thus, the stainless steel separator which made low contact resistance and corrosion resistance compatible with a high level by combining a roughening process and the heat processing in Fe reducing atmosphere is provided.
[0018]
【Example】
Stainless steel plate A (SUS304 / 2D finishing material), stainless steel plate B (SUS430 / 2B finishing material) and stainless steel C (ferritic, 2D finishing material) shown in Table 1 are subjected to alternating electrolytic etching under the conditions shown in Table 2. Was roughened.
[0019]
Figure 0004093742
[0020]
Figure 0004093742
[0021]
The separator substrate A was heat-treated in a Fe reducing atmosphere having a dew point of −30 ° C. or less and 50% H 2 -50% N 2 . As heating conditions, the sample was heated to the highest temperature at a temperature rising rate of 10 ° C./second and held at the highest temperature for 30 seconds.
The separator base A which had been subjected to the heat treatment was immersed in an aqueous sulfuric acid solution having a pH of 2 and a bath temperature of 90 ° C. for 168 hours, and the corrosion weight loss was calculated from the weight measurement before and after the immersion. Moreover, the carbon electrode was made to contact with the test piece cut out from the stainless steel plate after heat processing by the load of 10 kgf / cm < 2 >, and the contact resistance between a stainless steel plate / carbon electrode was measured.
[0022]
As can be seen from the survey results in FIG. 2, the corrosion weight loss is greatly reduced by the heat treatment at a maximum temperature of 400 ° C. or higher, and the target corrosion weight loss of 0.2 g / m 2 or less as a fuel cell separator is sufficiently achieved. Satisfied corrosion resistance. The contact resistance was also greatly reduced by the heat treatment at the maximum temperature of 400 to 900 ° C.
For comparison, corrosion weight loss and contact resistance were investigated for stainless steel A that was heat-treated under the same conditions without roughening treatment. As can be seen from the results of the investigation in FIG. 3, the corrosion resistance did not vary greatly depending on whether or not the surface roughening treatment was performed, but the contact resistance was higher than that in the case of the surface roughening treatment.
[0023]
In order to investigate why the contact resistance of the heat-treated stainless steel sheet changes depending on whether or not the surface is roughened, the surface of stainless steel A after the heat treatment is analyzed by AES, and the relative strength ratio of the alloy components in the outermost layer of the oxide film Asked. FIG. 4 (heat treatment after roughening treatment) and FIG. 5 (heat treatment without roughening treatment) show the dependence of the relative strength ratio of each alloy component on the maximum temperature during the heat treatment.
As is clear from the comparison between FIG. 4 and FIG. 5, the roughened stainless steel is already in the unheated stage and has a low Fe concentration and a high Cr concentration. The concentration decreased and the Cr concentration increased. Therefore, it is believed that a Cr-rich barrier thin film is formed even at a relatively low temperature, and it is assumed that the barrier thin film has a dense structure.
[0024]
The effects of the roughening treatment and the heat treatment in the Fe reducing atmosphere on the improvement of the corrosion resistance and the reduction of the contact resistance were the same in the stainless steels B and C. Table 3 shows the performance as a separator base material in each of the treatment stages of stainless steels B and C subjected to roughening treatment and heat treatment under the same conditions except that the maximum reached temperature was set to a constant value of 600 ° C. .
[0025]
Figure 0004093742
[0026]
[Example 2]
A stainless steel plate subjected to roughening treatment and heat treatment in the same manner as in Example 1 was incorporated into a fuel cell as a separator for an oxidation electrode and a fuel electrode.
While supplying humidified hydrogen and oxygen to each fuel cell, the current density was set to a constant value of 0.5 A / m 2 and the fuel cell was continuously operated for 100 hours. Then, the separator was taken out from the fuel cell and the surface of the separator was observed. Corrosion conditions were investigated and contact resistance was measured. The survey results are shown in Table 4.
[0027]
The separator in which the corrosion product was observed was only the separator incorporated into the oxidation electrode with a 2D finish. The separator using the 2D finished material did not satisfy the required characteristics on both the fuel electrode side and the oxidation electrode side. In the separator using the stainless steel plate heat-treated after 2D finishing, the contact resistance on the fuel electrode side was maintained at a low level, but the contact resistance on the oxidation electrode side was greatly increased. Moreover, the separator using the stainless steel plate not subjected to the heat treatment after the roughening treatment satisfied the required characteristics that can be used on both the fuel electrode side and the oxidation electrode side, but had a slightly higher contact resistance.
On the other hand, in the separator using the stainless steel plate subjected to the heat treatment after the roughening treatment, a sufficiently low contact resistance was maintained even after the fuel cell was continuously operated for 100 hours. A low contact resistance means that a fuel cell with low power loss and low power loss is produced.
[0028]
Figure 0004093742
[0029]
【The invention's effect】
As described above, the separator for a low-temperature fuel cell of the present invention uses a stainless steel plate as a base material, and heat-treats in a Fe reducing atmosphere after the roughening treatment to form a dense barrier thin film on the surface. ing. Therefore, when a battery cell is assembled as a separator with low contact resistance and excellent acid resistance and a large number of battery cells are stacked, a decrease in power generation efficiency due to heat loss is suppressed, and a fuel cell with excellent durability can be obtained. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view (a) and an exploded perspective view (b) illustrating the internal structure of a fuel cell using a solid polymer membrane as an electrolyte.
Fig. 2 is a graph showing the effect of the highest temperature during heat treatment on the corrosion resistance and contact resistance when surface-treated stainless steel (SUS304, 2D finish) is heat-treated in an Fe reducing atmosphere. Fig. 3 is a graph showing the effect of the highest temperature achieved during heat treatment on the corrosion resistance and contact resistance when stainless steel (SUS304, 2D finish) that has not been roughened is heat-treated in an Fe reducing atmosphere. FIG. 4 is a graph showing component fluctuations in the outermost layer of an oxide film of stainless steel (SUS304, 2D finish) that has been heat-treated after roughening treatment. FIG. 5 is a stainless steel that has been heat-treated without undergoing roughening treatment. The graph which shows the component variation of the oxide film outermost layer of steel (SUS304, 2D finishing material)

Claims (2)

塩化第二鉄水溶液中で、電流密度:10.0kA/m 以下,通電時間:0.05〜1秒のアノード電解と、電流密度:0.05〜3kA/m ,通電時間:0.01秒以上のカソード電解との交番サイクル0.5〜10Hzの条件での交番電解処理によってステンレス鋼板の少なくとも片面全域に多数のピットが形成され、ピットの周縁に微細突起が林立した表面形態をもち、粗面化処理後の、−20℃以下の露点でH 濃度10体積%以上のH −N 雰囲気での400〜900℃の加熱処理によって緻密なバリア薄膜がステンレス鋼の両面に形成されていることを特徴とする低温型燃料電池用セパレータ。In an aqueous ferric chloride solution , current density: 10.0 kA / m 2 or less, energization time: 0.05 to 1 second anodic electrolysis, current density: 0.05 to 3 kA / m 2 , energization time: 0. By alternating electrolytic treatment with an alternating cycle of 0.5 to 10 Hz with a cathode electrolysis of 01 seconds or longer, a surface form is formed in which a large number of pits are formed on at least one side of the stainless steel plate, and fine protrusions are forested on the periphery of the pits. After the roughening treatment, a dense barrier thin film is formed on both surfaces of the stainless steel by a heat treatment at 400 to 900 ° C. in an H 2 —N 2 atmosphere having a dew point of −20 ° C. or less and an H 2 concentration of 10% by volume or more. A separator for a low-temperature fuel cell, characterized in that ステンレス鋼板を塩化第二鉄水溶液中で交番電解処理して周縁に微細突起が林立した多数のピットを表面全域に形成した後、ステンレス鋼板をFe還元雰囲気中、400〜900℃の温度で加熱処理して緻密なバリア薄膜をステンレス鋼板の両面に形成することを特徴とする低温型燃料電池用セパレータの製造方法。  A stainless steel plate is subjected to an alternating electrolytic treatment in a ferric chloride aqueous solution to form a large number of pits with fine protrusions on the periphery, and then the stainless steel plate is heated at a temperature of 400 to 900 ° C. in an Fe reducing atmosphere. And forming a dense barrier thin film on both surfaces of the stainless steel plate.
JP2001319553A 2001-10-17 2001-10-17 Low temperature fuel cell separator and method for producing the same Expired - Fee Related JP4093742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319553A JP4093742B2 (en) 2001-10-17 2001-10-17 Low temperature fuel cell separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319553A JP4093742B2 (en) 2001-10-17 2001-10-17 Low temperature fuel cell separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003123784A JP2003123784A (en) 2003-04-25
JP4093742B2 true JP4093742B2 (en) 2008-06-04

Family

ID=19137085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319553A Expired - Fee Related JP4093742B2 (en) 2001-10-17 2001-10-17 Low temperature fuel cell separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP4093742B2 (en)

Also Published As

Publication number Publication date
JP2003123784A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
US7879508B2 (en) Separator for low-temperature type fuel cell and production method therefor
US7070877B2 (en) Stainless steel separator for low-temperature fuel cell
JP4495796B2 (en) Stainless steel separator for low-temperature fuel cell and method for producing the same
JP2001214286A (en) Method for producing stainless steel for conductive part
WO2004019437A1 (en) Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
JP3904690B2 (en) Low temperature fuel cell separator
WO2012053431A1 (en) Fuel cell separator and method for producing same
JP3667679B2 (en) Stainless steel separator for low-temperature fuel cells
JP2000328200A (en) Austenitic stainless steel for conductive electric parts and fuel battery
EP2031687A1 (en) Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
JP4629914B2 (en) Low temperature fuel cell separator and method for producing the same
JP3980150B2 (en) Low temperature fuel cell separator
JP2004232074A (en) Ferritic stainless steel for fuel battery separator, and production method therefor
US20180034069A1 (en) Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and method for producing separator
JP2004002960A (en) Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor
US20060068262A1 (en) Separator for fuel cell and method for producing the same
JP4093742B2 (en) Low temperature fuel cell separator and method for producing the same
JP2009203502A (en) Surface-roughened stainless steel sheet for separator, manufacturing method therefor, and separator
JP4017856B2 (en) Fuel cell separator and method for producing the same
JP2000328205A (en) Ferritic stainless steel for conductive electric parts and fuel cell
JP4093743B2 (en) Low temperature fuel cell separator
JP6648273B2 (en) Stainless steel for separator of polymer fuel cell having improved hydrophilicity and contact resistance and method for producing the same
JP2003297379A (en) Manufacturing method of separator for low temperature fuel cell
JP2000265248A (en) Ferritic stainless steel for solid high polymer type fuel battery separator
JP2007012526A (en) Separator for fuel cell, fuel cell stack, fuel cell vehicle, and manufacturing method of separator for fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees