JP4997834B2 - microscope - Google Patents

microscope Download PDF

Info

Publication number
JP4997834B2
JP4997834B2 JP2006160548A JP2006160548A JP4997834B2 JP 4997834 B2 JP4997834 B2 JP 4997834B2 JP 2006160548 A JP2006160548 A JP 2006160548A JP 2006160548 A JP2006160548 A JP 2006160548A JP 4997834 B2 JP4997834 B2 JP 4997834B2
Authority
JP
Japan
Prior art keywords
diameter
objective lens
focusing
lens group
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006160548A
Other languages
Japanese (ja)
Other versions
JP2007328223A (en
Inventor
康晴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006160548A priority Critical patent/JP4997834B2/en
Priority to TW096116452A priority patent/TWI417568B/en
Priority to KR1020087028674A priority patent/KR101375196B1/en
Priority to EP07743797A priority patent/EP2028518B1/en
Priority to PCT/JP2007/060363 priority patent/WO2007142017A1/en
Priority to CN200780021423XA priority patent/CN101467088B/en
Priority to AT07743797T priority patent/ATE530942T1/en
Publication of JP2007328223A publication Critical patent/JP2007328223A/en
Priority to US12/289,451 priority patent/US7791795B2/en
Application granted granted Critical
Publication of JP4997834B2 publication Critical patent/JP4997834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0096Microscopes with photometer devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Automatic Focus Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided is a microscope for focusing by inserting a split prism (5) at a focusing support time. The image of an iris stop (30) is branched into such two images by the angle deflecting action of the split prism (5) as are individually shifted and focused at symmetric positions across the optical axis of the microscope. These two branched images of the iris stop (30) are further focused on an objective lens (23) through a beam splitter (22) by the focusing action of a lens (21). The operation unit of a vertical motion device is operated to move an optical system up and down so that the images of a focused pattern (15) are viewed to move in opposite directions from each other in the field of view. At the focusing time when the focal position of the objective lens (23) is focused on a sample face (24), the images of the focused pattern (15) look in the registered state. Thus, the focusing action can be made highly precise without being restricted by the magnification or NA of the objective lens.

Description

本発明は、顕微鏡観察時に目視により被測定物の物体面にピントを合わせるための合焦支援装置を備えた顕微鏡に関するものである 。   The present invention relates to a microscope provided with a focusing support device for focusing on an object surface of an object to be measured visually during microscope observation.

一般に、顕微鏡において被測定物の物体面の像を目視観察する場合(例えば、対物レンズにより焦点板上に結像された物体面の像を接眼レンズを通して観察する場合)、物体面が対物レンズの焦点深度内にあれば、その範囲内で対物レンズの光軸方向における物体面と対物レンズとの相対位置を変えても、焦点板上に結像された物体面の像はピントが合っているように見える。そのため、被測定物のある一つの物体面内での寸法や形状を精度良く測定する場合、及び被測定物の高さ方向の寸法、例えば対物レンズの光軸方向にずれた2つの物体面間の寸法を精度良く測定する場合には、特に、前記相対位置を調節して対物レンズの焦点位置を前記各物体面に精度良く合致させる合焦装置が必要である。   In general, when an object surface image of an object to be measured is visually observed in a microscope (for example, when an object surface image formed on a focusing screen by an objective lens is observed through an eyepiece lens), the object surface of the object lens is If it is within the focal depth, even if the relative position of the object plane in the optical axis direction of the objective lens and the objective lens is changed within that range, the image of the object plane formed on the focusing screen is in focus. looks like. Therefore, when measuring the size and shape of an object to be measured in one object plane with high accuracy, and the dimension of the object to be measured in the height direction, for example, between two object surfaces shifted in the optical axis direction of the objective lens In the case of measuring the size of the lens with high accuracy, in particular, a focusing device that adjusts the relative position and matches the focal position of the objective lens with each object surface with high accuracy is required.

従来、このような合焦装置を備えた顕微鏡としては、例えば、英国特許公報 GB2076176A(特許文献1)に開示されているものが知られている。図1は特許文献1に記載されている従来の合焦装置を備えた顕微鏡の概略構成図を示している。レンズ12はコレクタレンズ10とスプリットプリズム5を概ね共役な位置関係にするように構成されている。スプリットプリズム5は所定の頂角を有するベースプリズム14とベースプリズムの2倍の頂角を有する半円形プリズム16から構成されている。また、ベースプリズム14の光源側には合焦パターン15が形成されている。合焦パターンは少なくとも1本のラインから構成されており、ベースプリズム14および半円形プリズム16によりそれぞれ異なる偏角が与えられる2つの領域を跨いでいる。   Conventionally, as a microscope provided with such a focusing device, for example, a microscope disclosed in British Patent Publication GB 2076176A (Patent Document 1) is known. FIG. 1 shows a schematic configuration diagram of a microscope provided with a conventional focusing device described in Patent Document 1. In FIG. The lens 12 is configured so that the collector lens 10 and the split prism 5 have a substantially conjugate positional relationship. The split prism 5 includes a base prism 14 having a predetermined apex angle and a semicircular prism 16 having an apex angle twice that of the base prism. A focusing pattern 15 is formed on the light source side of the base prism 14. The focusing pattern is composed of at least one line, and straddles two regions to which different declination angles are given by the base prism 14 and the semicircular prism 16, respectively.

光源から放出された光は開口絞り13により合焦支援に最適な条件に光束を制限され、スプリットプリズム5に入射する。開口絞り13はレンズ17および18によって径可変の顕微鏡開口絞り19上に結像する。ただし、ここで開口絞り13の像はスプリットプリズム5の偏角作用により2つに分岐され、各々装置光軸を挟んで対称な位置にずれて結像している。   The light emitted from the light source is limited by the aperture stop 13 to the optimum condition for focusing support, and enters the split prism 5. The aperture stop 13 is imaged on a microscope aperture stop 19 having a variable diameter by lenses 17 and 18. However, the image of the aperture stop 13 is branched into two by the declination action of the split prism 5, and each is formed shifted to a symmetrical position with the optical axis of the device interposed therebetween.

この2つに分岐された開口絞り13の像はさらに、レンズ21の結像作用により顕微鏡視野絞り20及びビームスプリッタ22を経て対物レンズ23上(厳密には対物レンズ23の瞳)に像を結ぶ。   The image of the aperture stop 13 branched into two is further formed on the objective lens 23 (strictly, the pupil of the objective lens 23) through the microscope field stop 20 and the beam splitter 22 by the imaging action of the lens 21. .

合焦支援装置は、不図示の上下動装置の架台上に載置されており、前記光軸方向における対物レンズ23と物体面24との相対位置を調節するために、前記上下動装置の操作部を操作することにより、光学系全体が前記光軸方向に一緒に移動するようになっている。上下動装置の操作部を操作して光学系を上下させることにより、視野内で合焦パターンの像が互いに逆方向に動くのが見えるとともに、対物レンズ23の焦点位置が試料面24に合致した合焦時には、合焦パターンの像が合致した状態で見えるように配置されている。また、非合焦時(たとえば試料面が24aにある時)には合焦パターンの像がずれた状態で見え、合焦パターンのラインは試料面24a上でdだけ離れた2つのラインとして投影される。   The focusing support device is placed on a gantry of a vertical movement device (not shown). In order to adjust the relative position between the objective lens 23 and the object plane 24 in the optical axis direction, the operation of the vertical movement device is performed. By operating the unit, the entire optical system moves together in the optical axis direction. By moving the optical system up and down by operating the operation unit of the vertical movement device, it can be seen that the images of the focusing pattern move in opposite directions within the field of view, and the focal position of the objective lens 23 matches the sample surface 24. At the time of focusing, it is arranged so that the image of the focusing pattern can be seen in a matched state. Further, when the image is out of focus (for example, when the sample surface is at 24a), the image of the focused pattern appears to be shifted, and the lines of the focused pattern are projected as two lines separated by d on the sample surface 24a. Is done.

開口絞り13、スプリットプリズム5は不図示の挿脱機構により光路から挿脱可能に構成されており、合焦支援時にはスプリットプリズム5と開口絞り13を光路に挿入し、合焦パターンの合致により合焦をおこなう。また観察時には開口絞り13とスプリットプリズム5を光路から外すことで通常の顕微鏡落射照明装置として機能する。
英国特許公報 GB2076176A
The aperture stop 13 and the split prism 5 are configured to be able to be inserted into and removed from the optical path by an unillustrated insertion / removal mechanism. When focusing is supported, the split prism 5 and the aperture stop 13 are inserted into the optical path, and are adjusted by matching the focusing pattern. I'll do it. In observation, the aperture stop 13 and the split prism 5 are removed from the optical path, thereby functioning as a normal microscope epi-illumination device.
British Patent Publication GB 2076176A

特許文献1に記載の合焦支援装置においては、レンズ17,18によって開口絞り13を顕微鏡開口絞り19と共役、合焦パターン15を顕微鏡視野絞り20に共役に配置し、一度中間結像されたのちにそれぞれ対物レンズ瞳面と試料面24に投影されている。これにより12〜18をモジュール化することを可能にし、通常の顕微鏡に付加的に機能追加できる反面、装置構成が複雑になっており、コストアップの原因となっているばかりでなく装置の肥大化を招き好ましくない。   In the focusing support apparatus described in Patent Document 1, an aperture stop 13 is conjugated with a microscope aperture stop 19 and a focusing pattern 15 is conjugated with a microscope field stop 20 by lenses 17 and 18, and intermediate images are once formed. Thereafter, they are projected onto the objective lens pupil plane and the sample plane 24, respectively. This makes it possible to modularize 12 to 18 and add functions to an ordinary microscope. On the other hand, the device configuration is complicated, which not only increases costs but also enlarges the device. Is undesirable.

本発明はこのような事情に鑑みてなされたもので、より簡素かつ小型化された構成であり、また対物レンズの倍率やNAに制限されることなく精度良く合焦することができる合焦支援装置を備えた顕微鏡を提供することを課題とする。   The present invention has been made in view of such circumstances, has a simpler and more compact configuration, and can be focused accurately without being limited by the magnification and NA of the objective lens. It is an object of the present invention to provide a microscope including the device.

前記課題を解決するための第1の手段は、合焦支援装置を備え、被観察面を観察する顕微鏡であって、光源と、第1のレンズ群と、前記第1のレンズ群を介して前記光源と共役に配置される径可変な絞りと、合焦指標を有する部材であって、前記径可変な絞りにより制限される光束で照明され、光に対し、互いに所定の角度で傾斜する2つの光束を形成する光路分岐部材と、第2のレンズ群と、対物レンズにより構成され、前記径可変な絞りは前記第2のレンズ群を介して前記対物レンズの瞳と共役に配置され、かつ前記光路分岐部材の前記合焦指標と、前記被観察面とが前記第2のレンズ群及び前記対物レンズにより共役に配置され、前記光路分岐部材は顕微鏡光路から挿脱可能であり、前記径可変な絞りは、前記被観察面に前記2つの光束を入射させつつ、前記被観察面に入射する前記2つの光束が傾斜するように該絞りの径が調整可能であるように構成されたことを特徴とする顕微鏡である。
A first means for solving the problem is a microscope that includes a focusing support device and observes a surface to be observed, and includes a light source, a first lens group, and the first lens group. and diameter varying throttle disposed in the light source and coupled to a member having a focusing indicator, the diameter-illuminated by the light beam is limited by the strange diaphragm, with respect to the optical axis and to each other inclined at a predetermined angle an optical path branching member which forms two light beams, a second lens group is constituted by the objective lens, the diameter varying diaphragm is disposed pupil conjugate of the objective lens through the second lens group, and said focusing indicator of said optical path branching member, wherein the observation target surface is disposed in a conjugate by the second lens group and the objective lens, the optical path branching member is Ri detachably der from the microscope optical path, wherein A diaphragm with a variable diameter is provided on the surface to be observed. While incident beam, said a microscope, characterized in that the narrowed diameter such that the two light beams incident on the observed surface is inclined is adapted to be adjustable.

本手段においては、前記特許文献1において、顕微鏡視野絞り20が置かれた位置に光路分岐部材とその合焦指標を配置し、光路分岐部材は顕微鏡光路から挿脱可能であるようにしている。よって、合焦指標を中間結像なしに直接被観察面に投影する構成となり、従来のものに比較して、より簡素で小型化された構成となる。   In this means, in Patent Document 1, the optical path branching member and its focusing index are arranged at the position where the microscope field stop 20 is placed, and the optical path branching member can be inserted and removed from the microscope optical path. Accordingly, the focus index is directly projected onto the surface to be observed without intermediate imaging, and the configuration is simpler and smaller than the conventional one.

本手段においては、従来の手法において照明条件の最適化のために用いられた開口絞りを省略する代わりに顕微鏡の開口を径可変な絞り(虹彩絞り)とし、合焦支援時の光束の最適化を可能にしている。よって、より簡素で小型化された構成となると共に、後に具体的な例を示すように、径可変な絞りの径φが、合焦支援に適した所定の値に設定可能であるので、対物レンズの倍率やNAに制限されることなく精度良く合焦することができる合焦支援装置を備えた顕微鏡とすることができる。   In this measure, instead of omitting the aperture stop used for optimizing the illumination conditions in the conventional method, the aperture of the microscope is made a variable diameter iris (iris stop) to optimize the light flux when focusing is supported. Is possible. Therefore, the configuration is simpler and more compact, and the diameter φ of the variable aperture can be set to a predetermined value suitable for focusing support, as will be described later with a specific example. It can be set as the microscope provided with the focusing assistance apparatus which can focus with sufficient precision, without being restrict | limited to the magnification and NA of a lens.

前記課題を解決するための第の手段は、前記第の手段であって、前記径可変な絞りの径は、以下の条件式(1)、(2)を同時に満たすことで与えられることを特徴とするものである。

Figure 0004997834
ただし、βは前記光源が前記第1のレンズ群により前記径可変な絞りの位置に結像する像の倍率、aは前記光源の大きさ、φは前記径可変な絞りの最大径、εは前記光路分岐部材により与えられる光束の傾斜角、Lは前記径可変な絞りと前記合焦指標との距離、φは前記対物レンズの瞳の直径、βは前記径可変な絞りが前記第2のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。
The second means for solving the problem is the first means, and the diameter of the variable diameter diaphragm is given by satisfying the following conditional expressions (1) and (2) simultaneously: It is characterized by.
Figure 0004997834
Where β 1 is the magnification of an image formed by the light source at the position of the diaphragm with variable diameter by the first lens group, a is the size of the light source, φ M is the maximum diameter of the diaphragm with variable diameter, ε is the tilt angle of the light beam provided by the optical path branching member, L is the distance between the variable diameter aperture and the focusing index, φ 0 is the pupil diameter of the objective lens, and β 2 is the variable diameter aperture. It is a magnification of an image formed at the position of the pupil of the objective lens through the second lens group.

本手段においては、後に示すように、径可変な絞りの径φが小さすぎて物体面に照明光が到達しないと言う現象が起こらず、かつ、径可変な絞りの径φが大きすぎて合焦支援装置としての機能を果たさなくなることが無くなる。よって、合焦支援に適した設定とすることができる。   In this means, as will be described later, the phenomenon that the diameter φ of the variable diameter stop is too small and the illumination light does not reach the object surface does not occur, and the diameter φ of the variable diameter stop is too large. The function as a focus support device is not lost. Therefore, it can be set to be suitable for focusing support.

前記課題を解決するための第3の手段は、合焦支援装置を備え、被観察面を観察する顕微鏡であって、光源と、第1のレンズ群と、前記第1のレンズ群を介して前記光源と共役に配置される径可変な絞りと、合焦指標を有する部材であって、前記径可変な絞りにより制限される光束で照明され、光軸に対し、互いに所定の角度で傾斜する2つの光束を形成する光路分岐部材と、第2のレンズ群と、対物レンズにより構成され、前記径可変な絞りは前記第2のレンズ群を介して前記対物レンズの瞳と共役に配置され、かつ前記光路分岐部材の前記合焦指標と、前記被観察面とが前記第2のレンズ群及び前記対物レンズにより共役に配置され、前記光路分岐部材は顕微鏡光路から挿脱可能であり、前記光路分岐部材は、前記被観察面に前記2つの光束を入射させつつ、前記被観察面に入射する前記2つの光束が傾斜するように該光路分岐部材の偏角を設定することができるように構成されたことを特徴とする顕微鏡である。
前記課題を解決するための第4の手段は、前記第の手段であって、前記前記光路分岐部材の偏角は、以下の条件式(3)、(4)、(5)を同時に満たすことで与えられることを特徴とするものである。

Figure 0004997834
ただし、βは前記光源が前記第1のレンズ群により前記径可変な絞りの位置に結像する像の倍率、aは前記光源の大きさ、φは前記径可変な絞りの最大径、εは前記光路分岐部材により与えられる光束の傾斜角、Lは前記径可変な絞りと前記合焦指標との距離、φは前記対物レンズの瞳の直径、βは前記径可変な絞りが前記第2のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。
A third means for solving the above-described problem is a microscope that includes a focusing support device and observes a surface to be observed, and includes a light source, a first lens group, and the first lens group. A member having a variable-diameter stop arranged in conjugate with the light source and a focusing index, illuminated with a light beam limited by the variable-diameter stop, and tilted at a predetermined angle with respect to the optical axis An optical path branching member that forms two light beams, a second lens group, and an objective lens, and the aperture having a variable diameter is arranged conjugate with the pupil of the objective lens via the second lens group, And the focusing index of the optical path branching member and the surface to be observed are arranged in a conjugate manner by the second lens group and the objective lens, and the optical path branching member is detachable from a microscope optical path, and the optical path The branch member is formed on the surface to be observed with the two While incident beam, said a microscope, characterized in that the two light beams incident on the observed surface is configured to be able to set the polarization angle of the optical path splitting member so as to be inclined.
A fourth means for solving the problem is the third means, and the deflection angle of the optical path branching member satisfies the following conditional expressions (3), (4), and (5) simultaneously: It is characterized by being given by.
Figure 0004997834
Where β 1 is the magnification of an image formed by the light source at the position of the diaphragm with variable diameter by the first lens group, a is the size of the light source, φ M is the maximum diameter of the diaphragm with variable diameter, ε is the tilt angle of the light beam provided by the optical path branching member, L is the distance between the variable diameter aperture and the focusing index, φ 0 is the pupil diameter of the objective lens, and β 2 is the variable diameter aperture. It is a magnification of an image formed at the position of the pupil of the objective lens through the second lens group.

本手段においては、後に示すように、光路分岐部材により与えられる光束の傾斜角εが大きすぎて物体面に照明光が到達しないと言う現象が起こらず、かつ、光路分岐部材により与えられる光束の傾斜角εが小さすぎて合焦支援装置としての機能を果たさなくなることが無くなる。よって、合焦支援に適した設定とすることができる。   In this means, as will be described later, the phenomenon that the illumination light does not reach the object surface due to the inclination angle ε of the light beam provided by the optical path branching member does not occur, and the light beam provided by the optical path branching member does not occur. The tilt angle ε is too small to stop functioning as a focusing support device. Therefore, it can be set to be suitable for focusing support.

前記課題を解決するための第5の手段は、前記第の手段であって、以下の条件式(6)を満たすことを特徴とするものである。

Figure 0004997834
A fifth means for solving the above-mentioned problem is the second means, which satisfies the following conditional expression (6).
Figure 0004997834

本手段においては、後に示すように、異なる瞳径の対物レンズを切り替えて使用する場合にも、対物レンズの瞳径に依存せず、常に良好な合焦支援が可能となる。   In this means, as will be described later, even when an objective lens having a different pupil diameter is switched and used, good focusing support is always possible without depending on the pupil diameter of the objective lens.

前記課題を解決するための第6の手段は、前記第4の手段であって、以下の条件式(7)を満たすことを特徴とするものである。

Figure 0004997834
A sixth means for solving the above-mentioned problem is the fourth means, which satisfies the following conditional expression (7).
Figure 0004997834

本手段においては、後に示すように、異なる瞳径の対物レンズを切り替えて使用する場合にも、対物レンズの瞳径に依存せず、常に良好な合焦支援が可能となる。   In this means, as will be described later, even when an objective lens having a different pupil diameter is switched and used, good focusing support is always possible without depending on the pupil diameter of the objective lens.

本発明によれば、より簡素かつ小型化された構成であり、また対物レンズの倍率やNAに制限されることなく精度良く合焦することができる合焦支援装置を備えた顕微鏡を提供することができる。   According to the present invention, it is possible to provide a microscope having a focusing support device that has a simpler and more compact configuration and can focus accurately without being limited by the magnification and NA of the objective lens. Can do.

以下本発明第1の実施の形態に係る合焦装置を備えた顕微鏡について、図2を参照して説明する。光源1から放出された光は、コレクタレンズ10及びレンズ12により虹彩絞り30の位置に集光され、光源1の像を倍率β1で結像している。スプリットプリズム5は所定の頂角を有するベースプリズム14とベースプリズムの2倍の頂角を有する半円形プリズム16から構成されている。また、ベースプリズム14の光源側には合焦パターン15が形成されている。合焦パターンは少なくとも1本のラインから構成されており、ベースプリズム14および半円形プリズム16によりそれぞれ異なる偏角が与えられる2つの領域を跨いでいる。スプリットプリズム5は不図示の挿脱機構により装置の光路から挿脱可能に設置されている。   Hereinafter, a microscope provided with the focusing device according to the first embodiment of the present invention will be described with reference to FIG. The light emitted from the light source 1 is collected at the position of the iris diaphragm 30 by the collector lens 10 and the lens 12, and forms an image of the light source 1 at a magnification β1. The split prism 5 includes a base prism 14 having a predetermined apex angle and a semicircular prism 16 having an apex angle twice that of the base prism. A focusing pattern 15 is formed on the light source side of the base prism 14. The focusing pattern is composed of at least one line, and straddles two regions to which different declination angles are given by the base prism 14 and the semicircular prism 16, respectively. The split prism 5 is installed so that it can be inserted and removed from the optical path of the apparatus by an unillustrated insertion / removal mechanism.

試料の観察時にはスプリットプリズム5を装置の光路から外し、一般的な顕微鏡落射照明装置として機能する。このとき照明の余分な光束を制限するためにスプリットプリズム5が光路から外れるときには、スプリットプリズム5に代わって視野絞り19が挿入されることが好ましい。   When the sample is observed, the split prism 5 is removed from the optical path of the apparatus, and functions as a general microscope epi-illumination apparatus. At this time, when the split prism 5 deviates from the optical path in order to limit an extra light beam of illumination, a field stop 19 is preferably inserted in place of the split prism 5.

虹彩絞り30の直径は、その機構的制約以内で自由に設定可能なように構成されており、照明光のコヒーレンスファクターを制御するために用いられる。虹彩絞り30の径を調整することでコヒーレンスファクターを増減させ観察対象に応じた照明条件を観察者が自由に設定することを可能にしている。   The diameter of the iris diaphragm 30 is configured so as to be freely set within its mechanical constraints, and is used to control the coherence factor of the illumination light. By adjusting the diameter of the iris diaphragm 30, the coherence factor is increased or decreased, and the observer can freely set the illumination conditions according to the observation target.

一方で合焦支援時にはスプリットプリズム5を挿入して焦点合わせを行う。光源から放出された光は虹彩絞り30により光束を制限され、スプリットプリズム5に入射する。虹彩絞り30の像はレンズ21の結像作用によりビームスプリッタ22を経て対物レンズ23の瞳EP上に結像する。ただし、ここで虹彩絞り30の像はスプリットプリズム5の偏角作用により2つに分岐され、各々装置光軸を挟んで対称な位置にずれて結像している。この2つに分岐された虹彩絞り30の像はさらに、レンズ21の結像作用によりビームスプリッタ22を経て対物レンズ23上(厳密には対物レンズ23の瞳)に像を結ぶ。   On the other hand, when focusing is supported, the split prism 5 is inserted to perform focusing. The light emitted from the light source is limited in its luminous flux by the iris diaphragm 30 and enters the split prism 5. The image of the iris diaphragm 30 is imaged on the pupil EP of the objective lens 23 through the beam splitter 22 by the image forming action of the lens 21. However, the image of the iris diaphragm 30 is branched into two by the declination action of the split prism 5, and each is formed shifted to a symmetrical position across the optical axis of the apparatus. The image of the iris diaphragm 30 branched into two is further formed on the objective lens 23 (strictly, the pupil of the objective lens 23) through the beam splitter 22 by the imaging action of the lens 21.

合焦支援装置は、不図示の上下動装置の架台上に載置されており、前記光軸方向における対物レンズ23と物体面24との相対位置を調節するために、前記上下動装置の操作部を操作することにより、光学系全体が前記光軸方向に一緒に移動するようになっている。上下動装置の操作部を操作して光学系を上下させることにより、視野内で合焦パターン15の像が互いに逆方向に動くのが見えるとともに、対物レンズ23の焦点位置が試料面24に合致した合焦時には、合焦パターン15の像が合致した状態で見えるように配置されている。また、非合焦時(たとえば試料面が24aにある時)には合焦パターン15の像がずれた状態で見え、合焦パターン15のラインは試料面24a上でdだけ離れた2つのラインとして投影される。   The focusing support device is placed on a gantry of a vertical movement device (not shown). In order to adjust the relative position between the objective lens 23 and the object plane 24 in the optical axis direction, the operation of the vertical movement device is performed. By operating the unit, the entire optical system moves together in the optical axis direction. By operating the operation unit of the vertical movement device to move the optical system up and down, it can be seen that the images of the focusing pattern 15 move in opposite directions within the field of view, and the focal position of the objective lens 23 matches the sample surface 24. At the time of focusing, they are arranged so that the image of the focusing pattern 15 can be seen in a matched state. Further, when the image is out of focus (for example, when the sample surface is at 24a), the image of the focus pattern 15 appears shifted, and the line of the focus pattern 15 is two lines separated by d on the sample surface 24a. As projected.

ここで図3、および図4を参照して合焦支援時の最適な設定について説明する。図3、図4はともに対物レンズ瞳面EP上での光束の広がりを示している。図3は(1)式を満足する場合であり、虹彩絞り30の位置に結像する光源1の像に比べ、虹彩絞り30の最大径の方が小さく、虹彩絞り30を開放にしたときに光源1の面積の一部を用いて物体を照明する場合を示している。虹彩絞り30はスプリットプリズム5の偏角作用により二つに分岐して対物レンズ瞳面EP上に虹彩絞り30の像を30a、30bのように結像している。   Here, with reference to FIG. 3 and FIG. 4, the optimal setting at the time of focusing assistance is demonstrated. FIGS. 3 and 4 both show the spread of the light beam on the objective lens pupil plane EP. FIG. 3 shows a case where the expression (1) is satisfied, and the maximum diameter of the iris diaphragm 30 is smaller than that of the image of the light source 1 formed at the position of the iris diaphragm 30, and the iris diaphragm 30 is opened. The case where an object is illuminated using a part of the area of the light source 1 is shown. The iris diaphragm 30 is branched into two by the declination action of the split prism 5, and images of the iris diaphragm 30 are formed on the objective lens pupil plane EP as 30a and 30b.

図3(a)〜図3(e)は虹彩絞り30の径を調整することで像30a、30bの大きさが変化している様子を示している。ここで、図3(a)のように虹彩絞り30の絞り径が小さすぎる場合、照明光束が対物レンズの瞳に入射せず、物体面に照明光が到達しない。一方で、図3(e)のように虹彩絞り30の絞り径が大きすぎる場合は、光束が傾斜せずに試料面24に投影されるため、基準パターン15の像が装置上下動に応じて移動しなくなってしまい、合焦支援装置としての機能を果たさなくなる。そのため、合焦支援時の虹彩絞り30の径は図3(b)〜図3(d)のように調整される必要がある。この条件範囲を式で表したものが(2)式である。以上のような条件を設定するために、顕微鏡の開口を虹彩絞り30とし、合焦支援時の対物レンズ瞳を観察することで光束の最適化を可能にしている。   FIGS. 3A to 3E show how the sizes of the images 30a and 30b are changed by adjusting the diameter of the iris diaphragm 30. FIG. Here, when the iris diameter of the iris diaphragm 30 is too small as shown in FIG. 3A, the illumination light beam does not enter the pupil of the objective lens, and the illumination light does not reach the object plane. On the other hand, as shown in FIG. 3E, when the iris diameter of the iris diaphragm 30 is too large, the light beam is projected onto the sample surface 24 without being inclined, so that the image of the reference pattern 15 changes according to the vertical movement of the apparatus. It will not move and will not function as a focusing support device. Therefore, the diameter of the iris diaphragm 30 at the time of focusing support needs to be adjusted as shown in FIGS. 3 (b) to 3 (d). Expression (2) represents this condition range. In order to set the above-described conditions, the aperture of the microscope is the iris diaphragm 30 and the light beam can be optimized by observing the objective lens pupil at the time of focusing support.

虹彩絞り30の調整について、虹彩絞り30の最大絞り径に設定した際に前述の条件を満足するよう各部の寸法、倍率、スプリットプリズム5の偏角を設計し、合焦支援時には虹彩絞り30を開放にするだけで前記条件を満たすように設計されることが望ましい。   Regarding the adjustment of the iris diaphragm 30, the dimensions, magnifications, and deflection angles of the split prism 5 are designed so as to satisfy the above-described conditions when the maximum aperture diameter of the iris diaphragm 30 is set. It is desirable to design so that the above-mentioned conditions can be satisfied only by opening.

さらに好ましい形態としては、スプリットプリズム5の挿脱を行う不図示の挿脱機構を操作し、スプリットプリズム5を挿入する時に強制的に虹彩絞り30の径が前記条件を満たす範囲に設定されるようにされていることである。   As a more preferable mode, an unillustrated insertion / removal mechanism for inserting / removing the split prism 5 is operated so that the diameter of the iris diaphragm 30 is forcibly set to a range satisfying the above conditions when the split prism 5 is inserted. It has been done.

一方で図4は(3)式を満足する場合であり、虹彩絞り30の位置に結像する光源1の像に比べ、虹彩絞り30の最大径の方が大きく、虹彩絞り30を開放にしたときに光源1の全面積を用いて物体を照明する場合を示している。開口絞り30はスプリットプリズム5の偏角作用により二つに分岐して対物レンズ瞳面EP上に虹彩絞り30の像を30a、30bのように結像している。また、光源1の像も同様に対物レンズの瞳面EP条に光源1の像を1a,1bのように結像している。   On the other hand, FIG. 4 shows a case where the expression (3) is satisfied, and the maximum diameter of the iris diaphragm 30 is larger than the image of the light source 1 imaged at the position of the iris diaphragm 30, and the iris diaphragm 30 is opened. In some cases, the object is illuminated using the entire area of the light source 1. The aperture stop 30 is bifurcated by the declination action of the split prism 5, and forms an image of the iris stop 30 on the objective lens pupil plane EP as shown by 30a, 30b. Similarly, the image of the light source 1 is formed on the pupil plane EP of the objective lens as indicated by 1a and 1b.

図4(a)〜図4(d)はスプリットプリズム5の偏角εに応じて変化している様子を示している。図4(a)のように偏角εが大きすぎる場合、照明光束が対物レンズの瞳に入射せず、物体面に照明光が到達しない。一方で、図4(e)のように偏角εが小さすぎる場合は、光束が傾斜せずに試料面24に投影されるため、基準パターン15の像が装置上下動に応じて移動しなくなってしまい、合焦支援装置としての機能を果たさなくなる。そのため、合焦支援時に用いるスプリットプリズム5の偏角εは図4(b)〜図4(d)のように設計される必要がある。この条件範囲を式で表したものが(5)式である。加えて虹彩絞り30は光源1の像を遮ることなく対物レンズの瞳EPに入射させる必要がある、この条件を式で示したものが(4)式である。   FIG. 4A to FIG. 4D show how the split prism 5 changes according to the deviation angle ε. When the declination ε is too large as shown in FIG. 4A, the illumination light beam does not enter the pupil of the objective lens, and the illumination light does not reach the object plane. On the other hand, when the declination ε is too small as shown in FIG. 4E, the light beam is projected onto the sample surface 24 without being inclined, so that the image of the reference pattern 15 does not move in accordance with the vertical movement of the apparatus. As a result, the function as a focusing support device cannot be performed. Therefore, the deflection angle ε of the split prism 5 used at the time of focusing support needs to be designed as shown in FIGS. 4B to 4D. Expression (5) expresses the condition range. In addition, the iris diaphragm 30 needs to be incident on the pupil EP of the objective lens without blocking the image of the light source 1, and this condition is expressed by equation (4).

虹彩絞り30の調整について、虹彩絞りの最大絞り径に設定した際に前述の条件を満足するよう各部の寸法、倍率、スプリットプリズム5の偏角を設計し、合焦支援時には虹彩絞りを開放にするだけで前記条件を満たすように設計されることが望ましい。   Regarding the adjustment of the iris diaphragm 30, when setting the maximum iris diameter of the iris diaphragm, the dimensions, magnifications, and deflection angles of the split prism 5 are designed so as to satisfy the above-mentioned conditions, and the iris diaphragm is opened when focusing is supported. It is desirable to design so as to satisfy the above conditions.

さらに好ましい形態としては、スプリットプリズム5の挿脱を行う不図示の挿脱機構を操作し、スプリットプリズム5の挿入する時に強制的に虹彩絞り30の径が前記条件を満たす範囲に設定されるようにすることである。   As a more preferable embodiment, an unillustrated insertion / removal mechanism for inserting / removing the split prism 5 is operated so that the diameter of the iris diaphragm 30 is forcibly set to a range satisfying the above conditions when the split prism 5 is inserted. Is to do.

以上、本発明の実施形態による合焦支援機能を有する顕微鏡を説明したが、本発明の顕微鏡は上述の実施形態に限定されず、本発明の範囲内において自由に変更が可能である。例えば、上記実施形態においては、顕微鏡光学系が無限遠光学系の顕微鏡概略図を用いて説明したが、これに限られず、本発明は有限遠光学系においても同様に適用可能である。   Although the microscope having the focusing support function according to the embodiment of the present invention has been described above, the microscope of the present invention is not limited to the above-described embodiment, and can be freely changed within the scope of the present invention. For example, in the above-described embodiment, the microscope optical system has been described using a schematic diagram of an infinite optical system. However, the present invention is not limited to this, and the present invention can be similarly applied to a finite optical system.

また、本実施の形態においてスプリットプリズム5をベースプリズム14とベースプリズムの2倍の頂角を有する半円形プリズム16から構成したが、本発明はこの構成に限らず、例えば図5に示すようにベースプリズム14を平行平板34とし、所定の偏角を有する偏角プリズム32を2つ互いに逆方向に光束を傾斜させるようベースプリズムに接合してもよい。もしくは、上記形状をプラスチックモールドにより一体に成型してもよい。   In the present embodiment, the split prism 5 is composed of the base prism 14 and the semicircular prism 16 having an apex angle twice that of the base prism. However, the present invention is not limited to this configuration. For example, as shown in FIG. The base prism 14 may be a parallel plate 34, and two declination prisms 32 having a predetermined declination may be joined to the base prism so as to incline the light beams in opposite directions. Or you may shape | mold the said shape integrally by a plastic mold.

次に本発明の第2の実施の形態に係る合焦装置を備えた顕微鏡について図6及び図7を参照して説明する。第2の実施の形態においては、複数の対物レンズを切り替える顕微鏡において好適な条件設定を示している。なお、本実施の形態に係る合焦装置を備えた顕微鏡の概略構成については、第1の実施の形態と同様であり、説明は省略する。   Next, a microscope provided with a focusing device according to a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, suitable condition settings are shown in a microscope that switches a plurality of objective lenses. Note that the schematic configuration of the microscope including the focusing device according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.

図6は(1)式を満足する場合であり、虹彩絞り30の位置に結像する光源1の像に比べ、虹彩絞り30の最大径の方が小さく、虹彩絞り30を開放にしたときに光源1の面積の一部を用いて物体を照明する場合を示している。一般に対物レンズの瞳の直径は個々に異なっており、高倍になるほど小さく、低倍であるほど大きい傾向にある。第2の実施の形態においては、図6に示すとおり対物レンズ瞳上で光束30aと光束30bが丁度接する条件に設定している。   FIG. 6 shows a case where the expression (1) is satisfied, and the maximum diameter of the iris diaphragm 30 is smaller than the image of the light source 1 formed at the position of the iris diaphragm 30, and the iris diaphragm 30 is opened. The case where an object is illuminated using a part of the area of the light source 1 is shown. In general, the diameters of the pupils of the objective lens are different from each other, and tend to be smaller as the magnification is higher and larger as the magnification is lower. In the second embodiment, as shown in FIG. 6, the condition is set such that the light beam 30a and the light beam 30b just touch each other on the objective lens pupil.

このように設定することにより、このように異なる瞳径の対物レンズを切り替えて使用する場合においても対物レンズの瞳径に依存せず常に良好な合焦支援可能にしている。この条件範囲を式で表したものが(6)式である。条件式(6)が明らかに対物レンズの瞳径φに依存しない条件であることが分かる。以上のような条件を設定するために、顕微鏡の開口を虹彩絞りとし、合焦支援時の対物レンズ瞳を観察することで光束の最適化を可能にしている。 By setting in this way, even when switching between objective lenses having different pupil diameters as described above, it is possible to always provide good focusing support regardless of the pupil diameter of the objective lens. Expression (6) expresses this condition range. It can be seen that conditional expression (6) is a condition that does not depend on the pupil diameter φ 0 of the objective lens. In order to set the above conditions, the aperture of the microscope is used as an iris diaphragm, and the objective lens pupil at the time of focusing support is observed to optimize the light flux.

一方で図7は(3)式を満足する場合であり、虹彩絞り30の位置に結像する光源1の像に比べ、虹彩絞り30の最大径の方が大きく、虹彩絞り30を開放にしたときに光源1の全面積を用いて物体を照明する場合を示している。図7に示すとおり対物レンズ瞳上で光束1aと光束1bが丁度接する条件を満足するよう合焦支援時に用いるスプリットプリズム5の偏角εを設計している。このように設計することにより、異なる瞳径の対物レンズを切り替えて使用する場合においても対物レンズの瞳径に依存せず常に良好な合焦支援可能にしている。   On the other hand, FIG. 7 shows a case where the expression (3) is satisfied, and the maximum diameter of the iris diaphragm 30 is larger than that of the image of the light source 1 formed at the position of the iris diaphragm 30, and the iris diaphragm 30 is opened. In some cases, the object is illuminated using the entire area of the light source 1. As shown in FIG. 7, the declination angle ε of the split prism 5 used for focusing support is designed so as to satisfy the condition that the light beam 1a and the light beam 1b just touch each other on the objective lens pupil. By designing in this way, even when an objective lens having a different pupil diameter is switched and used, good focusing support can always be provided without depending on the pupil diameter of the objective lens.

この条件範囲を式で表したものが(7)式である。条件式(7)が明らかに対物レンズの瞳径φに依存しない条件であることが分かる。加えて虹彩絞り30は光源1の像を遮ることなく対物レンズの瞳EPに入射させる必要がある、この条件を式で示したものが(4)式である。 Expression (7) represents this condition range. It can be seen conditional expression (7) is a condition that is independent of the pupil diameter phi 0 clearly objective lens. In addition, the iris diaphragm 30 needs to be incident on the pupil EP of the objective lens without blocking the image of the light source 1, and this condition is expressed by equation (4).

虹彩絞り30の調整について、好ましくは虹彩絞りの最大絞り径に設定した際に前述の条件を満足するよう各部の寸法、倍率、スプリットプリズム5の偏角を設計し、合焦支援時には虹彩絞りを開放にするだけで前記条件を満たすように設計されることが望ましい。   Regarding the adjustment of the iris diaphragm 30, preferably, the dimensions, magnifications, and deflection angles of the split prism 5 are designed so as to satisfy the above-mentioned conditions when the maximum iris diameter of the iris diaphragm is set. It is desirable to design so that the above-mentioned conditions can be satisfied only by opening.

さらに好ましい形態としては、スプリットプリズムの挿脱を行う不図示の挿脱機構を操作し、スプリットプリズムの挿入する時に強制的に虹彩絞り30の径が前記条件を満たす範囲に設定されることである。   In a more preferred mode, an unillustrated insertion / removal mechanism for inserting / removing the split prism is operated to forcibly set the diameter of the iris diaphragm 30 in a range satisfying the above conditions when the split prism is inserted. .

従来技術における合焦操作支援装置の構成を示す図であるIt is a figure which shows the structure of the focusing operation assistance apparatus in a prior art. 本発明の第1の実施の形態における合焦支援装置の構成を示す図である。It is a figure which shows the structure of the focusing assistance apparatus in the 1st Embodiment of this invention. 本発明の第1の実施の形態における対物レンズ瞳上の光束を表す図である。It is a figure showing the light beam on the objective-lens pupil in the 1st Embodiment of this invention. 本発明の第1の実施の形態における対物レンズ瞳上の光束を表す図である。It is a figure showing the light beam on the objective-lens pupil in the 1st Embodiment of this invention. 本発明の第1の実施の形態における合焦支援装置の構成を示す図である。It is a figure which shows the structure of the focusing assistance apparatus in the 1st Embodiment of this invention. 本発明の第2の実施の形態における対物レンズ瞳上の光束を表す図である。It is a figure showing the light beam on the objective-lens pupil in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における対物レンズ瞳上の光束を表す図である。It is a figure showing the light beam on the objective-lens pupil in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1:光源、1a,1b:対物レンズ瞳上の光源像、5:スプリットプリズム、10:コレクタレンズ、12、17、18、21:レンズ、13:開口絞り、14:ベースプリズム、15:合焦パターン、16:半円形プリズム、19:顕微鏡開口絞り、20:顕微鏡視野絞り、22:ビームスプリッタ、23:対物レンズ、24:試料面、24a:試料面、30:虹彩絞り、30a,30b:対物レンズ瞳上の虹彩絞りの像、31:第2対物レンズ、32:偏角プリズム 1: Light source, 1a, 1b: Light source image on objective lens pupil, 5: Split prism, 10: Collector lens, 12, 17, 18, 21: Lens, 13: Aperture stop, 14: Base prism, 15: Focusing Pattern: 16: Semicircular prism, 19: Microscope aperture stop, 20: Microscope field stop, 22: Beam splitter, 23: Objective lens, 24: Sample plane, 24a: Sample plane, 30: Iris stop, 30a, 30b: Objective Image of iris diaphragm on lens pupil, 31: second objective lens, 32: declination prism

Claims (6)

合焦支援装置を備え、被観察面を観察する顕微鏡であって、
光源と、
第1のレンズ群と、
前記第1のレンズ群を介して前記光源と共役に配置される径可変な絞りと、
合焦指標を有する部材であって、前記径可変な絞りにより制限される光束で照明され、光に対し、互いに所定の角度で傾斜する2つの光束を形成する光路分岐部材と、
第2のレンズ群と、
対物レンズにより構成され、
前記径可変な絞りは前記第2のレンズ群を介して前記対物レンズの瞳と共役に配置され、かつ前記光路分岐部材の前記合焦指標と、前記被観察面とが前記第2のレンズ群及び前記対物レンズにより共役に配置され、前記光路分岐部材は顕微鏡光路から挿脱可能であり、前記径可変な絞りは、前記被観察面に前記2つの光束を入射させつつ、前記被観察面に入射する前記2つの光束が傾斜するように該絞りの径が調整可能であるように構成されたことを特徴とする顕微鏡。
A microscope equipped with a focusing support device and observing the surface to be observed ,
A light source;
A first lens group;
And diameter varying throttle disposed in the light source and the conjugate through the first lens group,
A member having a focusing index, which is illuminated with a light beam limited by the diaphragm having a variable diameter , and forms two light beams that are inclined at a predetermined angle with respect to the optical axis;
A second lens group;
Consists of an objective lens,
The diameter varying diaphragm are arranged in a pupil conjugate with the objective lens through the second lens group, and said focusing indicator of said optical path branching member, wherein the observed surface and said second lens group and is disposed at a conjugate by the objective lens, the optical path branching member is Ri detachably der from the microscope optical path, the diameter varying diaphragm, said while entering the two light beams on the observed surface, the object observation plane A microscope characterized in that the diameter of the stop can be adjusted so that the two light beams incident on the lens are inclined .
前記径可変な絞りの径は、以下の条件式(1)、(2)を同時に満たすことで与えられることを特徴とする請求項に記載の顕微鏡。
Figure 0004997834
ただし、βは前記光源が前記第1のレンズ群により前記径可変な絞りの位置に結像する像の倍率、aは、前記光源の大きさ、φMは前記径可変な絞りの最大径、εは前記光路分岐部材によって与えられる光束の傾斜角、Lは前記径可変な絞りと前記合焦指標との距離、φは前記対物レンズの瞳の直径、βは前記径可変な絞りが前記第2のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。
2. The microscope according to claim 1 , wherein the diameter of the aperture having a variable diameter is given by simultaneously satisfying the following conditional expressions (1) and (2).
Figure 0004997834
Where β 1 is the magnification of the image formed by the light source at the aperture position with the variable diameter by the first lens group, a is the size of the light source, and φ M is the maximum diameter of the variable aperture. , Ε is the tilt angle of the light beam provided by the optical path branching member, L is the distance between the variable diameter aperture and the focusing index, φ 0 is the diameter of the pupil of the objective lens, β 2 is the variable diameter aperture Is the magnification of an image formed at the pupil position of the objective lens via the second lens group.
合焦支援装置を備え、被観察面を観察する顕微鏡であって、
光源と、
第1のレンズ群と、
前記第1のレンズ群を介して前記光源と共役に配置される径可変な絞りと、
合焦指標を有する部材であって、前記径可変な絞りにより制限される光束で照明され、光に対し、互いに所定の角度で傾斜する2つの光束を形成する光路分岐部材と、
第2のレンズ群と、
対物レンズにより構成され、
前記径可変な絞りは前記第2のレンズ群を介して前記対物レンズの瞳と共役に配置され、かつ前記光路分岐部材の前記合焦指標と、前記被観察面とが前記第2のレンズ群及び前記対物レンズにより共役に配置され、前記光路分岐部材は顕微鏡光路から挿脱可能であり、前記光路分岐部材は、前記被観察面に前記2つの光束を入射させつつ、前記被観察面に入射する前記2つの光束が傾斜するように該光路分岐部材の偏角を設定することができるように構成されたことを特徴とする顕微鏡。
A microscope equipped with a focusing support device and observing the surface to be observed ,
A light source;
A first lens group;
A variable-diameter stop disposed conjugate with the light source via the first lens group;
A member having a focusing index, which is illuminated with a light beam limited by the diaphragm having a variable diameter , and forms two light beams that are inclined at a predetermined angle with respect to the optical axis;
A second lens group;
Consists of an objective lens,
The aperture having a variable diameter is disposed in a conjugate manner with the pupil of the objective lens via the second lens group, and the focusing index of the optical path branching member and the surface to be observed are the second lens group. and is disposed at a conjugate by the objective lens, the optical path branching member is Ri detachably der from the microscope optical path, the optical path branching member, said while entering the two light beams on the observed surface, the observation target surface A microscope characterized in that the deviation angle of the optical path branching member can be set so that the two incident light beams are inclined .
前記光路分岐部材の偏角は、以下の条件式(3)、(4)、(5)を同時に満たすことで与えられることを特徴とする請求項に記載の顕微鏡。
Figure 0004997834
ただし、βは前記光源が前記第1のレンズ群により前記径可変な絞りの位置に結像する像の倍率、aは、前記光源の大きさ、φMは前記径可変な絞りの最大径、εは前記光路分岐部材によって与えられる光束の傾斜角、Lは前記径可変な絞りと前記合焦指標との距離、φは前記対物レンズの瞳の直径、βは前記径可変な絞りが前記第2のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。
4. The microscope according to claim 3 , wherein the deflection angle of the optical path branching member is given by simultaneously satisfying the following conditional expressions (3), (4), and (5).
Figure 0004997834
Where β 1 is the magnification of the image formed by the light source at the aperture position with the variable diameter by the first lens group, a is the size of the light source, and φ M is the maximum diameter of the variable aperture. , Ε is the tilt angle of the light beam provided by the optical path branching member, L is the distance between the variable diameter aperture and the focusing index, φ 0 is the diameter of the pupil of the objective lens, β 2 is the variable diameter aperture Is the magnification of an image formed at the pupil position of the objective lens via the second lens group.
以下の条件式(6)を満たすことを特徴とする請求項に記載の顕微鏡。
Figure 0004997834
The microscope according to claim 2 , wherein the following conditional expression (6) is satisfied.
Figure 0004997834
以下の条件式(7)を満たすことを特徴とする請求項4に記載の顕微鏡。
Figure 0004997834
The microscope according to claim 4, wherein the following conditional expression (7) is satisfied.
Figure 0004997834
JP2006160548A 2006-06-09 2006-06-09 microscope Expired - Fee Related JP4997834B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006160548A JP4997834B2 (en) 2006-06-09 2006-06-09 microscope
TW096116452A TWI417568B (en) 2006-06-09 2007-05-09 Microscope
EP07743797A EP2028518B1 (en) 2006-06-09 2007-05-21 Microscope
PCT/JP2007/060363 WO2007142017A1 (en) 2006-06-09 2007-05-21 Microscope
KR1020087028674A KR101375196B1 (en) 2006-06-09 2007-05-21 Microscope
CN200780021423XA CN101467088B (en) 2006-06-09 2007-05-21 Microscope with focusing assistance
AT07743797T ATE530942T1 (en) 2006-06-09 2007-05-21 MICROSCOPE
US12/289,451 US7791795B2 (en) 2006-06-09 2008-10-28 Microscope with a focusing assist apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160548A JP4997834B2 (en) 2006-06-09 2006-06-09 microscope

Publications (2)

Publication Number Publication Date
JP2007328223A JP2007328223A (en) 2007-12-20
JP4997834B2 true JP4997834B2 (en) 2012-08-08

Family

ID=38801280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160548A Expired - Fee Related JP4997834B2 (en) 2006-06-09 2006-06-09 microscope

Country Status (8)

Country Link
US (1) US7791795B2 (en)
EP (1) EP2028518B1 (en)
JP (1) JP4997834B2 (en)
KR (1) KR101375196B1 (en)
CN (1) CN101467088B (en)
AT (1) ATE530942T1 (en)
TW (1) TWI417568B (en)
WO (1) WO2007142017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323039B2 (en) 2012-11-06 2016-04-26 Industrial Technology Research Institute Particle manipulation system and projection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895831B1 (en) * 2008-01-09 2018-09-07 히타치가세이가부시끼가이샤 Thermosetting resin composition, epoxy resin molding material, and polyvalent carboxylic acid condensate
DE102010039950B4 (en) * 2010-08-30 2021-07-22 Leica Microsystems Cms Gmbh Microscope with micro and macro objectives
CN103529542A (en) * 2013-10-24 2014-01-22 广州粤显光学仪器有限责任公司 Polarized-light modulation phase contrast microscope
CN107329240B (en) * 2017-08-30 2023-05-23 南京波长光电科技股份有限公司 High-power micro objective optical path system for realizing integration of laser scanning and coaxial monitoring

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076176B (en) * 1980-05-19 1983-11-23 Vickers Ltd Focusing optical apparatus
JPH0420915A (en) * 1990-05-16 1992-01-24 Nikon Corp Automatic focusing telescope
JP3550580B2 (en) * 1995-08-29 2004-08-04 株式会社ニコン Microscope with focusing device
US5784164A (en) * 1997-03-20 1998-07-21 Zygo Corporation Method and apparatus for automatically and simultaneously determining best focus and orientation of objects to be measured by broad-band interferometric means
JP4228134B2 (en) * 2002-11-01 2009-02-25 株式会社ニコン Microscope capable of observing epifluorescence and reflection contrast and method of using the microscope
JP2006023624A (en) * 2004-07-09 2006-01-26 Olympus Corp Microscope with focusing detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323039B2 (en) 2012-11-06 2016-04-26 Industrial Technology Research Institute Particle manipulation system and projection device

Also Published As

Publication number Publication date
US7791795B2 (en) 2010-09-07
ATE530942T1 (en) 2011-11-15
KR101375196B1 (en) 2014-03-18
TW200745601A (en) 2007-12-16
TWI417568B (en) 2013-12-01
JP2007328223A (en) 2007-12-20
CN101467088B (en) 2012-02-22
EP2028518A1 (en) 2009-02-25
CN101467088A (en) 2009-06-24
EP2028518B1 (en) 2011-10-26
EP2028518A4 (en) 2010-03-17
WO2007142017A1 (en) 2007-12-13
KR20090018924A (en) 2009-02-24
US20090080069A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JPH08190056A (en) Optical observation device
JP5733539B2 (en) Scanning microscope
JP4997834B2 (en) microscope
JPWO2010071140A1 (en) Microscope equipment
JP2009009134A (en) Microscope with centered illumination
JP4149309B2 (en) Scanning optical microscope
US8964287B2 (en) Device for focusing a microscope objective on a sample
JP5626367B2 (en) Focus position maintaining device and microscope
JP4370404B2 (en) DLP type evanescence microscope
JP5084183B2 (en) Epi-illumination optical system for microscope
JP5579969B2 (en) Microscope with centered illumination
JP4434612B2 (en) Microscope and zoom objective
JP4792163B2 (en) Microscope equipment
JP2001198089A (en) Stereomicroscope
JP4723842B2 (en) Scanning optical microscope
JP2006023624A (en) Microscope with focusing detection device
JPH0345802B2 (en)
JPWO2011068185A1 (en) Imaging optical system and microscope apparatus
JP6332327B2 (en) Scanning microscope
US20200400931A1 (en) Camera module for a microscope, and method for operating same
JPH0695001A (en) Microscopic device
JP2009192721A (en) Confocal microscope
JP5023934B2 (en) microscope
JP2009069295A (en) Zoom microscope
JP2010139909A (en) Microscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Ref document number: 4997834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees