JP2006023624A - Microscope with focusing detection device - Google Patents

Microscope with focusing detection device Download PDF

Info

Publication number
JP2006023624A
JP2006023624A JP2004203109A JP2004203109A JP2006023624A JP 2006023624 A JP2006023624 A JP 2006023624A JP 2004203109 A JP2004203109 A JP 2004203109A JP 2004203109 A JP2004203109 A JP 2004203109A JP 2006023624 A JP2006023624 A JP 2006023624A
Authority
JP
Japan
Prior art keywords
image
sample surface
focus
index
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004203109A
Other languages
Japanese (ja)
Inventor
Takeshi Yamagishi
毅 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004203109A priority Critical patent/JP2006023624A/en
Publication of JP2006023624A publication Critical patent/JP2006023624A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To steadily determine a focused state or adjust a focal point, regardless of the state of the surface of a specimen. <P>SOLUTION: The microscope includes: an observation optical system 2 for observing the image of a specimen face 4a, formed by an objective lens 6; and an illuminating optical system 3 for projecting the image of an index 12 onto the specimen face and causing vertical illuminating on the specimen face. A split prism 8 is disposed in the position where imaging takes place by the objective lens 6. Using the objective lens 6, light reflected from the specimen face 4a and index 12 is imaged onto the split prism 8. The image is observed with the eyepiece lens 7 and focusing is detected. In a focused state, the image of the index 12 is formed on an imaging position on the split prism 8. In a defocusing state, the image of the index 12 is laterally deviated in a wedge direction relative to a separating line of wedge prisms 8a and 8b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば試料の試料面(表面)の高さを測定したり観察するために、試料面に焦点合わせを行う等のための合焦検出装置を備えた顕微鏡に関する。   The present invention relates to a microscope provided with a focus detection device for performing focusing on a sample surface in order to measure or observe the height of the sample surface (surface) of the sample, for example.

従来、顕微鏡で試料を観察するために試料の像を合焦する際、高倍率の顕微鏡ではNAが大きくZ軸方向(高さ方向)のピントのズレがわずかであっても目視で確認でき、ピントのずれを調整できるものがあった。
しかしながら、低倍率の顕微鏡であると、NAが小さく焦点深度が深いためにZ軸方向(高さ方向)の距離のズレを正確に検出することができなかった。そのため、焦点調整に際しては、ターゲットパターンの像を試料面上に投影する際に投影光の入射角に制限を加えて、対物レンズによるターゲットパターンの像を観察位置で横ズレに変換して、合焦位置を検出していた。
このような試料面に対する顕微鏡の焦点を調整するための合焦装置を備えた顕微鏡として、例えば特許文献1、2、3に記載されたものがある。
特許文献1に記載された合焦装置を備えた顕微鏡は、二つの物体投影用の合焦パターンをマスクを通して光束分離させてハーフミラーで反射して物体の観察光学系の光路に一致させ、対物レンズによって物体の面上に投影させる。そして、二つの合焦パターン像は物体面の像と共に対物レンズによって観察光学系の光路上に重ねて結像させ、二つの合焦パターンの像のズレの有無により合焦を観察し、焦点調整を行う。
Conventionally, when focusing an image of a sample for observing the sample with a microscope, a high-magnification microscope can be visually confirmed even if the NA is large and the focus in the Z-axis direction (height direction) is slight, Some of them can adjust the focus shift.
However, in the case of a low-magnification microscope, since the NA is small and the depth of focus is large, it is impossible to accurately detect a shift in the distance in the Z-axis direction (height direction). Therefore, when adjusting the focus, the projection angle of the target light is limited when the target pattern image is projected onto the sample surface, and the target pattern image by the objective lens is converted into a lateral shift at the observation position. The focal position was detected.
Examples of microscopes provided with a focusing device for adjusting the focus of the microscope with respect to the sample surface include those described in Patent Documents 1, 2, and 3, for example.
A microscope equipped with a focusing device described in Patent Document 1 separates a focusing pattern for projecting two objects through a mask, reflects the reflected light by a half mirror, and matches it with the optical path of the object observation optical system. A lens is projected onto the surface of the object. Then, the two focused pattern images are superimposed on the optical path of the observation optical system by the objective lens together with the image of the object plane, and the focus is observed by observing whether or not the images of the two focused pattern images are misaligned. I do.

また、特許文献2に記載された顕微鏡では、合焦パターンを設けたスプリットプリズムを照明して2分割した光束を試料面上に投影する。そして、試料面上で2分割された合焦パターンの像を対物レンズによって焦点板上に結像させ、スプリットラインに対して2つの合焦パターンの像の横ズレの有無を観察する。
また、特許文献3は、照明光学系において別個の照明系で照明される2つの合焦パターンをハーフミラーを介して観察光学系の光路に誘導して対物レンズで物体面に投影させる。そして物体面上の2つの合焦パターンの像を対物レンズによる結像位置に設けた焦点板上にそれぞれ結像させ、焦点板上における2つの合焦パターン像の横ズレの有無を観察して合焦位置か非合焦位置かを検出するようにしている。
In the microscope described in Patent Document 2, a split prism provided with a focusing pattern is illuminated to project a light beam divided into two onto a sample surface. Then, an image of the focusing pattern divided into two on the sample surface is formed on the focusing screen by the objective lens, and the presence or absence of lateral shift of the images of the two focusing patterns with respect to the split line is observed.
In Patent Document 3, two focusing patterns illuminated by separate illumination systems in the illumination optical system are guided to the optical path of the observation optical system via the half mirror and projected onto the object plane by the objective lens. Then, images of two in-focus patterns on the object plane are respectively imaged on a focusing screen provided at an imaging position by the objective lens, and the presence or absence of lateral deviation of the two in-focus pattern images on the focusing screen is observed. Whether the in-focus position or the out-of-focus position is detected.

上述の各特許文献1乃至3に記載された合焦装置では、照明光学系に位置する合焦パターンを物体面に投影するに際し、2つの合焦パターンを試料に対して異なる入射角で投影している。そして、物体面が光軸方向(物体の高さ方向)にズレた場合、像観察位置で見て2つの合焦パターンの結像位置が光軸方向にずれると共に、光軸に略直交する面内の横ズレとして検出されるようにしている。
そのため、観察光学系の光路における物体面上の合焦パターンの像の反射光は物体面に結像する入射光の角度分布と同一であることが好ましい。
特許第291823号公報 英国特許公報 GB2076176B 特開平9−127421公報
In the focusing apparatus described in each of the above-mentioned Patent Documents 1 to 3, when the focusing pattern located in the illumination optical system is projected onto the object plane, the two focusing patterns are projected onto the sample at different incident angles. ing. When the object plane is displaced in the optical axis direction (the height direction of the object), the imaging positions of the two focusing patterns are shifted in the optical axis direction when viewed from the image observation position, and the plane is substantially orthogonal to the optical axis. It is made to detect as a horizontal shift in.
Therefore, it is preferable that the reflected light of the image of the focusing pattern on the object plane in the optical path of the observation optical system is the same as the angular distribution of the incident light imaged on the object plane.
Japanese Patent No. 291823 British Patent Publication GB 2076176B JP-A-9-127421

しかしながら、上述の各特許文献1乃至3に記載された合焦装置を有する顕微鏡では、測定対象とする物体は加工によって物体面に粗さや挽き目等の微細な凹凸構造を形成していることが多く、そのために反射光の角度は物体面での乱反射や光の散乱によって入射光の角度分布から乱れることが多かった。これらの乱反射光や散乱光は、対物レンズによる結像位置における合焦または非合焦の2つの合焦パターン像の横ズレ観察においてはノイズであり、その程度によっては合焦パターンの横ズレを判別しにくくなり、合焦検出精度が低下するという欠点があった。
本発明は、このような実情に鑑みて、試料表面の状態によらず、安定して合焦状態の判別や焦点調整を行えるようにした合焦検出装置を備えた顕微鏡を提供することを目的とする。
However, in the microscope having the focusing device described in each of Patent Documents 1 to 3 described above, the object to be measured has a fine concavo-convex structure such as roughness or grind formed on the object surface by processing. For this reason, the angle of reflected light is often disturbed from the angular distribution of incident light due to irregular reflection on the object surface and light scattering. These irregularly reflected light and scattered light are noises in the observation of the horizontal shift of the two focused pattern images in focus or non-focused at the image formation position by the objective lens, and depending on the degree, the horizontal shift of the focused pattern may occur. There is a drawback that it is difficult to discriminate and the focus detection accuracy is lowered.
In view of such circumstances, an object of the present invention is to provide a microscope including a focus detection device that can stably determine the focus state and adjust the focus regardless of the state of the sample surface. And

本発明による合焦検出装置を備えた顕微鏡は、対物レンズによって結像した試料面の像を観察する観察光学系と、試料面を照明する照明光学系とを備え、試料面上の合焦パターンについての反射光を対物レンズによって結像させて観察することで合焦か否かを検出するようにした合焦検出装置を備えた顕微鏡において、対物レンズを通過する試料面からの反射光の結像側に合焦パターンの像を分割させる光路分岐光学部材を配設したことを特徴とする。
本発明では、試料面上の合焦パターンについて、対物レンズを通して結像する試料面からの反射光の結像側に光路分岐光学部材を配設したために、試料面の状態に関わらず、光路分岐光学部材において合焦パターンを安定して分割でき、反射光の結像位置が光路分岐光学部材に対して光軸方向にずれた場合には、光路分岐光学部材の境で分割した合焦パターン像の横ズレとして検出できる。その際、試料面からの反射光に乱反射光や散乱光が混入したとしても、光路分岐光学部材に向かう反射光に対して分割を行うために、安定した合焦パターンの像の横ズレを確保し、観察できる。非合焦の場合には、観察光学系及び照明光学系と試料面との距離を調整して焦点調整を行うことができる。
なお、光路分岐光学部材は、対物レンズの結像位置に配設するのが好ましい。
本発明において、合焦の場合、合焦パターンは試料面の像と共に光路分岐光学部材上に結像し、ズレは生じない。非合焦の場合には、試料面と合焦パターンの反射光による結像位置は光路分岐光学部材から光軸方向にずれ、光路分岐光学部材上で分岐した合焦パターンの像は光路分岐光学部材の分割線を境にズレを生じる。
A microscope equipped with a focus detection device according to the present invention includes an observation optical system for observing an image of a sample surface formed by an objective lens and an illumination optical system for illuminating the sample surface, and a focusing pattern on the sample surface. In a microscope equipped with a focus detection device that detects whether or not it is in focus by forming an image of the reflected light with an objective lens and observing it, the reflected light from the sample surface passing through the objective lens is condensed. An optical path branching optical member that divides the image of the focusing pattern is disposed on the image side.
In the present invention, since the optical path branching optical member is disposed on the imaging side of the reflected light from the sample surface that forms an image through the objective lens for the focusing pattern on the sample surface, the optical path branching is performed regardless of the state of the sample surface. When the focusing pattern can be stably divided in the optical member, and the image formation position of the reflected light is shifted in the optical axis direction with respect to the optical path branching optical member, the focusing pattern image divided at the boundary of the optical path branching optical member It can be detected as a lateral shift. At that time, even if irregularly reflected light or scattered light is mixed into the reflected light from the sample surface, the reflected light traveling toward the optical path branching optical member is divided to ensure a stable lateral shift of the focused pattern image. And can observe. In the case of out-of-focus, it is possible to adjust the focus by adjusting the distance between the observation optical system and the illumination optical system and the sample surface.
The optical path branching optical member is preferably disposed at the imaging position of the objective lens.
In the present invention, in the case of focusing, the focusing pattern is formed on the optical path branching optical member together with the image of the sample surface, and no deviation occurs. In the case of non-focusing, the imaging position of the sample surface and the reflected light of the focusing pattern is shifted from the optical path branching optical member in the optical axis direction, and the focused pattern image branched on the optical path branching optical member is optical path branching optical Deviation occurs at the parting line.

また、合焦パターンは照明光学系によって試料面上に投影された指標の像であることが好ましい。
試料面に正反射面の割合が多い場合には、指標の像を試料面に投影して合焦パターンとして反射させる。
或いは、合焦パターンは試料面上に形成されたパターンであってもよい。試料面が例えば微細な凹凸のパターンで形成された加工面等である場合には、指標を用いることなく試料面に形成されたこのパターンを合焦パターンとして用いることができる。
Further, the focusing pattern is preferably an index image projected onto the sample surface by the illumination optical system.
When the ratio of the regular reflection surface to the sample surface is large, an index image is projected onto the sample surface and reflected as a focusing pattern.
Alternatively, the focusing pattern may be a pattern formed on the sample surface. When the sample surface is, for example, a processed surface formed with a fine uneven pattern, this pattern formed on the sample surface can be used as a focusing pattern without using an index.

また、光路分岐光学部材は、対物レンズを通過する試料面からの反射光の光軸を分割させる2つのプリズムからなるプリズムペアであることが好ましい。
顕微鏡に対して試料面が非合焦位置にある場合には、反射光は2つのプリズムで光路を分割され、2つのプリズムの境を分割線として分割された合焦パターンの像がズレを生じることになる。
この場合、プリズムペアは、観察光学系に配設した接眼レンズの焦点板に設けられていてもよい。この構成を採用することで、顕微鏡のシステムを変更することなく低廉に合焦機能を付加することができる。
また、光路分岐光学部材は、観察光学系の光軸に対する傾斜角を異ならせて配列した像分割用反射ミラーで構成してもよい。
この構成でも、合焦時には像分割用反射ミラー上で反射光が結像してズレのない合焦パターンが得られる。非合焦時には像分割用反射ミラー上で分岐した合焦パターンの像は像分割用反射ミラーを構成する複数の反射ミラーの境をなす分割線で分割されてズレを生じる。像分割用反射ミラーは傾斜角を異ならせて密接配列した第一及び第二反射ミラーで構成してもよい。
Further, the optical path branching optical member is preferably a prism pair composed of two prisms that divide the optical axis of the reflected light from the sample surface passing through the objective lens.
When the sample surface is in an out-of-focus position with respect to the microscope, the reflected light splits the optical path by two prisms, and the image of the focusing pattern split using the boundary between the two prisms as a dividing line causes a shift. It will be.
In this case, the prism pair may be provided on a focusing plate of an eyepiece disposed in the observation optical system. By adopting this configuration, it is possible to add a focusing function at a low cost without changing the microscope system.
Further, the optical path branching optical member may be constituted by an image division reflecting mirror arranged with different inclination angles with respect to the optical axis of the observation optical system.
Even in this configuration, when focused, the reflected light forms an image on the image division reflecting mirror, and a focused pattern without deviation can be obtained. At the time of out-of-focus, the image of the in-focus pattern branched on the image division reflecting mirror is divided by the dividing lines that make up the boundaries of the plurality of reflection mirrors constituting the image dividing reflection mirror, resulting in deviation. The image division reflecting mirror may be composed of first and second reflecting mirrors closely arranged with different inclination angles.

本発明による合焦検出装置を備えた顕微鏡は、合焦パターンの像のズレが、試料面で反射した反射光の対物レンズを介した結像側に配置した光路分岐光学部材で生じるようにしたために、試料面での反射光の角度が入射光の角度と相違したり乱反射光や散乱光が混入しても、合焦パターン像の変化に対してノイズにならず、安定した合焦パターンの像を得られて精度の良い合焦判定や調整を行える。   In the microscope equipped with the focus detection device according to the present invention, the deviation of the image of the focus pattern is caused by the optical path branching optical member arranged on the image forming side through the objective lens of the reflected light reflected by the sample surface. In addition, even if the angle of the reflected light on the sample surface is different from the angle of the incident light, or irregularly reflected light or scattered light is mixed, it will not be a noise with respect to the change of the focused pattern image, and the stable focused pattern It is possible to obtain an image and perform accurate focus determination and adjustment.

以下、本発明の実施の形態による合焦検出装置を備えた顕微鏡について添付図面により説明する。図1は第一の実施の形態による顕微鏡の光学系を示す図、図2は観察される指標像を示す図で、(a)は合焦状態、(b)は非合焦状態である。
図1に示す顕微鏡1は、観察光学系2と照明光学系3からなる合焦検出装置の光学系を備えている。観察光学系2と照明光学系3は図示しないステージ上に載置されており、試料4に対して相対的に進退して試料4との距離を調整できるようになっている。
観察光学系2において、試料4に対向して対物レンズ6が配設され、対物レンズ6の合焦位置に試料4の試料面4aが位置している。対物レンズ6の光軸O上には試料面4aの反射光について対物レンズ6による結像位置(A位置)の像を観察するための接眼レンズ7が配設されている。そして、光軸O上の結像位置には光軸Oに略直交してスプリットプリズム8(光路分岐光学部材)が位置している。
スプリットプリズム8は2つのウエッジプリズム8a,8bからなるプリズムペアであり、各ウエッジプリズム8aは例えば平面視略半円形状で、厚み方向の側面視で下面に対して上面が傾斜する略くさび形状を有している。2つのウエッジプリズム8a,8bは逆勾配で組み合わせて略半円の弦を有する面を接合して構成されている。そして、平面視で2つのウエッジプリズム8a,8bの境界をなす直線を分割線9とする。
Hereinafter, a microscope provided with a focus detection apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing an optical system of a microscope according to the first embodiment, FIG. 2 is a diagram showing an observed index image, (a) is an in-focus state, and (b) is an out-of-focus state.
A microscope 1 shown in FIG. 1 includes an optical system of a focus detection apparatus including an observation optical system 2 and an illumination optical system 3. The observation optical system 2 and the illumination optical system 3 are placed on a stage (not shown) so that the distance from the sample 4 can be adjusted by moving forward and backward relative to the sample 4.
In the observation optical system 2, an objective lens 6 is disposed so as to face the sample 4, and the sample surface 4 a of the sample 4 is located at the in-focus position of the objective lens 6. On the optical axis O of the objective lens 6, an eyepiece lens 7 is provided for observing an image at an imaging position (A position) by the objective lens 6 with respect to the reflected light of the sample surface 4a. A split prism 8 (optical path branching optical member) is positioned substantially orthogonal to the optical axis O at the image forming position on the optical axis O.
The split prism 8 is a prism pair composed of two wedge prisms 8a and 8b. Each wedge prism 8a has, for example, a substantially semicircular shape in plan view, and a substantially wedge shape in which the upper surface is inclined with respect to the lower surface in a side view in the thickness direction. Have. The two wedge prisms 8a and 8b are configured by joining with surfaces having substantially semicircular chords combined in reverse gradient. A straight line that forms the boundary between the two wedge prisms 8a and 8b in plan view is defined as a dividing line 9.

一方、照明光学系3において、光源10及びコンデンサレンズ11が設けられ、その前方には指標12(合焦パターン)を形成した指標板13が設けられている。指標12は図1で示すように例えば円形をなす指標板13の中心を通るラインパターンで構成されている。指標板13の前方において、観察光学系2の光路上で対物レンズ6とスプリットプリズム8との間には、指標12を透過した照明光を対物レンズ6に向かわせるハーフミラー14が傾斜して配設され、対物レンズ6によって試料面4a上に指標12の像を照明光と共に投影することになる。
このような照明光学系3の光源10から試料4までの光路の光軸O1において、試料面4aと共役な位置に指標12を設けるものとする。
観察光学系2において、合焦状態では、試料面4aとその上に投影された指標12の像の反射光は対物レンズ6によってスプリットプリズム8の上面のA位置に結像する。このとき、接眼レンズ7を介して観察される指標12の像12a、12bは、図2(a)に示すように、スプリットプリズム8の分割線9と略直交して分割され、同一直線状で線対称になる。
一方、非合焦状態では、試料面4aとその上に投影された指標12の像の反射光についての結像位置がA位置に対して光軸O方向(Z軸方向)の前方または後方にずれる。この場合には、ウエッジ角により各ウエッジプリズム8a,8bのウエッジの方向に光束が分割されるため、指標12の像12a,12bは分割線9を境にウエッジの方向にずれ、横ズレとして接眼レンズ7で観察できる(図2(b)参照)。
そのため、指標12の像12a,12bの横ズレの有無によって試料面4aに対する合焦判定を行うことができる。
On the other hand, in the illumination optical system 3, a light source 10 and a condenser lens 11 are provided, and an index plate 13 on which an index 12 (focusing pattern) is formed is provided in front thereof. As shown in FIG. 1, the indicator 12 is configured by a line pattern passing through the center of a circular indicator plate 13, for example. In front of the index plate 13, a half mirror 14 is disposed between the objective lens 6 and the split prism 8 on the optical path of the observation optical system 2 so that the illumination light transmitted through the index 12 is directed toward the objective lens 6. The image of the index 12 is projected together with the illumination light on the sample surface 4a by the objective lens 6.
It is assumed that the index 12 is provided at a position conjugate with the sample surface 4a on the optical axis O1 of the optical path from the light source 10 to the sample 4 of the illumination optical system 3 as described above.
In the observation optical system 2, in the focused state, the reflected light of the sample surface 4 a and the image of the index 12 projected thereon is imaged at the position A on the upper surface of the split prism 8 by the objective lens 6. At this time, the images 12a and 12b of the index 12 observed through the eyepiece 7 are divided substantially perpendicularly to the dividing line 9 of the split prism 8, as shown in FIG. It becomes line symmetric.
On the other hand, in the out-of-focus state, the imaging position of the reflected light of the sample surface 4a and the image of the index 12 projected thereon is forward or backward in the optical axis O direction (Z-axis direction) with respect to the A position. Shift. In this case, since the light beam is divided in the direction of the wedge of each wedge prism 8a, 8b by the wedge angle, the images 12a, 12b of the index 12 are shifted in the direction of the wedge with the dividing line 9 as a boundary, and the eyepiece is laterally shifted. It can be observed with the lens 7 (see FIG. 2B).
Therefore, it is possible to perform in-focus determination on the sample surface 4a based on whether or not the images 12a and 12b of the index 12 are laterally shifted.

本実施の形態による合焦検出装置を備えた顕微鏡1は上述の構成を備えており、次に試料4の合焦検出方法を説明する。
顕微鏡1の照明光学系3において、光源10から出射された照明光はコンデンサレンズ11で集光されて指標12を通過する。指標12を通過した指標12の像の光束は照明光と共に観察光学系2の光路内のハーフミラー14で折り曲げられ、対物レンズ6を介して試料4の試料面4a上に落射照明によって投影される。
そして、試料面4aとこの面4aに投影された指標12の像の反射光は、対物レンズ6を通して結像する。合焦状態では、試料面4aと指標12の像はスプリットプリズム8の上面であるA位置で結像する。このとき、指標12の像はスプリットプリズム8の分割線9で二分割され且つ分割された指標12の像12a、12bが分割線9を挟んで一直線状に表れる(図2(a)参照)。このような図2(a)に示す指標12の像12a、12bが接眼レンズ7で観察されると、合焦と判定される。
The microscope 1 provided with the focus detection apparatus according to the present embodiment has the above-described configuration. Next, a focus detection method for the sample 4 will be described.
In the illumination optical system 3 of the microscope 1, the illumination light emitted from the light source 10 is collected by the condenser lens 11 and passes through the index 12. The luminous flux of the image of the index 12 that has passed through the index 12 is bent by the half mirror 14 in the optical path of the observation optical system 2 together with the illumination light, and is projected onto the sample surface 4 a of the sample 4 by the epi-illumination through the objective lens 6. .
Then, the reflected light of the sample surface 4 a and the image of the index 12 projected onto the surface 4 a forms an image through the objective lens 6. In the in-focus state, the image of the sample surface 4 a and the index 12 is formed at the A position that is the upper surface of the split prism 8. At this time, the image of the index 12 is divided into two by the dividing line 9 of the split prism 8, and the divided images 12a and 12b of the index 12 appear in a straight line with the dividing line 9 in between (see FIG. 2A). When the images 12a and 12b of the index 12 shown in FIG. 2A are observed with the eyepiece 7, the focus is determined.

また、非合焦状態では、試料面4aと指標12の反射光はA位置から光軸方向(Z軸方向)の前方または後方にずれた位置で結像するため、指標12の像12a,12bは各ウエッジプリズム8a,8b上で分割線9を境にウエッジ方向に横ズレを起こす。これによって指標12の像12a,12bは図2(b)に示すように分割線9に対して互いに反対方向にずれた位置に横ズレして表れる。このような指標12の像12a,12bが接眼レンズ7で観察されると、非合焦と判定される。
なお、合焦から大きくずれている場合には、試料面4aの像と共に指標12の像12a,12bもぼけて観察される。
非合焦と判定された場合、顕微鏡1のステージを試料4から離間または接近させるように相対移動させ、図2(a)に示す合焦状態になるまで高さ調整する。そして非合焦状態から合焦状態にまで調整することで試料面4aの合焦調整を行える。相対移動前の合焦位置から相対移動した後の合焦位置までのステージの移動量の値を求めると相対移動前後の2点間の高低差が得られる。
In the out-of-focus state, the reflected light from the sample surface 4a and the index 12 forms an image at a position shifted forward or backward in the optical axis direction (Z-axis direction) from the A position, and therefore the images 12a and 12b of the index 12 Causes a lateral shift in the wedge direction with the dividing line 9 as a boundary on each wedge prism 8a, 8b. As a result, the images 12a and 12b of the index 12 appear laterally shifted at positions shifted in opposite directions with respect to the dividing line 9, as shown in FIG. When such images 12 a and 12 b of the index 12 are observed with the eyepiece 7, it is determined that the image is out of focus.
In addition, when it has shifted | deviated greatly from focusing, the images 12a and 12b of the parameter | index 12 are blurred and observed with the image of the sample surface 4a.
When it is determined that it is out of focus, the stage of the microscope 1 is relatively moved so as to be separated from or approached from the sample 4, and the height is adjusted until the in-focus state shown in FIG. The focus adjustment of the sample surface 4a can be performed by adjusting from the out-of-focus state to the in-focus state. When the value of the amount of movement of the stage from the in-focus position before the relative movement to the in-focus position after the relative movement is obtained, the height difference between the two points before and after the relative movement is obtained.

上述のように本実施の形態による顕微鏡1は、指標12の像12a,12bの横ズレが、試料面4aで反射した反射光の結像側に配置したスプリットプリズム8で生じるために、試料面4aで反射する指標12の像の反射光は乱反射光や散乱光が混入しても合焦判定のノイズにならず、入射光と角度分布が相違していても安定した合焦、非合焦の判定や測定、調整を行える。   As described above, in the microscope 1 according to the present embodiment, the lateral displacement of the images 12a and 12b of the index 12 is caused by the split prism 8 disposed on the imaging side of the reflected light reflected by the sample surface 4a. The reflected light of the image of the index 12 reflected by 4a does not become a noise for focus determination even if irregularly reflected light or scattered light is mixed, and stable focusing and non-focusing are possible even if the incident light and the angular distribution are different. Judgment, measurement, and adjustment.

次に本発明の他の実施の形態や変形例による顕微鏡について説明するが、上述した第一の実施の形態と同一または同様な部分、部材には同一の符号を用いて説明を省略する。
図3と図4は第一の実施の形態による顕微鏡1の合焦検出装置の変形例を示すものである。
この変形例では、図1に示す第一の実施の形態による合焦検出装置の観察光学系2において、接眼レンズ7及びスプリットプリズム8に代えて接眼レンズ鏡筒16を設けている。図3に示す接眼レンズ鏡筒16は、観察光学系2の光軸O上に設けられており、内部に接眼レンズ17とその焦点板18を設けている。焦点板18は対物レンズ6による試料面4aの結像位置に設けられ、平面視略円環状を形成している。この焦点板18の内側の中空部18aにはスプリットプリズム19が嵌合され、焦点板18とスプリットプリズム19は光軸Oに同軸に配設されている。
本変形例においても、上述の第一の実施の形態と同様に、試料面4aと指標12の像の反射光は合焦状態ではスプリットプリズム19の上面のA位置に結像する。非合焦状態ではA位置に対して光軸方向(Z軸方向)前側または後側にずれた位置に結像し、スプリットプリズム19と接眼レンズ17を介して観察される象は、分割線9を境に分割線9の延びる方向の両側にずれた位置に指標12の像12a,12bが横ずれして表れる。
2つに分割されてずれた指標12の像12a,12bを分割線9の位置で合致させるようステージを上下動調整することで試料面4a高さの測定や合焦調整を行える。
本変形例によれば、顕微鏡のシステムを変更することなく接眼レンズ鏡筒16を交換装着するだけで低廉に合焦機能を付加できる。
Next, a microscope according to another embodiment or modification of the present invention will be described. However, the same or similar parts and members as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
3 and 4 show a modification of the focus detection device of the microscope 1 according to the first embodiment.
In this modification, an eyepiece lens barrel 16 is provided in place of the eyepiece lens 7 and the split prism 8 in the observation optical system 2 of the focus detection apparatus according to the first embodiment shown in FIG. The eyepiece lens barrel 16 shown in FIG. 3 is provided on the optical axis O of the observation optical system 2, and an eyepiece 17 and its focusing screen 18 are provided inside. The focusing screen 18 is provided at the imaging position of the sample surface 4a by the objective lens 6 and forms a substantially annular shape in plan view. A split prism 19 is fitted in the hollow portion 18a inside the focusing screen 18, and the focusing screen 18 and the split prism 19 are arranged coaxially with the optical axis O.
Also in this modification, the reflected light of the image of the sample surface 4a and the index 12 is focused at the position A on the upper surface of the split prism 19 as in the first embodiment. In the out-of-focus state, an image is formed at a position shifted forward or rearward in the optical axis direction (Z-axis direction) with respect to the A position, and the elephant observed through the split prism 19 and the eyepiece 17 is the dividing line 9 The images 12a and 12b of the index 12 appear laterally shifted at positions shifted to both sides in the extending direction of the dividing line 9 with respect to the boundary.
By adjusting the stage up and down so that the images 12a and 12b of the index 12 that have been divided and shifted in two coincide with each other at the position of the dividing line 9, the height of the sample surface 4a and the focus adjustment can be performed.
According to this modification, a focusing function can be added at low cost by simply replacing and mounting the eyepiece lens barrel 16 without changing the microscope system.

次に本発明の第二の実施の形態による合焦検出装置を備えた顕微鏡21について図5により説明する。
図5に示す顕微鏡21では、観察光学系2においてスプリットプリズム8に代えて像分割用反射ミラーを配設した点で第一の実施の形態と相違する。即ち、観察光学系2において、対物レンズ6と接眼レンズ7との間で光軸Oを有する光路を例えば45°折り曲げる反射ミラー22が設けられ、折り曲げられた光路上の結像位置であるA位置には像分割用反射ミラー23(光路分岐光学部材)が配設されている。A位置で結像した試料面4a及び指標12の像を接眼レンズ7で観察することになる。
像分割用反射ミラー23は一対の第一反射ミラー23a、第二反射ミラー23bで構成され、図5に示す側面視で、両ミラー23a、23bはA位置で交差するよう互いに異なる傾斜角に設定されている。例えば、反射ミラー22で水平に折り曲げられた光路の光軸Oを基準として、第一反射ミラー23aは角度(45+θ)°傾斜し、第二反射ミラー23bは角度(45−θ)°傾斜している。
Next, a microscope 21 provided with a focus detection device according to a second embodiment of the present invention will be described with reference to FIG.
The microscope 21 shown in FIG. 5 is different from the first embodiment in that an observation optical system 2 is provided with an image division reflecting mirror instead of the split prism 8. That is, in the observation optical system 2, the reflection mirror 22 that bends the optical path having the optical axis O between the objective lens 6 and the eyepiece lens 7, for example, 45 ° is provided, and the A position that is the imaging position on the bent optical path. Is provided with an image division reflecting mirror 23 (optical path branching optical member). The image of the sample surface 4a and the index 12 formed at the A position is observed with the eyepiece lens 7.
The image division reflecting mirror 23 is composed of a pair of a first reflecting mirror 23a and a second reflecting mirror 23b. In the side view shown in FIG. 5, the mirrors 23a and 23b are set at different inclination angles so as to intersect at the A position. Has been. For example, the first reflection mirror 23a is inclined at an angle (45 + θ) ° and the second reflection mirror 23b is inclined at an angle (45−θ) ° with respect to the optical axis O of the optical path bent horizontally by the reflection mirror 22. Yes.

そのため、試料面4aと指標12の像の反射光が、対物レンズ6を通してA位置で結像する合焦状態では、試料面4aと指標12の像12a,12bは像分割用反射ミラー23の第一及び第二反射ミラー23a、23b上のA位置で結像する。このとき、指標12の像は第一及び第二反射ミラー23a、23bの分割線9で像12a,12bとして二分割され且つ分割線9を挟んで一直線となるように表れる(図2(a)参照)。これが接眼レンズ7で観察されると、合焦と判定される。
また、非合焦状態では、試料面4aと指標12の像の反射光はA位置から光軸O方向(Z軸方向)の前方または後方にずれた位置で結像するため、指標12の像12a,12bは第一及び第二反射ミラー23a、23bの分割線9を境にズレた位置に表れる(図2(b)参照)。これが接眼レンズ7で観察されると、非合焦と判定される。
非合焦と判定された場合、顕微鏡1のステージを試料4から離間または接近させるように相対移動させ、合焦状態になるまで高さ調整する。そして移動前後の合焦位置間でステージの移動量を求めると2点の高低差が得られる。また、非合焦状態から合焦状態にまで調整することで試料面4aの合焦調整を行える。
Therefore, in the focused state where the reflected light of the image of the sample surface 4 a and the index 12 is focused at the position A through the objective lens 6, the images 12 a and 12 b of the sample surface 4 a and the index 12 are the second of the image division reflecting mirror 23. An image is formed at the position A on the first and second reflecting mirrors 23a and 23b. At this time, the image of the index 12 is divided into two images 12a and 12b by the dividing line 9 of the first and second reflecting mirrors 23a and 23b, and appears to be in a straight line with the dividing line 9 in between (FIG. 2A). reference). When this is observed with the eyepiece 7, it is determined to be in focus.
In the out-of-focus state, the reflected light of the sample surface 4a and the image of the index 12 forms an image at a position shifted forward or backward in the optical axis O direction (Z-axis direction) from the A position. 12a and 12b appear at positions shifted from the dividing line 9 of the first and second reflecting mirrors 23a and 23b (see FIG. 2B). When this is observed with the eyepiece 7, it is determined that the lens is out of focus.
When it is determined that the in-focus state is not achieved, the stage of the microscope 1 is relatively moved so as to be separated or approached from the sample 4, and the height is adjusted until the in-focus state is achieved. Then, when the amount of movement of the stage between the in-focus positions before and after the movement is obtained, a height difference of two points can be obtained. Moreover, the focus adjustment of the sample surface 4a can be performed by adjusting from the out-of-focus state to the in-focus state.

上述のように本実施の形態によれば、スプリットプリズム8に代えて構成の簡単な像分割用反射ミラー23を配設したから、複雑な光学部品を用いないため製造コストを低廉にできる。
なお、図5に示す例では、接眼レンズ7を通して上方から試料面4a及び指標12の像を観察するために反射ミラー22と像分割用反射ミラー23で光路を2回折り曲げる構成を採用したが、横方向から観察する場合には、反射ミラー22は省略してもよい。
As described above, according to the present embodiment, the simple structure of the image-splitting reflecting mirror 23 is provided in place of the split prism 8, so that no complicated optical parts are used, so that the manufacturing cost can be reduced.
In the example shown in FIG. 5, in order to observe the image of the sample surface 4 a and the index 12 from above through the eyepiece lens 7, a configuration is adopted in which the optical path is bent twice by the reflection mirror 22 and the image division reflection mirror 23. When observing from the horizontal direction, the reflection mirror 22 may be omitted.

また、上述の各実施の形態では、指標12を用いて試料4の高さ測定や焦点調整を行うようにしたが、このような構成は試料4の試料面4aが正反射する領域の多い場合に好ましい。しかし、試料面4aに加工挽き目等の細かい加工パターンが存在する場合には、指標12を用いることなく試料面4aの加工挽き目等の加工パターンで合焦か否かの検出を行っても良い。この場合には、接眼レンズ7で観察するスプリットプリズム8または像分割用反射ミラー23上の加工パターン像が分割線9の両側で合致するかズレるかで判定できる。
図6はこのような指標12を設けない合焦検出装置を備えた顕微鏡31を第三の実施の形態として示す図である。指標12を除く構成は第一の実施の形態によるものと同一である。
In each of the above-described embodiments, the height of the sample 4 and the focus adjustment are performed using the index 12, but such a configuration has a case where the sample surface 4a of the sample 4 has a large number of regular reflection areas. Is preferred. However, in the case where a fine processing pattern such as a processing grind exists on the sample surface 4a, it is possible to detect whether or not it is in focus by using the processing pattern such as the processing grind on the sample surface 4a without using the index 12. good. In this case, it can be determined whether the processed pattern image on the split prism 8 or the image dividing reflection mirror 23 observed with the eyepiece 7 matches or shifts on both sides of the dividing line 9.
FIG. 6 is a diagram showing a microscope 31 provided with a focus detection device not provided with such an index 12 as a third embodiment. The configuration excluding the index 12 is the same as that according to the first embodiment.

本発明の第一の実施の形態による合焦検出装置を備えた顕微鏡の光学系を示す構成図である。It is a block diagram which shows the optical system of the microscope provided with the focus detection apparatus by 1st embodiment of this invention. 観察される指標の像を示す図であり、(a)は合焦状態、(b)は非合焦状態である。It is a figure which shows the image of the parameter | index observed, (a) is a focusing state, (b) is a non-focusing state. 第一の実施の形態による顕微鏡の変形例を示す接眼レンズ部分の図である。It is a figure of the eyepiece part which shows the modification of the microscope by 1st embodiment. 図3に示す焦点板とスプリットプリズムを示す斜視図である。FIG. 4 is a perspective view showing a focusing screen and a split prism shown in FIG. 3. 第二の実施の形態による合焦検出装置を備えた顕微鏡の光学系の構成図である。It is a block diagram of the optical system of the microscope provided with the focus detection apparatus by 2nd embodiment. 第三の実施の形態による合焦検出装置を備えた顕微鏡の光学系の構成図である。It is a block diagram of the optical system of the microscope provided with the focus detection apparatus by 3rd embodiment.

符号の説明Explanation of symbols

1、21、31 顕微鏡
2 観察光学系
3 照明光学系
4 試料
4a 試料面
6 対物レンズ
7、17 接眼レンズ
8、19 スプリットプリズム(光路分岐光学部材:プリズムペア)
12 指標(合焦パターン)
12a、12b 指標の像(合焦パターン)
18 焦点板
23 像分割用反射ミラー(光路分岐光学部材)
23a 第一反射ミラー(光路分岐光学部材)
23b 第二反射ミラー(光路分岐光学部材)
1, 2, 31 Microscope 2 Observation optical system 3 Illumination optical system 4 Sample 4a Sample surface 6 Objective lenses 7, 17 Eyepieces 8, 19 Split prism (optical path branching optical member: prism pair)
12 Indicator (focusing pattern)
12a, 12b Index image (focusing pattern)
18 Focusing plate 23 Reflecting mirror for image division (optical path branching optical member)
23a First reflection mirror (optical path branching optical member)
23b Second reflection mirror (optical path branching optical member)

Claims (6)

対物レンズによって結像した試料面の像を観察する観察光学系と、前記試料面を照明する照明光学系とを備え、前記試料面上の合焦パターンについての反射光を前記対物レンズによって結像させて観察することで合焦か否かを検出するようにした合焦検出装置を備えた顕微鏡において、
前記対物レンズを通過する前記試料面からの反射光の結像側に前記合焦パターンの像を分割させる光路分岐光学部材を配設したことを特徴とする合焦検出装置を備えた顕微鏡。
An observation optical system for observing an image of the sample surface imaged by the objective lens and an illumination optical system for illuminating the sample surface, and the reflected light of the focused pattern on the sample surface is imaged by the objective lens In a microscope equipped with a focus detection device that detects whether or not it is in focus by observing,
A microscope provided with an in-focus detection device, wherein an optical path branching optical member that divides an image of the in-focus pattern is disposed on an imaging side of reflected light from the sample surface passing through the objective lens.
前記合焦パターンは前記照明光学系によって試料面上に投影された指標の像である請求項1に記載の合焦検出装置を備えた顕微鏡。   The microscope provided with the focus detection device according to claim 1, wherein the focus pattern is an image of an index projected on a sample surface by the illumination optical system. 前記合焦パターンは前記試料面上に形成されたパターンである請求項1に記載の合焦検出装置を備えた顕微鏡。   The microscope provided with the focus detection device according to claim 1, wherein the focus pattern is a pattern formed on the sample surface. 前記光路分岐光学部材は、前記対物レンズを通過する前記試料面からの反射光を分割させる2つのプリズムからなるプリズムペアである請求項1乃至3のいずれかに記載の合焦検出装置を備えた顕微鏡。   4. The focus detection device according to claim 1, wherein the optical path branching optical member is a prism pair including two prisms that divide reflected light from the sample surface that passes through the objective lens. microscope. 前記プリズムペアは、前記観察光学系に配設した接眼レンズの焦点板に設けられている請求項4に記載の合焦検出装置を備えた顕微鏡。   The microscope provided with the focus detection device according to claim 4, wherein the prism pair is provided on a focusing plate of an eyepiece disposed in the observation optical system. 前記光路分岐光学部材は、前記観察光学系の光軸に対する傾斜角を異ならせて配列した像分割用反射ミラーである請求項1乃至3のいずれかに記載の合焦検出装置を備えた顕微鏡。


The microscope provided with the focus detection device according to any one of claims 1 to 3, wherein the optical path branching optical member is an image division reflecting mirror arranged with different inclination angles with respect to the optical axis of the observation optical system.


JP2004203109A 2004-07-09 2004-07-09 Microscope with focusing detection device Withdrawn JP2006023624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203109A JP2006023624A (en) 2004-07-09 2004-07-09 Microscope with focusing detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203109A JP2006023624A (en) 2004-07-09 2004-07-09 Microscope with focusing detection device

Publications (1)

Publication Number Publication Date
JP2006023624A true JP2006023624A (en) 2006-01-26

Family

ID=35796915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203109A Withdrawn JP2006023624A (en) 2004-07-09 2004-07-09 Microscope with focusing detection device

Country Status (1)

Country Link
JP (1) JP2006023624A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142017A1 (en) * 2006-06-09 2007-12-13 Nikon Corporation Microscope
JP2018156072A (en) * 2017-03-07 2018-10-04 イラミーナ インコーポレーテッド System and method improving focus tracking using light source arrangement
US10666872B2 (en) 2017-03-07 2020-05-26 Illumina, Inc. Systems and methods for improved focus tracking using a hybrid mode light source
US11125988B2 (en) 2017-03-07 2021-09-21 Illumina, Inc. Systems and methods for improved focus tracking using blocking structures
EP4299545A1 (en) 2022-06-29 2024-01-03 Etex Services NV Cementitious powder, method of preparation and use thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142017A1 (en) * 2006-06-09 2007-12-13 Nikon Corporation Microscope
JP2007328223A (en) * 2006-06-09 2007-12-20 Nikon Corp Microscope
US7791795B2 (en) 2006-06-09 2010-09-07 Nikon Corporation Microscope with a focusing assist apparatus
KR101375196B1 (en) 2006-06-09 2014-03-18 가부시키가이샤 니콘 Microscope
JP2018156072A (en) * 2017-03-07 2018-10-04 イラミーナ インコーポレーテッド System and method improving focus tracking using light source arrangement
US10416428B2 (en) 2017-03-07 2019-09-17 Illumina, Inc. Systems and methods for improved focus tracking using a light source configuration
US10666872B2 (en) 2017-03-07 2020-05-26 Illumina, Inc. Systems and methods for improved focus tracking using a hybrid mode light source
US11125988B2 (en) 2017-03-07 2021-09-21 Illumina, Inc. Systems and methods for improved focus tracking using blocking structures
US11143856B2 (en) 2017-03-07 2021-10-12 Illumina, Inc. Systems and methods for improved focus tracking using a light source configuration
US11190706B2 (en) 2017-03-07 2021-11-30 Illumina, Inc. Systems and methods for improved focus tracking using a hybrid mode light source
EP4299545A1 (en) 2022-06-29 2024-01-03 Etex Services NV Cementitious powder, method of preparation and use thereof
EP4299544A1 (en) 2022-06-29 2024-01-03 Etex Services NV A method and installation for recycling fiber cement waste materials
WO2024003277A1 (en) 2022-06-29 2024-01-04 Etex Services Nv A method and installation for recycling fiber cement waste material

Similar Documents

Publication Publication Date Title
JP5043629B2 (en) Laser scanning microscope and measuring method of surface shape thereof
US7232980B2 (en) Microscope system
JP2004522191A (en) Microscope with autofocus device
US6940610B2 (en) Optical measuring device
KR100679643B1 (en) Apparatus for performing an auto-focus operation employing a pattern for the auto-focus operation and method for performing an auto-focus operation using the same
US20160054552A1 (en) Confocal laser scanning microscope
JP2007147749A (en) Focus detecting device and automatic focusing device
JP2006023624A (en) Microscope with focusing detection device
JP4997834B2 (en) microscope
JPH09133856A (en) Automatic focus detecting device for microscope
JPH10239036A (en) Three-dimensional measuring optical device
JP2006184777A (en) Focus detector
JP2020064127A (en) Measurement method and measurement device
JP2006309088A (en) Highly precise measurement method of microscope focusing position
TWI681165B (en) Line width measuring system and line width measuring device
JP3550580B2 (en) Microscope with focusing device
CN113687492A (en) Automatic focusing system
JP3048895B2 (en) Position detection method applied to proximity exposure
JPS6052371B2 (en) Focal position measuring device
JP2000035540A (en) Differential interference microscope
JPH10213751A (en) Three-dimensional optical inspection device for subject
JP2007148084A (en) Focus detector
JP4323230B2 (en) Optical system eccentricity measuring apparatus and optical system eccentricity measuring method
JPH11243048A (en) Position detecting device and method using oblique optical-axis optical system
JPH05312510A (en) Position detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002