JP2006309088A - Highly precise measurement method of microscope focusing position - Google Patents

Highly precise measurement method of microscope focusing position Download PDF

Info

Publication number
JP2006309088A
JP2006309088A JP2005134677A JP2005134677A JP2006309088A JP 2006309088 A JP2006309088 A JP 2006309088A JP 2005134677 A JP2005134677 A JP 2005134677A JP 2005134677 A JP2005134677 A JP 2005134677A JP 2006309088 A JP2006309088 A JP 2006309088A
Authority
JP
Japan
Prior art keywords
sample
light
measurement
lens
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134677A
Other languages
Japanese (ja)
Inventor
Makihiro Tokunaga
万喜洋 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Organization of Information and Systems
Original Assignee
Research Organization of Information and Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Organization of Information and Systems filed Critical Research Organization of Information and Systems
Priority to JP2005134677A priority Critical patent/JP2006309088A/en
Publication of JP2006309088A publication Critical patent/JP2006309088A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly precise measurement method of a sample position with which a focusing position and the sample position are measured with high precision and in a wide range even at the time of fluorescent image observation without a loss with respect to a biotic example not resistant to light irradiation, etc. and a sample with low reflectivity. <P>SOLUTION: When light for position measurement is passed through an area with high number of aperture including the entire reflection area of an edge part of an objective lens, intense reflecting light is obtained even in the sample with low reflectivity in a transparent sample, etc. by the entire reflecting light from a boundary surface of the sample and reflecting light from a large illumination angle. When the boundary surface of the sample changes in the height direction by Δz, the reflecting light is regarded to appear from a position shifted by Δx to be provided by Δx=2Δz×tanθ in the horizontal direction in the boundary surface of the sample and larger variation of Δx is obtained even to variation of Δz by increasing an angle of incidence θ. Highly precise measurement of the sample position is performed without affecting the florescent image observation by introducing position measurement light on an optical path of a microscope image by using a dichroic mirror for fluorescent in common with that for position measurement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光学顕微鏡あるいは光を用いた計測装置の試料合焦位置高精度計測法に関し、特に蛍光像観察可能な顕微鏡及び位置計測に適した試料合焦位置高精度計測法に関する。   The present invention relates to a sample focusing position high-precision measurement method for an optical microscope or a measuring device using light, and more particularly to a microscope capable of observing a fluorescent image and a sample focusing position high-precision measurement method suitable for position measurement.

従来、オートフォーカスや形状観察において、図4のように、サンプルとして反射する試料あるいは散乱する試料に対物レンズを介して光を照射し、反射する光を結像レンズを介してCCDカメラで撮影する。試料の深さ(高さ)方向位置を知る方法として顕微鏡で用いられる方法は、図4のように、照明光の半分を遮蔽し対物レンズの片側から光を入射し、試料境界面からの反射光を光センサーで検出する方法が用いられている。光センサー上に、反射光による試料境界面の像を結像させ、センサー上における反射光の非対称な像のボケ方を利用して、試料の高さ位置の変化を求める方法である。試料への照明光を光軸に関して片側のみにすると、反射光も片側のみとなるため、試料の高さが変化すると、センサー上での反射光の像が片側のみにボケるため反射光の中心位置も片側にずれ、反対方向に試料の高さが変化するとボケ方も反対側になることを利用するものである。このようなものは特許文献にも散見される(例えば、特許文献1、特許文献2参照)。
特開平8−234093号公報 特開2005−62515号公報
Conventionally, in autofocus and shape observation, as shown in FIG. 4, a sample reflected or scattered as a sample is irradiated with light through an objective lens, and the reflected light is photographed with a CCD camera through an imaging lens. . The method used in a microscope as a method of knowing the depth (height) position of a sample is as shown in FIG. 4 in which half of the illumination light is shielded, light is incident from one side of the objective lens, and reflected from the sample boundary surface. A method of detecting light with an optical sensor is used. In this method, an image of a sample boundary surface by reflected light is formed on an optical sensor, and a change in the height position of the sample is obtained by utilizing a method of blurring the asymmetric image of reflected light on the sensor. If the illumination light to the sample is only on one side with respect to the optical axis, the reflected light will also be only on one side, so if the height of the sample changes, the image of the reflected light on the sensor will be blurred only on one side, so The position is also shifted to one side, and when the height of the sample is changed in the opposite direction, the blurring direction becomes the opposite side. Such a thing is often seen in patent literature (see, for example, Patent Literature 1 and Patent Literature 2).
JP-A-8-234093 JP 2005-62515 A

従来の方法は、計測用の光を顕微鏡筒内の光路に導入するのに、図4のように、計測の光専用に蛍光用とは別途ハーフミラーもしくはダイクロイックミラーを用いる。顕微鏡観察の中でも蛍光観察のように微弱な光を観察する場合には、蛍光の少しの損失も像の劣化を招く。ダイクロイックミラーを用いたとしても、計測用の余分なダイクロイックミラーを蛍光が透過する際に、最小でも5から10%程度の蛍光のロスを生じてしまう。   In the conventional method, as shown in FIG. 4, a half mirror or a dichroic mirror is separately used for the measurement light only for introducing the measurement light into the optical path in the microscope tube. When observing feeble light as in fluorescence observation, even a microscopic observation, even a slight loss of fluorescence leads to image degradation. Even if a dichroic mirror is used, when the fluorescence passes through an extra dichroic mirror for measurement, a fluorescence loss of about 5 to 10% is generated at the minimum.

また、従来の方法は金属や半導体のように反射率の高い試料では、高精度で位置を計測することが可能であるが、生物試料やガラス表面のように低反射率の試料においてはマイクロメートル程度の精度しか得ることができなかった。   In addition, the conventional method can measure the position with high accuracy in the case of a highly reflective sample such as a metal or a semiconductor, but it is micrometer in the case of a low reflectance sample such as a biological sample or a glass surface. Only a degree of accuracy could be obtained.

また従来法では、図4のように、試料境界面に計測用の光を対物レンズで点状に集光し、光照射に弱い生物標本などには良くない。合焦位置からはずれると、集光から急激に像がボケるので、合焦位置がはっきりする反面、計測できる範囲は狭くなりやすい。遮光板で照明光を半分にする方法は、照明光束が広いため、照明角度に依存するシグナルが平均されて弱まるという問題の他にも、物体面以外や対物レンズ中心部分で光が反射し無視できない誤差を生じるといった問題が生じる。   Also, in the conventional method, as shown in FIG. 4, measurement light is focused on a sample boundary surface in a dot shape by an objective lens, which is not good for a biological specimen that is weak to light irradiation. When the image is out of focus, the image is suddenly blurred from the focused light, so the focus position is clear, but the measurable range tends to be narrow. The method of halving the illumination light with a light-shielding plate has a wide illumination luminous flux, so the signal that depends on the illumination angle is averaged and weakened. In addition, the light is reflected off the object surface and at the center of the objective lens and ignored. The problem that an error that cannot be generated occurs.

また、通常、標本の合焦位置を微細に調節した際、装置の機構的なドラフトや温度による変動により、試料の基準位置を操作者が目的とする位置に高精度で位置決めすることは至難の技であるというよりも不可能であった。   Normally, when the in-focus position of the specimen is finely adjusted, it is difficult to position the reference position of the sample at the target position with high accuracy by the mechanical draft of the apparatus or fluctuation due to temperature. It was impossible rather than a skill.

そこで、本発明は、顕微鏡観察や対物レンズを用いた位置計測において、蛍光像観察時にも蛍光の損失無く、生物試料のように光照射等に弱い標本に対しても損傷を与えることなく、透明試料等で低反射率の試料においても、焦点位置及び試料位置を高精度で広範囲に計測することができ、試料の基準位置を操作者が目的とする位置に高精度で位置決めすることができる試料合焦位置高精度計測法を提供することを目的とする。   Therefore, the present invention provides a loss of fluorescence even when observing a fluorescent image in a position measurement using a microscope or an objective lens, and does not damage a specimen that is weak to light irradiation, such as a biological sample, and is transparent. A sample that can measure the focal position and the sample position over a wide range with high accuracy even in a sample having a low reflectance such as a sample, and can accurately position the reference position of the sample at a target position by the operator. An object of the present invention is to provide a focus position high-precision measurement method.

上記目的を達成するために、この発明の請求項1に係る試料焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、蛍光像観察には用いない波長の光を位置計測用に用い、前記位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入して試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサーに結像することにより、蛍光像観察時にも蛍光の損失無く、合焦位置および試料高さ位置を計測可能にした。   In order to achieve the above object, a sample focal position high-precision measurement method according to claim 1 of the present invention is a microscope capable of observing a fluorescent image and, in position measurement, for measuring the position of light having a wavelength not used for fluorescent image observation. The position measurement light is introduced from the light source onto the optical path of the microscope tube using a fluorescent dichroic mirror, and the sample is irradiated to measure the reflected light returning from the sample boundary surface through the objective lens. By forming an image on the optical sensor, it is possible to measure the in-focus position and the sample height position without loss of fluorescence even when observing the fluorescence image.

これにより、蛍光像観察には用いない波長の光を位置計測用に用いることにより、蛍光の励起ならびに蛍光像ともに影響されない。また、蛍光用のダイクロイックミラーとして、蛍光励起光と位置計測用光は反射し、蛍光は透過するものを用いることにより、蛍光用と位置計測用とに共通にダイクロイックミラーを使用することができる。前記ダイクロイックミラーの波長特性に関して、蛍光の透過率と蛍光励起光の反射率を重要視し、位置計測光の反射率は優先度を下げて設計してよいので、前記ダイクロイックミラーは様々な蛍光色素に対して蛍光特性を落とさずに製作するが可能である。位置計測用の光を顕微鏡筒内の光路に導入するのに、蛍光用のダイクロイックミラーを共通に用いるので、余分な計測用のダイクロイックミラー等を蛍光が透過することが一切無いため、蛍光の損失が生じない。   As a result, by using light of a wavelength not used for fluorescence image observation for position measurement, neither fluorescence excitation nor fluorescence image is affected. Further, by using a fluorescent dichroic mirror that reflects fluorescence excitation light and position measurement light and transmits fluorescence, a dichroic mirror can be used in common for fluorescence and position measurement. Regarding the wavelength characteristics of the dichroic mirror, the transmittance of fluorescence and the reflectance of fluorescence excitation light are regarded as important, and the reflectance of position measurement light may be designed with lower priority. Therefore, the dichroic mirror has various fluorescent dyes. In contrast, it can be manufactured without deteriorating the fluorescence characteristics. Since the fluorescence dichroic mirror is used in common to introduce the position measurement light into the optical path in the microscope tube, there is no fluorescence transmission through the extra measurement dichroic mirror, etc. Does not occur.

この発明の請求項2に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズ辺縁部分の高開口数の領域に位置計測用光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料高さ位置を蛍光像観察にも損失無く計測可能にした。   According to a second aspect of the present invention, a sample focusing position high-accuracy measuring method uses a fluorescence dichroic mirror from a light source for position measurement light in a microscope capable of observing a fluorescent image and position measurement. Introduced on the road, passes the position measurement light to the high numerical aperture area of the edge of the objective lens, irradiates the sample with a large illumination angle including the total reflection area, and returns the reflected light from the sample boundary surface through the objective lens Is imaged on the optical sensor for position measurement, and the total reflected light at the sample boundary surface and the reflected light from a large illumination angle are used, so that it can be combined with high accuracy even for transparent samples and low reflectance samples. The focus position and sample height position can be measured without loss even in fluorescence image observation.

これにより、試料と支持基板(カバーガラス)との屈折率の違いから、臨界角以上の大きな角度で照明光を入射すると、試料境界面で全反射が起こる。また、臨界角以下でも臨界角近くなると反射光強度が急に強くなる(図5)。この全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、強い強度の反射光を得ることができ、位置計測用光センサーに達する光の強度が強くなるため、高精度で、試料位置および合焦位置を計測することができる。   Thereby, due to the difference in refractive index between the sample and the support substrate (cover glass), when the illumination light is incident at a larger angle than the critical angle, total reflection occurs at the sample boundary surface. In addition, the reflected light intensity suddenly increases as the critical angle is approached even below the critical angle (FIG. 5). By using the total reflected light and the reflected light from a large illumination angle, it is possible to obtain a reflected light having a high intensity even in a transparent sample or the like having a low reflectance, and the light reaching the position measurement optical sensor can be obtained. Since the intensity increases, the sample position and the in-focus position can be measured with high accuracy.

試料境界面で計測用の光を点状に集光しないので、光照射に弱い生物標本への悪い影響を避けられる。照明光は合焦位置で点状でなく、光源のスリットの像に対応した領域を照明するため、試料高さ位置が合焦位置から変化しても照明範囲の急激な変化が無く、計測できる範囲を広くするのに適している。照明光束が対物レンズ辺縁部分の限られた領域を通って広くないので、照明角度に依存して得られるシグナルを大きくとれることに加え、物体面以外での反射や、対物レンズ中心部分での反射(図5のd=0付近での反射)といった問題を避けられる。照明光と反射光が光軸を挟んで離れているので、センサー手前で反射光を照明光から損失なく全反射プリズム等のミラーで完全に分離することができ、低反射率の試料にも有利である。   Since the measurement light is not condensed in a spot shape at the sample boundary surface, it is possible to avoid a bad influence on a biological specimen that is weak to light irradiation. The illumination light illuminates the area corresponding to the image of the slit of the light source instead of a spot at the in-focus position, so even if the sample height position changes from the in-focus position, it can be measured without a sudden change in the illumination range. Suitable for wide range. Since the illumination light flux is not wide through a limited area at the edge of the objective lens, in addition to obtaining a large signal depending on the illumination angle, reflection from other than the object surface and at the center of the objective lens Problems such as reflection (reflection near d = 0 in FIG. 5) can be avoided. Since the illumination light and reflected light are separated from each other with the optical axis in between, the reflected light can be completely separated from the illumination light by a mirror such as a total reflection prism without any loss in front of the sensor, which is also advantageous for low reflectance samples. It is.

この発明の請求項3に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、光源として、非干渉性(インコヒーレント)光源もしくは非干渉性化および低干渉性化したコヒーレント光源を用い、この光源より位置計測用の光を、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、より安定で高精度に合焦位置および試料位置を蛍光像観察にも損失無く計測可能にした。   According to a third aspect of the present invention, the in-focus position high-precision measurement method uses a non-coherent (incoherent) light source or a non-coherent and low-coherent light source as a light source in a microscope capable of observing a fluorescent image and position measurement. Using this coherent light source, the position measurement light from this light source is introduced into the optical path of the microscope tube using a fluorescent dichroic mirror, and the sample is irradiated, and the reflected light returning from the sample boundary surface through the objective lens is reflected. An image is formed on the position measurement optical sensor, and the in-focus position and sample position can be measured without loss even in fluorescence image observation with higher stability and accuracy.

これにより、光源にレーザー光を照明光として用いると、干渉が生じ、位置計測にノイズやドリフトをもたらし、計測精度が悪くなることが起こる。この場合に、非干渉性(インコヒレント)光源もしくは非干渉性化および低干渉性化したコヒーレント光源を用いて、上記請求項1に記載の試料合焦位置高精度計測法を行うと、蛍光像観察にも損失無くより安定した高精度な位置計測を行うことができる。   As a result, when laser light is used as illumination light for the light source, interference occurs, causing noise and drift in position measurement, resulting in poor measurement accuracy. In this case, when the sample focusing position high-precision measurement method according to claim 1 is performed using a non-coherent (incoherent) light source or a coherent light source that has been made non-coherent and low-coherent, a fluorescent image is obtained. For observation, it is possible to perform more stable and accurate position measurement without loss.

この発明の請求項4に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズ辺縁部分の高開口数の領域に位置計測用光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、位置計測用光センサーからの出力を試料高さ位置の関数として求めておいて、試料位置を光センサーから計測し、さらに、直線状に配置された光センサーを用いてより広い範囲の試料高さ位置を計測可能にし、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料位置を蛍光像観察にも損失無く広範囲に計測可能にした。   According to a fourth aspect of the present invention, a sample focusing position high-precision measurement method uses a fluorescence dichroic mirror from a light source for position measurement light in a microscope capable of observing a fluorescent image and position measurement. Introduced on the road, passes the position measurement light to the high numerical aperture area of the edge of the objective lens, irradiates the sample with a large illumination angle including the total reflection area, and returns the reflected light from the sample boundary surface through the objective lens Is imaged on the optical sensor for position measurement, the output from the optical sensor for position measurement is obtained as a function of the sample height position, the sample position is measured from the optical sensor, and is further arranged linearly A wide range of sample height positions can be measured using an optical sensor, and by using the total reflection light at the sample boundary surface and the reflection light from a large illumination angle, it is possible to obtain a low reflectance sample such as a transparent sample. Was the focus position and the sample position to be without loss widely measurable fluorescent image observation with high accuracy.

これにより位置計測用光センサーからの出力を、試料高さ位置の変化Δzの関数として求めておくことにより、試料高さ位置Δzを光センサー出力から求めることができる。光センサー位置を試料境界面に観察の焦点を合わせた時の試料境界面と共役な位置に置けば即ちセンサー位置を試料観察面と共役な位置に置けば、試料境界面を基準点として試料位置を求めることができる。さらに、直線状に配置された光センサーを用いれば、複数のセンサーからの出力を用いることによりΔzの計測範囲を広げることができ、より広い範囲の試料高さ位置Δzを計測可能である。   As a result, the sample height position Δz can be obtained from the optical sensor output by obtaining the output from the position measuring optical sensor as a function of the change Δz in the sample height position. If the optical sensor position is placed at a position conjugate with the sample boundary surface when the observation boundary is focused on the sample boundary surface, that is, if the sensor position is placed at a position conjugate with the sample observation surface, the sample position is determined using the sample boundary surface as a reference point. Can be requested. Furthermore, if optical sensors arranged in a straight line are used, the measurement range of Δz can be expanded by using outputs from a plurality of sensors, and a wider range of sample height positions Δz can be measured.

この発明の請求項5に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズ辺縁部分の高開口数の領域に位置計測用光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料位置を計測し、位置計測用結像レンズもしくは位置計測用光センサー位置を光軸方向に動かして位置計測用光センサー位置を試料観察面と共役な位置からずらすことにより、あるいは、前記結像レンズもしくは前記光センサー位置を光軸と垂直な方向に動かすことにより、試料上の異なる位置を基準位置として試料高さ位置を求めることを可能にした。   According to a fifth aspect of the present invention, a sample focusing position high-precision measurement method uses a fluorescence dichroic mirror from a light source for position measurement light in a microscope capable of fluorescent image observation and position measurement. Introduced on the road, passes the position measurement light to the high numerical aperture area of the edge of the objective lens, irradiates the sample with a large illumination angle including the total reflection area, and returns the reflected light from the sample boundary surface through the objective lens Is imaged on the optical sensor for position measurement, and the total reflected light at the sample boundary surface and the reflected light from a large illumination angle are used, so that it can be combined with high accuracy even for transparent samples and low reflectance samples. The focal position and the sample position are measured, and the position measuring optical sensor position is moved from the position conjugate with the sample observation surface by moving the position measuring imaging lens or the position measuring optical sensor position in the optical axis direction. There is, by moving the imaging lens or the optical sensor located in a direction perpendicular to the optical axis, and enable the determination of the sample height position different positions on the sample as a reference position.

これにより、試料境界面と異なる位置を観察する場合に、結像レンズもしくは位置計測用光センサー位置を光軸方向に動かして位置計測用光センサーを試料観察面と共役な位置からずらすことにより、即ちセンサ位置を、境界面とは異なる位置を観察している時の試料観察面と共役な位置におくことにより、あるいは、前記結像レンズもしくは前記光センサー位置を光軸と垂直な方向に動かすことにより、試料境界面と異なる観察位置を基準点として試料位置および合焦位置として求めることができる。   Thereby, when observing a position different from the sample boundary surface, by moving the imaging lens or the position measurement optical sensor position in the optical axis direction and shifting the position measurement optical sensor from the position conjugate with the sample observation surface, That is, by placing the sensor position at a position conjugate with the sample observation surface when observing a position different from the boundary surface, or moving the imaging lens or the optical sensor position in a direction perpendicular to the optical axis. Thus, the sample position and the in-focus position can be obtained using an observation position different from the sample boundary surface as a reference point.

この発明の請求項6に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズ辺縁部分の高開口数の領域に位置計測用光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度での合焦位置および試料位置を計測し、焦点駆動機構と組み合わせることにより、自動焦点合わせ、試料位置制御、対物レンズを経由して照明を行う薄層斜光照明法や全反射照明法などの照明光制御に適用可能とした。   According to a sixth aspect of the present invention, a sample focusing position high-precision measurement method uses a fluorescence dichroic mirror from a light source for position measurement light in a microscope capable of observing a fluorescent image and position measurement. Introduced on the road, passes the position measurement light to the high numerical aperture area of the edge of the objective lens, irradiates the sample with a large illumination angle including the total reflection area, and returns the reflected light from the sample boundary surface through the objective lens Is imaged on the optical sensor for position measurement, and the total reflected light at the sample boundary surface and the reflected light from a large illumination angle are used. Measure illumination light such as thin-layer oblique illumination method and total reflection illumination method that measure focus position and sample position and combine with focus drive mechanism, auto focus, sample position control, and illumination through objective lens It can be applied and the.

これにより、焦点駆動機構と組み合わせることにより、自動焦点合わせ(オートフォーカス)、試料位置制御を行うことができる。また、対物レンズを経由して照明を行う薄層斜光照明法や全反射照明法などの照明法では、試料位置を正確に知り制御することが、照明光制御に必須であり、これを実現することができる。   Thereby, by combining with a focus driving mechanism, automatic focusing (autofocus) and sample position control can be performed. In addition, in illumination methods such as the thin-layer oblique illumination method and total reflection illumination method that illuminate via the objective lens, it is essential for the illumination light control to accurately know and control the sample position. be able to.

この発明の請求項7に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズ辺縁部分の高開口数の領域に位置計測用光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料位置を計測し、対物レンズと位置計測用結像レンズの間に中間レンズ群を有し、前記中間レンズ群の有無により位置計測用光センサーと試料側との共役な位置関係が変わらないように前記中間レンズ群を配置することができる。   According to a seventh aspect of the present invention, a sample focusing position high-precision measurement method uses a fluorescence dichroic mirror from a light source for position measurement light in a microscope capable of observing a fluorescent image and position measurement. Introduced on the road, passes the position measurement light to the high numerical aperture area of the edge of the objective lens, irradiates the sample with a large illumination angle including the total reflection area, and returns the reflected light from the sample boundary surface through the objective lens Is imaged on the optical sensor for position measurement, and the total reflected light at the sample boundary surface and the reflected light from a large illumination angle are used, so that it can be combined with high accuracy even for transparent samples and low reflectance samples. The focal position and the sample position are measured, and an intermediate lens group is provided between the objective lens and the position measurement imaging lens. The conjugate positional relationship between the position measurement optical sensor and the sample side depends on the presence or absence of the intermediate lens group. does not change Can be placed urchin said intermediate lens group.

これにより、センサー上への結像倍率は、中間レンズ群の焦点距離の比に依存するので、中間レンズ群のレンズ構成を変えることにより、結像倍率を自由に変更可能である。センサー上への結像倍率を高くすると、分解能は高いが試料高さ位置計測可能範囲は狭くなる。結像倍率を低くすると、分解能は低いが計測可能範囲は広くなる。従って、中間レンズ構成を変更することにより結像倍率を変えて、分解能と計測可能範囲を変更することができる。   As a result, the imaging magnification on the sensor depends on the ratio of the focal lengths of the intermediate lens group, so that the imaging magnification can be freely changed by changing the lens configuration of the intermediate lens group. When the imaging magnification on the sensor is increased, the resolution is high, but the sample height position measurable range is narrowed. When the imaging magnification is lowered, the resolution is low but the measurable range is widened. Therefore, the resolution and the measurable range can be changed by changing the imaging magnification by changing the intermediate lens configuration.

また、これにより、異なる倍率の対物レンズを交換して用いる場合に、前記中間レンズ構成を換えることにより、位置計測用光源ならびに位置計測用結像レンズと光センサー側に変更を加えることなく、異なる倍率の対物レンズにも簡単に対応可能にすることができる。異なる倍率即ち異なる焦点距離の対物レンズを用いると、対物レンズ側の光路が変化するが、中間レンズ構成の変更により対物レンズ側の光路の違いを吸収することができ、従って光源側ならびに結像レンズとセンサー側の光路を同じままにすることができる。   In addition, this makes it possible to replace the objective lens having different magnifications by changing the intermediate lens configuration without changing the position measuring light source and the position measuring imaging lens and the optical sensor side. It is possible to easily cope with a magnification objective lens. When an objective lens having a different magnification, that is, a different focal length is used, the optical path on the objective lens side changes, but the difference in the optical path on the objective lens side can be absorbed by changing the intermediate lens configuration. And the optical path on the sensor side can be kept the same.

また、これにより、対物レンズと位置計測用結像レンズ間の距離が長くなる場合に試料位置計測可能範囲が狭くなるのを防ぐことができる。対物レンズと位置計測用結像レンズ間の距離が長くなると、光路が光軸中心から遠く離れてゆくことにより視野が狭くなり、その結果試料高さ位置計測可能範囲が狭くなる。中間レンズ群の挿入により、光路が光軸中心から遠く離れるのを押さえることができるため、対物レンズと位置計測用結像レンズ間の距離の長さによる、計測可能範囲が狭くなる問題を防ぐことができる。   In addition, this makes it possible to prevent the sample position measurable range from being narrowed when the distance between the objective lens and the position measuring imaging lens becomes long. If the distance between the objective lens and the imaging lens for position measurement is increased, the field of view is narrowed as the optical path is far from the center of the optical axis, and as a result, the sample height position measurable range is narrowed. By inserting the intermediate lens group, it is possible to prevent the optical path from moving away from the center of the optical axis, thus preventing the problem that the measurable range becomes narrow due to the length of the distance between the objective lens and the imaging lens for position measurement. Can do.

この発明の請求項8に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズ辺縁部分の高開口数の領域に位置計測用光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料位置を計測し、対物レンズと位置計測用結像レンズの間に中間レンズ群を有し、前記中間レンズ群のうちの一部のレンズ位置を動かすことにより、試料上の異なる高さ位置を基準位置として試料高さ位置を求めることを可能にした。   According to an eighth aspect of the present invention, there is provided a sample focusing position high-accuracy measurement method, in which a microscope capable of observing a fluorescent image and position measurement are performed by using a dichroic mirror for fluorescence from a light source. Introduced on the road, passes the position measurement light to the high numerical aperture area of the edge of the objective lens, irradiates the sample with a large illumination angle including the total reflection area, and returns the reflected light from the sample boundary surface through the objective lens Is imaged on the optical sensor for position measurement, and the total reflected light at the sample boundary surface and the reflected light from a large illumination angle are used, so that it can be combined with high accuracy even for transparent samples and low reflectance samples. The focal position and the sample position are measured, and an intermediate lens group is provided between the objective lens and the position-measuring imaging lens. By moving some of the intermediate lens groups, different heights on the sample are obtained. Based on the position It made it possible to determine the sample height position as the position.

これにより、対物レンズと位置計測用結像レンズの間に中間レンズ群を有し、中間レンズ群の有無により位置計測用光センサーと試料側との共役な位置関係が変わらないようにできる構成となっており、前記中間レンズ群のうちの一部のレンズ位置を動かすことにより、位置計測用光源ならびに位置計測用結像レンズと光センサー側に変更を加えることなく、試料境界面と異なる位置を基準点として試料上の異なる高さ位置を合焦位置として求めることを可能にすることができる。試料観察の高さ位置を変更すると対物レンズ側の光路が変化し、これが合焦位置計測可能な範囲を制限するが、中間レンズの移動により対物レンズ側の光路の違いを吸収し、光源側ならびに結像レンズとセンサー側の光路を同じままにすることができるため、試料観察の高さ位置に関し、広い範囲で合焦位置計測を行うことが可能である。   With this configuration, an intermediate lens group is provided between the objective lens and the position measurement imaging lens so that the conjugate positional relationship between the position measurement optical sensor and the sample side does not change depending on the presence or absence of the intermediate lens group. By moving the position of a part of the intermediate lens group, a position different from the sample boundary surface can be obtained without changing the position measuring light source and the position measuring imaging lens and the optical sensor side. It is possible to obtain a different height position on the sample as a focus position as a reference point. Changing the height position of sample observation changes the optical path on the objective lens side, which limits the range in which the in-focus position can be measured, but the difference in the optical path on the objective lens side is absorbed by the movement of the intermediate lens. Since the optical path on the imaging lens and the sensor side can be kept the same, it is possible to perform in-focus position measurement over a wide range with respect to the height position of sample observation.

この発明の請求項9に係る試料合焦位置高精度計測法は、蛍光像観察可能な顕微鏡および位置計測において、位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズ辺縁部分の高開口数の領域に位置計測用光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料位置を計測し、焦点合わせの指定位置に連動して、位置計測用中間レンズもしくは位置計測用結像レンズを動かし、位置計測用光センサーからの出力が目的の焦点位置に対応した値になるように、対物レンズと試料間位置を合わせて焦点合わせを行うことにより、高さに関し広い範囲で合焦位置計測を可能にする。   According to a ninth aspect of the present invention, a sample focusing position high-precision measurement method uses a fluorescence dichroic mirror from a light source for position measurement light in a microscope capable of observing a fluorescent image and position measurement. Introduced on the road, passes the position measurement light to the high numerical aperture area of the edge of the objective lens, irradiates the sample with a large illumination angle including the total reflection area, and returns the reflected light from the sample boundary surface through the objective lens Is imaged on the optical sensor for position measurement, and the total reflected light at the sample boundary surface and the reflected light from a large illumination angle are used, so that it can be combined with high accuracy even for transparent samples and low reflectance samples. The focus position and sample position are measured, and the position measurement intermediate lens or position measurement imaging lens is moved in conjunction with the designated focus position. The output from the position measurement optical sensor corresponds to the target focus position. As a value, by performing focusing fit between the objective lens and the specimen position, to allow the focusing position measurement over a wide range relates height.

これにより、焦点合わせの指定高さ位置に連動して、位置計測用中間レンズもしくは位置計測用結像レンズを動かし、位置計測用光センサーからの出力が目的の焦点高さ位置に対応した値になるように、対物レンズと試料間距離を合わせて焦点合わせを行うことにより、高さ位置に関し広い範囲で合焦位置計測を可能にすることが可能である。請求項8に記載の方法では、中間レンズの移動を、合焦位置基準点の変更のために行い、焦点合わせには必ずしも連動させないが、請求項9に記載の方法では、中間レンズもしくは結像レンズの位置を、焦点合わせの指定高さ位置に常に連動させるのが特徴である。   As a result, the position measurement intermediate lens or the position measurement imaging lens is moved in conjunction with the designated height position for focusing, and the output from the position measurement optical sensor becomes a value corresponding to the target focus height position. As described above, by performing focusing by matching the distance between the objective lens and the sample, it is possible to measure the focus position in a wide range with respect to the height position. In the method according to claim 8, the movement of the intermediate lens is performed for changing the focus position reference point and is not necessarily linked to the focusing. However, in the method according to claim 9, the intermediate lens or the imaging is performed. The feature is that the lens position is always linked to the designated height position for focusing.

このようにすると、試料観察位置が試料境界面とは異なる高さで変わっても、位置計測用センサーと試料観察面とを常に同じ共役な位置関係に保つことになり、位置計測用光の光路の変動を常に最小化することができるため、光路の大きな変動による光路障碍を避けることができ、試料観察の高さ位置に関し、より広い範囲で合焦位置計測を行うことが可能である。   In this way, even if the sample observation position changes at a height different from the sample boundary surface, the position measurement sensor and the sample observation surface are always kept in the same conjugate positional relationship, and the optical path of the position measurement light Therefore, it is possible to avoid the optical path obstruction due to the large fluctuation of the optical path, and it is possible to measure the focus position in a wider range with respect to the height position of the sample observation.

以上のように、本発明の試料合焦位置高精度計測法は顕微鏡観察や対物レンズを用いた位置計測において、生物試料のように光照射等に弱い標本に対しても損傷を与えることなく、合焦位置および試料位置を、透明試料等で低反射率の試料においても100nm以上の高精度で計測することができる。また、焦点駆動機構と組み合わせることにより、自動焦点合わせ(オートフォーカス)、試料位置制御を行うことができる。また、蛍光像観察時にも、蛍光観察に使う波長とは異なる波長の光を位置計測用に用い、余分な計測用のダイクロイックミラー等を蛍光が透過することが一切無いので、蛍光の損失が生じない。   As described above, the sample in-focus position high-precision measurement method of the present invention is not damaged even for specimens that are vulnerable to light irradiation or the like, such as biological samples, in position measurement using a microscope or an objective lens, The in-focus position and the sample position can be measured with a high accuracy of 100 nm or more even in a transparent sample or the like with a low reflectance. Further, by combining with a focus driving mechanism, automatic focusing (autofocus) and sample position control can be performed. Also, when observing fluorescent images, light with a wavelength different from the wavelength used for fluorescence observation is used for position measurement, and fluorescence is not transmitted through extra dichroic mirrors for measurement, resulting in loss of fluorescence. Absent.

本発明は、蛍光像観察には用いない波長の光を位置計測用に用い、前記位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入し、対物レンズの高開口数の領域のみに位置計測用光を通し、全反射領域を含む大きな照明角度で照射し、試料境界面から対物レンズを通して戻ってくる反射光を、位置計測用光センサー上に結像し、試料境界面での全反射光を含む大きな照明角度からの反射光を利用して合焦位置および試料位置を高精度に安定に蛍光像観察にも損失無く計測するものである。   The present invention uses light of a wavelength not used for fluorescent image observation for position measurement, introduces the position measurement light from a light source onto the optical path of a microscope tube using a fluorescent dichroic mirror, and an objective lens The position measurement light is passed through only the high numerical aperture area, and the reflected light returning from the sample boundary through the objective lens is imaged on the position measurement optical sensor. Then, using the reflected light from a large illumination angle including the total reflected light on the sample boundary surface, the in-focus position and the sample position are measured with high accuracy and stability without loss even in fluorescence image observation.

次に、本発明の実施形態を図面に基づいて説明する。図1は、本発明の標本合焦位置高精度計測の基本原理の説明図である。
図1において、光源よりの入射光と反射光との関係に注目する。試料境界面が高さ方向にΔz変化すると、反射光は試料境界面内で横方向にΔxずれた位置から出てくるとみなされる。このΔxを試料位置計測用光センサーで計測する。この時ΔzとΔxの間には次式(1)が成立する。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of the basic principle of high-accuracy measurement of the specimen in-focus position according to the present invention.
In FIG. 1, attention is paid to the relationship between incident light and reflected light from a light source. When the sample boundary surface changes by Δz in the height direction, the reflected light is considered to come out from a position shifted by Δx in the horizontal direction within the sample boundary surface. This Δx is measured by a sample position measuring optical sensor. At this time, the following equation (1) is established between Δz and Δx.

Δx =2Δz×tanθ (1)
の関係があるので、入射角θを大きくすることにより、同じΔzの変化量に対しても、より大きなΔxの変化量を得ることができる。即ち、より高精度でΔzを求めることができる。従って、光源よりの入射光を対物レンズの辺縁部分の高開口数の領域に通す方が良い。そして、この理由から、透明試料等で低反射率の試料においても100nm以上の高精度で、合焦位置および試料位置を計測することができる。
Δx = 2Δz × tan θ (1)
Therefore, by increasing the incident angle θ, it is possible to obtain a larger change amount of Δx for the same change amount of Δz. That is, Δz can be obtained with higher accuracy. Therefore, it is better to pass the incident light from the light source through the high numerical aperture region at the edge of the objective lens. For this reason, it is possible to measure the in-focus position and the sample position with high accuracy of 100 nm or more even in a transparent sample or the like with a low reflectance.

また、全反射を用いると、弱い照明光を用いても十分な強度の反射光が得られ、試料側に透過する光がおおきく減少するため、生物試料のように光反射等に弱い標本に対しても損傷を与えることなく、合焦位置および試料位置を計測することができる。それ故、光源からの入射光を対物レンズの辺縁部分の高開口数の領域に通し、全反射領域を含む大きな照明角度で試料を照射する必要がある。   In addition, when total reflection is used, reflected light with sufficient intensity can be obtained even with weak illumination light, and the amount of light transmitted to the sample side is greatly reduced. However, the in-focus position and the sample position can be measured without causing damage. Therefore, it is necessary to irradiate the sample with a large illumination angle including the total reflection region by passing the incident light from the light source through the high numerical aperture region at the edge portion of the objective lens.

図5に、試料として水溶液(屈折率1.33)、カバーガラスとして光学ガラス(屈折
率1.52)を用いた場合の、試料境界面からの反射光強度の対物レンズへの光入射位置依存性の結果を示す。図5上図は、位置計測用センサー9での反射光強度の実測値であり、対物レンズへの入射光の中心軸からの距離dが1.5mmより大きいところで、反射光が強くなることがわかる。下図は、上図に対応する反射率の理論計算値であり、実測値とよく一致している。本装置では入射光として直径約1mm前後の光を用いているために、理論値よりも入射位置dが少し小さいところで反射光強度の立ち上がりが見られる。
FIG. 5 shows the dependence of the reflected light intensity from the sample boundary surface on the light incident position when an aqueous solution (refractive index: 1.33) is used as the sample and optical glass (refractive index: 1.52) is used as the cover glass. Showing sex results. The upper diagram in FIG. 5 shows the actually measured value of the reflected light intensity at the position measuring sensor 9, and the reflected light becomes stronger when the distance d from the central axis of the incident light to the objective lens is larger than 1.5 mm. Recognize. The lower figure shows the theoretical calculated values of the reflectance corresponding to the upper figure, and is in good agreement with the actually measured values. In this apparatus, since light having a diameter of about 1 mm is used as incident light, the rising of reflected light intensity is observed when the incident position d is slightly smaller than the theoretical value.

図5より、臨界角を超えた全反射領域で反射光強度が著しく強いこと、全反射が起こって無くとも臨界角の手前で反射光の強い領域が存在することがわかる。この入射位置dが大きい、即ち境界面での入射角が大きく、反射光強度が大きい領域での、全反射光及び大きな照明角度からの反射光を、本発明の合焦位置高精度計測法では用いている。   FIG. 5 shows that the reflected light intensity is remarkably strong in the total reflection region exceeding the critical angle, and there is a region where the reflected light is strong before the critical angle even if total reflection does not occur. In the focus position high-precision measurement method of the present invention, the total reflected light and the reflected light from a large illumination angle in a region where the incident position d is large, that is, the incident angle at the boundary surface is large and the reflected light intensity is large. Used.

なお、図5上図の入射位置dが0.3mm以下の原点近傍で反射光が見られるが、これは対物レンズ中心付近や試料境界面以外などからの反射に多く起因し、従来法で計測に無視できない誤差を与えるものである。本発明では、入射位置dが小さいこの領域を位置計測に用いず、この問題の影響を全く受けない。   Note that reflected light is seen near the origin where the incident position d in the upper diagram of FIG. 5 is 0.3 mm or less. This is mostly due to reflection from the vicinity of the center of the objective lens or from the sample boundary surface, and is measured by the conventional method. Gives a non-negligible error. In the present invention, this region where the incident position d is small is not used for position measurement and is not affected at all by this problem.

この計測原理を適用した、本説明の試料合焦位置高精度計測方法を実現する構成を図2を参照して、その作用を説明する。図2は光源に近赤外狭指向性LEDもしくは低コヒーレンス性赤外発光素子を用い、位置計測センサーに2分割フォトダイオードを用いた例を示す。   With reference to FIG. 2, the operation of the configuration for realizing the sample focus position high-accuracy measurement method of the present description to which this measurement principle is applied will be described. FIG. 2 shows an example in which a near-infrared narrow-directional LED or a low-coherence infrared light-emitting element is used as a light source, and a two-division photodiode is used as a position measurement sensor.

図2において、1は観察対象の試料、2は近赤外狭指向性LEDである光源とスリット、3は照明用の集光レンズ、4は蛍光用と位置計測用とに共通のダイクロイックミラー、5は対物レンズ、6は液浸液、7はカバーガラス、8は結像レンズ、9は2分割フォトダイオードを用いた位置計測用光センサー、10は位置計測用ダイクロイックミラー、11はミラーである。     In FIG. 2, 1 is a sample to be observed, 2 is a light source and slit which is a near-infrared narrow directional LED, 3 is a condenser lens for illumination, 4 is a common dichroic mirror for fluorescence and position measurement, 5 is an objective lens, 6 is an immersion liquid, 7 is a cover glass, 8 is an imaging lens, 9 is a photosensor for position measurement using a two-part photodiode, 10 is a dichroic mirror for position measurement, and 11 is a mirror. .

対物レンズは開口数が試料の屈折率を越える高開口数の100倍油浸対物レンズからなる。試料1は、対物レンズ5の上方に位置される顕微鏡本体のステージ(図なし)に載置されたカバーガラス(ガラス基板)7上に液浸液6を介在して配置されている。この場合、試料1は液浸液6およびカバーガラス(ガラス基板)7を介して対物レンズ5の焦点位置に位置される。対物レンズは100倍あるいは液浸液タイプに限ることなく用いることができ、開口数の大きいものほど精度の良い結果が得られる。図2は倒立型顕微鏡で描いてあるが、本発明は正立型と倒立型とを問わず適用できる。   The objective lens is a high numerical aperture 100 × oil immersion objective lens whose numerical aperture exceeds the refractive index of the sample. The sample 1 is disposed on a cover glass (glass substrate) 7 placed on a stage (not shown) of the microscope main body located above the objective lens 5 with an immersion liquid 6 interposed. In this case, the sample 1 is positioned at the focal position of the objective lens 5 through the immersion liquid 6 and the cover glass (glass substrate) 7. The objective lens can be used without being limited to 100 times or an immersion liquid type, and a larger numerical aperture provides a more accurate result. Although FIG. 2 is drawn with an inverted microscope, the present invention can be applied to both an upright type and an inverted type.

位置計測用の照明光源からスリットを経た照明光は、照明用の集光レンズ3を通り、ミラー11で反射の後、ダイクロイックミラー10で反射されて蛍光励起光等の観察用照明光と同じ光路に導入され、ダイクロイックミラー4で直角に曲げられて顕微鏡筒内の光路に導入され、対物レンズ5の辺縁部分の高開口数の領域を光が通り、全反射領域を含む大きな照明角度で試料1を照射する。ミラー11は、位置計測の照明光と反射光とを分離するためであり、集光レンズ3の後には配置せず、結像レンズの手前に配置して、反射光側を曲げて使用することも可能である。   The illumination light that has passed through the slit from the illumination light source for position measurement passes through the condenser lens 3 for illumination, is reflected by the mirror 11, is reflected by the dichroic mirror 10, and is the same optical path as the illumination light for observation such as fluorescence excitation light. The sample is bent at a right angle by the dichroic mirror 4 and introduced into the optical path in the microscope tube, and the light passes through the high numerical aperture region of the edge portion of the objective lens 5 at a large illumination angle including the total reflection region. 1 is irradiated. The mirror 11 is for separating the illumination light and the reflected light for position measurement. The mirror 11 is not disposed after the condenser lens 3 but is disposed in front of the imaging lens, and is used by bending the reflected light side. Is also possible.

試料1の表面から対物レンズ5を通して戻ってくる反射光をダイクロイックミラー4で直角に曲げて、結像レンズ8を介して位置計測用光センサー9の上に結像する。試料1と位置計測用光センサー9が共役な位置になるように、結像レンズ8を配置する。光源のスリット2、試料1、位置計測用光センサー9が共役な位置になるように、集光レンズ3を配置すれば、より良い計測結果が得られる。ここで図1で説明した(1)に基づいて、試料境界面の高さ方向の変化量Δzに対して、試料境界面内で横方向のずれΔxのより大きな変化量を得ることができ、より高精度でΔzを求めることができる。このように、試料1の表面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料位置を計測することができる。   The reflected light returning from the surface of the sample 1 through the objective lens 5 is bent at a right angle by the dichroic mirror 4 and imaged on the position measuring optical sensor 9 through the imaging lens 8. The imaging lens 8 is arranged so that the sample 1 and the position measuring optical sensor 9 are in a conjugate position. If the condensing lens 3 is arranged so that the slit 2 of the light source, the sample 1, and the position measuring optical sensor 9 are in a conjugate position, a better measurement result can be obtained. Here, based on (1) described with reference to FIG. 1, it is possible to obtain a larger change amount of the lateral deviation Δx in the sample boundary surface with respect to the change amount Δz in the height direction of the sample boundary surface, Δz can be obtained with higher accuracy. In this way, by using the totally reflected light on the surface of the sample 1 and the reflected light from a large illumination angle, the in-focus position and the sample position can be measured with high accuracy even in a sample having a low reflectance such as a transparent sample. can do.

また、光源1にレーザー光を照明光として用いると、干渉が生じ、位置計測にノイズやドリフトをもたらし、計測精度が悪くなることが起こる。この場合に、非干渉性(インコヒーレント)光源もしくは非干渉性化および低干渉性化したコヒーレント光源を用いて、上記の試料合焦位置高精度計測法を行うと、より安定で高精度に位置計測を行うことができる。   Moreover, when laser light is used for the light source 1 as illumination light, interference occurs, causing noise and drift in position measurement, resulting in poor measurement accuracy. In this case, using the in-coherent light source or the incoherent light source that has been made incoherent and low incoherent to perform the above-mentioned sample focus position high-precision measurement method, the position is more stable and accurate. Measurement can be performed.

また、位置計測用光センサーからの出力を試料位置の変化Δzの関数として求めておくことにより、試料位置Δzを光センサー出力から求めることができる。光センサー位置を試料境界面に観察の焦点を合わせた時の試料境界面と共役な位置に置けば、試料境界面を基準として試料位置を求めることができる。センサーとして直線状の多分割フォトダイオードやフォトダイオードアレイなどの直線状に配置された光センサーを用いることにより、複数のセンサーからの出力を繋げて前記関数をΔz方向に広げられるため、より広いΔzの範囲を計測することが可能である。この方法によるΔzの計測可能な範囲は、(1)式でΔzと関係づけられるΔxに関して対物レンズの視野の程度が目安である。   Further, by obtaining the output from the position measuring optical sensor as a function of the change Δz of the sample position, the sample position Δz can be obtained from the optical sensor output. If the optical sensor position is placed at a position conjugate with the sample boundary surface when the observation focus is set on the sample boundary surface, the sample position can be obtained with reference to the sample boundary surface. By using an optical sensor arranged in a straight line such as a linear multi-division photodiode or photodiode array as a sensor, the function can be expanded in the Δz direction by connecting outputs from a plurality of sensors. It is possible to measure the range. The measurable range of Δz by this method is a measure of the visual field of the objective lens with respect to Δx that is related to Δz in equation (1).

位置計測用光センサー2分割フォトダイオードを用いることにより、図3の制御フローに示すように、位置計測用光センサー9の2分割フォトダイオードの出力を合焦位置計測器14で差分増幅し、試料位置信号として用いる。多分割フォトダイオードなどの直線状光センサーでは、合焦位置計測器14で複数の光センサー出力を増幅後に試料位置を計算し試料位置信号として用いる。これを、薄層斜光照明法および全反射照明法を用いた蛍光観察可能な顕微鏡15に組み込まれた焦点駆動機構16の制御信号に利用し、自動焦点を合わせ、試料位置制御、対物レンズを経由して照明を行う薄層斜光照明法や全反射照明法などの照明光制御に適用することができる。   As shown in the control flow of FIG. 3, by using the position measurement photosensor 2-division photodiode, the output of the 2-division photodiode of the position measurement photosensor 9 is differentially amplified by the in-focus position measurement device 14, and a sample is obtained. Used as a position signal. In a linear optical sensor such as a multi-division photodiode, a sample position is calculated after amplification of a plurality of optical sensor outputs by the focusing position measuring instrument 14 and used as a sample position signal. This is used for the control signal of the focus driving mechanism 16 incorporated in the microscope 15 capable of fluorescence observation using the thin layer oblique illumination method and the total reflection illumination method, and the automatic focusing is performed, the sample position is controlled, and the objective lens is passed. Thus, the present invention can be applied to illumination light control such as a thin layer oblique illumination method and a total reflection illumination method for performing illumination.

試料1の境界面を観察する場合には、位置計測用光センサー9を合焦時の試料境界面と共役な位置に置く。境界面と異なる位置を観察する場合には位置計測用光センサー9をその観察位置での試料境界面と共役な位置に置けば、もしくは位置計測用光中心が光軸と交わる位置と共役な位置に置けば、その観察位置を基準として位置計測を行うことができる。即ち、結像レンズ8もしくは光センサー9の位置を光軸方向に動かし、光センサー9の位置を試料面と共役な位置からずらす。あるいは、前記結像レンズもしくは前記光センサー位置を光軸と垂直な方向に動かすことにより、基準位置を変更することができる。試料境界面と異なる位置を観察する場合には、位置計測用光の光路が変化するので、位置計測用光源からの光の角度を調整すると良い結果が得られる。これにより、生物試料や透明試料で低反射率の試料においても、合焦位置および試料位置を、100nm以上の高精度で計測することができる。   When the boundary surface of the sample 1 is observed, the position measuring optical sensor 9 is placed at a position conjugate with the sample boundary surface at the time of focusing. When observing a position different from the boundary surface, the position measurement optical sensor 9 is placed at a position conjugate with the sample boundary surface at the observation position, or a position conjugate with the position where the position measurement optical center intersects the optical axis. In this case, position measurement can be performed based on the observation position. That is, the position of the imaging lens 8 or the optical sensor 9 is moved in the optical axis direction, and the position of the optical sensor 9 is shifted from a position conjugate with the sample surface. Alternatively, the reference position can be changed by moving the imaging lens or the optical sensor position in a direction perpendicular to the optical axis. When observing a position different from the sample boundary surface, the optical path of the position measurement light changes, so that a good result can be obtained by adjusting the angle of the light from the position measurement light source. Thereby, even in a biological sample or a transparent sample with a low reflectance, the in-focus position and the sample position can be measured with high accuracy of 100 nm or more.

また、図7に示す例のように、光源側の集光レンズ3と結像レンズ8を共通化し、1個の結像レンズ8より構成する場合には、結像レンズ8の位置を変更することにより、光センサー9の位置を光学的に試料観察面と共役な位置からずらし、試料境界面と異なる位置を基準点として試料位置および合焦位置を求めることができる。   Further, as in the example shown in FIG. 7, when the condenser lens 3 on the light source side and the imaging lens 8 are made common and configured by one imaging lens 8, the position of the imaging lens 8 is changed. Thus, the position of the optical sensor 9 is optically shifted from the position conjugate with the sample observation surface, and the sample position and the in-focus position can be obtained using a position different from the sample boundary surface as a reference point.

また、中間レンズ群を用いる場合には、中間レンズ群の有無により位置計測用光センサーと試料側との共役な位置関係が変わらないようにできる構成とする。無限遠補正光学系顕微鏡の場合の例として、図8に示すように、試料の観察位置から出た光は対物レンズ5を通った後平行光となるが、中間レンズ12で結像したのち、中間レンズ13により平行光に戻る構成とする。   Further, in the case of using the intermediate lens group, the conjugate positional relationship between the position measuring optical sensor and the sample side is not changed depending on the presence or absence of the intermediate lens group. As an example in the case of an infinitely corrected optical microscope, as shown in FIG. 8, the light emitted from the observation position of the sample becomes parallel light after passing through the objective lens 5, but after being imaged by the intermediate lens 12, The intermediate lens 13 returns to parallel light.

対物レンズ、中間レンズ12、中間レンズ13の焦点距離を各fobj、f12、f13とすると、中間レンズ13下流の平行光の幅、すなわち中間レンズ13よりも結像レンズ8側での照明光と反射光の間隔は、fobj×f13/f12に比例する。従って、異なる倍率の対物レンズすなわち異なる焦点距離fobjの対物レンズを用いる場合にも、fobj×f13/f12が同じになるようにf12とf13の組み合わせを選べば、図9に示すように、対物レンズ側の光路の違いを中間レンズ群により吸収することができ、従って光源2側ならびに結像レンズ8と光センサー9側の光路を同じままにすることができる。   When the focal lengths of the objective lens, the intermediate lens 12 and the intermediate lens 13 are fobj, f12 and f13, the width of the parallel light downstream of the intermediate lens 13, that is, the illumination light and the reflection on the imaging lens 8 side of the intermediate lens 13 are reflected. The light interval is proportional to fobj × f13 / f12. Therefore, even when an objective lens having a different magnification, that is, an objective lens having a different focal length foj is used, if the combination of f12 and f13 is selected so that foj × f13 / f12 is the same, as shown in FIG. The difference in the optical path on the side can be absorbed by the intermediate lens group, so that the optical path on the light source 2 side and on the imaging lens 8 side and the optical sensor 9 side can remain the same.

また、試料境界面と異なる位置を基準点として試料上の異なる高さ位置を合焦位置として求める場合に、前記中間レンズ群のうちの一部のレンズ位置を動かすことにより、光センサー9を光学的に試料観察面と共役な位置からずらし、光源2側ならびに結像レンズ8と光センサー9側に変更を加えることなく行うことができる。図10の例を用いて作用を説明すると、試料高さ位置の変更により、中間レンズ12による像の位置即ち中間レンズ12と中間レンズ13の間で光が交差する位置がずれる。その像位置の変化量と同じ距離だけ、中間レンズのいずれかを移動し中間レンズ12と中間レンズ13間の距離を変更すれば、中間レンズ13よりも光源2と結像レンズ8の側では、光路が試料高さ位置の変更前と同じとなる。   Further, when a position different from the sample boundary surface is used as a reference point and a different height position on the sample is obtained as an in-focus position, the optical sensor 9 is optically moved by moving a part of the intermediate lens group. In particular, the position can be shifted from the position conjugate with the sample observation surface and the light source 2 side, the imaging lens 8 and the optical sensor 9 side can be changed without any change. The operation will be described with reference to the example of FIG. 10. By changing the sample height position, the position of the image by the intermediate lens 12, that is, the position where the light intersects between the intermediate lens 12 and the intermediate lens 13 is shifted. If one of the intermediate lenses is moved by the same distance as the amount of change in the image position and the distance between the intermediate lens 12 and the intermediate lens 13 is changed, the light source 2 and the imaging lens 8 side than the intermediate lens 13 The optical path is the same as before the change in the sample height position.

試料高さ位置を変更すると対物レンズ側の光路が変化し、これが合焦位置計測可能な範囲を制限するが、中間レンズの移動により対物レンズ側の光路の違いを吸収し、さらに、照明光と反射光の光路を光軸に関して対称に保つことができるため、試料観察の高さ位置に関し、広い範囲で合焦位置計測を行うことが可能である。   When the sample height position is changed, the optical path on the objective lens side changes, which limits the range in which the in-focus position can be measured, but the difference in the optical path on the objective lens side is absorbed by the movement of the intermediate lens. Since the optical path of the reflected light can be kept symmetrical with respect to the optical axis, the focus position can be measured in a wide range with respect to the height position of the sample observation.

また、焦点合わせの指定高さ位置に連動して、位置計測用中間レンズもしくは位置計測用結像レンズを動かせば、試料観察の高さ位置に関し、より広い範囲で合焦位置計測を行うことが可能である。図10の例の場合には中間レンズ12と中間レンズ13間の距離を、図7の例の場合には結像レンズ8の位置を、高さ位置に連動して変更する。予め、位置計測用光センサーからの出力0もしくは一定の値になるようにした時の、試料観察の高さ位置と、中間レンズもしくは結像レンズとの位置との関係を求めておく。   In addition, if the intermediate lens for position measurement or the imaging lens for position measurement is moved in conjunction with the specified height position for focusing, the focus position can be measured in a wider range with respect to the height position for sample observation. Is possible. In the case of the example of FIG. 10, the distance between the intermediate lens 12 and the intermediate lens 13 is changed in conjunction with the height position in the case of the example of FIG. The relationship between the height position of the sample observation and the position of the intermediate lens or the imaging lens when the output from the position measuring optical sensor is set to 0 or a constant value is obtained in advance.

図11の制御フローに示すように、顕微鏡の焦点合わせリングまたは制御ソフトウェアによる観察高さ位置の指定に対し、前記中間レンズまたは前記結像レンズを高さ位置を、予め求めてある関係に従って、試料観察の高さに対応した位置に連動して動かす。位置計測用光センサーからの出力が0もしくは一定の値になるように、顕微鏡の焦点駆動機構をフィードバックして動かし、合焦させる。このようにすると、試料観察位置が試料境界面とは異なる高さで変わっても、位置計測用光センサーと試料境界面とを常に同じ共役な位置関係に保つことになり、常に光路を光軸に関して対称に保ち光路の変動を最小化することができるため、光路の大きな変動による光路障碍を避けることができ、高さ位置に関し、より広い範囲で合焦位置計測を行うことができる。   As shown in the control flow of FIG. 11, in response to designation of the observation height position by the focusing ring of the microscope or the control software, the height position of the intermediate lens or the imaging lens is determined according to the relationship obtained in advance. Move in conjunction with the position corresponding to the height of observation. The focus drive mechanism of the microscope is fed back and focused so that the output from the position measuring optical sensor becomes 0 or a constant value. In this way, even if the sample observation position changes at a height different from the sample boundary surface, the optical sensor for position measurement and the sample boundary surface are always kept in the same conjugate positional relationship, and the optical path is always set to the optical axis. Therefore, it is possible to minimize the fluctuation of the optical path, so that the optical path obstruction due to the large fluctuation of the optical path can be avoided, and the focus position can be measured in a wider range with respect to the height position.

また、合焦位置計測は、位置計測用光センサー上における像の拡大倍率に依存する。結像倍率が高ければ、分解能が高いが、計測可能な高さ位置範囲は狭くなる。結像レンズ8の焦点距離をfimageとすると、結像倍率は、
結像倍率 = (fimage/fobj)×(f12/f13) (2)
で与えられる。従って、必要とする分解能と計測範囲に応じて、対物レンズ、中間レンズ、結像レンズの焦点距離を選択して用いる。
The focus position measurement depends on the magnification of the image on the position measurement optical sensor. If the imaging magnification is high, the resolution is high, but the measurable height position range is narrow. If the focal length of the imaging lens 8 is image, the imaging magnification is
Imaging magnification = (image / fobj) × (f12 / f13) (2)
Given in. Therefore, the focal lengths of the objective lens, intermediate lens, and imaging lens are selected and used according to the required resolution and measurement range.

また、位置計測光の照明範囲の大きさは、分解能と計測可能な高さ位置範囲とに関係し、光源のスリット2で規定される。光源のスリット2の径をRslitとし、集光レンズ3の焦点距離をf3とすると、試料1でのスリット像の径すなわち位置計測用光の照明範囲の径Rillumは、Rslit×(fobj/f3)×(f12/f13)で与えられ、センサー9でのスリット像の径すなわち位置計測用光像の径Rimageは、Rillum×(fimage/fobj)×(f13/f12)で与えられる。   The size of the illumination range of the position measurement light is related to the resolution and the measurable height position range and is defined by the slit 2 of the light source. Assuming that the diameter of the slit 2 of the light source is Rslit and the focal length of the condenser lens 3 is f3, the diameter of the slit image in the sample 1, that is, the diameter Rillum of the illumination range of the position measurement light is Rslit × (fobj / f3) X (f12 / f13), and the diameter of the slit image at the sensor 9, that is, the diameter Rimage of the position measurement optical image is given by Rillum × (image / fobj) × (f13 / f12).

従って、センサー9での位置計測用光像の径Rimageは、
Rimage=Rslit×(fimage/f3) (3)
である。なお、実際には回折や像ボケがあるので、これら式で与えられるスリット像の径は厳密ではない。必要とする分解能と計測範囲に応じて、光源のスリット2の径と、集光レンズ3の焦点距離f3を選択して用いる。
Therefore, the diameter Rimage of the position measurement optical image at the sensor 9 is
Rage = Rslit × (image / f3) (3)
It is. Since there is actually diffraction and image blur, the diameter of the slit image given by these equations is not strict. The diameter of the slit 2 of the light source and the focal length f3 of the condenser lens 3 are selected and used according to the required resolution and measurement range.

また、生きている生物試料に対して光照射損傷の弱い近赤外光を位置計測用光源として用いており、光照射に弱い生きている生物試料に対しても損傷をほとんど与えることなく、試料位置を知ることができる。本発明の装置は、種々の光学顕微鏡の他にも、走査型プローブ顕微鏡あるいは光を利用した計測装置にも利用できる。   In addition, near-infrared light that is weak in light irradiation damage to living biological samples is used as a light source for position measurement, and there is almost no damage to living biological samples that are vulnerable to light irradiation. You can know the position. The apparatus of the present invention can be used not only for various optical microscopes but also for scanning probe microscopes or measuring devices using light.

本発明の第1実施例の試料合焦位置高精度計測法は、図2に示される装置において、光源2として波長820から850nmの低コヒーレンス性高輝度赤外発光素子、ミラー3として直角プリズム、位置計測用ダイクロイックミラー10として波長800nm以上の近赤外光を反射し可視光を透過するもの、対物レンズ5として開口数1.45の油浸100倍対物レンズ、結像レンズ8として焦点距離30mmのレンズ、位置計測用センサー9として2分割Siフォトダイオードより構成される。ダイクロイックミラー4としては、蛍光観察用ダイクロイックミラーで波長800nm以上の近赤外光を反射するものを蛍光色素毎に交換して用いる。例えば、緑色の蛍光タンパク質であるGFPの観察用のダイクロイックミラー4として、488nmの蛍光励起光を反射、500nmから700nmの可視光を透過、800nm以上の近赤外光を反射するものを用いる。   The sample focusing position high-accuracy measuring method according to the first embodiment of the present invention includes a low-coherence high-intensity infrared light-emitting element having a wavelength of 820 to 850 nm as the light source 2 and a right-angle prism as the mirror 3 in the apparatus shown in FIG. The position measuring dichroic mirror 10 reflects near infrared light having a wavelength of 800 nm or more and transmits visible light, the objective lens 5 is an oil immersion 100 × objective lens having a numerical aperture of 1.45, and the imaging lens 8 has a focal length of 30 mm. The lens and the position measuring sensor 9 are composed of two-divided Si photodiodes. As the dichroic mirror 4, a fluorescent observation dichroic mirror that reflects near-infrared light having a wavelength of 800 nm or more is used for each fluorescent dye. For example, as the dichroic mirror 4 for observing GFP, which is a green fluorescent protein, a mirror that reflects fluorescence excitation light of 488 nm, transmits visible light of 500 nm to 700 nm, and reflects near infrared light of 800 nm or more is used.

図6に、本発明の試料合焦位置高精度計測法による計測結果の精度ならびに試料温度に対する安定性の実測結果を示す。試料に冷水を加えたところ、試料温度は急激に34.5度まで冷えその後36度台まで回復したが、これに伴い、機械的な試料高さ位置計測では温度ドリフトにより最大5マイクロメートルまで表示が変化した。しかしながら、本装置では、冷却直後の瞬間を除き、どの時間においてもプラスマイナス30nm(0.03マイクロメートル)以内の高精度で、試料の高さ位置を計測でき、合焦位置を保持できている。   FIG. 6 shows the accuracy of the measurement result by the sample focusing position high-precision measurement method of the present invention and the measurement result of the stability with respect to the sample temperature. When cold water was added to the sample, the sample temperature suddenly cooled to 34.5 ° C and then recovered to the 36 ° C level. Along with this, the sample height position was measured up to 5 micrometers due to temperature drift. Changed. However, with this apparatus, the height position of the sample can be measured with high accuracy within ± 30 nm (0.03 micrometers) at any time except for the moment immediately after cooling, and the in-focus position can be maintained. .

本発明の第2実施例の試料合焦位置高精度計測法は、図2に示される装置において、結像レンズ8として焦点距離15mmのレンズを用い、他は第1実施例と同じ構成である。結像レンズ8の焦点距離を15mmとすると、焦点距離30mmの場合と比べ、位置計測用センサー9上での像の倍率が半分となる。その結果、合焦位置計測の精度は約半分に落ちるが、計測可能な高さ位置の範囲が広くなる。   The sample focusing position high-accuracy measuring method of the second embodiment of the present invention uses the lens having a focal length of 15 mm as the imaging lens 8 in the apparatus shown in FIG. . When the focal length of the imaging lens 8 is 15 mm, the magnification of the image on the position measuring sensor 9 is halved compared to the case where the focal length is 30 mm. As a result, the accuracy of in-focus position measurement is reduced to about half, but the range of height positions that can be measured is widened.

本発明の第3実施例の試料合焦位置高精度計測法は、図2に示される装置において、位置計測用センサー9として直線状8分割フォトダイオードを用い、他は第1実施例と同じ構成である。試料上の異なる高さ位置を観察する場合に、反射光が変化する方向に分割フォトダイオードを並べることにより、高さ位置に関し、より広い範囲で計測が可能となる。この方法によるΔzの計測可能な範囲は、式(1)のΔx=2Δz×tanθで与えられるΔxに関し、対物レンズの視野の程度が目安である。   The sample focusing position high-accuracy measuring method of the third embodiment of the present invention is the same as that of the first embodiment except that a linear 8-divided photodiode is used as the position measuring sensor 9 in the apparatus shown in FIG. It is. When observing different height positions on the sample, by arranging the divided photodiodes in the direction in which the reflected light changes, the height position can be measured in a wider range. The range in which Δz can be measured by this method is a measure of the field of view of the objective lens with respect to Δx given by Δx = 2Δz × tan θ in equation (1).

本発明の第4実施例の試料合焦位置高精度計測法は、図7に示される装置より構成される。第1実施例(図2)の結像レンズ8と光源側の集光レンズ3とを共通化し、1個の結像レンズ8より構成する。光源2側ならびに位置計測用センサー9側の両方の光路が直角とは異なる角度で配置されるが、試料の高さ位置が変化した際に、光路の変化が光軸に関して対称となり、高さ位置に関する計測範囲が広くなる。結像レンズ8を光軸方向に変化させることにより、位置計測用光センサー位置を試料観察面と共役な位置からずらすことができ、試料上の異なる高さ位置を合焦位置として求めることができる。   The sample focus position high-accuracy measuring method of the fourth embodiment of the present invention is constituted by the apparatus shown in FIG. The imaging lens 8 of the first embodiment (FIG. 2) and the condenser lens 3 on the light source side are made common and constituted by one imaging lens 8. The optical paths on both the light source 2 side and the position measuring sensor 9 side are arranged at angles different from the right angle. However, when the height position of the sample is changed, the change in the optical path becomes symmetric with respect to the optical axis, and the height position The measurement range is widened. By changing the imaging lens 8 in the optical axis direction, the position measuring optical sensor position can be shifted from a position conjugate with the sample observation surface, and a different height position on the sample can be obtained as the in-focus position. .

本発明の第5実施例の試料合焦位置高精度計測法は、図8および9に示される装置より構成される。第1実施例(図2)の装置に、中間レンズ12と中間レンズ13とを加えた構成となっている。試料の観察位置から出た光は対物レンズを通った後平行光となるが、中間レンズ12で結像したのち、中間レンズ13により平行光に戻る配置となっている。   The sample focusing position high-accuracy measuring method of the fifth embodiment of the present invention is composed of the apparatus shown in FIGS. An intermediate lens 12 and an intermediate lens 13 are added to the apparatus of the first embodiment (FIG. 2). The light emitted from the observation position of the sample becomes parallel light after passing through the objective lens, but after being imaged by the intermediate lens 12, the light is returned to parallel light by the intermediate lens 13.

異なる対物レンズを用いる場合には、中間レンズの組み合わせを変更するのみで、他の光学系には何らの変更を加えることなく、簡単に対応することができる。図8で示される装置のように、100倍対物レンズを用いる場合には、中間レンズ12として焦点距離30mm、中間レンズ13として焦点距離30mmのレンズを用いる。   In the case of using different objective lenses, it is possible to easily cope with other optical systems without making any changes only by changing the combination of the intermediate lenses. When a 100 × objective lens is used as in the apparatus shown in FIG. 8, a lens with a focal length of 30 mm is used as the intermediate lens 12 and a lens with a focal length of 30 mm is used as the intermediate lens 13.

図9で示される装置のように、60倍対物レンズを用いる場合には、中間レンズ12として焦点距離30mm、中間レンズ13として焦点距離30×60/100=18mmのレンズを用いる。対物レンズ、中間レンズ12、中間レンズ13の焦点距離を各fobj、f14、f15として、fobj×f13/f12が同じであれば、他の組み合わせでも良い。   When a 60 × objective lens is used as in the apparatus shown in FIG. 9, a lens having a focal length of 30 mm is used as the intermediate lens 12 and a focal length of 30 × 60/100 = 18 mm is used as the intermediate lens 13. The focal lengths of the objective lens, the intermediate lens 12, and the intermediate lens 13 are fobj, f14, and f15, and other combinations are possible as long as fobj × f13 / f12 are the same.

このようにすれば、対物レンズの違いによる光路の違いを中間レンズ群で吸収することができ、光源2側ならびに、結像レンズ8と位置計測用センサー9側は、全く同じままで計測を行うことができる。   In this way, the difference in the optical path due to the difference in the objective lens can be absorbed by the intermediate lens group, and the measurement is performed while the light source 2 side, the imaging lens 8 and the position measurement sensor 9 side are exactly the same. be able to.

本発明の第6実施例の試料合焦位置高精度計測法は、図10に示される装置より構成される。第1実施例(図2)の装置に、中間レンズ12と中間レンズ13とを加えた構成となっている。試料の観察位置から出た光は対物レンズを通った後平行光となるが、中間レンズ12で結像したのち、中間レンズ13により平行光に戻る配置となっている。   The sample focusing position high-accuracy measuring method of the sixth embodiment of the present invention is constituted by the apparatus shown in FIG. An intermediate lens 12 and an intermediate lens 13 are added to the apparatus of the first embodiment (FIG. 2). The light emitted from the observation position of the sample becomes parallel light after passing through the objective lens, but after being imaged by the intermediate lens 12, the light is returned to parallel light by the intermediate lens 13.

試料上の異なる高さ位置を観察する場合には、中間レンズ12と15間の距離を変えることにより、位置計測用光センサー位置を試料観察面と共役な位置からずらすことができ、試料上の異なる高さ位置を合焦位置として求めることができる。図10では中間レンズ13の位置を変えているが、中間レンズ12の位置を変えても良い。試料観察の高さ位置を変更すると、対物レンズ側の光路が変化し、これが合焦位置計測可能な範囲を制限するが、中間レンズの移動により対物レンズ側の光路の違いを吸収し、光源2側ならびに結像レンズ8と位置計測用センサー9側の光路を同じままにすることができるため、試料観察の高さ位置に関し、より広い範囲で合焦位置計測を行うことが可能である。   When observing different height positions on the sample, by changing the distance between the intermediate lenses 12 and 15, the position measuring optical sensor position can be shifted from a position conjugate with the sample observation surface. Different height positions can be obtained as in-focus positions. Although the position of the intermediate lens 13 is changed in FIG. 10, the position of the intermediate lens 12 may be changed. When the height position of the sample observation is changed, the optical path on the objective lens side changes, and this limits the range in which the focus position can be measured, but the difference in the optical path on the objective lens side is absorbed by the movement of the intermediate lens, and the light source 2 Since the optical path on the side and the imaging lens 8 and the position measuring sensor 9 side can be kept the same, the focus position can be measured in a wider range with respect to the height position of the sample observation.

本発明の第7実施例の試料合焦位置高精度計測法は、第6実施例の図10に示される装置と、図11に示される焦点合わせ機構とより構成される。
観察高さ位置の指定に対し、中間レンズ12もしくは中間レンズ13の位置を連動して変更する。予め、位置計測用センサー9からの出力が0もしくは一定の値になるようにした時の、観察高さ位置と、中間レンズ12もしくは中間レンズ13の位置との間の関係を求めておく。図11の制御フローに示すように、顕微鏡の焦点合わせリングまたは制御ソフトウエアによる観察高さ位置の指定17に対し、中間レンズ12もしくは中間レンズ13を、予め求めてある関係に従って、中間・結像レンズ駆動機構18は観察高さ位置の対応する位置に連動して動かす。位置計測用光センサー9からの出力が0もしくは一定の値になるように、顕微鏡の焦点駆動機構16にフィードバックして動かし、合焦させる。
The sample focusing position high-accuracy measuring method of the seventh embodiment of the present invention includes the apparatus shown in FIG. 10 of the sixth embodiment and the focusing mechanism shown in FIG.
The position of the intermediate lens 12 or the intermediate lens 13 is changed in conjunction with the designation of the observation height position. The relationship between the observation height position and the position of the intermediate lens 12 or the intermediate lens 13 when the output from the position measuring sensor 9 is set to 0 or a constant value is obtained in advance. As shown in the control flow of FIG. 11, the intermediate lens 12 or the intermediate lens 13 is subjected to intermediate / image formation according to a predetermined relationship with respect to the observation height position designation 17 by the focusing ring of the microscope or the control software. The lens driving mechanism 18 moves in conjunction with the corresponding position of the observation height position. The output from the position measuring optical sensor 9 is fed back to the focus driving mechanism 16 of the microscope so that the output becomes 0 or a constant value, and is brought into focus.

顕微鏡で試料深さ方向の異なった位置を観察する場合には、試料と対物レンズ間の距離を変える。従って、試料観察の高さ位置と、試料と対物レンズ間距離を対応させて考えるのが、顕微鏡法でこれまで一貫して行なわれてきた方法である。しかし、この従来法では、試料と対物レンズ間の距離が、設定したつもりの値と実際の値とで、熱的あるいは機械的な要因などによりずれてしまい、焦点ボケや、意図とは異なる高さ位置で試料を観察する結果となる。   When observing different positions in the sample depth direction with a microscope, the distance between the sample and the objective lens is changed. Therefore, considering the height position of sample observation and the distance between the sample and the objective lens is a method that has been consistently performed in the microscopic method. However, with this conventional method, the distance between the sample and the objective lens is deviated between the intended value and the actual value due to thermal or mechanical factors. As a result, the sample is observed at the position.

これに対し、この実施例の方法では、試料観察の高さ位置の変更に対しては、位置計測用中間レンズまたは結像レンズの位置の変更をもって対応させる。しかる後、位置計測用センサーからの出力が目的の焦点位置に対応した値になるように、試料と対物レンズ間の距離を変えて焦点合わせを行なう。   On the other hand, in the method of this embodiment, the change of the height position of the sample observation is made to respond by changing the position of the position measuring intermediate lens or the imaging lens. Thereafter, focusing is performed by changing the distance between the sample and the objective lens so that the output from the position measuring sensor becomes a value corresponding to the target focal position.

このようにすると、位置計測用センサーと試料観察面とを常に同じ共役な位置関係に保つことになり、位置計測用光の光路変動を常に最小化することができるため、光路の大きな変動による光路障碍を避けることができ、試料観察の高さ位置に関し、より広い範囲で合焦位置計測を行うことが可能である。その結果、より広い高さ位置範囲で、指定された観察高さ位置とのずれなく観察を行なうことが実現する。   In this way, the position measurement sensor and the sample observation surface are always kept in the same conjugate positional relationship, and the optical path variation of the position measurement light can always be minimized. Obstacles can be avoided, and the focus position can be measured in a wider range with respect to the height position of sample observation. As a result, it is possible to perform observation within a wider range of height positions without deviation from the designated observation height position.

本発明は正立型顕微鏡と倒立型顕微鏡とを問わず適用できる。また、本発明の装置は、種々の光学顕微鏡の他にも、走査型プローブ顕微鏡あるいは光を利用した計測装置にも利用できる。   The present invention can be applied to both an upright microscope and an inverted microscope. In addition to various optical microscopes, the apparatus of the present invention can be used for a scanning probe microscope or a measuring device using light.

本発明の試料合焦位置高精度計測の基本原理の説明図。Explanatory drawing of the basic principle of the sample focus position high precision measurement of this invention. 本発明の試料合焦位置高精度計測方法を実現する構成。The structure which implement | achieves the sample focus position highly accurate measurement method of this invention. 焦点駆動機構の制御フロー。Control flow of the focus drive mechanism. 従来の試料の深さ(高さ)方向位置を計測する概要図。The schematic diagram which measures the depth (height) direction position of the conventional sample. 試料境界面からの反射光強度の対物レンズへの光入射位置依存性のデータ。Data on the light incident position dependency of the reflected light intensity from the sample boundary surface to the objective lens. 試料合焦位置高精度計測法の精度のデータ。Data on the accuracy of the sample focus position high-precision measurement method. 実施例4記載の試料合焦位置高精度計測方法を実現する構成。The structure which implement | achieves the sample focus position highly accurate measuring method of Example 4. FIG. 実施例5記載の試料合焦位置高精度計測方法を実現する構成。The structure which implement | achieves the sample focus position highly accurate measuring method of Example 5. FIG. 実施例5記載の試料合焦位置高精度計測方法を実現する構成。The structure which implement | achieves the sample focus position highly accurate measuring method of Example 5. FIG. 実施例6記載の試料合焦位置高精度計測方法を実現する構成。The structure which implement | achieves the sample focus position highly accurate measuring method of Example 6. FIG. 実施例7記載の焦点合わせ機構の制御フロー。10 is a control flow of the focusing mechanism described in the seventh embodiment.

符号の説明Explanation of symbols

1 観測対象の試料
2 光源とスリット
3 照明用の集光レンズ
4 ダイクロイックミラー
5 対物レンズ
6 液浸液
7 カバーガラス
8 結像用レンズ
9 位置計測用光センサー
10 位置計測用ダイクロイックミラー
11 ミラー
12 中間レンズ
13 中間レンズ
14 合焦位置計測器
15 顕微鏡
16 焦点駆動機構
17 焦点合わせリング・制御ソフトによる観察高さ位置指定
18 中間・結像レンズ駆動機構
DESCRIPTION OF SYMBOLS 1 Sample to be observed 2 Light source and slit 3 Condensing lens for illumination 4 Dichroic mirror 5 Objective lens 6 Immersion liquid 7 Cover glass 8 Imaging lens 9 Optical sensor for position measurement 10 Dichroic mirror for position measurement 11 Mirror 12 Intermediate Lens 13 Intermediate lens 14 In-focus position measuring instrument 15 Microscope 16 Focus drive mechanism 17 Observation height position designation by focusing ring / control software 18 Intermediate / imaging lens drive mechanism

Claims (9)

蛍光像観察可能な顕微鏡および位置計測において、蛍光像観察には用いない波長の光を位置計測に用い、前記位置計測用の光を光源より、蛍光用のダイクロイックミラーを用いて顕微鏡筒の光路上に導入することにより、蛍光像観察時にも蛍光の損失無く、合焦位置および試料高さ位置を計測可能にすることを特徴とする試料合焦位置高精度計測法。   In a microscope and position measurement capable of observing a fluorescent image, light of a wavelength not used for fluorescent image observation is used for position measurement, and the light for position measurement is used as a light source on the optical path of the microscope tube using a dichroic mirror for fluorescence. Incorporating into the method, a sample focus position high-precision measurement method that enables measurement of the focus position and the sample height position without loss of fluorescence even when a fluorescent image is observed. 蛍光像観察可能な顕微鏡および位置計測において、光源より対物レンズ辺縁部分の高開口数の領域に光を通し、全反射領域を含む大きな照明角度で試料を照射し、試料境界面から対物レンズを通して戻ってくる反射光を位置計測用光センサー上に結像し、試料境界面での全反射光及び大きな照明角度からの反射光を利用することにより、透明試料等で低反射率の試料においても、高精度で合焦位置および試料高さ位置を蛍光像観察にも損失無く計測可能にしたことを特徴とする請求項1に記載の試料合焦位置高精度計測法。   In a microscope and position measurement capable of observing a fluorescent image, light is passed from the light source to the high numerical aperture area at the edge of the objective lens, the sample is irradiated at a large illumination angle including the total reflection area, and the objective lens is passed through the sample boundary surface. The reflected light that returns is imaged on the position measurement optical sensor, and by using the total reflected light on the sample boundary surface and the reflected light from a large illumination angle, even in a transparent sample or the like with a low reflectance sample 2. The sample focusing position high-accuracy measuring method according to claim 1, wherein the in-focus position and the sample height position can be measured with high accuracy without loss even in fluorescence image observation. 前記光源として、非干渉性(インコヒーレント)光源もしくは非干渉性化および低干渉性化したコヒーレント光源を用い、より安定で高精度に位置計測を行うことを特徴とする請求項1又は請求項2に記載の試料合焦位置高精度計測法。   3. The position measurement is performed more stably and with high accuracy by using a non-coherent (incoherent) light source or a coherent light source made incoherent and low-coherent as the light source. The method for measuring the in-focus position of the sample as described in 1. 位置計測用光センサーからの出力を、試料高さ位置の関数として求めておくことにより、試料位置を光センサーから計測し、さらに、直線状に配置された光センサーを用いてより広い範囲の試料高さ位置を計測可能にすることを特徴とする請求項2に記載の試料合焦位置高精度計測法。   By obtaining the output from the optical sensor for position measurement as a function of the sample height position, the sample position is measured from the optical sensor, and a wider range of samples are obtained using the linearly arranged optical sensor. 3. The method for measuring the in-focus position of the sample according to claim 2, wherein the height position can be measured. 位置計測用結像レンズもしくは位置計測用光センサー位置を光軸方向に動かして位置計測用光センサー位置を試料観測面と共役な位置からずらすことにより、あるいは、前記結像レンズもしくは前記光センサー位置を光軸と垂直な方向に動かすことにより、試料上の異なる高さ位置を基準位置として試料高さ位置を求めることを特徴とする請求項2に記載の試料合焦位置高精度計測法。   The position measuring optical sensor position is moved in the optical axis direction to shift the position measuring optical sensor position from a position conjugate with the sample observation surface, or the imaging lens or the optical sensor position. The sample focus position high-accuracy measuring method according to claim 2, wherein the sample height position is obtained by moving the lens in a direction perpendicular to the optical axis, using different height positions on the sample as a reference position. 焦点駆動機構と組み合わせることにより、自動焦点合わせ、試料位置制御、対物レンズを経由して照明を行う薄層斜光照明法や全反射照明法などの照明光制御に適用可能としたことを特徴とする請求項2記載の試料合焦位置高精度計測法。   By combining with a focus drive mechanism, it can be applied to illumination light control such as autofocusing, sample position control, thin-layer oblique illumination method or total reflection illumination method that performs illumination via an objective lens The sample focusing position high-precision measurement method according to claim 2. 対物レンズと位置計測用結像レンズの間に中間レンズ群を有し、試料と位置計測用センサーとの共役な関係を変えることなく前記中間レンズ群を配置することができる構成であることを特徴とする請求項2記載の試料合焦位置高精度計測法。   An intermediate lens group is provided between the objective lens and the position measurement imaging lens, and the intermediate lens group can be arranged without changing the conjugate relationship between the sample and the position measurement sensor. The method for accurately measuring the in-focus position of the sample according to claim 2. 対物レンズと位置計測用結像レンズの間に中間レンズ群を有し、前記中間レンズ群のうちの一部のレンズ位置を動かすことにより、試料上の異なる高さ位置を基準位置として試料高さ位置を求めることを可能にすることを特徴とする請求項2記載の試料合焦位置高精度計測法。   There is an intermediate lens group between the objective lens and the imaging lens for position measurement, and by moving the position of a part of the intermediate lens group, the sample height is set with a different height position on the sample as a reference position. 3. The method for measuring a focused position of a sample according to claim 2, wherein the position can be obtained. 焦点合わせの指定高さ位置に連動して、位置計測用中間レンズもしくは位置計測用結像レンズを動かし、位置計測用光センサーからの出力が目的の焦点高さ位置に対応した値になるように、対物レンズと試料間距離を合わせて焦点合わせを行うことにより、高さ位置に関し広い範囲で合焦位置計測を可能にすることを特徴とする請求項2記載の試料合焦位置高精度計測法。
The position measurement intermediate lens or the position measurement imaging lens is moved in conjunction with the specified height position for focusing so that the output from the position measurement optical sensor becomes a value corresponding to the target focus height position. 3. The method for measuring the in-focus position of the sample according to claim 2, wherein the in-focus position can be measured in a wide range with respect to the height position by performing focusing by adjusting the distance between the objective lens and the sample. .
JP2005134677A 2005-05-02 2005-05-02 Highly precise measurement method of microscope focusing position Pending JP2006309088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134677A JP2006309088A (en) 2005-05-02 2005-05-02 Highly precise measurement method of microscope focusing position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134677A JP2006309088A (en) 2005-05-02 2005-05-02 Highly precise measurement method of microscope focusing position

Publications (1)

Publication Number Publication Date
JP2006309088A true JP2006309088A (en) 2006-11-09

Family

ID=37476018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134677A Pending JP2006309088A (en) 2005-05-02 2005-05-02 Highly precise measurement method of microscope focusing position

Country Status (1)

Country Link
JP (1) JP2006309088A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087992A1 (en) * 2007-01-19 2008-07-24 Nikon Corporation Focal point detecting apparatus and microscope
JP2009098110A (en) * 2007-09-28 2009-05-07 Olympus Corp Optical measurement apparatus
WO2010128670A1 (en) * 2009-05-08 2010-11-11 株式会社ニコン Focus control device, and incubation and observation device
TWI674437B (en) * 2018-03-28 2019-10-11 浮雕精密有限公司 Microscope collision avoidance architecture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087992A1 (en) * 2007-01-19 2008-07-24 Nikon Corporation Focal point detecting apparatus and microscope
US8208202B2 (en) 2007-01-19 2012-06-26 Nikon Corporation Focus detection apparatus, microscope
JP5463671B2 (en) * 2007-01-19 2014-04-09 株式会社ニコン Focus detection device, microscope
JP2009098110A (en) * 2007-09-28 2009-05-07 Olympus Corp Optical measurement apparatus
WO2010128670A1 (en) * 2009-05-08 2010-11-11 株式会社ニコン Focus control device, and incubation and observation device
US8917347B2 (en) 2009-05-08 2014-12-23 Nikon Corporation Focus control method and culture observation apparatus
TWI674437B (en) * 2018-03-28 2019-10-11 浮雕精密有限公司 Microscope collision avoidance architecture

Similar Documents

Publication Publication Date Title
US8643946B2 (en) Autofocus device for microscopy
US7982950B2 (en) Measuring system for structures on a substrate for semiconductor manufacture
NL1030102C2 (en) Fluorescence microscope.
US20160216502A1 (en) High-Resolution Microscope and Image Splitter Arrangement
US9410794B2 (en) Light microscope and microscopy method for examining a microscopic specimen
US7304282B2 (en) Focus detection device and fluorescent observation device using the same
JP6241858B2 (en) Confocal microscope
US7480046B2 (en) Scanning microscope with evanescent wave illumination
US7948629B2 (en) Microscope and method for total internal reflection-microscopy
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
JP6522533B2 (en) Microscope and observation method
US7474393B2 (en) Method and apparatus for determining a vertical intensity profile along an illuminating beam
JP2006309088A (en) Highly precise measurement method of microscope focusing position
CN108956571B (en) Calibration method and device based on error of included angle between ccd target surface and installation positioning surface of leakage radiation imaging
WO2005093483A1 (en) Method for measuring focal position of sample with high precision
US6875972B2 (en) Autofocus module for microscope-based systems
JP2005003909A (en) Thin layer oblique illumination method of optical system
AU2020366521B2 (en) Virtual fiducials
JP2003307681A5 (en)
US7239379B2 (en) Method and apparatus for determining a vertical intensity profile through a plane of focus in a confocal microscope
US20210349298A1 (en) Method and microscope for determining the thickness of a cover slip or slide
JP2005140956A (en) Focal point detection device and fluorescent microscope
US8108942B2 (en) Probe microscope
CN112867918A (en) Method and microscope for determining the refractive index of an optical medium
JP3828799B2 (en) Thin-layer oblique illumination method for optical systems