JP6332327B2 - Scanning microscope - Google Patents
Scanning microscope Download PDFInfo
- Publication number
- JP6332327B2 JP6332327B2 JP2016092565A JP2016092565A JP6332327B2 JP 6332327 B2 JP6332327 B2 JP 6332327B2 JP 2016092565 A JP2016092565 A JP 2016092565A JP 2016092565 A JP2016092565 A JP 2016092565A JP 6332327 B2 JP6332327 B2 JP 6332327B2
- Authority
- JP
- Japan
- Prior art keywords
- pupil
- optical system
- image
- projection lens
- position adjusting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Microscoopes, Condenser (AREA)
Description
本発明は、走査型顕微鏡に関する。 The present invention relates to a scanning microscope.
走査型の共焦点顕微鏡(以下、「走査型顕微鏡」と称する)は、レーザビームを対物レンズを介して観察試料に照射し、これにより観察試料からの反射光もしくは観察試料を照射したことにより試料から発生した蛍光を、再び対物レンズ及び光学系を介して点状に結像して検出器で検出するように構成されている。このとき、観察試料の2次元XY面全体を偏向素子であるガルバノミラーを用いてスキャンすることで、2次元画像を得ることができる。ところで、このような走査型顕微鏡において、レーザビームの2次元スキャンによりムラのない2次元画像を得るためには、2つの偏向素子の回転角(振り角)にかかわらず、常に対物レンズの射出瞳の中心と対物レンズを通過するレーザビームの回転中心とを一致させることが必要であり、このためには偏向素子の回転中心と対物レンズの瞳位置を共役関係とすればよいことになる。ところが、レーザビームを2次元スキャンするのに、2つの偏向素子を使用しており、走査のために回転することから十分な空間を設けて配置することが必要となるため、常に、これら2つの偏向素子の両方を対物レンズの瞳位置と共役関係になるように設定することはできない。そのため、2つの偏向素子のいずれか一方を光軸方向に移動させ、この偏向素子の回転角に応じて他方の偏向素子の回転中心を通るように制御することにより、ムラのない2次元画像を得るように構成された走査型顕微鏡が提案されている(例えば、特許文献1参照)。 A scanning confocal microscope (hereinafter referred to as a “scanning microscope”) irradiates an observation sample with a laser beam through an objective lens, thereby irradiating reflected light from the observation sample or the observation sample. The fluorescence generated from the light is imaged in a dot shape again through the objective lens and the optical system and is detected by the detector. At this time, a two-dimensional image can be obtained by scanning the entire two-dimensional XY plane of the observation sample using a galvanometer mirror that is a deflection element. By the way, in such a scanning microscope, in order to obtain a uniform two-dimensional image by two-dimensional scanning with a laser beam, the exit pupil of the objective lens is always used regardless of the rotation angle (swing angle) of the two deflection elements. And the center of rotation of the laser beam passing through the objective lens must coincide with each other. For this purpose, the rotation center of the deflecting element and the pupil position of the objective lens should be in a conjugate relationship. However, since two deflection elements are used for two-dimensional scanning of the laser beam, and it is necessary to provide a sufficient space for rotation because of the rotation for scanning, these two are always provided. It is impossible to set both of the deflecting elements so as to be conjugate with the pupil position of the objective lens. Therefore, by moving one of the two deflection elements in the optical axis direction and controlling the deflection element to pass through the rotation center of the other deflection element, a two-dimensional image without unevenness can be obtained. A scanning microscope configured so as to be obtained has been proposed (see, for example, Patent Document 1).
しかしながら、偏向素子を移動させることにより視野ムラを改善することはできても、システム構成が複雑で高価になってしまうという課題があった。 However, there is a problem that the system configuration becomes complicated and expensive even if the deflection of the field of view can be improved by moving the deflection element.
本発明はこのような課題に鑑みてなされたものであり、システム構成の大きな変更を伴わずに安価でXY両成分の瞳共役を実現することができる走査型顕微鏡を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a scanning microscope that can realize pupil conjugation of both XY components at low cost without significant changes in the system configuration. .
前記課題を解決するために、本発明に係る走査型顕微鏡は、対物レンズと、対物レンズの瞳像を投影する瞳投影レンズと、第1の方向に回転する第1の偏向素子と第2の方向に回転する第2の偏向素子とを有する走査ユニットと、第1の方向及び第2の方向で異なる屈折力を有する瞳位置調整光学系と、を有し、第1の方向及び第2の方向における屈折力のうち、少なくとも一方は負の値である。 In order to solve the above problems, a scanning microscope according to the present invention includes an objective lens, a pupil projection lens that projects a pupil image of the objective lens, a first deflection element that rotates in a first direction, and a second A scanning unit having a second deflecting element that rotates in a direction, and a pupil position adjusting optical system having different refractive powers in the first direction and the second direction, and the first direction and the second direction At least one of the refractive powers in the direction is a negative value.
本発明によると、システム構成の大きな変更を伴わずに安価でXY両成分の瞳共役を実現することができる走査型顕微鏡を提供することができる。 According to the present invention, it is possible to provide a scanning microscope capable of realizing pupil conjugation of both XY components at a low cost without greatly changing the system configuration.
以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて本実施形態に係る走査型顕微鏡の構成を説明する。この走査型顕微鏡10は、光源20から放射されたレーザビーム(照明光)を観察試料に照射して走査する走査光学系30と、この試料からの反射光または蛍光を検出する検出光学系40と、を有して構成される。なお、以降の説明において、走査光学系30の光軸方向をz軸とし、このz軸に直交する面内で互いに直交する方向をそれぞれx軸及びy軸とする。また、走査光学系30により走査される試料の面を試料面50として説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the scanning microscope according to the present embodiment will be described with reference to FIG. The scanning microscope 10 includes a scanning optical system 30 that scans an observation sample by irradiating a laser beam (illumination light) emitted from a light source 20, and a detection optical system 40 that detects reflected light or fluorescence from the sample. , And is configured. In the following description, the optical axis direction of the scanning optical system 30 is defined as the z axis, and the directions orthogonal to each other in a plane orthogonal to the z axis are defined as the x axis and the y axis, respectively. The surface of the sample scanned by the scanning optical system 30 will be described as a sample surface 50.
走査光学系30は、光源20側から順に、ビームエキスパンダ31、ビームスプリッター32、走査ユニット33、瞳投影レンズ34、瞳位置調整光学系35、第2対物レンズ36、及び、対物レンズ37を有する。また、検出光学系40は、走査光学系30の側方に配置され、ビームスプリッター32側から順に、結像レンズ41、遮光板42、及び、光検出器43を有する。また、この走査型顕微鏡10には、走査ユニット33で走査する位置(試料面50上の座標)及び光検出器43で検出された値を処理する処理部70が設けられている。 The scanning optical system 30 includes a beam expander 31, a beam splitter 32, a scanning unit 33, a pupil projection lens 34, a pupil position adjustment optical system 35, a second objective lens 36, and an objective lens 37 in order from the light source 20 side. . The detection optical system 40 is disposed on the side of the scanning optical system 30 and includes an imaging lens 41, a light shielding plate 42, and a photodetector 43 in order from the beam splitter 32 side. In addition, the scanning microscope 10 is provided with a processing unit 70 that processes the position (coordinates on the sample surface 50) scanned by the scanning unit 33 and the value detected by the photodetector 43.
この走査型顕微鏡10において、光源20から放射されたレーザビームは、ビームエキスパンダ31で必要なビーム径の略平行光束となり、ビームスプリッター32を透過し、走査ユニット33に入射する。この走査ユニット33は、後述するように光軸に直交する方向にレーザビームを2次元的に走査するものであり、例えば、図2に示すようにレーザビームを反射することによりこのレーザビームを光軸に直交する面内で所定の方向(この方向をx軸方向とする)に偏向させる第1の偏向素子33x、及び、光軸に直交する面内で第1の偏向素子33xの偏向方向と略直交する方向(この方向をy軸方向とする)に偏向させる第2の偏向素子33yからなる2つの偏向素子で構成されている。また、これらの第1及び第2の偏向素子33x,33yは、駆動部60のモータで回転(揺動)されるように構成されている。そして、この走査ユニット33を出射したレーザビーム(略平行光束)は瞳投影レンズ34により一次像面Iに結像された後、第2対物レンズ36を通過することにより再び略平行光束となり、対物レンズ37によって試料面(対物レンズ37の焦点面)50上に結像される。 In the scanning microscope 10, the laser beam emitted from the light source 20 becomes a substantially parallel light beam having a beam diameter required by the beam expander 31, passes through the beam splitter 32, and enters the scanning unit 33. The scanning unit 33 scans the laser beam two-dimensionally in a direction perpendicular to the optical axis as will be described later. For example, the scanning unit 33 reflects the laser beam as shown in FIG. A first deflection element 33x that deflects in a predetermined direction (this direction is defined as an x-axis direction) in a plane orthogonal to the axis, and a deflection direction of the first deflection element 33x in a plane orthogonal to the optical axis. It is composed of two deflecting elements including a second deflecting element 33y that deflects in a substantially orthogonal direction (this direction is the y-axis direction). The first and second deflection elements 33x and 33y are configured to be rotated (swinged) by the motor of the drive unit 60. The laser beam (substantially parallel light beam) emitted from the scanning unit 33 is imaged on the primary image plane I by the pupil projection lens 34, and then passes through the second objective lens 36 to become a substantially parallel light beam again. The lens 37 forms an image on the sample surface (focal plane of the objective lens 37) 50.
試料面50上に結像されたレーザビームの像は点像となっており、その点像の径は対物レンズ37の開口数(NA)で決まる大きさである。試料面50上の点像(照射領域)からの反射光、若しくは、このレーザ光により試料が励起して発生する蛍光は、再び対物レンズ37で集光されて略平行光束となり、第2対物レンズ36により一次像面Iに結像された後、さらに瞳投影レンズ34で略平行光束にされて走査ユニット33に入射する。そして、この走査ユニット33を出射した反射光(略平行光束)はビームスプリッター32で反射されて検出光学系40内に入り、結像レンズ41により遮光板42の開口部42a上に集光される。この遮光板42の開口部42aを通過した光のみが光検出器43に到達し検出される。 The laser beam image formed on the sample surface 50 is a point image, and the diameter of the point image is determined by the numerical aperture (NA) of the objective lens 37. The reflected light from the point image (irradiation region) on the sample surface 50 or the fluorescence generated by exciting the sample with this laser light is condensed again by the objective lens 37 to become a substantially parallel light beam, and the second objective lens. After being imaged on the primary image plane I by 36, it is further made into a substantially parallel light beam by the pupil projection lens 34 and enters the scanning unit 33. The reflected light (substantially parallel light beam) emitted from the scanning unit 33 is reflected by the beam splitter 32 and enters the detection optical system 40, and is condensed on the opening 42 a of the light shielding plate 42 by the imaging lens 41. . Only the light that has passed through the opening 42a of the light shielding plate 42 reaches the photodetector 43 and is detected.
上述のように、遮光板42の開口部42aは試料面50上に結像されたレーザビームの点像と共役であり、試料面50上の照射領域から出た光(反射光または蛍光)はこの開口部42aを通過することができる。一方、試料面50上の他の領域から出た光のほとんどはこの開口部42a上には結像されず、通過することができない。以上より、処理部70が走査ユニット33の走査に同期させて光検出器43で検出された光信号を処理することにより、試料面50上のレーザビームが照射された座標と光信号から求められる輝度を用いて、試料面50の二次元的な画像を得ることができる。これによりこの走査型顕微鏡10は、高い分解能で試料面50の像を得ることができる。 As described above, the opening 42 a of the light shielding plate 42 is conjugate with the point image of the laser beam imaged on the sample surface 50, and light (reflected light or fluorescence) emitted from the irradiation region on the sample surface 50 is It can pass through this opening 42a. On the other hand, most of the light emitted from other regions on the sample surface 50 is not imaged on the opening 42a and cannot pass therethrough. As described above, the processing unit 70 processes the optical signal detected by the photodetector 43 in synchronization with the scanning of the scanning unit 33, thereby obtaining the coordinates and the optical signal irradiated with the laser beam on the sample surface 50. A two-dimensional image of the sample surface 50 can be obtained using the luminance. As a result, the scanning microscope 10 can obtain an image of the sample surface 50 with high resolution.
ここで、本実施形態に係る走査型顕微鏡10の走査光学系30には、第2対物レンズ36の一次像面I上若しくはその近傍に瞳位置調整光学系35が配置されている。この瞳位置調整光学系35は、上述した走査ユニット33の第1及び第2の偏向素子33x,33yの偏向方向に関して異なる屈折力を有するように構成されている。例えば、この瞳位置調整光学系35は、図3(a)に示すように、第1の偏向素子33xの偏向方向(x軸方向)には屈折力を有さず、図3(b)に示すように、第2の偏向素子33yの偏向方向(y軸方向)には負の屈折力を有するシリンドリカルレンズを用いることができる。 Here, in the scanning optical system 30 of the scanning microscope 10 according to the present embodiment, a pupil position adjusting optical system 35 is disposed on or near the primary image plane I of the second objective lens 36. The pupil position adjusting optical system 35 is configured to have different refractive powers with respect to the deflection directions of the first and second deflection elements 33x and 33y of the scanning unit 33 described above. For example, as shown in FIG. 3A, the pupil position adjusting optical system 35 has no refractive power in the deflection direction (x-axis direction) of the first deflection element 33x, and the pupil position adjustment optical system 35 shown in FIG. As shown, a cylindrical lens having a negative refractive power can be used in the deflection direction (y-axis direction) of the second deflection element 33y.
走査光学系30にこのような瞳位置調整光学系35を用いることにより、図3に示すように、第2対物レンズ36及び瞳投影レンズ34でリレーされる対物レンズ36の瞳Pの像は、x軸方向とy軸方向とで異なる位置に形成される。具体的には上述のシリンドリカルレンズを用いた場合、このシリンドリカルレンズはx軸方向には屈折力がなく、y軸方向には負の屈折力を有するため、y軸方向の瞳像の形成される位置が像側に移動することになる。そのため、x軸と光軸とを含む第1の面内における瞳像結像位置と略同一の位置にx軸方向に回転する第1の偏向素子33xの回転中心を配置し、y軸と光軸とを含む第2の面内における瞳像結像位置と略同一の位置にy軸方向に回転する第2の偏向素子33yの回転中心を配置することにより、第1及び第2の偏向素子33x,33yのいずれも、回転するのに十分な間隔を空けて、その回転中心と瞳像とを一致させることができる。 By using such a pupil position adjusting optical system 35 for the scanning optical system 30, as shown in FIG. 3, the image of the pupil P of the objective lens 36 relayed by the second objective lens 36 and the pupil projection lens 34 is They are formed at different positions in the x-axis direction and the y-axis direction. Specifically, when the above-described cylindrical lens is used, this cylindrical lens has no refractive power in the x-axis direction and negative refractive power in the y-axis direction, so that a pupil image in the y-axis direction is formed. The position moves to the image side. Therefore, the rotation center of the first deflection element 33x that rotates in the x-axis direction is arranged at substantially the same position as the pupil image formation position in the first plane including the x-axis and the optical axis, and the y-axis and light By arranging the rotation center of the second deflection element 33y that rotates in the y-axis direction at substantially the same position as the pupil image formation position in the second plane including the axis, the first and second deflection elements Both 33x and 33y can make the center of rotation coincide with the pupil image with a sufficient interval for rotation.
走査光学系30にこのような瞳位置調整光学系35が配置されていない場合、すなわち、走査ユニット33のいずれか一方の偏向素子にのみ対物レンズ37の瞳像が形成されている場合(例えば、図3(a)に示すように第1偏向素子33xにのみ瞳像が形成されているとき)は、図4(a)に示すように、瞳像が形成されていない方の偏向素子(例えば、第2偏向素子33y)が回転すると、対物レンズ37の瞳Pから光束Bがずれて蹴られてしまうため、光量の損失に繋がる。また、画角を持った光束の主光線が、対物レンズ37の瞳位置において理想光軸から偏心してしまうため、対物レンズ37の像面におけるテレセントリック性が崩れ、視野の周辺部においてPSF(点像分布関数)の歪みが生じ、特に、微細構造を観察する際の画質低下に繋がってしまう。 When such a pupil position adjustment optical system 35 is not arranged in the scanning optical system 30, that is, when a pupil image of the objective lens 37 is formed only on one of the deflection elements of the scanning unit 33 (for example, When a pupil image is formed only on the first deflection element 33x as shown in FIG. 3A, the deflection element on which the pupil image is not formed (for example, as shown in FIG. 4A) (for example, When the second deflection element 33y) is rotated, the light beam B is displaced and kicked from the pupil P of the objective lens 37, leading to a loss of light amount. In addition, since the principal ray of the light beam having an angle of view is decentered from the ideal optical axis at the pupil position of the objective lens 37, the telecentricity in the image plane of the objective lens 37 is lost, and a PSF (point image) is generated in the peripheral portion of the field of view. (Distribution function) is distorted, and in particular, the image quality is deteriorated when a fine structure is observed.
一方、瞳位置調整光学系35を配置し、第1の偏向素子33xだけでなく、第2の偏向素子33yもその回転中心に対物レンズ37の瞳像が形成されるように構成することにより、いずれの偏向素子33x,33yを回転させたとしても、図4(b)に示すように、対物レンズ37の瞳Pから光束Bがずれることがなく、光量の損失が発生しないとともに、テレセントリック性の崩れもないため、最良の像を取得することが可能となる。 On the other hand, the pupil position adjusting optical system 35 is arranged, and not only the first deflection element 33x but also the second deflection element 33y is configured so that the pupil image of the objective lens 37 is formed at the rotation center thereof. Regardless of which deflection element 33x, 33y is rotated, the light beam B does not shift from the pupil P of the objective lens 37 as shown in FIG. Since there is no collapse, the best image can be acquired.
なお、このような瞳位置調整光学系35は、上述の例で示したように、負の屈折力を有することが好ましい。負の屈折力を有する瞳位置調整光学系35を配置することにより、ペッツバール和が小さくなり、収差が収斂しやすくなるため望ましいためである。反対に、この瞳位置調整光学系35に正の屈折力を持たせると、ペッツバール和が大きくなるため収差設計が難しくなるが、正の屈折力を有する瞳位置調整光学系35を用いることも可能である。 In addition, it is preferable that such a pupil position adjustment optical system 35 has a negative refractive power, as shown in the above example. This is because it is desirable to dispose the pupil position adjusting optical system 35 having a negative refractive power because the Petzval sum is reduced and aberrations are easily converged. On the other hand, if this pupil position adjusting optical system 35 has a positive refractive power, the Petzval sum becomes large and aberration design becomes difficult, but it is also possible to use a pupil position adjusting optical system 35 having a positive refractive power. It is.
また、このような瞳位置調整光学系35は、試料面50と共役な位置、すなわち、一次像面I上にその主面が位置する配置が望ましい。この瞳位置調整光学系35を一次像面I上に配置することにより、像の共役関係を崩すことなく、瞳共役位置を変化させることが可能となる。反対に、この瞳位置調整光学系35を一次像面Iから光軸方向に離れた位置に配置すると、像の共役関係に瞳位置調整光学系35の屈折力が影響し、非点収差が発生してまうとともに、像の倍率も変化してしまうため好ましくない。 In addition, such a pupil position adjusting optical system 35 is desirably arranged at a position conjugate with the sample surface 50, that is, the principal surface thereof is positioned on the primary image plane I. By disposing the pupil position adjusting optical system 35 on the primary image plane I, it is possible to change the pupil conjugate position without destroying the conjugate relationship of the images. Conversely, if this pupil position adjusting optical system 35 is arranged at a position away from the primary image plane I in the optical axis direction, the refractive power of the pupil position adjusting optical system 35 affects the conjugate relationship of the image, and astigmatism occurs. In addition, the magnification of the image changes, which is not preferable.
それでは、図5を用いて瞳位置調整光学系35の焦点距離と走査ユニット33を構成する偏向素子33x,33yの配置位置との関係について説明する。まず、x軸と光軸とを含む第1の面内での関係について説明する。ここで、瞳位置調整光学系35の第1の面内の焦点距離をfcxとし、瞳投影レンズ34の焦点距離をfsとする。なお、瞳位置調整光学系35は一次像面I上に配置されている、すなわち、瞳位置調整光学系35の主面が瞳投影レンズ34の物体側の焦点面上に配置されているとする。 Now, the relationship between the focal length of the pupil position adjusting optical system 35 and the arrangement positions of the deflection elements 33x and 33y constituting the scanning unit 33 will be described with reference to FIG. First, the relationship in the first plane including the x axis and the optical axis will be described. Here, the focal length in the first plane of the pupil position adjusting optical system 35 is set to f cx, and the focal length of the pupil projection lens 34 is set to f s . Note that the pupil position adjusting optical system 35 is disposed on the primary image plane I, that is, the main surface of the pupil position adjusting optical system 35 is disposed on the object-side focal plane of the pupil projection lens 34. .
走査光学系30に瞳位置調整光学系35が配置されていない場合、対物レンズ37の瞳Pの光軸上から出射した光線は第2対物レンズ36で光軸に略平行とされて瞳投影レンズ34に入射する。図5(a)に示すように、この瞳Pの光軸上から出た光線の瞳投影レンズ34の主面に対する入射高さをh1とする。この光線は瞳投影レンズ34の像側の焦点面Ssの光軸上の点を通過する。一方、瞳位置調整光学系35が配置されている場合、瞳Pの光軸上から出た上述の光線は、この瞳位置調整光学系35と瞳投影レンズ34の合成主点H′で屈折する。この光線の瞳投影レンズ34の主面に対する入射高さをh2とする。この光線は、瞳位置調整光学系35と瞳投影レンズ34との合成された焦点面Sxの光軸上の点を通過する。ここで、瞳投影レンズ34の主面から瞳位置調整光学系35と瞳投影レンズ34の合成された焦点面Sxまでの光軸上の距離をLGxとし、瞳投影レンズ34の像側の焦点面Ssからこの合成された焦点面Sxまでの光軸上の距離をΔGxとすると、次式(1)の関係が成立する。 When the pupil position adjusting optical system 35 is not disposed in the scanning optical system 30, the light beam emitted from the optical axis of the pupil P of the objective lens 37 is made substantially parallel to the optical axis by the second objective lens 36, and is a pupil projection lens. 34 is incident. As shown in FIG. 5 (a), the incident height of the light beam coming out on the optical axis of the pupil P with respect to the main surface of the pupil projection lens 34 is h 1 . This ray passes through a point on the optical axis of the focal plane S s on the image side of the pupil projection lens 34. On the other hand, when the pupil position adjusting optical system 35 is arranged, the above-described light beam emitted from the optical axis of the pupil P is refracted at the combined principal point H ′ of the pupil position adjusting optical system 35 and the pupil projection lens 34. . The incidence height with respect to the main surface of the pupil projection lens 34 of the beam and h 2. This light ray passes through a point on the optical axis of the focal plane Sx synthesized by the pupil position adjusting optical system 35 and the pupil projection lens 34. Here, the distance on the optical axis from the main surface of the pupil projection lens 34 to the combined focal plane S x of the pupil position adjustment optical system 35 and the pupil projection lens 34 is L Gx, and the image side of the pupil projection lens 34 is on the image side. When the distance on the optical axis from the focal plane Ss to the synthesized focal plane S x is ΔG x , the relationship of the following equation (1) is established.
h2/LGx = h1/(LGx+ΔGx) (1) h 2 / L Gx = h 1 / (L Gx + ΔG x ) (1)
また、図5(a)より、この走査光学系30はLGx+ΔGx=fsの関係を有することから、上記式(1)は次式(2)のように表される。 Further, from FIG. 5 (a), the scanning optical system 30 from having a relationship L Gx + ΔG x = f s , the equation (1) is expressed by the following equation (2).
h2/h1 = LGx/fs (2) h 2 / h 1 = L Gx / f s (2)
一方、図5(b)に示すように、対物レンズ37の瞳Pの光軸上から出射して第2対物レンズ36で光軸に略平行とされて瞳位置調整光学系35の主面の高さh1の位置に入射した光線は、瞳投影レンズ34が無い場合は、上述の瞳投影レンズ34の主面上の高さh2相当の位置を通過して、瞳位置調整光学系35の像側の焦点面Scxの光軸上の点を通過する。ここで、瞳投影レンズ34の像側の焦点面Ssから瞳位置調整光学系35の像側の焦点面Scxまでの光軸上の距離をdxとすると、次式(3)の関係が成立し、さらに、この式(3)を変形した次式(4)の関係が成立する。 On the other hand, as shown in FIG. 5B, the light is emitted from the optical axis of the pupil P of the objective lens 37 and is made substantially parallel to the optical axis by the second objective lens 36, so that the main surface of the pupil position adjusting optical system 35 When the pupil projection lens 34 is not present, the light beam incident on the height h 1 passes through a position corresponding to the height h 2 on the main surface of the pupil projection lens 34 described above, and the pupil position adjustment optical system 35. Passes through a point on the optical axis of the focal plane S cx on the image side. Here, when the distance on the optical axis from the image-side focal plane S s of the pupil projection lens 34 to the image-side focal plane S cx of the pupil position adjusting optical system 35 is d x , the relationship of the following equation (3) is satisfied. Is established, and further, the relationship of the following equation (4) obtained by modifying this equation (3) is established.
h1/fcx = h2/(fs+dx) (3)
h2/h1 = (fs+dx)/fcx (4)
h 1 / f cx = h 2 / (f s + d x ) (3)
h 2 / h 1 = (f s + d x ) / f cx (4)
以上より、式(2)及び式(4)から次式(5)の関係が導き出され、さらに、この式(5)を変形して次式(6)の関係が導き出される。 From the above, the relationship of the following equation (5) is derived from the equations (2) and (4), and further, the relationship of the following equation (6) is derived by modifying this equation (5).
LGx/fs = (fs+dx)/fcx (5)
fcx・LGx = fs・(fs+dx) (6)
L Gx / f s = (f s + d x ) / f cx (5)
f cx · L Gx = f s · (f s + d x ) (6)
図5より明らかなように、この走査光学系30は、dx=fcx−2fsの関係と、LGx=fs−ΔGxの関係とを有しているため、これらの関係を式(6)に当てはめることにより、次式(7)の関係が導き出される。 As apparent from FIG. 5, the scanning optical system 30 has a relationship of d x = f cx −2f s and a relationship of L Gx = f s −ΔG x , and thus these relationships are expressed by equations. By applying to (6), the relationship of the following formula (7) is derived.
fcx = fs 2/ΔGx (7) f cx = f s 2 / ΔG x (7)
また、上述の第1の面内での関係と同様に、y軸と光軸とを含む第2の面内においても、瞳位置調整光学系35の第2の面内の焦点距離をfcyとし、瞳投影レンズ34の像側の焦点面Ssから瞳位置調整光学系35と瞳投影レンズ34との合成された焦点面Syまでの光軸上の距離をΔGyとすると、次式(8)の関係が導き出される。 Similarly to the above-described relationship in the first plane, the focal length in the second plane of the pupil position adjusting optical system 35 is also expressed as f cy in the second plane including the y-axis and the optical axis. If the distance on the optical axis from the focal plane S s on the image side of the pupil projection lens 34 to the combined focal plane S y of the pupil position adjusting optical system 35 and the pupil projection lens 34 is ΔG y , The relationship (8) is derived.
fcy = fs 2/ΔGy (8) f cy = f s 2 / ΔG y (8)
以上より、瞳投影レンズ34の像側の焦点面SsからΔGx離れた位置に第1の偏向素子33xを配置し、また、瞳投影レンズ34の像側の焦点面SsからΔGy離れた位置に第2の偏向素子33yを配置する場合は、上述の式(7)及び式(8)の関係を満たすように、瞳位置調整光学系35のx軸方向及びy軸方向の焦点距離fcx,fcyを設定すれば良い。なお、図5においては、瞳位置調整光学系35がx軸方向においてもy軸方向においても正の屈折力を有する場合について説明したが、負の屈折力を有する場合も同様である。なお、第1及び第2の偏向素子33x,33yを配置するための瞳投影レンズ34の像側の焦点面Ssから距離ΔGx,ΔGyは、瞳投影レンズ34の像側の焦点面Ssから試料面50の方向を正とする。 As described above, the first deflection element 33x is arranged at a position that is ΔG x away from the focal plane S s on the image side of the pupil projection lens 34, and is ΔG y away from the focal plane S s on the image side of the pupil projection lens 34. In the case where the second deflection element 33y is disposed at a certain position, the focal lengths of the pupil position adjusting optical system 35 in the x-axis direction and the y-axis direction are satisfied so as to satisfy the relationship of the above-described equations (7) and (8) fcx and fcy may be set. In FIG. 5, the case where the pupil position adjusting optical system 35 has a positive refractive power in both the x-axis direction and the y-axis direction has been described, but the same applies to the case where the pupil position adjusting optical system 35 has a negative refractive power. Note that the distances ΔG x and ΔG y from the image-side focal plane S s of the pupil projection lens 34 for arranging the first and second deflection elements 33 x and 33 y are the image-side focal plane S of the pupil projection lens 34. The direction from s to the sample surface 50 is positive.
ところで、このような瞳位置調整光学系35は、上述したように一次像面I上にその主面が位置する配置が望ましいが、この瞳位置調整光学系35を一次像面I上に配置すると、例えば、この瞳位置調整光学系35のキズ等がある場合、そのキズが像面に投影されてしまう。そのため、瞳投影レンズ34の像側の開口数(NA)で決まる焦点深度内に入らず、且つ、像の共役関係や倍率を大きく崩さない範囲で、一次像面Iの物体側、若しくは、像側にこの瞳位置調整光学系35を配置することが望ましい。 By the way, such a pupil position adjusting optical system 35 is preferably arranged such that its principal surface is located on the primary image plane I as described above, but if this pupil position adjusting optical system 35 is arranged on the primary image plane I, For example, when there is a scratch or the like of the pupil position adjusting optical system 35, the scratch is projected on the image plane. Therefore, the object side of the primary image plane I or the image does not fall within the depth of focus determined by the numerical aperture (NA) on the image side of the pupil projection lens 34 and does not greatly deteriorate the conjugate relationship or magnification of the image. It is desirable to arrange this pupil position adjusting optical system 35 on the side.
また、このような瞳位置調整光学系35としては、x軸方向とy軸方向とで屈折力が異なるものであれば良く、また、上述のシリンドリカルレンズのように光を透過させる光学部材だけでなく、光を反射する光学部材を用いることができる。光を透過させる光学系としては、上述のシリンドリカルレンズに加えて、トーリックレンズを用いることもできる。また、リキッドレンズや音響光学素子(AOD)を用いることもできる。また、光を反射させる光学系としては、円筒鏡やMEMS(Micro Electro Mechanical Systems)ミラーを用いることができる。 In addition, such a pupil position adjusting optical system 35 may have any refractive power in the x-axis direction and the y-axis direction, and only an optical member that transmits light like the above-described cylindrical lens. Alternatively, an optical member that reflects light can be used. As an optical system that transmits light, a toric lens can be used in addition to the above-described cylindrical lens. A liquid lens or an acousto-optic device (AOD) can also be used. Further, as an optical system for reflecting light, a cylindrical mirror or a MEMS (Micro Electro Mechanical Systems) mirror can be used.
以上のように、本実施形態に係る走査型顕微鏡10は、従来の走査型顕微鏡の瞳投影レンズ34のままで、この瞳投影レンズ34の後側焦点面に第1の偏向素子33xの位置を合わせる位置調整機構(例えば、筐体と第1の偏向素子33xを保持する保持部材との間に挟み込むことによりこの第1の偏向素子33xの位置を調整するスペーサ等)を設け、さらに、一次像面Iの近傍に瞳位置調整光学系(シリンドリカルレンズ)35を追加するだけで構成することができ、この走査型顕微鏡10の性能を容易に向上させることができる。 As described above, the scanning microscope 10 according to the present embodiment maintains the pupil projection lens 34 of the conventional scanning microscope, and positions the first deflection element 33x on the rear focal plane of the pupil projection lens 34. A position adjusting mechanism (for example, a spacer for adjusting the position of the first deflection element 33x by being sandwiched between the housing and the holding member that holds the first deflection element 33x) is provided, and a primary image is further provided. It can be configured by simply adding a pupil position adjusting optical system (cylindrical lens) 35 in the vicinity of the surface I, and the performance of the scanning microscope 10 can be easily improved.
前記課題を解決するために、本発明に係る走査型顕微鏡は、光源から放射された照明光を集光して試料に照射するとともに、この試料から出射した光を集光する対物レンズと、この対物レンズの瞳像を投影する瞳投影レンズと、対物レンズ及び瞳投影レンズの光軸と略直交する面内の第1の方向に回転する第1の偏向素子、及び、この光軸と略直交する面内の第1の方向と略直交する第2の方向に回転する第2の偏向素子を有し、これらの第1の偏向素子及び第2の偏向素子を用いて照明光により試料を走査する走査ユニットと、第1の方向及び第2の方向で異なる屈折力を有し、光軸及び第1の方向を含む第1の面内における瞳像と光軸及び第2の方向を含む第2の面内における瞳像とをそれぞれ光軸方向の異なる位置に形成する瞳位置調整光学系と、を有し、第1の方向及び第2の方向における屈折力のうち、少なくとも一方は負の値であり、走査ユニットの第1の偏向素子は第1の面内の瞳像と略同一位置に回転の中心が位置するように配置され、走査ユニットの第2の偏向素子は第2の面内の瞳像と略同一の位置に回転の中心が位置するように配置されることを特徴とする。
このような走査型顕微鏡において、瞳位置調整光学系は、対物レンズによる試料像の位置、若しくはその近傍に配置されることが好ましい。
また、このような走査型顕微鏡において、瞳位置調整光学系は、対物レンズによる試料像の位置の光軸方向の試料側若しくは像側であって、瞳投影レンズの焦点深度の外に配置されることが好ましい。
また、このような走査型顕微鏡は、瞳投影レンズの焦点距離をfsとし、瞳位置調整光学系の第1の面内に関する焦点距離をfcx、第2の面内に関する焦点距離をfcyとし、瞳投影レンズの像側の焦点面から第1の偏向素子の回転中心までの光軸上の距離であって、瞳投影レンズの像側の焦点面から試料方向を正と定義した光軸上の距離をΔGxとし、瞳投影レンズの像側の焦点面から第2の偏向素子の回転中心までの光軸上の距離であって、瞳投影レンズの像側の焦点面から試料方向を正と定義した光軸上の距離をΔGyとしたとき、次式
fcx = fs 2/ΔGx
fcy = fs 2/ΔGy
の条件を満足することが好ましい。
また、このような走査型顕微鏡において、瞳位置調整光学系は、シリンドリカルレンズであることが好ましい。
In order to solve the above problems, a scanning microscope according to the present invention condenses illumination light emitted from a light source and irradiates the sample, and an objective lens that collects light emitted from the sample, A pupil projection lens that projects a pupil image of the objective lens, a first deflection element that rotates in a first direction within a plane that is substantially orthogonal to the optical axes of the objective lens and the pupil projection lens, and substantially orthogonal to the optical axis A second deflection element that rotates in a second direction substantially orthogonal to the first direction within the surface to be scanned, and scans the sample with illumination light using the first deflection element and the second deflection element A scanning unit that has different refractive powers in the first direction and the second direction, and includes a pupil image in the first plane including the optical axis and the first direction, and the optical axis and the second direction including the second direction. Pupil position in which the pupil images in the plane of 2 are formed at different positions in the optical axis direction. An optical system, at least one of the refractive powers in the first direction and the second direction is a negative value, and the first deflection element of the scanning unit is a pupil image in the first plane. The rotation center is arranged at substantially the same position, and the second deflection element of the scanning unit is arranged so that the rotation center is located at substantially the same position as the pupil image in the second plane. It is characterized by.
In such a scanning microscope, it is preferable that the pupil position adjusting optical system is disposed at or near the position of the sample image by the objective lens.
Further, in such a scanning microscope, the pupil position adjusting optical system is arranged on the sample side or the image side in the optical axis direction of the position of the sample image by the objective lens and outside the focal depth of the pupil projection lens. It is preferable.
In such a scanning microscope, the focal length of the pupil projection lens is f s , the focal length related to the first plane of the pupil position adjusting optical system is f cx , and the focal length related to the second plane is f cy. And the optical axis from the focal plane on the image side of the pupil projection lens to the rotation center of the first deflecting element, the optical axis defining the sample direction as positive from the focal plane on the image side of the pupil projection lens The upper distance is ΔG x , the distance on the optical axis from the focal plane on the image side of the pupil projection lens to the rotation center of the second deflection element, and the sample direction from the focal plane on the image side of the pupil projection lens When the distance on the optical axis defined as positive is ΔG y , the following formula f cx = f s 2 / ΔG x
f cy = f s 2 / ΔG y
It is preferable to satisfy the following conditions.
In such a scanning microscope, the pupil position adjusting optical system is preferably a cylindrical lens.
10 走査型顕微鏡 20 光源 33 走査ユニット
33x 第1の偏向素子 33y 第2の偏向素子 34 瞳投影レンズ
35 瞳位置調整光学系 37 対物レンズ 50 試料面
DESCRIPTION OF SYMBOLS 10 Scanning microscope 20 Light source 33 Scanning unit 33x 1st deflection | deviation element 33y 2nd deflection | deviation element 34 Pupil projection lens 35 Pupil position adjustment optical system 37 Objective lens 50 Sample surface
Claims (5)
前記対物レンズの瞳像を投影する瞳投影レンズと、
第1の方向に回転する第1の偏向素子と第2の方向に回転する第2の偏向素子とを有する走査ユニットと、
前記第1の方向及び前記第2の方向で異なる屈折力を有する瞳位置調整光学系と、を有し、
前記第1の方向及び前記第2の方向における屈折力のうち、少なくとも一方は負の値である
走査型顕微鏡。 An objective lens;
A pupil projection lens that projects a pupil image of the objective lens;
A scanning unit having a first deflection element rotating in a first direction and a second deflection element rotating in a second direction;
A pupil position adjusting optical system having different refractive powers in the first direction and the second direction,
At least one of the refractive powers in the first direction and the second direction is a negative value. Scanning microscope.
請求項1に記載の走査型顕微鏡。 The scanning microscope according to claim 1, wherein the pupil position adjusting optical system is a cylindrical lens.
fcx = fs 2/ΔGx
fcy = fs 2/ΔGy
の条件を満足する
請求項1又は2に記載の走査型顕微鏡。 The focal length of the pupil projection lens is f s , the first focal length of the pupil position adjusting optical system is f cx , the second focal length is f cy, and the image side focal plane of the pupil projection lens is The distance on the optical axis to the rotation center of the first deflecting element and the distance on the optical axis where the sample direction is defined as positive from the focal plane on the image side of the pupil projection lens is ΔG x , and the pupil The distance on the optical axis from the focal plane on the image side of the projection lens to the rotation center of the second deflection element, the optical axis defining the sample direction as positive from the focal plane on the image side of the pupil projection lens When the upper distance is ΔG y , the following formula f cx = f s 2 / ΔG x
f cy = f s 2 / ΔG y
The scanning microscope according to claim 1, wherein the scanning microscope is satisfied.
請求項1〜3のいずれか一項に記載の走査型顕微鏡。 The scanning microscope according to any one of claims 1 to 3, wherein the pupil position adjusting optical system is disposed at or near a position of a sample image.
請求項1〜3のいずれか一項に記載の走査型顕微鏡。 The pupil position adjusting optical system is arranged on the sample side or the image side in the optical axis direction of the position of the sample image, and is disposed outside the focal depth of the pupil projection lens. The scanning microscope described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016092565A JP6332327B2 (en) | 2016-05-02 | 2016-05-02 | Scanning microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016092565A JP6332327B2 (en) | 2016-05-02 | 2016-05-02 | Scanning microscope |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012002765A Division JP5929204B2 (en) | 2012-01-11 | 2012-01-11 | Scanning microscope |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016145997A JP2016145997A (en) | 2016-08-12 |
JP2016145997A5 JP2016145997A5 (en) | 2017-02-09 |
JP6332327B2 true JP6332327B2 (en) | 2018-05-30 |
Family
ID=56685546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016092565A Expired - Fee Related JP6332327B2 (en) | 2016-05-02 | 2016-05-02 | Scanning microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6332327B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1068901A (en) * | 1996-08-29 | 1998-03-10 | Olympus Optical Co Ltd | Two-dimensional scanner device |
JP5649324B2 (en) * | 2010-04-15 | 2015-01-07 | キヤノン株式会社 | Ophthalmic apparatus and method for controlling ophthalmic apparatus |
-
2016
- 2016-05-02 JP JP2016092565A patent/JP6332327B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016145997A (en) | 2016-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5999121B2 (en) | Confocal light scanner | |
JP6360825B2 (en) | Imaging optical system, illumination device and observation device | |
JP5287252B2 (en) | Laser scanning confocal microscope | |
JP6417262B2 (en) | Sheet illumination microscope | |
US10514533B2 (en) | Method for creating a microscope image, microscopy device, and deflecting device | |
JP2019505856A (en) | Optical sheet microscope and method of imaging sample with optical microscope | |
JP5733539B2 (en) | Scanning microscope | |
WO2016052743A1 (en) | Optical axis direction scanning-type microscope device | |
JP2019526829A (en) | Light sheet microscope | |
WO2016056651A1 (en) | Image-forming optical system, illumination device, and microscope device | |
JP5929204B2 (en) | Scanning microscope | |
JP2016110056A (en) | Confocal scanner and confocal microscope | |
WO2016056465A1 (en) | Image-forming optical system, illumination device, and microscope device | |
JP6496745B2 (en) | Imaging optical system, illumination device and observation device | |
WO2016117415A1 (en) | Image acquisition device and image acquisition method | |
WO2012099034A1 (en) | Focus position maintaining apparatus, and microscope | |
JP6616005B2 (en) | Projection optical system and head-up display device | |
JP2016148829A (en) | Observation device | |
JP6332327B2 (en) | Scanning microscope | |
JP6829527B2 (en) | A device for imaging a sample and its method | |
US20170131210A1 (en) | Observation apparatus and method for sharpening final image | |
JP2014056078A (en) | Image acquisition device, image acquisition system, and microscope device | |
JP2012208327A (en) | Scanning microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170606 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6332327 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |