JP4991972B1 - Ultrasonic flow measuring device - Google Patents

Ultrasonic flow measuring device Download PDF

Info

Publication number
JP4991972B1
JP4991972B1 JP2012053436A JP2012053436A JP4991972B1 JP 4991972 B1 JP4991972 B1 JP 4991972B1 JP 2012053436 A JP2012053436 A JP 2012053436A JP 2012053436 A JP2012053436 A JP 2012053436A JP 4991972 B1 JP4991972 B1 JP 4991972B1
Authority
JP
Japan
Prior art keywords
tube
ultrasonic
plate
flow rate
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012053436A
Other languages
Japanese (ja)
Other versions
JP2013186069A (en
Inventor
英一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsuden Co Ltd
Original Assignee
Atsuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsuden Co Ltd filed Critical Atsuden Co Ltd
Priority to JP2012053436A priority Critical patent/JP4991972B1/en
Application granted granted Critical
Publication of JP4991972B1 publication Critical patent/JP4991972B1/en
Priority to EP12193983.9A priority patent/EP2615428A1/en
Priority to US13/737,162 priority patent/US8720280B2/en
Priority to CN201310009828.9A priority patent/CN103206992B/en
Publication of JP2013186069A publication Critical patent/JP2013186069A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】弾性を有する管体に対して、着脱を容易に行い管体内の流体の流量を測定する。
【解決手段】第1本体1、左側面板2、第2本体3、右側面板4は連結軸を介して回動自在に連結され、第2本体3の端部に連結軸を介して錠止板5から成るクランプ機構が設けられ、固定板6が左側面板2に重ねて回動自在とされている。第1本体1、左側面板2、第2本体3、右側面板4を折り畳むことにより、管体Pを挟着する正方形の挟着孔16が形成され、第1本体1、第2本体3の内面部には管体の長さ方向に位置を違えてそれぞれ超音波送受信器が埋設されている。
挟着孔16により管体Pを挟着し、錠止板5、固定板6を用いて挟着孔16を保持すると、管体Pは変形して挟着孔16にほぼ密着する。流量測定に際し一方の超音波送受信器から、管体P内の流体中に超音波ビームを送信すると、管体Pの他面に配置した他方の超音波送受信器において受信される。
【選択図】図8
An object of the present invention is to easily attach and detach an elastic tube body and measure the flow rate of fluid in the tube body.
A first body, a left side plate, a second body, and a right side plate are rotatably connected via a connecting shaft, and a locking plate is connected to an end of the second body via the connecting shaft. The clamp mechanism which consists of 5 is provided, and the fixed board 6 is made to be able to rotate freely on the left side face plate 2. By folding the first body 1, the left side plate 2, the second body 3, and the right side plate 4, a square clamping hole 16 for clamping the tube P is formed, and the inner surfaces of the first body 1 and the second body 3 are formed. Ultrasonic transmitters / receivers are embedded in the sections at different positions in the length direction of the tube.
When the tubular body P is sandwiched by the sandwiching hole 16 and the sandwiching hole 16 is held using the locking plate 5 and the fixing plate 6, the tubular body P is deformed and is almost in close contact with the sandwiching hole 16. When an ultrasonic beam is transmitted from one ultrasonic transmitter / receiver into the fluid in the tube P during flow rate measurement, the ultrasonic beam is received by the other ultrasonic transmitter / receiver disposed on the other surface of the tube P.
[Selection] Figure 8

Description

本発明は、管体内の流体に超音波ビームを伝播させて、流体の流量を測定するクランプオン型の超音波流量測定装置に関するものである。   The present invention relates to a clamp-on type ultrasonic flow rate measuring apparatus for measuring a flow rate of a fluid by propagating an ultrasonic beam to a fluid in a tubular body.

超音波流量測定装置は大別し超音波ビームの伝播経路により、図13(a)に示す所謂V方式と図13(b)に示す所謂Z方式とがある。V方式では、一対の超音波送受信器a、bを管体Pの同じ側に配置して、一方の超音波送受信器a又はbから発信した超音波ビームBを管体P内で反射させて他方の超音波送受信器b又はaで受信する。またZ方式では、超音波送受信器a、bを管体Pを挟んだ対向する位置に配置して、管体Pを横切る超音波ビームBを送受信する。何れの方式においても、超音波送受信器a、bは管体Pを流れる流体Fの上流側と下流側に配置され、超音波ビームBは流体Fの流れを横切るように伝播することになる。   The ultrasonic flow rate measuring device is roughly classified into a so-called V method shown in FIG. 13A and a so-called Z method shown in FIG. 13B according to the propagation path of the ultrasonic beam. In the V system, a pair of ultrasonic transmitters / receivers a and b are arranged on the same side of the tube P, and an ultrasonic beam B transmitted from one ultrasonic transmitter / receiver a or b is reflected in the tube P. The signal is received by the other ultrasonic transmitter / receiver b or a. In the Z system, ultrasonic transmitters / receivers a and b are arranged at opposing positions with the tube P interposed therebetween, and an ultrasonic beam B crossing the tube P is transmitted / received. In any method, the ultrasonic transmitters / receivers a and b are arranged on the upstream side and the downstream side of the fluid F flowing through the tube P, and the ultrasonic beam B propagates across the flow of the fluid F.

上流側の超音波送受信器aから下流側の超音波送受信器bに至る超音波ビームBの伝播時間と、下流側の超音波送受信器bから上流側の超音波送受信器aに至る伝播時間には差が生ずる。これらの超音波ビームBの伝播時間差を基に流体Fの流速が算出され、管体Pの断面積を乗ずることにより流体Fの流量が求められる。   The propagation time of the ultrasonic beam B from the upstream ultrasonic transmitter / receiver a to the downstream ultrasonic transmitter / receiver b and the propagation time from the downstream ultrasonic transmitter / receiver b to the upstream ultrasonic transmitter / receiver a Makes a difference. The flow rate of the fluid F is calculated on the basis of the propagation time difference of these ultrasonic beams B, and the flow rate of the fluid F is obtained by multiplying the cross-sectional area of the tube P.

特許文献1〜3には、既設の管体に外部から取り付けて、管体内の流量を測定するためのクランプオン型の超音波流量測定装置が開示されている。   Patent Documents 1 to 3 disclose a clamp-on type ultrasonic flow rate measuring device that is attached to an existing tube body from the outside and measures the flow rate in the tube body.

特開2002−365106号公報JP 2002-365106 A 特開2003−75219号公報JP 2003-75219 A 特開2003−262545号公報JP 2003-262545 A

しかし、これらのクランプオン型の超音波流量測定装置では、複雑な機構を用いて管体の形状に合わせた一対の超音波送受信器を一体に取り付ける必要がある。そのため、測定が必要な際に、簡便に管体に超音波流量測定装置を着脱することはなかなか困難である。   However, in these clamp-on type ultrasonic flow rate measuring devices, it is necessary to integrally attach a pair of ultrasonic transmitters / receivers matched to the shape of the tubular body using a complicated mechanism. For this reason, it is difficult to easily attach and detach the ultrasonic flow rate measuring device to and from the tube body when measurement is required.

また、これらの超音波流量測定装置は複数の金属のブロック体を使用しているために、管体の径が大きくなると重量が大きくなって、取り扱いが厄介となる問題がある。   In addition, since these ultrasonic flow rate measuring devices use a plurality of metal block bodies, there is a problem that if the diameter of the pipe body is increased, the weight is increased and handling is troublesome.

本発明の目的は、上述の課題を解消し、管体に対してクランプ機構により着脱が容易で、軽量化したZ方式のクランプオン型の超音波流量測定装置を提供することにある。   An object of the present invention is to provide a Z-type clamp-on type ultrasonic flow rate measuring device that solves the above-described problems and is easily attached to and detached from a tube body by a clamp mechanism and is light in weight.

上記目的を達成するための本発明に係る超音波流量測定装置は、測定すべき流体を流し弾性を有する柔軟な材料から成る管体に対して着脱自在とする超音波流量測定装置において、前記管体を挟着するためにヒンジ機構により折り畳み自在に連結し、内面部を有する4個の板体部材を備え、これらの板体部材により前記管体を囲む四角形の挟着孔を組立て、クランプ機構により錠止し前記挟着孔を保持する構造とし、前記4個の板体部材のうち挟着孔について対向する一対の板体部材の内面部に前記管体の長手方向の位置を違えて超音波送受信器をそれぞれ配置し、前記管体を変形させて前記挟着孔の各内面部に密着させることにより挟着し、前記管体内に前記一方の超音波送受信器からの超音波ビームを送信し、対向する位置の前記他方の超音波送受信器により超音波ビームを受信するようにしたことを特徴とする。 In order to achieve the above object, an ultrasonic flow rate measuring device according to the present invention is an ultrasonic flow rate measuring device which allows a fluid to be measured to flow and is detachable from a tube made of a flexible material having elasticity. In order to clamp the body, it is connected with a hinge mechanism so as to be foldable, and includes four plate members having an inner surface portion. These plate members are used to assemble a rectangular clamp hole surrounding the tube body, and to provide a clamp mechanism. It is structured so as to be locked and hold the clamping hole, and the inner surface of the pair of plate members facing each other with respect to the clamping hole among the four plate members has a different position in the longitudinal direction of the tube body. Each ultrasonic transmitter / receiver is disposed, and the tube is deformed and adhered to each inner surface portion of the clamping hole, and the ultrasonic beam from the one ultrasonic transmitter / receiver is transmitted into the tube. And the other of the opposite positions The sonic transceiver characterized by being adapted to receive the ultrasonic beam.

本発明に係る超音波流量測定装置は、管体に対しクランプオン式に着脱が容易であり、既設の管体内の流体の流量を容易に測定することができる。   The ultrasonic flow rate measuring apparatus according to the present invention can be easily attached to and detached from the tube body in a clamp-on manner, and can easily measure the flow rate of the fluid in the existing tube body.

実施例1の超音波流量測定装置の使用前の斜視図である。It is a perspective view before use of the ultrasonic flow measuring device of Example 1. FIG. 第1本体の断面図である。It is sectional drawing of a 1st main body. 第2本体の断面図である。It is sectional drawing of a 2nd main body. 左側面板、右側面板を立ち上げた状態の斜視図である。It is a perspective view of the state which raised the left side board and the right side board. 挟着孔を形成する過程の側面図である。It is a side view of the process of forming a clamping hole. 組立状態の側面図である。It is a side view of an assembly state. 管体を挟着し始める状態の側面図である。It is a side view of the state which begins to clamp a tubular body. 管体を挟着した状態の斜視図である。It is a perspective view of the state which pinched the pipe. 超音波流量測定装置の原理的説明図である。It is a principle explanatory drawing of an ultrasonic flow measuring device. 変形例の超音波流量測定装置の原理的説明図である。It is a principle explanatory drawing of the ultrasonic flow measuring device of a modification. 実施例2の超音波流量測定装置の使用前の斜視図である。It is a perspective view before use of the ultrasonic flow measuring device of Example 2. 実施例2の組立状態の側面図である。It is a side view of the assembly state of Example 2. 超音波流量測定装置の測定方式の説明図である。It is explanatory drawing of the measuring system of an ultrasonic flow measuring device.

本発明を図1〜図12に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は弾性を有する管体の外側に着脱自在に取り付けて使用する超音波流量測定装置の使用前の斜視図である。4個の板体部材としての第1本体1、左側面板2、第2本体3、右側面板4、及び錠止板5、固定板6がヒンジ機構により折り畳み自在に連結されている。即ち、第1本体1の端部1aには左側面板2、固定板6が共通の連結軸7を介して左側面板2を内側として重ね合わせて連結され、更に左側面板2の他端部に連結軸8を介して第2本体3が順次に連結され、更に第2本体3の他端には連結軸9を介して錠止板5が連結されている。また、第1本体1の他方の端部1bには連結軸10を介して右側面板4が連結されている。   FIG. 1 is a perspective view before use of an ultrasonic flow rate measuring device that is detachably attached to the outside of an elastic tube. The first main body 1, the left side plate 2, the second main body 3, the right side plate 4, the locking plate 5, and the fixing plate 6 as four plate members are connected by a hinge mechanism so as to be foldable. That is, the left side plate 2 and the fixed plate 6 are connected to the end 1a of the first main body 1 with the left side plate 2 being overlapped via a common connecting shaft 7 and further connected to the other end of the left side plate 2. The second body 3 is sequentially connected via the shaft 8, and the locking plate 5 is connected to the other end of the second body 3 via the connecting shaft 9. A right side plate 4 is connected to the other end 1 b of the first main body 1 via a connecting shaft 10.

第1本体1、第2本体3は合成樹脂材により例えば射出成型して形成され、左側面板2、右側面板4、錠止板5、固定板6は金属板をプレスにより打抜きして、面部、両側部を有するように折曲されている。そして、これらの部材は連結軸7、8、9、10を各両側部に設けた孔部に挿通することにより連結されている。第1本体1、左側面板2、第2本体3、右側面板4の内面部は平面とされ、これらの内面部には、必要に応じて管体の滑りを良好にするために例えばテフロン(登録商標)樹脂がコーティングされたり、鍍金が施されている。   The first main body 1 and the second main body 3 are formed by, for example, injection molding of a synthetic resin material, and the left side plate 2, the right side plate 4, the lock plate 5 and the fixing plate 6 are formed by punching a metal plate with a press, It is bent to have both sides. These members are connected by inserting the connecting shafts 7, 8, 9, and 10 through holes provided on both sides. The inner surfaces of the first main body 1, the left side plate 2, the second main body 3, and the right side plate 4 are flat surfaces. For example, Teflon (registered) is provided on these inner surface portions in order to improve the sliding of the tube as necessary. Trademark) resin is coated or plated.

錠止板5の連結軸9側の両側部には爪部5aが形成され、これらの爪部5aに係合するための錠止軸11が右側面板4の端部に設けられている。また、錠止板5の自由端にはその辺部に平行にスリット溝5bが形成されている。更に、固定板6の両側部の自由端には、固定板6の面部の辺6aに平行に回転軸12が回転自在に軸支されており、回転軸12の中央部は稍々径が大きい嵌合部12aとされ、錠止時にはこの嵌合部12aの一部が、錠止板5のスリット溝5bに嵌合するようにされている。   Claw portions 5 a are formed on both sides of the locking plate 5 on the connecting shaft 9 side, and a locking shaft 11 for engaging with these claw portions 5 a is provided at the end of the right side plate 4. A slit groove 5b is formed at the free end of the locking plate 5 in parallel with the side portion. Further, a rotary shaft 12 is rotatably supported at the free ends of both sides of the fixed plate 6 in parallel with the side 6a of the surface portion of the fixed plate 6, and the central portion of the rotary shaft 12 is often large in diameter. A fitting portion 12 a is provided, and a part of the fitting portion 12 a is fitted into the slit groove 5 b of the locking plate 5 at the time of locking.

図2、図3に示すように、第1本体1、第2本体3の内部には、超音波送受信器13a、13bがそれぞれ埋設され、これらの超音波送受信器13a、13bはリード線14a、14bを介して後述する測定回路部に接続されている。そして、超音波送受信器13aと超音波送受信器13bは第1本体1、第2本体3の長手方向に位置を違えて配置されている。また、超音波送受信器13a、13bは合成樹脂材から成るビーム伝達体15a、15bを介して第1本体1、第2本体3の各内面部に面している。   As shown in FIGS. 2 and 3, ultrasonic transmitters / receivers 13a and 13b are respectively embedded in the first main body 1 and the second main body 3, and these ultrasonic transmitter / receivers 13a and 13b are connected to lead wires 14a, It is connected to a measurement circuit section to be described later via 14b. The ultrasonic transmitter / receiver 13 a and the ultrasonic transmitter / receiver 13 b are arranged at different positions in the longitudinal direction of the first main body 1 and the second main body 3. The ultrasonic transmitters / receivers 13a and 13b face the inner surface portions of the first main body 1 and the second main body 3 through beam transmission bodies 15a and 15b made of a synthetic resin material.

図4は左側面板2、右側面板4を立ち上げた状態の斜視図である。左側面板2は固定板6と共に連結軸7を介して第1本体1の端部1aに対して回動可能とされているが、左側面板2の面部の辺2aが第1本体1の内面部に当接することにより、左側面板2は第1本体1に対して略90度よりも内側に回動しないようにされている。また、左側面板2よりも立ち上げた場合の高さが高い右側面板4も同様に連結軸10を介して第1本体1の端部1bに対して回動可能とされ、右側面板4の面部の辺4aが第1本体1の内面部に当接することにより、右側面板4は第1本体1に対して略90度よりも内側に回動しないようにされている。   FIG. 4 is a perspective view of the left side plate 2 and the right side plate 4 raised. The left side plate 2 can be rotated with respect to the end portion 1 a of the first main body 1 through the connecting shaft 7 together with the fixed plate 6, but the side 2 a of the surface portion of the left side plate 2 is the inner surface portion of the first main body 1. The left side plate 2 is prevented from rotating inward with respect to the first main body 1 by more than about 90 degrees. Further, the right side plate 4 having a height higher than that of the left side plate 2 is also turnable with respect to the end 1b of the first main body 1 via the connecting shaft 10 in the same manner. When the side 4 a contacts the inner surface of the first main body 1, the right side surface plate 4 is prevented from rotating inward with respect to the first main body 1 by about 90 degrees.

更に、第2本体3は連結軸8を介して左側面板2に対して回動可能とされているが、左側面板2の面部の辺2bに第2本体3の辺部が当接することにより、第2本体3は左側面板2に対して略90度よりも内側に回動しないようにされている。   Further, the second main body 3 can be rotated with respect to the left side plate 2 via the connecting shaft 8, but when the side portion of the second main body 3 comes into contact with the side 2 b of the surface portion of the left side plate 2, The second main body 3 is prevented from turning inward with respect to the left side plate 2 by more than about 90 degrees.

図5に示すように、左側面板2、右側面板4が立ち上がり、更に第2本体3が略90度内側に回動した状態において、錠止板5の爪部5aを右側面板4の端部に設けられた錠止軸11に係合し、錠止板5を連結軸9を中心に矢印のように折り返す。これにより、爪部5aは錠止軸11に噛み込み、爪部5aが錠止軸11を引き寄せるクランク機構によって、第2本体3の面部の先端面は右側面板4の面部上端に当接し、第2本体3と右側面板4は略90度の関係に保たれる。   As shown in FIG. 5, when the left side plate 2 and the right side plate 4 are raised and the second main body 3 is rotated approximately 90 degrees inward, the claw portion 5 a of the locking plate 5 is placed at the end of the right side plate 4. Engage with the provided locking shaft 11 and fold the locking plate 5 around the connecting shaft 9 as shown by the arrow. As a result, the claw portion 5a is engaged with the locking shaft 11, and the front end surface of the surface portion of the second main body 3 is brought into contact with the upper end of the surface portion of the right side plate 4 by the crank mechanism in which the claw portion 5a draws the locking shaft 11. (2) The main body 3 and the right side plate 4 are maintained in a relationship of approximately 90 degrees.

このように、第1本体1、左側面板2、第2本体3、右側面板4を折り畳むことにより、これらの部材による管体に対する四角形、例えば正方形の挟着孔16が形成されることになる。この挟着孔16の形態を維持するために、図6に示すように固定板6を左側面板2の背面に重ねるように回動して立ち上げ、その端部に設けた回転軸12を回転させながら、回転軸12の嵌合部12aの表面部を錠止板5のスリット溝5bに嵌合させる。   In this manner, by folding the first main body 1, the left side plate 2, the second main body 3, and the right side plate 4, a quadrangular, for example, square sandwiching hole 16 for the tubular body is formed by these members. In order to maintain the shape of the sandwiching hole 16, as shown in FIG. 6, the fixed plate 6 is turned up so as to overlap the back surface of the left side plate 2, and the rotary shaft 12 provided at the end is rotated. Then, the surface portion of the fitting portion 12 a of the rotating shaft 12 is fitted into the slit groove 5 b of the locking plate 5.

本実施例の超音波流量測定装置を使用するに際しては、必要に応じて、例えば第1本体1の裏側に設けた図示しない複数のビス穴にボルトをねじ込むことにより固定すべきフレームに取り付ける。次いで、図7に示すように第1本体1上に、流体を流すための例えばテフロン(登録商標)等の合成樹脂製で、弾性を有する柔軟な材料から成る管体Pを載置し、左側面板2、第2本体3、右側面板4を折り畳んで管体Pの周囲を取り囲む。次いで、錠止板5の爪部5aを錠止軸11に当てがい、連結軸9を中心に錠止板5を回動して錠止軸11を引き寄せクランプ機構による錠止がなされる。   When using the ultrasonic flow rate measuring apparatus of the present embodiment, it is attached to a frame to be fixed by screwing bolts into a plurality of screw holes (not shown) provided on the back side of the first main body 1 as necessary. Next, as shown in FIG. 7, on the first main body 1, a tube P made of a flexible material made of a synthetic resin such as Teflon (registered trademark) for flowing fluid is placed on the left side. The face plate 2, the second main body 3, and the right side face plate 4 are folded to surround the tube P. Next, the claw portion 5a of the locking plate 5 is applied to the locking shaft 11, the locking plate 5 is rotated around the connecting shaft 9, the locking shaft 11 is pulled, and locking is performed by the clamp mechanism.

この錠止板5による締め付けに際しては、管体Pの弾性に抗して管体Pを変形させることになるので、錠止板5の回動には若干の抵抗が生ずるが、爪部5aによる係止が確実になされる。   When the locking plate 5 is tightened, the tubular body P is deformed against the elasticity of the tubular body P. Therefore, a slight resistance is generated in the rotation of the locking plate 5, but the claw portion 5a Locking is ensured.

錠止軸11による錠止に続いて、図8に示すように固定板6を立ち上げ回転軸12の嵌合部12aをスリット溝5bに嵌合させることにより、錠止板5が固定される。この嵌合は回転軸12が回転自在とされているため、嵌合部12aを錠止板5上を回転させながら移動できるので、比較的容易に嵌合させることができる。   Following locking by the locking shaft 11, the locking plate 5 is fixed by raising the fixing plate 6 and fitting the fitting portion 12a of the rotating shaft 12 into the slit groove 5b as shown in FIG. . Since the rotation shaft 12 is rotatable in this fitting, the fitting portion 12a can be moved while rotating on the locking plate 5, and therefore can be fitted relatively easily.

このようにして、対向する第1本体1、第2本体3と、対向する2個の面板つまり左側面板2、右側面板4とによる例えば断面正方形の挟着孔16内に管体Pを挟着する。弾性を有する管体Pは、挟着孔16の内面部により周囲から押圧されて変形し、管体Pは部分的にこの内面部に密着し、挟着孔16の形状に従って略正方形状となる。このとき、第1本体1、第2本体3にそれぞれ設けた一対の超音波送受信器13a、13bは、管体Pの長手方向に沿って位置を違えて配列されることになる。   In this way, the tubular body P is sandwiched in the sandwiching hole 16 having a square cross section, for example, by the facing first body 1 and second body 3 and the two facing face plates, that is, the left side face plate 2 and the right side face plate 4. To do. The elastic tubular body P is deformed by being pressed from the periphery by the inner surface portion of the sandwiching hole 16, and the tubular body P partially adheres to the inner surface portion, and becomes substantially square according to the shape of the sandwiching hole 16. . At this time, the pair of ultrasonic transmitters / receivers 13 a and 13 b provided in the first main body 1 and the second main body 3 are arranged at different positions along the longitudinal direction of the tube body P.

第1本体1、左側面板2、第2本体3、右側面板4の内面部は合成樹脂や鍍金により滑り易いように処理しておけば、この挟着に際して管体Pと挟着孔16との摩擦が低減され、管体Pを内面部に沿って速やかに密着させることができ、測定に適した安定な形態に移行することができる。なお、グリス等を内面部に塗布することも効果的であり、管体Pの変形を容易とすることができる。   If the inner surfaces of the first main body 1, the left side plate 2, the second main body 3, and the right side plate 4 are treated so as to be slippery with synthetic resin or plating, the tube body P and the pinching hole 16 may be connected during the pinching. Friction is reduced, the tube P can be brought into close contact with the inner surface portion quickly, and a stable form suitable for measurement can be transferred. It is also effective to apply grease or the like to the inner surface portion, and the deformation of the tube body P can be facilitated.

断面円形の管体Pを四角形に変形させる理由は、第1本体1、第2本体3に設けた超音波送受信器13a、13b、ビーム伝達体15a、15bの内面部に管体Pの一部をそれぞれ密着させ、超音波ビームの送受信を効率良くかつ確実に行うためである。しかし、左側面板2、右側面板4においても、管体Pを密着させることが必要である。つまり、管体Pの形状を規制して管体Pの断面積を所定の大きさにしておかなければ、流速と管体Pの断面積を乗じて演算する流量値が正確に得られないからである。   The reason why the tubular body P having a circular cross section is deformed into a quadrangular shape is that a part of the tubular body P is formed on the inner surfaces of the ultrasonic transmitters / receivers 13a and 13b and the beam transmission bodies 15a and 15b provided in the first body 1 and the second body 3. This is because the ultrasonic beams are transmitted and received efficiently and reliably. However, it is necessary to bring the tube P into close contact with the left side plate 2 and the right side plate 4 as well. That is, unless the shape of the tube P is regulated and the cross-sectional area of the tube P is set to a predetermined size, the flow rate value calculated by multiplying the flow velocity and the cross-sectional area of the tube P cannot be obtained accurately. It is.

第1本体1、左側面板2、第2本体3、右側面板4による挟着孔16の内周は、管体Pの外周よりも大きくされ、管体Pは挟着孔16の隅部においては円弧状となる。この関係が逆で、挟着孔16の内周が管体Pの外周よりも小さいと、管体Pを挟着して押圧した際に、管体Pに皺が寄ったり、管体Pが内側に凹んで内面部との間に隙間が生ずることになる。しかし、挟着孔16の内周が管体Pの外周よりもあまりにも大き過ぎると、管体Pを押圧して挟着孔16の内面部に密着させることができなくなる。   The inner periphery of the sandwiching hole 16 by the first main body 1, the left side plate 2, the second main body 3, and the right side plate 4 is made larger than the outer periphery of the tube body P, and the tube body P is at the corner of the sandwich hole 16. It becomes an arc shape. If this relationship is reversed and the inner circumference of the clamping hole 16 is smaller than the outer circumference of the tubular body P, when the tubular body P is sandwiched and pressed, the tubular body P is wrinkled or the tubular body P is A gap is formed between the inner surface and the inner surface. However, if the inner periphery of the sandwiching hole 16 is too large compared to the outer periphery of the tube P, the tube P cannot be pressed and brought into close contact with the inner surface of the sandwiching hole 16.

図9は流量測定時の説明図であり、超音波送受信器13a、13bはリード線14a、14bを介して、演算制御手段21に接続され、更に演算制御手段21の出力は表示手段22に接続されている。   FIG. 9 is an explanatory diagram during flow rate measurement. The ultrasonic transmitters / receivers 13a and 13b are connected to the calculation control means 21 via the lead wires 14a and 14b, and the output of the calculation control means 21 is connected to the display means 22. Has been.

流量測定に際しては、管体Pに測定すべき流体Fを流し、演算制御手段21の信号により一方の超音波送受信器13a、13bから、ビーム伝達体15a、15bを介して管体P内の測定すべき流体F中に斜め方向に超音波ビームBを送信する。この超音波ビームBは流体F中を伝播して管体Pの反対面において、Z方式として他方の超音波送受信器13b、13aにおいて受信される。   When the flow rate is measured, the fluid F to be measured is caused to flow through the tube P, and the measurement in the tube P is performed from one of the ultrasonic transmitters / receivers 13a and 13b via the beam transmitters 15a and 15b by the signal of the calculation control means 21. The ultrasonic beam B is transmitted in an oblique direction into the fluid F to be processed. This ultrasonic beam B propagates through the fluid F and is received by the other ultrasonic transmitter / receiver 13b, 13a as the Z method on the opposite surface of the tube P.

このようにして、超音波送受信器13a、13bにより超音波ビームBの送信、受信を交互に繰り返す。超音波ビームBが流体Fの上流側から下流側に到達する往きの伝播時間と、下流側から上流側に到達する戻りの伝播時間との伝播時間差を演算制御手段21により平均的に求める。この伝播時間差を基に、演算制御手段21において公知の方法により流体Fの流速が算出される。   In this manner, transmission and reception of the ultrasonic beam B are alternately repeated by the ultrasonic transceivers 13a and 13b. The calculation control means 21 obtains the average propagation time difference between the forward propagation time when the ultrasonic beam B reaches the downstream side from the upstream side of the fluid F and the return propagation time when the ultrasonic beam B reaches the upstream side from the downstream side. Based on this propagation time difference, the calculation control means 21 calculates the flow velocity of the fluid F by a known method.

演算制御手段21は流体Fの流速を算出し、この流速を管体Pの内部断面積に乗じて流量値を求める。なお、管体Pは挟着孔16により円形から四角形に変形させているために、その内部断面積の大きさは不明であることが多く、予めこの状態において、管体Pに所定の流量を流して校正すれば内部断面積を推定できるので、この校正値を用いて流量を求めればよい。そして、得られた流量値は表示手段22に表示される。   The arithmetic control means 21 calculates the flow rate of the fluid F and multiplies this flow rate by the internal cross-sectional area of the tube P to determine the flow rate value. Since the tubular body P is deformed from a circular shape to a rectangular shape by the sandwiching holes 16, the size of the internal cross-sectional area is often unknown. In this state, a predetermined flow rate is applied to the tubular body P in advance. If the flow rate is calibrated, the internal cross-sectional area can be estimated, and the flow rate may be obtained using this calibration value. The obtained flow rate value is displayed on the display means 22.

なお、実際には流体Fを流し始めると、流体Fの圧力により管体Pは更に挟着孔16の内面部に接するように変形し、断面積が拡がる傾向にあるので、正確な流量は流体Fを流し始めてから、若干の時間が経過した後に得られる。   Actually, when the fluid F starts to flow, the pipe P is further deformed so as to be in contact with the inner surface of the sandwiching hole 16 due to the pressure of the fluid F, and the cross-sectional area tends to increase. Obtained after some time has elapsed since the start of F flow.

測定が終了し、この超音波流量測定装置を管体Pから取り外す際には、図8の状態において、固定板6を錠止板5から外し、更に錠止板5を引き起こして錠止軸11から爪部5aを外すことによりクランプ機構を解除する。これにより図7に示すように、第1本体1、左側面板2、第2本体3、右側面板4同士の折り畳みが開離される。   When the measurement is finished and the ultrasonic flow rate measuring device is removed from the tube P, the fixing plate 6 is removed from the locking plate 5 in the state shown in FIG. The clamp mechanism is released by removing the claw portion 5a from the head. As a result, as shown in FIG. 7, the folding of the first main body 1, the left side plate 2, the second main body 3, and the right side plate 4 is separated.

図10はZ方式の変形例を示し、超音波送受信器13a、13bの入出射角を変えて、超音波ビームBの管体Pでの2度の反射を経て、相手側の超音波送受信器13a、13bに到達させている。   FIG. 10 shows a modified example of the Z system, where the incident / exit angles of the ultrasonic transmitters / receivers 13a and 13b are changed, and the ultrasonic beam B is reflected by the tubular body P twice, so that the counterpart ultrasonic transmitter / receiver 13a and 13b are reached.

この変形例では、超音波ビームBの伝播経路長を大きくすることができるので、測定感度を高めることができる。この場合の超音波ビームBの反射は、管体Pを平坦に変形させた部分において得られるので、従来の円形のままの管体よりも反射効率の良い反射波が得られる。   In this modification, since the propagation path length of the ultrasonic beam B can be increased, the measurement sensitivity can be increased. In this case, since the reflection of the ultrasonic beam B is obtained in a portion where the tube P is deformed flat, a reflected wave having a higher reflection efficiency than that of a conventional circular tube can be obtained.

図11は実施例2の使用前の斜視図、図12は組立状態の側面図であり、実施例1と同一の符号は同一の部材を示している。   11 is a perspective view of the second embodiment before use, FIG. 12 is a side view of the assembled state, and the same reference numerals as those of the first embodiment denote the same members.

実施例2において、図1に示す左側面板2の位置に超音波送受信器13a、ビーム伝達体15aが設けられた合成樹脂材から成る第1本体31が配置され、右側面板4の位置に超音波送受信器13b、ビーム伝達体15bが設けられた同様の第2本体32が配置されている。また、図1に示す第1本体1の位置に金属製の下面板33が配置され、第2本体3の位置に同様の上面板34が配置され、第1本体31、第2本体32からはそれぞれリード線14a、14bが引き出されている。   In the second embodiment, the first main body 31 made of a synthetic resin material provided with the ultrasonic transmitter / receiver 13a and the beam transmission body 15a is disposed at the position of the left side plate 2 shown in FIG. The same 2nd main body 32 provided with the transmitter / receiver 13b and the beam transmission body 15b is arrange | positioned. Further, a metal lower surface plate 33 is disposed at the position of the first main body 1 shown in FIG. 1, and a similar upper surface plate 34 is disposed at the position of the second main body 3, from the first main body 31 and the second main body 32. Lead wires 14a and 14b are drawn out, respectively.

これらの連結機構は実施例1の場合とほぼ同様とされているが、第1本体31、第2本体32は合成樹脂製であるので、それぞれ金属板により形成された保持部材35、36によって保持され、連結軸等の取り付けは保持部材35、36に設けた両側部によりなされている。そして、第1本体31、第2本体32、下面板33、上面板34により、実施例1と同様に四角形の挟着孔16が形成される。   These coupling mechanisms are substantially the same as those in the first embodiment, but the first main body 31 and the second main body 32 are made of synthetic resin, and are held by holding members 35 and 36 formed of metal plates, respectively. The connecting shaft and the like are attached by both side portions provided on the holding members 35 and 36. Then, a rectangular sandwiching hole 16 is formed by the first main body 31, the second main body 32, the lower surface plate 33, and the upper surface plate 34 as in the first embodiment.

この実施例2においても、流量測定については実施例1と原理的に同じであり、その作用効果も殆ど同様である。   Also in the second embodiment, the flow rate measurement is the same as that of the first embodiment in principle, and the operation and effects thereof are almost the same.

なお、上述の実施例1、2においては、クランプ機構の保持のために固定板6を用いたが、固定板6を用いることなく、例えば爪部5aの位置、形状の工夫、管体Pの弾性を利用することにより、錠止板5による締め付けと同時に、錠止板5自体が固定されるクランプ機構としてもよい。或いは、固定板6に代えた他のクランプ固定機構を適用できる。   In the first and second embodiments, the fixing plate 6 is used for holding the clamp mechanism. However, without using the fixing plate 6, for example, the position and shape of the claw portion 5a, the shape of the pipe P It is good also as a clamp mechanism by which the locking plate 5 itself is fixed simultaneously with the clamping | tightening by the locking plate 5 by utilizing elasticity. Alternatively, another clamp fixing mechanism in place of the fixing plate 6 can be applied.

また、非使用時には全ての部材を予め連結しておくのではなく、使用に際してヒンジ機構により適宜に連結して組立てるような構成とすることも可能である。更に、全ての部材をヒンジ機構により連結するのではなく、一部の部材同士を予め直角方向に固定しておくことも考えられる。   In addition, when not in use, it is possible to adopt a configuration in which all members are not connected in advance but are appropriately connected and assembled by a hinge mechanism in use. Furthermore, instead of connecting all the members by a hinge mechanism, it may be possible to fix some members in a perpendicular direction in advance.

更に、第1本体1、31、第2本体3、32は金属製であってもよく、また左側面板2、右側面板4、下面板33、上面板34は実施例1、2では金属製としているが、合成樹脂製又は要部に金属を用いた合成樹脂製とすることもできる。   Further, the first main body 1, 31 and the second main body 3, 32 may be made of metal, and the left side plate 2, right side plate 4, lower plate 33, and upper plate 34 are made of metal in the first and second embodiments. However, it can also be made of a synthetic resin or a synthetic resin using a metal in the main part.

なお、実施例1、2においては内面板を有する部材を、左側面板2、右側面板4、下面板33、上面板34として説明したが、左右、上下は説明の都合上のことであり、左右が反対、上下が反対、又は左右を上下、上下を左右としてもよいことは勿論である。   In the first and second embodiments, the members having the inner surface plate have been described as the left side plate 2, the right side plate 4, the lower surface plate 33, and the upper surface plate 34. Of course, the upper and lower sides are opposite, or the left and right sides may be up and down, and the upper and lower sides may be left and right.

1、31 第1本体
2 左側面板
3、32 第2本体
4 右側面板
5 錠止板
6 固定板
13a、13b 超音波送受信器
14a、14b リード線
15a、15b ビーム伝達体
16 挟着孔
21 演算制御手段
22 表示手段
33 下面板
34 上面板
35、36 保持部材
B 超音波ビーム
P 管体
F 流体
DESCRIPTION OF SYMBOLS 1, 31 1st main body 2 Left side plate 3, 32 2nd main body 4 Right side plate 5 Locking plate 6 Fixing plate 13a, 13b Ultrasonic transmitter / receiver 14a, 14b Lead wire 15a, 15b Beam transmission body 16 Clamping hole 21 Computation control Means 22 Display means 33 Lower surface plate 34 Upper surface plate 35, 36 Holding member B Ultrasonic beam P Tubular F Fluid

Claims (7)

測定すべき流体を流し弾性を有する柔軟な材料から成る管体に対して着脱自在とする超音波流量測定装置において、前記管体を挟着するためにヒンジ機構により折り畳み自在に連結し、内面部を有する4個の板体部材を備え、これらの板体部材により前記管体を囲む四角形の挟着孔を組立て、クランプ機構により錠止し前記挟着孔を保持する構造とし、前記4個の板体部材のうち挟着孔について対向する一対の板体部材の内面部に前記管体の長手方向の位置を違えて超音波送受信器をそれぞれ配置し、前記管体を変形させて前記挟着孔の各内面部に密着させることにより挟着し、前記管体内に前記一方の超音波送受信器からの超音波ビームを送信し、対向する位置の前記他方の超音波送受信器により超音波ビームを受信するようにしたことを特徴とする超音波流量測定装置。 In an ultrasonic flow rate measuring apparatus for allowing a fluid to be measured to flow and detachable from a tube made of a flexible material having elasticity, the inner surface portion is connected to be foldable by a hinge mechanism in order to sandwich the tube. 4 plate members having a rectangular shape, and assembling a rectangular sandwiching hole surrounding the tubular body by these plate members, and holding the sandwiching hole by locking with a clamp mechanism, An ultrasonic transmitter / receiver is disposed on the inner surface of a pair of plate members facing each other with respect to the sandwiching hole among the plate members, with the longitudinal positions of the tubes being different from each other, and the tube is deformed to sandwich the tube. The ultrasonic beam from the one ultrasonic transmitter / receiver is transmitted to the inside of the tube, and the ultrasonic beam is transmitted by the other ultrasonic transmitter / receiver at the opposite position. To receive Ultrasonic flow measuring device according to symptoms. 前記ヒンジ機構は連結軸としたことを特徴とする請求項1に記載の超音波流量測定装置。   The ultrasonic flow measuring device according to claim 1, wherein the hinge mechanism is a connecting shaft. 前記クランプ機構は爪部を有し軸を中心に回動する錠止板を用いて前記挟着孔を錠止するようにしたことを特徴とする請求項1又は2に記載の超音波流量測定装置。   The ultrasonic flow rate measurement according to claim 1 or 2, wherein the clamping mechanism has a claw portion and uses a locking plate that rotates about an axis to lock the clamping hole. apparatus. 前記錠止の保持に固定板を用いて、前記錠止板による錠止を固定したことを特徴とする請求項3に記載の超音波流量測定装置。   The ultrasonic flow rate measuring device according to claim 3, wherein the lock by the lock plate is fixed by using a fixing plate for holding the lock. 前記挟着孔は正方形としたことを特徴とする請求項1〜4の何れか1つの請求項に記載の超音波流量測定装置。   The ultrasonic flow rate measuring device according to any one of claims 1 to 4, wherein the sandwiching hole has a square shape. 前記挟着孔の内周は前記管体の外周よりも大きくしたことを特徴とする請求項1〜5の何れか1つの請求項に記載の超音波流量測定装置。   The ultrasonic flow rate measuring device according to any one of claims 1 to 5, wherein an inner periphery of the pinching hole is larger than an outer periphery of the tubular body. 前記板体部材の内面部に前記管体を滑り易くする処理を施したことを特徴とする請求項1〜6の何れか1つの請求項に記載の超音波流量測定装置。 The ultrasonic flow rate measuring device according to any one of claims 1 to 6, wherein the inner surface portion of the plate member is subjected to a process for making the tube body slippery.
JP2012053436A 2012-01-13 2012-03-09 Ultrasonic flow measuring device Expired - Fee Related JP4991972B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012053436A JP4991972B1 (en) 2012-03-09 2012-03-09 Ultrasonic flow measuring device
EP12193983.9A EP2615428A1 (en) 2012-01-13 2012-11-23 Ultrasonic flowmeter apparatus
US13/737,162 US8720280B2 (en) 2012-01-13 2013-01-09 Ultrasonic flowmeter apparatus
CN201310009828.9A CN103206992B (en) 2012-01-13 2013-01-11 Ultrasonic flow measures device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053436A JP4991972B1 (en) 2012-03-09 2012-03-09 Ultrasonic flow measuring device

Publications (2)

Publication Number Publication Date
JP4991972B1 true JP4991972B1 (en) 2012-08-08
JP2013186069A JP2013186069A (en) 2013-09-19

Family

ID=46793860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053436A Expired - Fee Related JP4991972B1 (en) 2012-01-13 2012-03-09 Ultrasonic flow measuring device

Country Status (1)

Country Link
JP (1) JP4991972B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292522B1 (en) * 2013-05-01 2013-09-18 株式会社アツデン Ultrasonic flow measuring device
JPWO2015182673A1 (en) * 2014-05-28 2017-06-01 国立研究開発法人産業技術総合研究所 Ultrasonic flow meter
EP3489634A1 (en) * 2017-11-22 2019-05-29 Levitronix GmbH Ultrasonic measuring device and method for the ultrasonic measurement of a flowing fluid
CN111854866A (en) * 2019-04-24 2020-10-30 株式会社琉Sok Ultrasonic flow rate measuring device
EP3816590B1 (en) * 2018-11-16 2022-08-17 Levitronix GmbH Ultrasonic measuring device for ultrasonic measurement of a flowing fluid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988342B2 (en) * 2017-09-29 2022-01-05 株式会社ジェイ・エム・エス Blood circuit and extracorporeal circulation device
JP6894863B2 (en) * 2018-03-14 2021-06-30 株式会社キーエンス Clamp-on type ultrasonic flow sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133621A (en) * 1980-03-25 1981-10-19 Fuji Electric Co Ltd Ultrasonic measuring device
JPS60148926U (en) * 1984-03-14 1985-10-03 関西電力株式会社 ultrasonic flow meter
JP2000189419A (en) * 1998-12-25 2000-07-11 Nikkiso Co Ltd Ultrasonic probe for measuring blood flow
JP4878653B1 (en) * 2011-01-28 2012-02-15 株式会社アツデン Ultrasonic flow measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133621A (en) * 1980-03-25 1981-10-19 Fuji Electric Co Ltd Ultrasonic measuring device
JPS60148926U (en) * 1984-03-14 1985-10-03 関西電力株式会社 ultrasonic flow meter
JP2000189419A (en) * 1998-12-25 2000-07-11 Nikkiso Co Ltd Ultrasonic probe for measuring blood flow
JP4878653B1 (en) * 2011-01-28 2012-02-15 株式会社アツデン Ultrasonic flow measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292522B1 (en) * 2013-05-01 2013-09-18 株式会社アツデン Ultrasonic flow measuring device
JPWO2015182673A1 (en) * 2014-05-28 2017-06-01 国立研究開発法人産業技術総合研究所 Ultrasonic flow meter
US10197424B2 (en) 2014-05-28 2019-02-05 National Institute Of Advanced Industrial Science And Technology Ultrasonic flowmeter having transceivers driving and radially pressing the flow tube to increase amplitude of the ultrasonic wave
EP3489634A1 (en) * 2017-11-22 2019-05-29 Levitronix GmbH Ultrasonic measuring device and method for the ultrasonic measurement of a flowing fluid
US11047721B2 (en) 2017-11-22 2021-06-29 Levitronix Gmbh Ultrasonic measuring device having transducers housed in a clamping device
EP3816590B1 (en) * 2018-11-16 2022-08-17 Levitronix GmbH Ultrasonic measuring device for ultrasonic measurement of a flowing fluid
CN111854866A (en) * 2019-04-24 2020-10-30 株式会社琉Sok Ultrasonic flow rate measuring device

Also Published As

Publication number Publication date
JP2013186069A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP4991972B1 (en) Ultrasonic flow measuring device
JP4878653B1 (en) Ultrasonic flow measuring device
JP4940384B1 (en) Ultrasonic flow measuring device
US20170146492A1 (en) Sensor positioning with non-dispersive guided waves for pipeline corrosion monitoring
CN103206992B (en) Ultrasonic flow measures device
US20150355002A1 (en) Clamp-on ultrasonic flowmeter and flow rate measuring method
US9279708B2 (en) Ultrasonic flowmeter
WO2017029744A1 (en) Sensor clamp device and clamp-on type ultrasonic flowmeter
CN111854866B (en) Ultrasonic flow rate measuring device
US8844359B2 (en) Apparatus for noninvasive measurement of properties of a fluid flowing in a tubing having a smaller inner diameter passage
US8694271B2 (en) Apparatus and method for non invasive measurement of properties of a fluid flowing in a flexible tubing or conduit
JP2013174567A (en) Ultrasonic transceiver and clamp-on type ultrasonic flowmeter using ultrasonic transceiver
US9476745B2 (en) Flowmeter using ultrasonic transducer
JP5292522B1 (en) Ultrasonic flow measuring device
JP2015129722A5 (en)
US10365137B2 (en) Transit time flow meter apparatus, transducer, flow meter and method
CN104931158A (en) Novel ultrasonic heat meter
JP5629567B2 (en) Optical power meter and optical power measuring method
KR102448580B1 (en) PAUT Multi-scanner for Free size Pipe Inspection
KR20140064256A (en) Clamp for pipe connection
KR20130026863A (en) Flow meter using ultrasonic-sensor
JP5858227B2 (en) Ultrasonic flow meter positioning bracket
CN205580538U (en) Many acoustical circuits of thin slice type supersound current surveying sensor
JP7021832B2 (en) Flow measuring device
JP7246275B2 (en) Spiral ultrasonic flowmeter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees