JP5629567B2 - Optical power meter and optical power measuring method - Google Patents

Optical power meter and optical power measuring method Download PDF

Info

Publication number
JP5629567B2
JP5629567B2 JP2010278645A JP2010278645A JP5629567B2 JP 5629567 B2 JP5629567 B2 JP 5629567B2 JP 2010278645 A JP2010278645 A JP 2010278645A JP 2010278645 A JP2010278645 A JP 2010278645A JP 5629567 B2 JP5629567 B2 JP 5629567B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
fiber core
propagation
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010278645A
Other languages
Japanese (ja)
Other versions
JP2012127763A (en
Inventor
達幸 牧
達幸 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010278645A priority Critical patent/JP5629567B2/en
Publication of JP2012127763A publication Critical patent/JP2012127763A/en
Application granted granted Critical
Publication of JP5629567B2 publication Critical patent/JP5629567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光パワーメータ及び光パワー測定方法に関する。   The present invention relates to an optical power meter and an optical power measurement method.

局舎や屋外のクロージャなどの光ファイバが束となって集まっている場所で光ファイバ心線の工事を行う際、心線対照器を用いて工事の対象となる光ファイバ心線を特定する。心線対照器は、光ファイバ心線を挟むことにより曲げて、曲げた箇所からの光ファイバ心線の伝搬光を漏洩させることで、光ファイバ心線内の伝搬光の有無を検出することができる。現在、強度変調(例えば、270Hzの矩形波)された信号を検出できるものや、光の方向を検出できるものが商品化されているが、心線対照器は光の有無は検出できても光ファイバ心線の伝搬光の絶対的な光強度を測定することはできない。このため、光ファイバ心線の伝搬光の絶対的な光強度を測定する際には、光の光強度を測定するための装置が別途必要であった。   When constructing an optical fiber core in a place where optical fibers such as a station building or an outdoor closure are gathered in a bundle, the optical fiber core to be constructed is specified using a core wire contrast device. The optical fiber contrast device is capable of detecting the presence or absence of propagating light in the optical fiber core wire by bending the optical fiber core wire and leaking the propagated light of the optical fiber core wire from the bent portion. it can. Currently, products that can detect intensity-modulated signals (for example, a 270 Hz rectangular wave) and those that can detect the direction of light have been commercialized. The absolute light intensity of the light propagating through the fiber core cannot be measured. For this reason, when measuring the absolute light intensity of the propagation light of the optical fiber core wire, a separate device for measuring the light intensity of the light is necessary.

そこで、光ファイバ心線の漏洩光を用いて光ファイバ心線の伝搬光の光強度を測定する装置が提案されている(例えば、特許文献1参照。)。特許文献1の装置は、光ファイバ心線の被覆径とそれに対応する補正量とが定められたテーブルを保有し、光ファイバ心線の被覆径を測定してテーブルを参照することで光ファイバ心線からの漏洩光の光強度の補正量を求め、光ファイバ心線の漏洩光の光強度を補正することで光ファイバ心線の伝搬光の光強度を測定する。   Therefore, an apparatus for measuring the light intensity of the propagation light of the optical fiber core using the leaked light of the optical fiber core has been proposed (see, for example, Patent Document 1). The apparatus of Patent Document 1 has a table in which a coating diameter of an optical fiber core and a correction amount corresponding thereto are determined, and the optical fiber core is measured by measuring the coating diameter of the optical fiber core and referring to the table. A correction amount of the light intensity of the leaked light from the wire is obtained, and the light intensity of the propagation light of the optical fiber core wire is measured by correcting the light intensity of the leaked light of the optical fiber core wire.

特開2009−14546号公報JP 2009-14546 A

ところが、光ファイバ心線からの漏洩光の光強度は光ファイバ心線の被覆材料によっても異なるため、テーブルを参照することにより求められる補正量が正しくない場合がある。このため、測定する光強度に誤差が生じることがある。   However, since the light intensity of the leaked light from the optical fiber core varies depending on the coating material of the optical fiber core, the correction amount required by referring to the table may not be correct. For this reason, an error may occur in the light intensity to be measured.

そこで、本発明は、光ファイバ心線の被覆径や被覆材料に依存するようなテーブルを参照することなく、光ファイバ心線の漏洩光を用いて光ファイバ心線の伝搬光の光強度を測定する光パワーメータ及び光パワー測定方法の提供を目的とする。   Therefore, the present invention measures the light intensity of the propagation light of the optical fiber core using the leaked light of the optical fiber core without referring to the table depending on the coating diameter or the coating material of the optical fiber core. An object of the present invention is to provide an optical power meter and an optical power measurement method.

上記目的を達成するために、本願発明の光パワーメータ及び光パワー測定方法は、光ファイバ心線の2箇所から等しい漏洩率で伝搬光を漏洩させることを特徴とする。図1に、本願発明の原理を示す。   In order to achieve the above object, the optical power meter and the optical power measurement method of the present invention are characterized in that the propagation light is leaked from the two locations of the optical fiber core wire with an equal leakage rate. FIG. 1 shows the principle of the present invention.

光強度P1の伝搬光が曲げ部11aにおいて漏洩率ηで漏洩されて光強度P2となり、さらに曲げ部11bにおいて漏洩率ηで漏洩された場合、曲げ部11a及び11bで検出される漏洩光の光強度Pm1及びPm2はそれぞれ、下記で現される。
Pm1=η・P1 (1)
Pm2=η・P2 (2)
ここで、P2=P1−Pm1となるように光強度Pm1を検出すると、次式が成立する。
P1=Pm1/(Pm1−Pm2) (3)
When the propagation light having the light intensity P1 is leaked at the bending portion 11a with the leakage rate η to become the light intensity P2, and further leaked at the bending portion 11b with the leakage rate η, the light of the leakage light detected by the bending portions 11a and 11b Intensities Pm1 and Pm2 are respectively expressed below.
Pm1 = η · P1 (1)
Pm2 = η · P2 (2)
Here, when the light intensity Pm1 is detected so that P2 = P1−Pm1, the following equation is established.
P1 = Pm1 2 / (Pm1-Pm2) (3)

このように、光ファイバ心線の2箇所から等しい漏洩率で伝搬光を漏洩させることで、漏洩率ηの影響を排除することができる。これにより、本願発明の光パワーメータ及び光パワー測定方法は、光ファイバ心線の被覆径や被覆材料に依存するようなテーブルを参照することなく、光ファイバ心線の漏洩光を用いて光ファイバ心線の伝搬光の光強度を測定することができる。   In this way, the influence of the leakage rate η can be eliminated by causing the propagation light to leak from the two locations of the optical fiber core wire with the same leakage rate. As a result, the optical power meter and the optical power measuring method of the present invention use an optical fiber using the leaked light of the optical fiber core without referring to a table depending on the coating diameter or the coating material of the optical fiber core. The light intensity of the propagation light of the core wire can be measured.

具体的には、本発明の光パワーメータは、単一の光ファイバ心線を伝搬する伝搬光の光強度を測定する光パワーメータであって、漏洩限界半径を下回る曲率半径で前記光ファイバ心線を湾曲させる2箇所の曲げ部であって、等しい曲率半径で前記光ファイバ心線を湾曲させることにより等しい漏洩率で前記光ファイバ心線の伝搬光を漏洩させる当該2箇所の曲げ部(11a及び11b)と、前記光ファイバ心線を一方側から他方側に伝搬する伝搬光における、前記曲げ部湾曲させた前記光ファイバ心線からの漏洩光の光強度を、前記2箇所のそれぞれ別個に且つ同時に測定する光測定部(12)と、前記光測定部の測定した前記2箇所での光強度のうちの大きな方である前記光ファイバ心線の伝搬光の伝搬方向上流側の光強度を2乗し、これを上流側の光強度と下流側の光強度との差分で除することによって、前記光ファイバ心線の伝搬光の光強度を算出する演算部(13)と、を備える。 Specifically, the optical power meter of the present invention is an optical power meter that measures the light intensity of propagating light propagating through a single optical fiber core wire, and the optical fiber core has a radius of curvature that is less than the leakage limit radius. Bending portions (11a) for bending the optical fiber core wire with the same leakage radius by bending the optical fiber core wire with the same curvature radius by bending the optical fiber core wire with two bending portions (11a) a and 11b), the propagating light, the light intensity of the leakage light from the optical fiber which is curved in the bend portion, each of said two positions separate propagating through the optical fiber from one side to the other side And the light intensity at the upstream side in the propagation direction of the propagation light of the optical fiber core, which is the larger of the light intensities measured at the two locations measured by the light measurement section. Squared The by dividing the difference between the light intensity of the light intensity and the downstream side of the upstream side comprises an arithmetic unit (13) for calculating the intensity of the propagation light of the optical fiber.

2箇所の曲げ部と、光測定部と、演算部と、を備えるため、前述の式(3)を用いて光ファイバ心線の伝搬光の光強度を測定することができる。2箇所の曲げ部が光ファイバ心線を等しい曲率半径で湾曲させるため、等しい漏洩率で光ファイバ心線の伝搬光を漏洩させることができる。これにより、本願発明の光パワーメータは、光ファイバ心線の被覆径や被覆材料に依存するようなテーブルを参照することなく、光ファイバ心線の漏洩光を用いて光ファイバ心線の伝搬光の光強度を測定することができる。 Since the two bending portions, the light measurement portion, and the calculation portion are provided, the light intensity of the propagation light of the optical fiber core wire can be measured using the above-described equation (3). Since the two bent portions bend the optical fiber core with the same radius of curvature, it is possible to leak the propagation light of the optical fiber core with the same leakage rate. As a result, the optical power meter of the present invention uses the leaked light of the optical fiber core to transmit the propagation light of the optical fiber without referring to the table depending on the coating diameter of the optical fiber and the coating material. Can be measured.

本発明の光パワーメータでは、前記光測定部は、さらに、前記光ファイバ心線を前記他方側から前記一方側に伝搬する逆方向の伝搬光における、前記曲げ部で湾曲させた前記光ファイバ心線からの当該伝搬光の漏洩光の光強度を、前記2箇所のそれぞれ別個に且つ同時に測定し、前記演算部は、前記光測定部がさらに測定した前記2箇所での当該漏洩光の光強度のうちの大きな方である当該伝搬光の伝搬方向上流側の光強度を2乗し、これを当該伝搬光の上流側の光強度と当該伝搬光の下流側の光強度との差分で除することによって、前記光ファイバ心線の当該伝搬光の光強度を算出してもよい。
光測定部が光ファイバ心線を伝搬する片方向の伝搬光のみを測定するため、2箇所の曲げ部と式(3)における光強度Pm1及びPm2との関係を一義的に定めることができる。これにより、演算部における演算処理が簡易になるほか、伝搬光の伝搬方向を判定することができる。
In the optical power meter according to the aspect of the invention, the optical measurement unit further includes the optical fiber core bent at the bent portion in the reverse propagation light propagating the optical fiber core from the other side to the one side. The light intensity of the leakage light of the propagation light from the line is measured separately and simultaneously at each of the two locations, and the computing unit further measures the light intensity of the leakage light at the two locations further measured by the light measurement unit. The light intensity on the upstream side in the propagation direction of the propagation light, which is the larger of the two, is squared, and this is divided by the difference between the light intensity on the upstream side of the propagation light and the light intensity on the downstream side of the propagation light. Thus, the light intensity of the propagation light of the optical fiber core wire may be calculated .
Since the light measurement unit measures only one-way propagating light propagating through the optical fiber core wire, the relationship between the two bent portions and the light intensities Pm1 and Pm2 in Equation (3) can be uniquely determined. Thereby, the calculation process in the calculation unit is simplified, and the propagation direction of the propagation light can be determined.

本発明の光パワーメータでは、前記光測定部は、前記光ファイバ心線を一方の方向に伝搬する伝搬光と、前記光ファイバ心線を一方とは異なる方向に伝搬する伝搬光と、の両方向の伝搬光をそれぞれ測定してもよい。
本発明により、光パワーメータで光ファイバ心線を挟めば、伝搬光の伝搬方向に関りなく伝搬光の光強度を測定することができる。これにより、光パワーメータのユーザの作業を減らすことができる
In the optical power meter of the present invention, the light measurement unit is configured to transmit the propagation light propagating through the optical fiber core in one direction and the propagation light propagating through the optical fiber core in a direction different from the one direction. Each of the propagation lights may be measured.
According to the present invention, if the optical fiber core wire is sandwiched between optical power meters, the light intensity of the propagation light can be measured regardless of the propagation direction of the propagation light. Thereby, the work of the user of the optical power meter can be reduced.

具体的には、本発明の光パワー測定方法は、単一の光ファイバ心線を伝搬する伝搬光の光強度を測定する光パワー測定方法であって、漏洩限界半径を下回る曲率半径で前記光ファイバ心線の2箇所を湾曲させる曲げ手順であって、等しい曲率半径で前記光ファイバ心線の2箇所を湾曲させて、前記光ファイバ心線の2箇所から、等しい漏洩率で前記光ファイバ心線の伝搬光を漏洩させる当該曲げ手順(S101)と、前記曲げ手順で湾曲させた前記光ファイバ心線からの前記光ファイバ心線を一方側から他方側に伝搬する伝搬光における漏洩光の光強度を、前記2箇所のそれぞれ別個に且つ同時に測定する光測定手順(S102)と、前記光測定手順で測定した前記2箇所での光強度のうちの大きな方である前記光ファイバ心線の伝搬光の伝搬方向上流側の光強度を2乗し、これを上流側の光強度と下流側の光強度との差分で除することによって、前記光ファイバ心線の伝搬光の光強度を算出する演算手順(S103)と、を有する。 Specifically, the optical power measurement method of the present invention is an optical power measurement method for measuring the light intensity of propagating light propagating through a single optical fiber core wire, wherein the light has a radius of curvature lower than a leakage limit radius. A bending procedure for bending two portions of a fiber core, wherein the two portions of the optical fiber are bent with an equal radius of curvature, and the optical fiber core is bent at an equal leakage rate from the two portions of the optical fiber. The bending procedure (S101) for leaking the propagation light of the wire, and the light of the leakage light in the propagation light propagating from the one side to the other side of the optical fiber core wire bent from the optical fiber core wire bent by the bending procedure Propagation of the optical fiber core, which is the greater of the light measurement procedure (S102) for measuring the intensity separately and simultaneously at the two locations, and the light intensity at the two locations measured in the light measurement procedure Light transmission An operation procedure for calculating the light intensity of the propagation light of the optical fiber core by dividing the light intensity on the upstream side in the direction by the square and dividing this by the difference between the light intensity on the upstream side and the light intensity on the downstream side ( S103).

曲げ手順と、光測定手順と、演算手順と、を有するため、前述の式(3)を用いて光ファイバ心線の伝搬光の光強度を測定することができる。2箇所の曲げ部が光ファイバ心線を等しい曲率半径で湾曲させるため、等しい漏洩率で光ファイバ心線の伝搬光を漏洩させることができる。これにより、本願発明の光パワー測定方法は、光ファイバ心線の被覆径や被覆材料に依存するようなテーブルを参照することなく、光ファイバ心線の漏洩光を用いて光ファイバ心線の伝搬光の光強度を測定することができる。 Since it has a bending procedure, a light measurement procedure, and a calculation procedure, the light intensity of the propagation light of the optical fiber core wire can be measured using the above-described equation (3). Since the two bent portions bend the optical fiber core with the same radius of curvature, it is possible to leak the propagation light of the optical fiber core with the same leakage rate. As a result, the optical power measurement method of the present invention uses the leaked light of the optical fiber core to propagate the optical fiber core without referring to a table that depends on the coating diameter or the coating material of the optical fiber core. The light intensity of light can be measured.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、光ファイバ心線の被覆径や被覆材料に依存するようなテーブルを参照することなく、光ファイバ心線の漏洩光を用いて光ファイバ心線の伝搬光の光強度を測定する光パワーメータ及び光パワー測定方法を提供することができる。   According to the present invention, the light intensity of the propagation light of the optical fiber core is measured using the leaked light of the optical fiber core without referring to the table depending on the coating diameter or the coating material of the optical fiber core. An optical power meter and an optical power measurement method can be provided.

本願発明の原理を示す。The principle of the present invention will be described. 実施形態1に係る光パワーメータの一例を示す。An example of the optical power meter which concerns on Embodiment 1 is shown. 実施形態1に係る光パワー測定方法の一例を示す。An example of the optical power measuring method which concerns on Embodiment 1 is shown. 実施形態2に係る光パワーメータの一例を示す。An example of the optical power meter which concerns on Embodiment 2 is shown. 実施形態3に係る光パワーメータの一例を示す。An example of the optical power meter which concerns on Embodiment 3 is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図2に、実施形態1に係る光パワーメータの一例を示す。実施形態1に係る光パワーメータ101は、曲げ部11aと、曲げ部11bと、光測定部12と、演算部13と、を備え、光ファイバ心線10の一方から他方に伝搬する伝搬光L1の光強度を測定する。
(Embodiment 1)
FIG. 2 shows an example of an optical power meter according to the first embodiment. The optical power meter 101 according to the first embodiment includes a bending portion 11a, a bending portion 11b, an optical measurement unit 12, and a calculation unit 13, and propagates light L1 propagating from one of the optical fiber cores 10 to the other. Measure the light intensity.

図3に、実施形態1に係る光パワー測定方法の一例を示す。実施形態1に係る光パワー測定方法は、曲げ手順S101と、光測定手順S102と、演算手順S103と、を順に有する。以下、図2及び図3を参照しながら、各構成及び各手順の詳細について説明する。   FIG. 3 shows an example of an optical power measurement method according to the first embodiment. The optical power measurement method according to the first embodiment includes a bending procedure S101, a light measurement procedure S102, and a calculation procedure S103 in order. Hereinafter, the details of each configuration and each procedure will be described with reference to FIGS. 2 and 3.

曲げ手順S101では、曲げ部11a及び曲げ部11bを用いて光ファイバ心線10の2箇所を湾曲させ、光ファイバ心線10の2箇所から、等しい漏洩率で光ファイバ心線10の伝搬光L1を漏洩させる。曲げ部11a及び曲げ部11bは、漏洩限界半径を下回る曲率半径で光ファイバ心線10を湾曲させる。例えば、凸部31a及び凸部31bの曲率半径は漏洩限界半径を下回っている。ここで、漏洩限界半径は、光ファイバ心線10を曲げることによってファイバ心線10から伝搬光が漏洩し始める半径である。凸部31aと凹部32aで光ファイバ心線10を挟むことで、曲げ部11aにおいて漏洩限界半径よりも小さな半径に光ファイバ心線10を曲げて伝搬光L1を漏洩させる。凸部31bと凹部32bで光ファイバ心線10を挟むことで、曲げ部11bにおいて漏洩限界半径よりも小さな半径に光ファイバ心線10を曲げて伝搬光L1を漏洩させる。 In the bending procedure S101, two portions of the optical fiber core wire 10 are bent using the bending portion 11a and the bending portion 11b, and the propagation light L1 of the optical fiber core wire 10 is emitted from the two portions of the optical fiber core wire 10 with an equal leakage rate. Leak. The bent portion 11a and the bent portion 11b bend the optical fiber core wire 10 with a radius of curvature that is less than the leakage limit radius. For example, the curvature radius of the convex part 31a and the convex part 31b is less than the leakage limit radius. Here, the leakage limit radius is a radius at which propagation light starts to leak from the fiber core wire 10 by bending the optical fiber core wire 10. By sandwiching the optical fiber core wire 10 between the convex portion 31a and the concave portion 32a, the optical fiber core wire 10 is bent to a radius smaller than the leakage limit radius at the bent portion 11a to leak the propagation light L1. By sandwiching the optical fiber core wire 10 between the convex portion 31b and the concave portion 32b, the optical fiber core wire 10 is bent to a radius smaller than the leakage limit radius at the bent portion 11b, and the propagation light L1 is leaked.

曲げ手順S101では、等しい漏洩率で光ファイバ心線10の伝搬光L1を漏洩させるために、曲げ部11a及び曲げ部11bが等しい曲率半径で光ファイバ心線10を湾曲させる。例えば、凸部31aと凸部31bの曲率半径が等しく、凹部32aと凹部32bの曲率半径が等しく、これにより曲げ部11a及び曲げ部11bでの漏洩率を等しくする。 In the bending procedure S101, in order to leak the propagation light L1 of the optical fiber core wire 10 with an equal leakage rate, the bent portion 11a and the bent portion 11b bend the optical fiber core wire 10 with an equal curvature radius. For example, the radius of curvature of the convex portion 31a and the convex portion 31b are equal, equal radius of curvature of the concave 32a and the recess 32b, thereby to equalize the leakage rate in the bent portion 11a and the bent portion 11b.

曲げ手順S101では、光ファイバ心線10を同じ方向に湾曲させる。例えば、凸部31a及び凸部31bは曲げ部11a及び11bを構成する部材41の同一面に形成され、凹部32a及び凹部32bは曲げ部11a及び11bを構成する部材42の同一面に形成される。光ファイバ心線10を同じ方向に湾曲させることで、光ファイバ心線10の周方向の一部に光ファイバ心線10の被覆の厚さや材料の異なる部分がある場合であっても、曲げ部11a及び曲げ部11bから等しい漏洩率で光ファイバ心線10の伝搬光L1を漏洩させることができる。   In the bending procedure S101, the optical fiber core wire 10 is bent in the same direction. For example, the convex portion 31a and the convex portion 31b are formed on the same surface of the member 41 constituting the bent portions 11a and 11b, and the concave portion 32a and the concave portion 32b are formed on the same surface of the member 42 constituting the bent portions 11a and 11b. . By bending the optical fiber core wire 10 in the same direction, even if there is a part of the coating thickness or material of the optical fiber core wire 10 in a part of the circumferential direction of the optical fiber core wire 10, the bent portion The propagating light L1 of the optical fiber core wire 10 can be leaked from the optical fiber core 10 with the same leakage rate.

光測定手順S102では、光測定部12を用いて、曲げ手順S101で湾曲させた光ファイバ心線10からの漏洩光の光強度を、2箇所のそれぞれ別個に測定する。例えば、光測定部12は、曲げ部11aにおける伝搬光L1の漏洩光を受光して図1に示す光強度Pm1を測定するPD(Photo Diode)21と、曲げ部11bにおける伝搬光L1の漏洩光を受光して図1に示す光強度Pm2を測定するPD22と、を備える。   In the light measurement procedure S102, the light intensity of leakage light from the optical fiber core wire 10 bent in the bending procedure S101 is separately measured using the light measurement unit 12 at two locations. For example, the light measuring unit 12 receives the leakage light of the propagation light L1 in the bending part 11a and measures the light intensity Pm1 shown in FIG. 1 and the leakage light of the propagation light L1 in the bending part 11b. And PD 22 for measuring the light intensity Pm2 shown in FIG.

ここで、光測定部12は、光ファイバ心線10を伝搬する片方向の伝搬光L1のみを測定する。すなわち、光測定部12は、光ファイバ心線10の他方から一方に伝搬する伝搬光L2の漏洩光は測定しない。例えば、PD21は凸部31aの先端よりも光ファイバ心線10の他方側に配置され、PD22は凸部31bの先端よりも光ファイバ心線10の他方側に配置される。このようにPD21及びPD22が伝搬光L1の漏洩光のみを受光するため、PD21で受光される漏洩光の光強度がPD22で受光される漏洩光の光強度よりも必ず大きくなる。このため、PD21の出力を光強度Pm1にPD22の出力を光強度Pm2に一義的に定めることができるため、演算部13における演算処理を簡易にするとともに、光パワーメータ101のユーザの操作を容易にすることができる。また、伝搬光の伝搬方向を簡易に判定することもできる。   Here, the light measurement unit 12 measures only the unidirectional propagation light L1 propagating through the optical fiber core wire 10. That is, the light measurement unit 12 does not measure the leakage light of the propagation light L2 propagating from the other optical fiber core wire 10 to the other. For example, the PD 21 is disposed on the other side of the optical fiber core 10 with respect to the tip of the convex portion 31a, and the PD 22 is disposed on the other side of the optical fiber core wire 10 with respect to the front end of the convex portion 31b. Since the PD 21 and the PD 22 receive only the leakage light of the propagation light L1 in this way, the light intensity of the leakage light received by the PD 21 is necessarily greater than the light intensity of the leakage light received by the PD 22. Therefore, the output of the PD 21 can be uniquely determined as the light intensity Pm1 and the output of the PD 22 can be uniquely determined as the light intensity Pm2. Therefore, the calculation processing in the calculation unit 13 is simplified and the user can easily operate the optical power meter 101. Can be. In addition, the propagation direction of the propagation light can be easily determined.

演算手順S103では、演算部13を用いて、光測定手順S102で測定した2箇所での漏洩光の光強度Pm1及びPm2を用いて、光ファイバ心線10の伝搬光L1の光強度を算出する。たとえば、前述の式(3)を用い、2箇所での光強度のうちの大きな光強度を2乗し、2箇所での光強度の差分で除することによって、伝搬光L1の光強度P1を算出する。   In the calculation procedure S103, the light intensity of the propagation light L1 of the optical fiber core wire 10 is calculated using the light intensity Pm1 and Pm2 of the leaked light at two locations measured in the light measurement procedure S102 using the calculation unit 13. . For example, the light intensity P1 of the propagation light L1 is obtained by squaring the large light intensity of the light intensity at the two places and dividing by the difference between the light intensities at the two places using the above-described equation (3). calculate.

ここで、前述の式(3)を用いるために、P2=P1−Pm1となるように光強度Pm1を検出する。そこで、PD21はPD22よりも光ファイバ心線10の一方側に配置されるとともに、PD1が曲げ部11aでの漏洩光の全てを受光できる受光面積を有している。これにより、前述の式(3)が成立し、伝搬光L1の光強度を測定することができる。   Here, in order to use the above-described equation (3), the light intensity Pm1 is detected so that P2 = P1−Pm1. Therefore, the PD 21 is arranged on one side of the optical fiber core wire 10 with respect to the PD 22 and has a light receiving area where the PD 1 can receive all of the leaked light at the bent portion 11a. Thereby, the above-described equation (3) is established, and the light intensity of the propagation light L1 can be measured.

(実施形態2)
図4に、実施形態2に係る光パワーメータの一例を示す。実施形態2に係る光パワーメータ102は、実施形態1で説明した曲げ手順S101における曲げ部11a及び曲げ部11bの構成が異なる。
(Embodiment 2)
FIG. 4 shows an example of an optical power meter according to the second embodiment. The optical power meter 102 according to the second embodiment is different in the configuration of the bending portion 11a and the bending portion 11b in the bending procedure S101 described in the first embodiment.

実施形態2に係る曲げ手順S101では、光ファイバ心線10を異なる方向に湾曲させる。例えば、凸部31a及び凹部32bが曲げ部11a及び11bを構成する部材43の同一面に形成され、凸部31b及び凹部32aが曲げ部11a及び11bを構成する部材44の同一面に形成される。これにより、曲げ部11aと曲げ部11bの間隔を狭くすることができるため、光パワーメータ102を小型化することができる。   In the bending procedure S101 according to the second embodiment, the optical fiber core wire 10 is bent in different directions. For example, the convex portion 31a and the concave portion 32b are formed on the same surface of the member 43 constituting the bent portions 11a and 11b, and the convex portion 31b and the concave portion 32a are formed on the same surface of the member 44 constituting the bent portions 11a and 11b. . Thereby, since the space | interval of the bending part 11a and the bending part 11b can be narrowed, the optical power meter 102 can be reduced in size.

(実施形態3)
図5に、実施形態3に係る光パワーメータの一例を示す。実施形態3に係る光パワーメータ103は、実施形態1で説明した光測定手順S102における光測定部12の構成が異なる。
(Embodiment 3)
FIG. 5 shows an example of an optical power meter according to the third embodiment. The optical power meter 103 according to the third embodiment is different in the configuration of the light measurement unit 12 in the light measurement procedure S102 described in the first embodiment.

実施形態3に係る光測定手順S102では、光測定部12は、伝搬光L1と伝搬光L2との両方向の伝搬光をそれぞれ測定する。例えば、光測定部12は、実施形態1で説明したPD21及びPD22に加えて、PD23及びPD24を備える。PD21及びPD22は伝搬光L1の漏洩光のみが入射する位置に配置され、PD23及びPD24は伝搬光L2の漏洩光のみが入射する位置に配置されている。   In the light measurement procedure S102 according to the third embodiment, the light measurement unit 12 measures the propagation light in both directions of the propagation light L1 and the propagation light L2. For example, the light measurement unit 12 includes a PD 23 and a PD 24 in addition to the PD 21 and the PD 22 described in the first embodiment. PD21 and PD22 are arranged at a position where only the leakage light of the propagation light L1 is incident, and PD23 and PD24 are arranged at a position where only the leakage light of the propagation light L2 is incident.

光パワーメータ103に伝搬光L1が入力された場合には、演算部13は、PD21及びPD22で検出された漏洩光の光強度を用いて伝搬光L1の光強度を算出する。光パワーメータ103に伝搬光L2が入力された場合には、演算部13は、PD23及びPD24で検出された漏洩光の光強度を用いて伝搬光L1の光強度を算出する。PD23は曲げ部11bにおける伝搬光L2の漏洩光を受光して図1に示す光強度Pm1を測定し、PD24は曲げ部11aにおける伝搬光L2の漏洩光を受光して図1に示す光強度Pm2を測定する。   When the propagation light L1 is input to the optical power meter 103, the calculation unit 13 calculates the light intensity of the propagation light L1 using the light intensity of the leakage light detected by the PD 21 and PD22. When the propagation light L2 is input to the optical power meter 103, the calculation unit 13 calculates the light intensity of the propagation light L1 using the light intensity of the leakage light detected by the PD 23 and the PD 24. The PD 23 receives the leakage light of the propagation light L2 at the bending portion 11b and measures the light intensity Pm1 shown in FIG. 1, and the PD 24 receives the leakage light of the propagation light L2 at the bending portion 11a and receives the light intensity Pm2 shown in FIG. Measure.

光パワーメータ103は、伝搬光L1及び伝搬光L2の両方向の漏洩光の光強度を測定することができるため、束ねてある光ファイバ心線であっても、伝搬光の伝搬方向を確認することなく伝搬光の光強度を測定することができる。これにより、光パワーメータのユーザの作業を減らすことができる   Since the optical power meter 103 can measure the light intensity of the leakage light in both directions of the propagation light L1 and the propagation light L2, the propagation direction of the propagation light can be confirmed even for the bundled optical fiber core wires. It is possible to measure the light intensity of propagating light. Thereby, the work of the user of the optical power meter can be reduced.

また、PD21及びPD22で漏洩光が検出された場合には光ファイバ心線10の一方から他方に伝搬する伝搬光L1であり、PD23及びPD24で漏洩光が検出された場合には光ファイバ心線10の他方から一方に伝搬する伝搬光L2であることが判別できるため、伝搬光の伝搬方向も判別することができる。   Further, when leakage light is detected by PD 21 and PD 22, it is propagation light L 1 propagating from one of the optical fiber cores 10 to the other. When leakage light is detected by PD 23 and PD 24, the optical fiber core wire is used. Since it can be determined that the propagation light L2 propagates from the other of the ten to one, the propagation direction of the propagation light can also be determined.

本発明の光パワーメータ及び光パワー測定方法は、情報通信産業に適用することができる。   The optical power meter and the optical power measurement method of the present invention can be applied to the information communication industry.

10:光ファイバ心線
11a、11b:曲げ部
12:光測定部
13:演算部
21、22、23、24:PD
31a、31b:凸部
32a、32b:凹部
41、42、43、44:曲げ部を構成する部材
101、102、103:光パワーメータ
10: Optical fiber core wire 11a, 11b: Bending part 12: Light measuring part 13: Calculation parts 21, 22, 23, 24: PD
31a, 31b: convex portions 32a, 32b: concave portions 41, 42, 43, 44: members 101, 102, 103 constituting the bent portion: optical power meter

Claims (3)

単一の光ファイバ心線を伝搬する伝搬光の光強度を測定する光パワーメータであって、
漏洩限界半径を下回る曲率半径で前記光ファイバ心線を湾曲させる2箇所の曲げ部であって、等しい曲率半径で前記光ファイバ心線を湾曲させることにより等しい漏洩率で前記光ファイバ心線の伝搬光を漏洩させる当該2箇所の曲げ部(11a及び11b)と、
前記光ファイバ心線を一方側から他方側に伝搬する伝搬光における、前記曲げ部湾曲させた前記光ファイバ心線からの漏洩光の光強度を、前記2箇所のそれぞれ別個に且つ同時に測定する光測定部(12)と、
前記光測定部の測定した前記2箇所での光強度のうちの大きな方である前記光ファイバ心線の伝搬光の伝搬方向上流側の光強度を2乗し、これを上流側の光強度と下流側の光強度との差分で除することによって、前記光ファイバ心線の伝搬光の光強度を算出する演算部(13)と、
を備える光パワーメータ。
An optical power meter that measures the light intensity of propagating light propagating through a single optical fiber core,
Propagation of the optical fiber core at an equal leakage rate by bending the optical fiber core with a radius of curvature that is less than the leakage limit radius, and bending the optical fiber core with an equal radius of curvature The two bent portions (11a and 11b) for leaking light;
The light intensity of leakage light from the optical fiber core that is bent by the bent portion in the propagation light propagating the optical fiber core from one side to the other side is measured separately and simultaneously at the two locations. A light measuring section (12);
The light intensity on the upstream side in the propagation direction of the propagation light of the optical fiber core, which is the larger of the light intensities measured at the two locations measured by the light measuring unit, is squared, and this is referred to as the upstream light intensity. A calculation unit (13) that calculates the light intensity of the propagation light of the optical fiber by dividing by the difference with the light intensity on the downstream side;
An optical power meter comprising:
前記光測定部は、さらに、前記光ファイバ心線を前記他方側から前記一方側に伝搬する逆方向の伝搬光における、前記曲げ部で湾曲させた前記光ファイバ心線からの当該伝搬光の漏洩光の光強度を、前記2箇所のそれぞれ別個に且つ同時に測定し、
前記演算部は、前記光測定部がさらに測定した前記2箇所での当該漏洩光の光強度のうちの大きな方である当該伝搬光の伝搬方向上流側の光強度を2乗し、これを当該伝搬光の上流側の光強度と当該伝搬光の下流側の光強度との差分で除することによって、前記光ファイバ心線の当該伝搬光の光強度を算出することを特徴とする請求項1に記載の光パワーメータ。
The light measurement unit further leaks the propagation light from the optical fiber core curved at the bending portion in the reverse propagation light propagating the optical fiber from the other side to the one side. The light intensity of the light is measured separately and simultaneously at each of the two locations,
The computing unit squares the light intensity upstream in the propagation direction of the propagation light, which is the larger of the light intensities of the leakage light at the two locations further measured by the light measurement unit, The light intensity of the propagation light of the optical fiber core wire is calculated by dividing by the difference between the light intensity on the upstream side of the propagation light and the light intensity on the downstream side of the propagation light. The optical power meter described in 1.
単一の光ファイバ心線を伝搬する伝搬光の光強度を測定する光パワー測定方法であって、
漏洩限界半径を下回る曲率半径で前記光ファイバ心線の2箇所を湾曲させる曲げ手順であって、等しい曲率半径で前記光ファイバ心線の2箇所を湾曲させて、前記光ファイバ心線の2箇所から、等しい漏洩率で前記光ファイバ心線の伝搬光を漏洩させる当該曲げ手順(S101)と、
前記曲げ手順で湾曲させた前記光ファイバ心線からの前記光ファイバ心線を一方側から他方側に伝搬する伝搬光における漏洩光の光強度を、前記2箇所のそれぞれ別個に且つ同時に測定する光測定手順(S102)と、
前記光測定手順で測定した前記2箇所での光強度のうちの大きな方である前記光ファイバ心線の伝搬光の伝搬方向上流側の光強度を2乗し、これを上流側の光強度と下流側の光強度との差分で除することによって、前記光ファイバ心線の伝搬光の光強度を算出する演算手順(S103)と、
を有する光パワー測定方法。
An optical power measurement method for measuring the light intensity of propagating light propagating through a single optical fiber core,
A bending procedure for bending two locations of the optical fiber core with a curvature radius less than a leakage limit radius, wherein the two locations of the optical fiber core wire are bent with an equal curvature radius. From the bending procedure (S101) to leak the propagation light of the optical fiber core wire with an equal leakage rate,
Light that separately and simultaneously measures the light intensity of leakage light in propagating light propagating from one side to the other side of the optical fiber core that has been bent by the bending procedure. A measurement procedure (S102);
The light intensity on the upstream side in the propagation direction of the propagation light of the optical fiber core, which is the larger of the light intensities at the two locations measured in the light measurement procedure, is squared, and this is referred to as the upstream light intensity. A calculation procedure (S103) for calculating the light intensity of the propagation light of the optical fiber by dividing by the difference with the light intensity on the downstream side,
A method for measuring optical power.
JP2010278645A 2010-12-14 2010-12-14 Optical power meter and optical power measuring method Expired - Fee Related JP5629567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278645A JP5629567B2 (en) 2010-12-14 2010-12-14 Optical power meter and optical power measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278645A JP5629567B2 (en) 2010-12-14 2010-12-14 Optical power meter and optical power measuring method

Publications (2)

Publication Number Publication Date
JP2012127763A JP2012127763A (en) 2012-07-05
JP5629567B2 true JP5629567B2 (en) 2014-11-19

Family

ID=46644978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278645A Expired - Fee Related JP5629567B2 (en) 2010-12-14 2010-12-14 Optical power meter and optical power measuring method

Country Status (1)

Country Link
JP (1) JP5629567B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314008B2 (en) * 2014-03-20 2018-04-18 オリンパス株式会社 Endoscope system
JP6388850B2 (en) * 2015-06-04 2018-09-12 日本電信電話株式会社 Optical fiber side input / output device
JPWO2022215214A1 (en) * 2021-04-07 2022-10-13
WO2024024042A1 (en) * 2022-07-28 2024-02-01 日本電信電話株式会社 Light monitoring device and light intensity measurement method
WO2024079819A1 (en) * 2022-10-12 2024-04-18 日本電信電話株式会社 Optical monitor device and light intensity measurement method

Also Published As

Publication number Publication date
JP2012127763A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5629567B2 (en) Optical power meter and optical power measuring method
CN101542255B (en) Optical fiber thermometer and temperature compensation optical fiber sensor
GB2521661A (en) Apparatus and method for measuring flow
JP2015015243A (en) Constitution for performing total internal reflection by guiding light beam to light guide plate
JP6636273B2 (en) Connection method of multi-core optical fiber
CN103575378A (en) Ultrasonic wedge and method for determining the speed of sound in same
JP4991972B1 (en) Ultrasonic flow measuring device
WO2020168833A1 (en) Optical fiber monitoring method and device
KR101725589B1 (en) Device for detecting pipe leaking and Method for detecting pipe leaking using the thereof
JP2008051735A (en) Optical detection device for cable core referencing
CN103168262A (en) Optical transmission line
JP2012519856A5 (en)
CN201993476U (en) Lens pollution detection device and road condition detector
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
JP2006258554A (en) Method and device for monitoring light
JP2008089554A (en) Optical fiber sensor
WO2018079269A1 (en) Fluid measuring device
JP4818713B2 (en) Ultrasonic flow meter
JP2008216100A (en) Ultrasonic flow meter
JP7267538B2 (en) Optical fiber sensor device
CN205426088U (en) Optic fibre angle displacement sensor based on differential light intensity principle
JP6622177B2 (en) Optical fiber sensor and detection method
KR101388163B1 (en) Deformation measuring apparatus
KR101499398B1 (en) Impact point monitoring system using intensity-based fiber optic sensor
TW201500792A (en) Optical coupling lens and testing method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5629567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees