JP5292522B1 - Ultrasonic flow measuring device - Google Patents

Ultrasonic flow measuring device Download PDF

Info

Publication number
JP5292522B1
JP5292522B1 JP2013096360A JP2013096360A JP5292522B1 JP 5292522 B1 JP5292522 B1 JP 5292522B1 JP 2013096360 A JP2013096360 A JP 2013096360A JP 2013096360 A JP2013096360 A JP 2013096360A JP 5292522 B1 JP5292522 B1 JP 5292522B1
Authority
JP
Japan
Prior art keywords
ultrasonic
groove
flow rate
groove portion
ultrasonic flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013096360A
Other languages
Japanese (ja)
Other versions
JP2014219210A (en
Inventor
英一 村上
浩平 先山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsuden Co Ltd
Original Assignee
Atsuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsuden Co Ltd filed Critical Atsuden Co Ltd
Priority to JP2013096360A priority Critical patent/JP5292522B1/en
Application granted granted Critical
Publication of JP5292522B1 publication Critical patent/JP5292522B1/en
Publication of JP2014219210A publication Critical patent/JP2014219210A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】測定すべき流体を流す管体に対して、超音波式流量測定装置の着脱を容易に行って、流体の流量を測定する。
【解決手段】保持本体2には溝部1が形成され、溝部1の対向する内壁面には一対の超音波送受信器5a、5bが埋設されている。溝部1に管体Pを押し込み、掛止アームにより溝部1が狭まるように締め付けると、管体Pの一部は溝部1の内壁面にほぼ密着し溝部1の幅は所定間隔となる。流量測定に際し、超音波送受信器5a、5bの一方から管体P内の流体中に超音波ビームBを発信すると、管体Pの流体内を通過した超音波ビームBは送受信器5a、5bの他方において受信される。超音波ビームBが上流側から下流側への順行時間と、下流側から上流側への逆行時間との伝播時間差を求めて流速を求める。
【選択図】図4
An ultrasonic flow rate measuring device is easily attached to and detached from a tube through which a fluid to be measured flows, and the flow rate of the fluid is measured.
A holding body 2 is provided with a groove portion 1, and a pair of ultrasonic transmitters and receivers 5a and 5b are embedded in opposing inner wall surfaces of the groove portion 1. When the tubular body P is pushed into the groove portion 1 and tightened so that the groove portion 1 is narrowed by the latching arm, a part of the tubular body P is substantially in close contact with the inner wall surface of the groove portion 1 and the width of the groove portion 1 becomes a predetermined interval. When the ultrasonic beam B is transmitted into the fluid in the pipe P from one of the ultrasonic transmitters / receivers 5a and 5b when measuring the flow rate, the ultrasonic beam B that has passed through the fluid in the pipe P is transmitted from the transmitter / receiver 5a and 5b. Received on the other. The flow velocity is obtained by obtaining the propagation time difference between the forward time from the upstream side to the downstream side of the ultrasonic beam B and the backward time from the downstream side to the upstream side.
[Selection] Figure 4

Description

本発明は、管体に外部から取り付け、管体内の流体に超音波ビームを伝播させて、流体の流量を測定するクランプオン型の超音波式流量測定装置に関するものである。   The present invention relates to a clamp-on type ultrasonic flow measurement device that is attached to a tube body from the outside and propagates an ultrasonic beam to the fluid in the tube body to measure the flow rate of the fluid.

この種の装置として、本出願人の出願による特許文献1、2が知られている。   As this type of apparatus, Patent Documents 1 and 2 filed by the present applicant are known.

特許第4878653号公報Japanese Patent No. 4878653 特許第4940384号公報Japanese Patent No. 4940384

特許文献1、2のクランプオン型の超音波式流量測定装置では、てこの原理を利用しレバーを用いたクランプ機構により、合成樹脂製の管体を四方から押圧して略角形状の所定形状に締め付けている。また、要部には少なくとも金属材料を用いることが望ましく、比較的大きな径の管体には好適に用いることができるが、小径の管体に対しては適応が難しいという問題がある。更に、超音波式流量測定装置を管体に着脱する際に、管体の周囲に大きな作業空間を必要とする。   In the clamp-on-type ultrasonic flow measuring devices of Patent Documents 1 and 2, a tube mechanism made of lever is used to press a synthetic resin tube body from four directions by using a lever principle and a predetermined shape having a substantially square shape. Tightened to. Further, it is desirable to use at least a metal material for the main part, and it can be suitably used for a relatively large-diameter tube, but there is a problem that adaptation is difficult for a small-diameter tube. Furthermore, when attaching and detaching the ultrasonic flow measuring device to and from the tube, a large work space is required around the tube.

本発明の目的は、上述の課題を解消し、簡素な構成で管体に対して簡易な構造により着脱できると共に、作業スペースを小さくすることができる超音波式流量測定装置を提供することにある。   An object of the present invention is to provide an ultrasonic flow measuring device that solves the above-described problems and can be attached to and detached from a tubular body with a simple structure and can reduce the work space. .

上記目的を達成するための本発明に係る超音波式流量測定装置は、測定すべき流体を流し可撓性を有する柔軟な材料から成る管体に対して、保持本体を着脱自在とする超音波式流量測定装置において、前記保持本体には両側に内壁面を有し前記管体を挟着する溝部を備え、該溝部の上方に前記溝部上を掛け渡して前記溝部の幅が狭まるように締め付けて掛止することにより前記溝部の幅を所定の大きさとする掛止アームを備え、前記溝部の前記内壁面に一対の超音波送受信器を前記管体に沿った上流側及び下流側に取り付け、前記管体の流体内に前記一方の超音波送受信器からの超音波ビームを送信し、前記管体内を通過した超音波ビームを前記他方の超音波送受信器で受信するようにしたことを特徴とする。   In order to achieve the above object, an ultrasonic flow measuring device according to the present invention is an ultrasonic that allows a fluid to be measured to flow and a holding body to be detachably attached to a tube made of a flexible material. In the flow rate measuring apparatus, the holding body has a groove portion having inner wall surfaces on both sides and sandwiching the tube body, and is tightened so that the groove portion is narrowed by spanning the groove portion above the groove portion. A hook arm that makes the width of the groove portion a predetermined size by hooking, and attaching a pair of ultrasonic transmitters and receivers to the inner wall surface of the groove portion on the upstream side and the downstream side along the tubular body, An ultrasonic beam from the one ultrasonic transceiver is transmitted into the fluid of the tubular body, and an ultrasonic beam that has passed through the tubular body is received by the other ultrasonic transceiver. To do.

本発明に係る超音波式流量測定装置によれば、構成が簡素で、管体に対して着脱が容易である。   According to the ultrasonic flow rate measuring apparatus according to the present invention, the configuration is simple and the tube body can be easily attached and detached.

実施例1の超音波式流量測定装置の使用前の斜視図である。It is a perspective view before use of the ultrasonic flow measuring device of Example 1. FIG. 保持本体内に超音波送受信器を埋設した状態の平面図である。It is a top view in the state where an ultrasonic transceiver was embedded in a holding body. 管体を装着した状態の斜視図である。It is a perspective view in the state where a tubular body was installed. 超音波式流量測定装置の原理的説明図である。It is a principle explanatory view of an ultrasonic type flow measuring device. 実施例2の超音波式流量測定装置の斜視図である。It is a perspective view of the ultrasonic type flow measuring device of Example 2. 錠止アームにより掛止アームを錠止した状態の斜視図である。It is a perspective view of the state which locked the latching arm with the locking arm.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は管体の外側に着脱自在に取り付けて使用する使用前の実施例1の超音波式流量測定装置の斜視図である。   FIG. 1 is a perspective view of an ultrasonic flow measuring device according to a first embodiment before use, which is detachably attached to the outside of a tube body.

上部を開放した断面コ字状の溝部1を有し、合成樹脂材から成る保持本体2を主体とし、溝部1の上部両側には、溝部1を跨いで反対側に掛け止めるための合成樹脂製の2個の掛止アーム3a、3bが設けられている。   It has a groove portion 1 having a U-shaped cross-section with the upper part opened, and is mainly made of a holding body 2 made of a synthetic resin material, and is made of a synthetic resin to be hooked on the opposite side across the groove portion 1 on both sides of the upper portion of the groove portion 1 The two latching arms 3a and 3b are provided.

溝部1の両側の対向する内壁面4a、4bには、図2に示すように一対の超音波送受信器5a、5bが溝部1の長手方向に沿った異なる位置にそれぞれ埋設されている。そして、超音波送受信器5a、5bは合成樹脂から成るビーム伝達体6を介して溝部1の内壁面4a、4bに面一に設けられている。これらの超音波送受信器5a、5bはリード線7を介して後述する回路部に接続されている。保持本体2は幾つかの部品から成り、これらの部品を組み立てることにより、超音波送受信器5a、5bを埋設している。   As shown in FIG. 2, a pair of ultrasonic transmitters / receivers 5 a and 5 b are respectively embedded in different positions along the longitudinal direction of the groove portion 1 on the inner wall surfaces 4 a and 4 b facing each other on both sides of the groove portion 1. The ultrasonic transmitters / receivers 5a and 5b are provided flush with the inner wall surfaces 4a and 4b of the groove portion 1 through a beam transmission body 6 made of synthetic resin. These ultrasonic transmitters / receivers 5a and 5b are connected to a circuit section to be described later via lead wires 7. The holding body 2 is composed of several parts, and the ultrasonic transceivers 5a and 5b are embedded by assembling these parts.

掛止アーム3a、3bは溝部1の両側の内壁面4a、4bのそれぞれの上部の上平面8a、8bに1個ずつ、軸部9を介して水平方向に回動自在に取り付けられている。掛止アーム3a、3bの先端にはそれぞれ掛止爪10が設けられ、これらの掛止爪10は対向する内壁面4a、4b上の反対側の側面には、溝状の掛止受部11が設けられ、掛止爪10が掛止するようにされている。   The latch arms 3a and 3b are attached to the upper flat surfaces 8a and 8b of the upper portions of the inner wall surfaces 4a and 4b on both sides of the groove portion 1 respectively so as to be rotatable in the horizontal direction via the shaft portion 9. The latching claws 10 are provided at the tips of the latching arms 3a and 3b, respectively, and these latching claws 10 are provided on the opposite side surfaces of the opposing inner wall surfaces 4a and 4b on the opposite side surfaces thereof. Is provided so that the latching claw 10 is latched.

つまり、掛止アーム3aは内壁面4a上の上平面8aに軸部9により固定され、掛止アーム3bは内壁面4b上の上平面8bに軸部9により固定され、掛止アーム3a及び3bはそれぞれ反対側の内壁面4b及び4a側に掛け渡すようにされている。   That is, the latch arm 3a is fixed to the upper plane 8a on the inner wall surface 4a by the shaft portion 9, and the latch arm 3b is fixed to the upper plane 8b on the inner wall surface 4b by the shaft portion 9, and the latch arms 3a and 3b. Are spanned to the opposite inner wall surfaces 4b and 4a.

掛止受部11は掛止アーム3a、3bのそれぞれの回動方向に若干斜め方向に形成されている。掛止アーム3a、3bの掛止爪10を掛止受部11に強く押し込むことにより、掛止アーム3a、3bにより管体を挟んだ状態の溝部1を締め付け、溝部1の内壁面4a、4b間の幅を所定の間隔に保持するようにされている。   The latch receiving portion 11 is formed in a slightly oblique direction with respect to the rotational directions of the latch arms 3a and 3b. By strongly pushing the latching claws 10 of the latching arms 3a and 3b into the latching receiving part 11, the groove part 1 in a state in which the tubular body is sandwiched between the latching arms 3a and 3b is tightened, and the inner wall surfaces 4a and 4b of the groove part 1 are tightened. The width between them is kept at a predetermined interval.

図3は本実施例の超音波式流量測定装置を使用する際の管体Pを装着した状態の斜視図である。保持本体2の溝部1内の長手方向に沿って、流体を流すための例えばテフロン(登録商標)等の合成樹脂製で、可撓性を有する柔軟な材料から成る管体Pを押し込む。   FIG. 3 is a perspective view of a state in which the tubular body P is mounted when using the ultrasonic flow measuring device of the present embodiment. A tubular body P made of a synthetic material such as Teflon (registered trademark) for flowing fluid is pushed in along the longitudinal direction in the groove 1 of the holding body 2.

この場合に、溝部1の幅は管体Pの外径よりも稍々小さくされており、管体Pの押し込みにより管体Pは変形すると共に、溝部1の幅は稍々拡がる。続いて、掛止アーム3a、3bを軸部9を中心とする回動により溝部1上に掛け渡して、掛止爪10を掛止受部11に掛止して更に強く回動する。これにより、溝部1の内壁面4a、4b同士を引き寄せることになり、拡がった溝部1の幅は狭くなり、管体Pは溝部1の内壁面4a、4bに押圧され、管体Pの両側面は内壁面4a、4bに密着する。   In this case, the width of the groove portion 1 is often made smaller than the outer diameter of the tube body P, and the tube body P is deformed by the pushing of the tube body P, and the width of the groove portion 1 is often expanded. Subsequently, the latching arms 3a and 3b are looped around the groove portion 1 by pivoting about the shaft portion 9, and the latching claw 10 is latched on the latch receiving portion 11 and further pivoted. As a result, the inner wall surfaces 4a and 4b of the groove portion 1 are attracted to each other, the width of the expanded groove portion 1 is narrowed, and the tubular body P is pressed by the inner wall surfaces 4a and 4b of the groove portion 1, Closely contacts the inner wall surfaces 4a and 4b.

断面円形の管体Pの一部を内壁面4a、4bに密着させて平面に変形させる理由は、管体Pを超音波送受信器5a、5bにそれぞれ当接させるためである。管体Pが円形のままであると、超音波送受信器5a、5bは円形の管体Pの外面に正確に接するとは限らない。なお、溝部1の内壁面4a、4bに接する管体Pの両面は平面となるが、管体Pは溝部1の隅部においては円弧状とされている。   The reason why a part of the tubular body P having a circular cross section is brought into close contact with the inner wall surfaces 4a and 4b and deformed into a plane is to bring the tubular body P into contact with the ultrasonic transceivers 5a and 5b, respectively. If the tubular body P remains circular, the ultrasonic transmitters / receivers 5a and 5b do not necessarily contact the outer surface of the circular tubular body P accurately. In addition, although both surfaces of the tubular body P in contact with the inner wall surfaces 4 a and 4 b of the groove portion 1 are flat, the tubular body P has an arc shape at the corner of the groove portion 1.

溝部1の幅と管体Pとの外径に大きな相異があると、管体Pを挟着した際に、管体Pに皺が寄ったり、或いは内壁面4a、4bとの間に隙間が生ずることになる。従って、使用する管体Pの大きさを基に、溝部1の大きさを選択する必要がある。   If there is a large difference between the width of the groove 1 and the outer diameter of the tube P, when the tube P is sandwiched, the tube P is wrinkled or there is a gap between the inner wall surfaces 4a and 4b. Will occur. Therefore, it is necessary to select the size of the groove 1 based on the size of the pipe P to be used.

図4は流量測定時の説明図であり、超音波送受信器5a、5bは演算制御手段21に接続され、更に演算制御手段21の出力は表示手段22に接続されている。流量測定に際しては、管体Pに測定すべき流体Fを流し、演算制御手段21の信号により超音波送受信器5a、5bの一方からビーム伝達体6を介して管体P内の流体F中に超音波ビームBを発信する。この超音波ビームBは管体Pの流体中を通過し、管体Pの反対側において超音波送受信器5a、5bの他方により受信し、演算制御手段21に送信する。   FIG. 4 is an explanatory diagram at the time of flow rate measurement. The ultrasonic transceivers 5 a and 5 b are connected to the calculation control means 21, and the output of the calculation control means 21 is connected to the display means 22. In measuring the flow rate, the fluid F to be measured is caused to flow through the tube P, and from the ultrasonic transmitter / receiver 5a, 5b to the fluid F in the tube P via the beam transmission body 6 according to a signal from the calculation control means 21. An ultrasonic beam B is transmitted. This ultrasonic beam B passes through the fluid of the tube P, is received by the other of the ultrasonic transmitters / receivers 5a and 5b on the opposite side of the tube P, and is transmitted to the arithmetic control means 21.

このようにして、超音波送受信器5a、5bにより超音波ビームBの発信、受信を交互に繰り返す。この場合の超音波ビームBの管体Pに対する入出射は管体Pを平坦とした平面においてなされ、円形の管体よりも入出射効率の良い超音波ビームBが得られる。   In this manner, transmission and reception of the ultrasonic beam B are alternately repeated by the ultrasonic transceivers 5a and 5b. In this case, the incident / exit of the ultrasonic beam B with respect to the tube P is performed on a flat surface of the tube P, and an ultrasonic beam B having a higher incident / exit efficiency than a circular tube is obtained.

超音波ビームBが流体Fの上流側から下流側に到達する順行時間と、下流側から上流側に到達する逆行時間との伝播時間差を演算制御手段21により平均的に求める。この伝播時間差を基に、演算制御手段21において公知の方法により流体Fの流速が算出される。   The arithmetic control means 21 averages the propagation time difference between the forward time when the ultrasonic beam B reaches the downstream side from the upstream side of the fluid F and the backward time when the ultrasonic beam B reaches the upstream side from the downstream side. Based on this propagation time difference, the calculation control means 21 calculates the flow velocity of the fluid F by a known method.

演算制御手段21は流体Fの流速を求め、この流速を管体Pの内部断面積に乗じて流量値を算出する。しかし、管体Pは保持本体2により円形から平面を有する形状に変形しているために、断面積は不明であることが多く、予めこの状態において、管体Pに所定の流量を流して校正をしておくことが好ましい。そして、得られた流量値は表示手段22に表示する。   The arithmetic control means 21 calculates the flow rate of the fluid F, and multiplies this flow rate by the internal cross-sectional area of the tube P to calculate the flow rate value. However, since the tube body P is deformed from a circular shape to a flat surface by the holding body 2, the cross-sectional area is often unknown. In this state, a predetermined flow rate is passed through the tube body P in advance for calibration. It is preferable to keep The obtained flow rate value is displayed on the display means 22.

なお、実際には管体Pは流体Fを流し始めると、流体Fの圧力により管体Pは更に溝部1の内壁面4a、4bに接するように変形し、管体Pの断面積が拡がる傾向にあるので、正確な流量は流体Fを流し始めてから若干の時間が経過した後に得られる。   Actually, when the pipe body P starts to flow the fluid F, the pressure of the fluid F causes the pipe body P to further deform so as to contact the inner wall surfaces 4a and 4b of the groove portion 1, and the cross-sectional area of the pipe body P tends to increase. Therefore, an accurate flow rate is obtained after some time has passed since the fluid F started to flow.

測定が終了し、この超音波式流量測定装置を管体Pから取り外す際には、掛止アーム3a、3bを外して元に戻し、溝部1から管体Pを取り出せばよい。なお、掛止アーム3a、3bは2個設けたが、これは1個とすることもできる。   When the measurement is finished and the ultrasonic flow rate measuring device is detached from the tube P, the retaining arms 3a and 3b are removed and returned to the original state, and the tube P is taken out from the groove portion 1. Although two hook arms 3a and 3b are provided, this may be one.

図5は実施例2の超音波式流量測定装置の斜視図である。この実施例2は実施例1の構成に対し、更に掛止アーム3a、3bが不時に外れないようにするための合成樹脂製の錠止アーム12a、12bが設けられている。   FIG. 5 is a perspective view of the ultrasonic flow measuring device according to the second embodiment. The second embodiment is further provided with synthetic resin locking arms 12a and 12b for preventing the latch arms 3a and 3b from being accidentally detached from the configuration of the first embodiment.

即ち、掛止アーム3a、3bの上に軸部9を共有して、合成樹脂製の錠止アーム12a、12bが、掛止アーム3a、3bとは独立的に、回動自在に取り付けられている。錠止アーム12a、12bのそれぞれの先端には、下向きに折曲したL字状の錠止爪13が形成されている。   That is, the shaft portion 9 is shared on the latch arms 3a and 3b, and the lock arms 12a and 12b made of synthetic resin are rotatably attached independently of the latch arms 3a and 3b. Yes. An L-shaped locking claw 13 that is bent downward is formed at the tip of each of the locking arms 12a and 12b.

図6は錠止状態の斜視図であり、保持本体2の溝部1に管体Pを装着し、実施例1のように掛止アーム3a、3bを掛止した後に、錠止アーム12a、12bを回動して掛止状態の掛止アーム3a、3bの側部を錠止爪13により錠止する。つまり、錠止アーム12aにより掛止アーム3bを錠止し、錠止アーム12bにより掛止アーム3aを錠止する。これにより、掛止アーム3a、3bは非掛止方向への回動が防止され、錠止アーム12a、12bを外さない限り不時に外れることがなくなる。   FIG. 6 is a perspective view of the locked state. After the pipe body P is attached to the groove 1 of the holding body 2 and the locking arms 3a and 3b are locked as in the first embodiment, the locking arms 12a and 12b are locked. And the side portions of the latching arms 3a and 3b in the latched state are locked by the locking claws 13. That is, the latch arm 3b is locked by the lock arm 12a, and the latch arm 3a is locked by the lock arm 12b. Thereby, the latching arms 3a and 3b are prevented from rotating in the non-latching direction, and will not be unintentionally detached unless the locking arms 12a and 12b are removed.

また実施例1、2においては、超音波送受信器5a、5bを溝部1の両側の内壁面4a、4bにそれぞれ配置した。しかし、構造的に余裕がある場合には、一対の超音波送受信器5a、5bを溝部1の片側の内壁面4a又は4bに配置して、超音波ビームBを管体P内で往復させて、管体P内で反射する超音波ビームBを検出するようにしてもよい。   In the first and second embodiments, the ultrasonic transceivers 5a and 5b are arranged on the inner wall surfaces 4a and 4b on both sides of the groove portion 1, respectively. However, when there is a margin in structure, a pair of ultrasonic transmitters / receivers 5a, 5b are arranged on the inner wall surface 4a or 4b on one side of the groove 1 and the ultrasonic beam B is reciprocated in the tube P. The ultrasonic beam B reflected in the tubular body P may be detected.

なお上述の実施例1、2においては、管体Pに対する溝部1は断面コ字型としたが、内壁面4a、4bに管体Pを密着させればよいので、溝部1の形状はU字型等とすることもできる。   In the first and second embodiments, the groove portion 1 with respect to the pipe body P has a U-shaped cross section. However, since the pipe body P only needs to be in close contact with the inner wall surfaces 4a and 4b, the shape of the groove portion 1 is U-shaped. It can also be a mold or the like.

また、保持本体2、掛止アーム3a、3b、錠止アーム12a、12bは実施例では合成樹脂材としたが、これらの全部又は一部を金属製とすることもできる。   Moreover, although the holding body 2, the latching arms 3a and 3b, and the locking arms 12a and 12b are made of a synthetic resin material in the embodiment, all or a part of them can be made of metal.

1 溝部
2 保持本体
3a、3b 掛止アーム
4a、4b 内壁面
5a、5b 超音波送受信器
6 ビーム伝達体
7 リード線
9 軸部
10 掛止爪
11 掛止受部
12a、12b 錠止アーム
13 錠止爪
21 演算制御手段
22 表示手段
F 流体
P 管体
DESCRIPTION OF SYMBOLS 1 Groove part 2 Holding body 3a, 3b Latching arm 4a, 4b Inner wall surface 5a, 5b Ultrasonic transmitter / receiver 6 Beam transmission body 7 Lead wire 9 Shaft part 10 Latching claw 11 Latching receiving part 12a, 12b Locking arm 13 Locking Claw 21 Arithmetic control means 22 Display means F Fluid P Tube

Claims (8)

測定すべき流体を流し可撓性を有する柔軟な材料から成る管体に対して、保持本体を着脱自在とする超音波式流量測定装置において、前記保持本体には両側に内壁面を有し前記管体を挟着する溝部を備え、該溝部の上方に前記溝部上を掛け渡して前記溝部の幅が狭まるように締め付けて掛止することにより前記溝部の幅を所定の大きさとする掛止アームを備え、前記溝部の前記内壁面に一対の超音波送受信器を前記管体に沿った上流側及び下流側に取り付け、前記管体の流体内に前記一方の超音波送受信器からの超音波ビームを送信し、前記管体内を通過した超音波ビームを前記他方の超音波送受信器で受信するようにしたことを特徴とする超音波式流量測定装置。   In an ultrasonic flow measuring device in which a holding body is detachably attached to a tubular body made of a flexible material through which a fluid to be measured flows, the holding body has inner wall surfaces on both sides, and A latching arm having a groove for sandwiching a tubular body, spanning the groove above the groove and tightening and tightening the groove so that the width of the groove is narrowed. A pair of ultrasonic transmitters / receivers are attached to the inner wall surface of the groove on the upstream side and the downstream side along the tube, and the ultrasonic beam from the one ultrasonic transmitter / receiver in the fluid of the tube And an ultrasonic beam passing through the tubular body is received by the other ultrasonic transmitter / receiver. 前記掛止アームの先端には掛止爪を設け、前記保持本体の一部に設けた掛止受部に回動により掛止するようにした請求項1に記載の超音波式流量測定装置。   2. The ultrasonic flow rate measuring device according to claim 1, wherein a hooking claw is provided at a tip of the hooking arm, and the hook is received by a hooking receiving portion provided in a part of the holding body. 前記溝部の幅は前記管体の外径よりも小さくしたことを特徴とする請求項1に記載の超音波式流量測定装置。   The ultrasonic flow rate measuring apparatus according to claim 1, wherein a width of the groove is smaller than an outer diameter of the tubular body. 前記溝部は断面をコ字型としたことを特徴とする請求項1〜3の何れか1項に記載の超音波式流量測定装置。   The ultrasonic flow rate measuring apparatus according to claim 1, wherein the groove has a U-shaped cross section. 前記一対の超音波送受信器は前記溝部の片側の前記内壁面に配置したことを特徴とする請求項1〜4の何れか1項に記載の超音波式流量測定装置。   The ultrasonic flow rate measuring device according to any one of claims 1 to 4, wherein the pair of ultrasonic transceivers are arranged on the inner wall surface on one side of the groove. 前記一対の超音波送受信器は前記溝部の両側の前記内壁面にそれぞれ配置したことを特徴とする請求項1〜4の何れか1項に記載の超音波式流量測定装置。   The ultrasonic flow rate measuring apparatus according to any one of claims 1 to 4, wherein the pair of ultrasonic transmitters / receivers are respectively disposed on the inner wall surfaces on both sides of the groove portion. 前記掛止アームは2個の第1、第2の掛止アームとし、前記第1の掛止アームに前記溝部の第1の内壁面側から対向する第2の内壁面側に掛け渡し、前記第2の掛止アームは前記溝部の第2の内壁面側から第1の内壁面側に掛け渡すことを特徴する請求項1〜6の何れか1項に記載の超音波式流量測定装置。   The latching arms are two first and second latching arms, spanning the first latching arm from the first inner wall surface side of the groove to the second inner wall surface side, The ultrasonic flow rate measuring apparatus according to any one of claims 1 to 6, wherein the second hooking arm is hung from the second inner wall surface side of the groove portion to the first inner wall surface side. 前記第1、第2の掛止アーム上に軸部を共有し、それぞれ前記掛止アームとは独立して回動し先端に錠止爪を形成した第1、第2の錠止アームを設け、前記第1の錠止アームの回動により掛止状態の前記第2の掛止アームの側部を錠止し、前記第2の掛止アームの回動により掛止状態の前記第1の掛止アームの側部を錠止することを特徴とする請求項7に記載の超音波式流量測定装置。   First and second locking arms that share a shaft portion on the first and second locking arms and rotate independently of each of the locking arms to form locking claws at the tips are provided. The side of the second latching arm in the latched state is locked by the rotation of the first locking arm, and the first in the latched state by the rotation of the second latching arm. The ultrasonic flow rate measuring device according to claim 7, wherein a side portion of the latch arm is locked.
JP2013096360A 2013-05-01 2013-05-01 Ultrasonic flow measuring device Active JP5292522B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096360A JP5292522B1 (en) 2013-05-01 2013-05-01 Ultrasonic flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013096360A JP5292522B1 (en) 2013-05-01 2013-05-01 Ultrasonic flow measuring device

Publications (2)

Publication Number Publication Date
JP5292522B1 true JP5292522B1 (en) 2013-09-18
JP2014219210A JP2014219210A (en) 2014-11-20

Family

ID=49396728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096360A Active JP5292522B1 (en) 2013-05-01 2013-05-01 Ultrasonic flow measuring device

Country Status (1)

Country Link
JP (1) JP5292522B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111854866A (en) * 2019-04-24 2020-10-30 株式会社琉Sok Ultrasonic flow rate measuring device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6454601B2 (en) * 2015-05-14 2019-01-16 株式会社キーエンス Ultrasonic flow switch
JP2019045388A (en) 2017-09-05 2019-03-22 株式会社鷺宮製作所 Ultrasonic flow rate measuring device
JP2019045387A (en) 2017-09-05 2019-03-22 株式会社鷺宮製作所 Ultrasonic flow rate measurement device and ultrasonic flow rate measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142469U (en) * 1980-03-26 1981-10-27
JPH1078338A (en) * 1996-06-12 1998-03-24 Asahi America Inc Ultrasonic vortex flowmeter
JP2005189003A (en) * 2003-12-24 2005-07-14 Ueda Japan Radio Co Ltd Integration system capable of flow rate measurement and bubble detection
JP2005189002A (en) * 2003-12-24 2005-07-14 Ueda Japan Radio Co Ltd Flow rate measurement system
JP4878653B1 (en) * 2011-01-28 2012-02-15 株式会社アツデン Ultrasonic flow measuring device
JP4875780B2 (en) * 2010-06-22 2012-02-15 株式会社泉技研 Ultrasonic flow measuring device and ultrasonic flow measuring method
JP4940384B1 (en) * 2012-01-13 2012-05-30 株式会社アツデン Ultrasonic flow measuring device
JP4991972B1 (en) * 2012-03-09 2012-08-08 株式会社アツデン Ultrasonic flow measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142469U (en) * 1980-03-26 1981-10-27
JPH1078338A (en) * 1996-06-12 1998-03-24 Asahi America Inc Ultrasonic vortex flowmeter
JP2005189003A (en) * 2003-12-24 2005-07-14 Ueda Japan Radio Co Ltd Integration system capable of flow rate measurement and bubble detection
JP2005189002A (en) * 2003-12-24 2005-07-14 Ueda Japan Radio Co Ltd Flow rate measurement system
JP4875780B2 (en) * 2010-06-22 2012-02-15 株式会社泉技研 Ultrasonic flow measuring device and ultrasonic flow measuring method
JP4878653B1 (en) * 2011-01-28 2012-02-15 株式会社アツデン Ultrasonic flow measuring device
JP4940384B1 (en) * 2012-01-13 2012-05-30 株式会社アツデン Ultrasonic flow measuring device
JP4991972B1 (en) * 2012-03-09 2012-08-08 株式会社アツデン Ultrasonic flow measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111854866A (en) * 2019-04-24 2020-10-30 株式会社琉Sok Ultrasonic flow rate measuring device
US11340101B2 (en) 2019-04-24 2022-05-24 Ryusok Co., Ltd. Clamp-on ultrasonic flow measuring device for accurately positioning on an existing flow tube of a specific shape

Also Published As

Publication number Publication date
JP2014219210A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP4878653B1 (en) Ultrasonic flow measuring device
JP5292522B1 (en) Ultrasonic flow measuring device
EP2435799B1 (en) Method and apparatus for monitoring multiphase fluid flow
KR101798716B1 (en) Ultrasonic flowmeter and method for measuring flow rate
CA2770898C (en) Method and apparatus for monitoring multiphase fluid flow
US20080163692A1 (en) System and method for using one or more thermal sensor probes for flow analysis, flow assurance and pipe condition monitoring of a pipeline for flowing hydrocarbons
CN103206992B (en) Ultrasonic flow measures device
JP4940384B1 (en) Ultrasonic flow measuring device
JP4991972B1 (en) Ultrasonic flow measuring device
KR102373208B1 (en) Ultrasonic flow amount measuring device
WO2017122239A1 (en) Gas meter
JP2014238386A (en) Detection sensor and measuring device
CN104931158A (en) Novel ultrasonic heat meter
JP2010256075A (en) Flowmeter and method of measuring flow rate
JP2016080433A (en) Ultrasonic flowmeter
JP2010181321A (en) Ultrasonic flowmeter
US20110087447A1 (en) Fluid flow meter using thermal tracers
Lingam Ultrasonic sensing technology for flow metering
CN202631158U (en) Supersonic wave calorimeter
JP2013167453A (en) Viscosity measuring apparatus
JP2001056243A (en) Ultrasonic flowmeter
JP2016065766A (en) Microwave densitometer and measurement tube
JP2007309812A (en) Phase difference type ultrasonic flowmeter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5292522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250