JP2013167453A - Viscosity measuring apparatus - Google Patents

Viscosity measuring apparatus Download PDF

Info

Publication number
JP2013167453A
JP2013167453A JP2012029094A JP2012029094A JP2013167453A JP 2013167453 A JP2013167453 A JP 2013167453A JP 2012029094 A JP2012029094 A JP 2012029094A JP 2012029094 A JP2012029094 A JP 2012029094A JP 2013167453 A JP2013167453 A JP 2013167453A
Authority
JP
Japan
Prior art keywords
viscosity
flow velocity
measuring
fluid
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012029094A
Other languages
Japanese (ja)
Inventor
Satoshi Fukuhara
聡 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2012029094A priority Critical patent/JP2013167453A/en
Publication of JP2013167453A publication Critical patent/JP2013167453A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve a viscosity measuring apparatus whose maintenance can be easily performed.SOLUTION: The viscosity measuring apparatus for continuously measuring viscosity of fluid flowing in a conduit line includes: flow velocity distribution measuring means connected to the conduit line to measure flow velocity distribution of the fluid; mass flow velocity measuring means connected to the conduit line to measure mass flow velocity of the fluid; and viscosity calculation means for calculating the viscosity of the fluid on the basis of a Reynolds number of the fluid which is calculated from the flow viscosity distribution and a measurement value of the mass flow velocity.

Description

本発明は、管路を流れる流体の粘度を連続的に測定する粘度測定装置に関するものである。   The present invention relates to a viscosity measuring apparatus that continuously measures the viscosity of a fluid flowing through a pipe line.

管路を流れる樹脂、油脂、溶液、塗料、食料品等のプロセス流体の粘度をオンラインで連続的に測定する粘度測定装置として、細管式粘度計が実用化されている。図4は、従来の粘度測定装置の構成例を示す機能ブロック図である。   A capillary viscometer has been put to practical use as a viscosity measuring device for continuously measuring the viscosity of a process fluid such as resin, oil, fat, solution, paint, foodstuff and the like flowing through a pipeline. FIG. 4 is a functional block diagram showing a configuration example of a conventional viscosity measuring apparatus.

流体Lが矢印方向に流れる管路10に差圧計20が接続され、導圧管21を介して導かれる上流側圧力と、導圧管22を介して導かれる下流側圧力との圧力損失を測定し、その値ΔPに基づいて粘度演算手段30により粘度μが演算される。演算のアルゴリズムは、例えばハーゲンポアズイユ(Hagen-Poiseuille)の式等が知られている。   A differential pressure gauge 20 is connected to the conduit 10 through which the fluid L flows in the direction of the arrow, and the pressure loss between the upstream pressure guided through the pressure guiding tube 21 and the downstream pressure guided through the pressure guiding tube 22 is measured. The viscosity μ is calculated by the viscosity calculating means 30 based on the value ΔP. As an arithmetic algorithm, for example, the Hagen-Poiseuille equation is known.

特開2010−151452JP2010-151452A 特開平7−181069JP-A-7-181069

従来装置では、流体Lの流れに影響を与えないように導圧管21,22の太さを細くすると、粘度の高い流体Lが導圧管21,」22内で詰まってしまう場合があり、導圧管の詰まりを監視して対応するというメンテナンスが必要となり、管理が煩雑になる。   In the conventional apparatus, if the thickness of the pressure guiding pipes 21 and 22 is reduced so as not to affect the flow of the fluid L, the fluid L having a high viscosity may be clogged in the pressure guiding pipe 21, “22”. Maintenance is required to monitor and respond to clogging, and management becomes complicated.

本発明の目的は、メンテナンスの容易な粘度測定装置を提供することにある。   An object of the present invention is to provide a viscosity measuring apparatus that is easy to maintain.

このような課題を達成するために、本発明は次の通りの構成になっている。
(1)管路を流れる流体の粘度を連続的に測定する粘度測定装置において、
前記管路に接続され、前記流体の流速分布を測定する流速分布測定手段と、
前記管路に接続され、前記流体の質量流量を測定する質量流量測定手段と、
前記流量分布から算出される前記流体のレイノルズ数と、前記質量流量の測定値に基づき、前記流体の粘度を算出する粘度演算手段と、
を備えることを特徴とする粘度測定装置。
In order to achieve such a subject, the present invention has the following configuration.
(1) In a viscosity measuring device that continuously measures the viscosity of a fluid flowing through a pipeline,
A flow velocity distribution measuring unit connected to the pipe and measuring the flow velocity distribution of the fluid;
A mass flow rate measuring means connected to the conduit for measuring the mass flow rate of the fluid;
Viscosity calculating means for calculating the viscosity of the fluid based on the Reynolds number of the fluid calculated from the flow rate distribution and the measured value of the mass flow rate;
A viscosity measuring device comprising:

(2)前記流速分布測定手段は、反射相関法を用いた超音波流量計であることを特徴とする(1)に記載の粘度測定装置。 (2) The viscosity measuring apparatus according to (1), wherein the flow velocity distribution measuring means is an ultrasonic flowmeter using a reflection correlation method.

(3)前記流速分布測定手段は、パルスドップラー法を用いた超音波流量計であることを特徴とする(1)に記載の粘度測定装置。 (3) The viscosity measuring apparatus according to (1), wherein the flow velocity distribution measuring means is an ultrasonic flowmeter using a pulse Doppler method.

(4)前記質量流量測定手段は、コリオリ式質量流量計であることを特徴とする(1)に記載の粘度測定装置。 (4) The viscosity measuring device according to (1), wherein the mass flow rate measuring means is a Coriolis type mass flow meter.

(5)前記流速分布測定手段は前記管路の上流側に接続され、前記質量流量測定手段は前記管路の下流側に接続されていることを特徴とする(1)に記載の粘度測定装置。 (5) The viscosity measuring apparatus according to (1), wherein the flow velocity distribution measuring unit is connected to an upstream side of the pipe, and the mass flow rate measuring unit is connected to a downstream side of the pipe. .

本発明によれば、流速分布測定手段である超音波流量計及び質量流量測定手段であるコリオリ式質量流量計は、通常管路に対し圧力損失が無く突起等も無いため、高粘度の流体であっても詰まりの発生無しに流体の粘度を安定して測定することが可能となる。   According to the present invention, the ultrasonic flowmeter that is the flow velocity distribution measuring means and the Coriolis mass flowmeter that is the mass flow measuring means normally have no pressure loss and no protrusions on the pipeline, so Even in such a case, the viscosity of the fluid can be stably measured without clogging.

本発明を適用した粘度測定装置の一実施例を示すハードウェア構成図である。It is a hardware block diagram which shows one Example of the viscosity measuring apparatus to which this invention is applied. 本発明を適用した粘度測定装置の動作を説明する機能ブロック図である。It is a functional block diagram explaining operation | movement of the viscosity measuring apparatus to which this invention is applied. 流速分布の測定例を示す特性図である。It is a characteristic view which shows the example of a measurement of flow velocity distribution. 従来の粘度測定装置の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the conventional viscosity measuring apparatus.

以下、本発明を図面により詳細に説明する。図1は、本発明を適用した粘度測定装置の一実施例を示すハードウェア構成図である。図4で説明した従来構成と同一要素には同一符号を付して説明を省略する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a hardware configuration diagram showing an embodiment of a viscosity measuring apparatus to which the present invention is applied. The same elements as those in the conventional configuration described with reference to FIG.

管路10の上流側には、流速分布測定手段100が接続されている。この流速分布測定手段100としては、反射相関法を用いて流速分布が測定できる周知の超音波流量計を利用することができる。反射相関法に関しては、特許文献1に技術開示がある。   A flow velocity distribution measuring means 100 is connected to the upstream side of the conduit 10. As the flow velocity distribution measuring means 100, a well-known ultrasonic flow meter capable of measuring the flow velocity distribution using the reflection correlation method can be used. Regarding the reflection correlation method, Patent Document 1 discloses a technical disclosure.

管路10の下流側には、質量流量測定手段200が接続されている。この質量流量測定手段200としては、周知のコリオリ式質量流量計を利用することができる。コリオリ式質量流量計に関しては、特許文献2に技術開示がある。   A mass flow rate measuring means 200 is connected to the downstream side of the conduit 10. As this mass flow rate measuring means 200, a well-known Coriolis type mass flow meter can be used. Regarding Coriolis mass flowmeters, Patent Document 2 discloses a technical disclosure.

粘度演算手段300は、流速分布測定手段100で演算されて出力される流体のレイノルズ数Re及び質量流量測定手段200から出力される流体の質量流量ρVDを取得し、粘度μを演算して外部出力する。   The viscosity calculating means 300 acquires the fluid Reynolds number Re calculated by the flow velocity distribution measuring means 100 and the fluid mass flow rate ρVD output from the mass flow measuring means 200, calculates the viscosity μ, and outputs it externally. To do.

図2は、本発明を適用した粘度測定装置の動作を説明する機能ブロック図である。反射相関法を用いた超音波流量計で実現される流速分布測定手段100は、流速分布測定回路101により流速分布V(a)を算出する。レイノルズ数演算回路102は、この流速分布V(a)よりレイノズル数Reを算出して粘度演算手段300に渡す。   FIG. 2 is a functional block diagram for explaining the operation of the viscosity measuring apparatus to which the present invention is applied. The flow velocity distribution measuring means 100 realized by the ultrasonic flowmeter using the reflection correlation method calculates the flow velocity distribution V (a) by the flow velocity distribution measuring circuit 101. The Reynolds number calculation circuit 102 calculates the Ray nozzle number Re from the flow velocity distribution V (a) and passes it to the viscosity calculation means 300.

図3は、流速分布の測定例を示す特性図である。管路10の中心軸の座標を0、内直径をDとした場合の流速分布は、充分発達した乱流に対し、図3に示すような流速分布特性V(a)が得られる。   FIG. 3 is a characteristic diagram showing a measurement example of the flow velocity distribution. When the coordinate of the central axis of the pipeline 10 is 0 and the inner diameter is D, the flow velocity distribution V (a) as shown in FIG. 3 is obtained for a sufficiently developed turbulent flow.

この流速分布V(a)は、式(1)に示すレイノルズ数Reの関数であり、レイノルズ数演算回路102により、誤差が最小となるように測定した流体の流速分布からレイノズル数Reを求めることができる。   This flow velocity distribution V (a) is a function of the Reynolds number Re shown in Equation (1), and the Reynolds number arithmetic circuit 102 obtains the Reynolds number Re from the flow velocity distribution of the fluid measured so that the error is minimized. Can do.

Figure 2013167453
Figure 2013167453

ここで、V(a):流速分布
a:管路内の位置(中心軸を0とする)
Re:レイノルズ数
V0:中心の流速
である。
Where V (a): Flow velocity distribution
a: Position in the pipeline (center axis is 0)
Re: Reynolds number
V0: Center flow velocity.

図2に戻り、コリオリ式質量流量計で実現される質量流量測定手段200は、質量重量演算回路201で流体の質量流量ρVDを演算して粘度演算手段300に渡す。粘度演算手段300は、入力されるレイノルズ数Reと質量流量ρVDに基づいて粘度μを演算して外部機器である表示手段400に出力する。   Returning to FIG. 2, the mass flow rate measuring means 200 realized by the Coriolis type mass flow meter calculates the mass flow rate ρVD of the fluid by the mass weight calculation circuit 201 and passes it to the viscosity calculation means 300. The viscosity calculation means 300 calculates the viscosity μ based on the input Reynolds number Re and the mass flow rate ρVD, and outputs it to the display means 400 that is an external device.

レイノルズ数Reと質量流量ρVDと粘度μの関係は、周知の式(2)で定義される。
Re= ρVD/μ 式(2)
従って、粘度演算手段300は、式(2)に基づいて粘度μを演算することができる。
The relationship between the Reynolds number Re, the mass flow rate ρVD, and the viscosity μ is defined by a well-known formula (2).
Re = ρVD / μ equation (2)
Therefore, the viscosity calculating means 300 can calculate the viscosity μ based on the equation (2).

実施例では、流速分布測定手段100として、反射相関法による超音波流量計を例示したが、パルスドップラー方式を用いた超音波流量計により流速分布を求める手法も可能である。   In the embodiment, an ultrasonic flowmeter by the reflection correlation method is exemplified as the flow velocity distribution measuring unit 100, but a method of obtaining the flow velocity distribution by an ultrasonic flowmeter using a pulse Doppler method is also possible.

10 管路
100 流速分布測定手段
101 流速分布測定回路
102 レイノルズ数演算回路
200 質量流量測定手段
201 質量流量演算回路
300 粘度演算手段
400 表示手段
DESCRIPTION OF SYMBOLS 10 Pipe line 100 Flow velocity distribution measuring means 101 Flow velocity distribution measuring circuit 102 Reynolds number calculating circuit 200 Mass flow measuring means 201 Mass flow calculating circuit 300 Viscosity calculating means 400 Display means

Claims (5)

管路を流れる流体の粘度を連続的に測定する粘度測定装置において、
前記管路に接続され、前記流体の流速分布を測定する流速分布測定手段と、
前記管路に接続され、前記流体の質量流量を測定する質量流量測定手段と、
前記流量分布から算出される前記流体のレイノルズ数と、前記質量流量の測定値に基づき、前記流体の粘度を算出する粘度演算手段と、
を備えることを特徴とする粘度測定装置。
In a viscosity measuring device that continuously measures the viscosity of a fluid flowing through a pipeline,
A flow velocity distribution measuring unit connected to the pipe and measuring the flow velocity distribution of the fluid;
A mass flow rate measuring means connected to the conduit for measuring the mass flow rate of the fluid;
Viscosity calculating means for calculating the viscosity of the fluid based on the Reynolds number of the fluid calculated from the flow rate distribution and the measured value of the mass flow rate;
A viscosity measuring device comprising:
前記流速分布測定手段は、反射相関法を用いた超音波流量計であることを特徴とする請求項1に記載の粘度測定装置。   The viscosity measuring apparatus according to claim 1, wherein the flow velocity distribution measuring unit is an ultrasonic flowmeter using a reflection correlation method. 前記流速分布測定手段は、パルスドップラー法を用いた超音波流量計であることを特徴とする請求項1に記載の粘度測定装置。   The viscosity measuring apparatus according to claim 1, wherein the flow velocity distribution measuring means is an ultrasonic flowmeter using a pulse Doppler method. 前記質量流量測定手段は、コリオリ式質量流量計であることを特徴とする請求項1に記載の粘度測定装置。   The viscosity measuring apparatus according to claim 1, wherein the mass flow rate measuring unit is a Coriolis type mass flow meter. 前記流速分布測定手段は前記管路の上流側に接続され、前記質量流量測定手段は前記管路の下流側に接続されていることを特徴とする請求項1に記載の粘度測定装置。   The viscosity measuring apparatus according to claim 1, wherein the flow velocity distribution measuring unit is connected to an upstream side of the pipe line, and the mass flow rate measuring unit is connected to a downstream side of the pipe line.
JP2012029094A 2012-02-14 2012-02-14 Viscosity measuring apparatus Pending JP2013167453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012029094A JP2013167453A (en) 2012-02-14 2012-02-14 Viscosity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012029094A JP2013167453A (en) 2012-02-14 2012-02-14 Viscosity measuring apparatus

Publications (1)

Publication Number Publication Date
JP2013167453A true JP2013167453A (en) 2013-08-29

Family

ID=49177976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029094A Pending JP2013167453A (en) 2012-02-14 2012-02-14 Viscosity measuring apparatus

Country Status (1)

Country Link
JP (1) JP2013167453A (en)

Similar Documents

Publication Publication Date Title
CN103808381B (en) A kind of temperature influence eliminating method of transit-time ultrasonic flow meter
AU2010254079B2 (en) Method and apparatus for monitoring multiphase fluid flow
CA2902166C (en) Ultrasonic flow metering with laminar to turbulent transition flow control
CN105157771B (en) A kind of transit-time ultrasonic flow measuring method and device
RU2013150525A (en) NUCLEAR MAGNETIC FLOWMETER AND METHOD OF OPERATION OF NUCLEAR MAGNETIC FLOWMETERS
US20140109690A1 (en) Reynolds number based verification for ultrasonic flow metering systems
RU2015101811A (en) Viscometer for Newtonian and Non-Newtonian Fluids
Doblhoff-Dier et al. Time resolved measurement of pulsating flow using orifices
RU2019115360A (en) IMPROVEMENTS IN FLUID CONTROL
Beaulieu et al. A flowmeter for unsteady liquid flow measurements
JP5999725B2 (en) Mass flow meter
Çarpınlıoğlu et al. Laminar flow control via utilization of pipe entrance inserts (a comment on entrance length concept)
US20160187172A1 (en) Ultrasonic viscometer
JP2013167453A (en) Viscosity measuring apparatus
JP2010256075A (en) Flowmeter and method of measuring flow rate
US9599493B2 (en) Split flow vortex flowmeter
JP2014182024A (en) Ultrasonic measuring apparatus
JP4949892B2 (en) Flow measurement method and flow measurement jig
KR20160128220A (en) Ultrasonic integrated thermometer
KR101090904B1 (en) Minute flow rate meter and operating method thereof
JP5483192B2 (en) Ultrasonic flow meter
Geropp et al. Flow rate measurements in turbulent pipe flows with minimal loss of pressure using a defect-law
JP5924556B2 (en) Multiphase flow meter
RU2641505C1 (en) Information and measuring system for measurement of flow and quantity of gas
JP2017111140A (en) Flow rate measurement device, fuel consumption measurement device, program for flow rate measurement device, and flow rate measuring method