JP4989868B2 - Method for refining fine powder or fine fiber - Google Patents

Method for refining fine powder or fine fiber Download PDF

Info

Publication number
JP4989868B2
JP4989868B2 JP2005259003A JP2005259003A JP4989868B2 JP 4989868 B2 JP4989868 B2 JP 4989868B2 JP 2005259003 A JP2005259003 A JP 2005259003A JP 2005259003 A JP2005259003 A JP 2005259003A JP 4989868 B2 JP4989868 B2 JP 4989868B2
Authority
JP
Japan
Prior art keywords
fine powder
solution
chamber
fine
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005259003A
Other languages
Japanese (ja)
Other versions
JP2007069123A (en
Inventor
浩一 市来
顕秀 古川
謙一 原島
邦明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugino Machine Ltd
Original Assignee
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugino Machine Ltd filed Critical Sugino Machine Ltd
Priority to JP2005259003A priority Critical patent/JP4989868B2/en
Publication of JP2007069123A publication Critical patent/JP2007069123A/en
Application granted granted Critical
Publication of JP4989868B2 publication Critical patent/JP4989868B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は微粉体又は微小繊維の微細化方法に関し、更に詳細には微粉体又は微小繊維を含む溶液を複数のノズルからチャンバ内に噴射した複数本の高圧噴射流を一点で衝突合流させて、前記微粉体又は微小繊維を微細化する微粉体又は微小繊維の微細化方法に関する。   The present invention relates to a fine powder or fine fiber refinement method, and more specifically, a plurality of high-pressure jets obtained by injecting a solution containing fine powder or fine fibers into a chamber from a plurality of nozzles are collided at one point, and The present invention relates to a fine powder or fine fiber refinement method for refining the fine powder or fine fiber.

微小繊維としてのカーボンナノチューブは、未精製状態では不純物で覆われていると共に、不純部を介して凝集している。このため、不純物を除去することによって、カーボンナノチューブの分散性を向上でき、微細化が可能である。
かかる未精製状態のカーボンナノチューブを精製する際には、下記特許文献1で提案されている様に、酸を添加してカーボンナノチューブ中の不純物を除去することが行われている。
しかし、酸を用いる酸処理方法では、人体等への危険性が存在すると共に、処理時間がかかり且つ処理量にも限界がある。
更に、カーボンナノチューブの凝集体を、遊星ミル等のメディアを用いて粉砕することを試みたが、メディアやメディアと接触する容器内壁の摩耗粉が問題となり、カーボンナノチューブの凝集体の粉砕効果も少ない。
また、カーボンナノチューブを更に短繊維化についても、酸処理や機械的処理が検討されているが、同様に、人体等への危険性、処理時間、処理量等について問題がある。
特開2004−59326号公報
The carbon nanotubes as the microfibers are covered with impurities in an unpurified state and are aggregated through the impure portion. For this reason, by removing impurities, the dispersibility of the carbon nanotubes can be improved and miniaturization is possible.
When purifying such an unpurified carbon nanotube, an acid is added to remove impurities in the carbon nanotube, as proposed in Patent Document 1 below.
However, in the acid treatment method using an acid, there is a danger to the human body and the like, the treatment time is long, and the treatment amount is limited.
Furthermore, we tried to pulverize the aggregates of carbon nanotubes using media such as a planetary mill. However, the abrasion powder on the inner wall of the container that comes into contact with the media and the media becomes a problem, and the pulverization effect of the aggregates of carbon nanotubes is small. .
Further, acid treatment and mechanical treatment have been studied for further shortening the carbon nanotube, but there are problems with respect to danger to human bodies, treatment time, treatment amount, and the like.
JP 2004-59326 A

かかる酸処理や機械的処理に対して、下記特許文献2には、図7に示す噴射衝合装置を用いて粒子の粉砕等を施すことが提案されている。
図7に示す噴射衝合装置では、本体部100の供給口102に供給された粒子を含む高圧流体を、本体部に設けられた流路104,104を経由して一対のノズル108,108に供給する。このノズル108,108から噴射された高圧噴射流は、ノズル108,108とチャンバ106の内壁面との間に設けられた噴射孔110,110に導かれてチャンバ106内に噴射し、チャンバ106内の一点で衝突合流する。この高圧噴射流の衝突合流による衝撃によって高圧噴射流に含まれている粒子は粉砕等されて微細化され、流体と共に排出口112から排出される。
かかる図7に示す噴射衝合装置には、チャンバ106の内壁面に開口する切欠部114,114の各々にセラミックボール116が挿入されている。このセラミックボール116,116は、噴射孔110,110から噴射された高圧噴射流の一部が、衝突合流せずにチャンバ106の内壁方向に噴射されても、セラミックボール116に衝突した高圧噴射流の流体エネルギーは、セラミックボール116を回転することによって分散して、チャンバ106の内壁面等に損傷を与えることを防止するものである。
特開平10−337457号公報([0028]〜[0034]、図1)
For such acid treatment and mechanical treatment, Patent Document 2 below proposes to pulverize particles using an injection abutting apparatus shown in FIG.
In the injection collision apparatus shown in FIG. 7, the high-pressure fluid containing particles supplied to the supply port 102 of the main body 100 is supplied to the pair of nozzles 108 and 108 via the flow paths 104 and 104 provided in the main body. Supply. The high-pressure jet flow jetted from the nozzles 108 and 108 is guided to the jet holes 110 and 110 provided between the nozzles 108 and 108 and the inner wall surface of the chamber 106 and jetted into the chamber 106. The collision merges at one point. The particles contained in the high-pressure jet flow are pulverized and refined by the impact of the collision of the high-pressure jet flow and discharged from the discharge port 112 together with the fluid.
In the injection collision apparatus shown in FIG. 7, a ceramic ball 116 is inserted into each of the notches 114 and 114 opened on the inner wall surface of the chamber 106. The ceramic balls 116, 116 are high pressure jets that collide with the ceramic balls 116 even if some of the high pressure jets injected from the injection holes 110, 110 are injected toward the inner wall of the chamber 106 without colliding with each other. The fluid energy is dispersed by rotating the ceramic ball 116 to prevent damage to the inner wall surface and the like of the chamber 106.
JP-A-10-337457 ([0028] to [0034], FIG. 1)

図7に示す噴射衝合装置を用いて微粉体又は微小繊維の微細化処理を行うことによって、酸等の危険な薬品を用いることなく微粉体又は微小繊維の微細化処理を行うことができる。また、遊星ミル等のメディアを用いて粉砕する場合の如く、メディアやメディアと接触する容器内壁の摩耗粉も可及的に少なくできる。
しかしながら、図7に示す噴射衝合装置では、チャンバ106の内壁面に開口する切欠部114,114の各々にセラミックボール116が挿入されているため、その構造が複雑化されている。
また、図7の噴射衝合装置を用いて微粉体又は微小繊維の微細化処理する際に、微粉体又は微小繊維の種類を変更する、いわゆる銘柄変更のときには、噴射衝合装置のチャンバ106内を清掃することが必要である。その際に、図7に示す噴射衝合装置では、セラミックボール116,116等を取り外して清掃することを必要とするため、微粉体又は微小繊維の銘柄変更には時間を要する。
そこで、本発明の課題は、微粉体又は微小繊維を含有する溶液を複数のノズルから噴射された高圧噴射流を衝突合流させて、微粉体又は微小繊維を微細化する際に、微粉体又は微小繊維の種類を変更する銘柄変更を容易に行うことができるように、チャンバ内の清掃を容易に行うことのできる微粉体又は微小繊維の微細化方法を提供することにある。
By performing the fine powder or fine fiber refining process using the jetting apparatus shown in FIG. 7, the fine powder or fine fiber can be refined without using dangerous chemicals such as acid. Further, as in the case of pulverization using a medium such as a planetary mill, the wear powder on the inner wall of the container that comes into contact with the medium can be reduced as much as possible.
However, in the injection collision apparatus shown in FIG. 7, the ceramic ball 116 is inserted into each of the notches 114 and 114 opened on the inner wall surface of the chamber 106, so that the structure is complicated.
Further, when the fine powder or the fine fiber is refined using the injection collision apparatus shown in FIG. 7, the type of the fine powder or the fine fiber is changed. It is necessary to clean. At that time, in the injection collision apparatus shown in FIG. 7, it is necessary to remove and clean the ceramic balls 116, 116, etc., so it takes time to change the brand of fine powder or fine fiber.
Accordingly, an object of the present invention is to reduce the fine powder or the fine fiber when the solution containing the fine powder or the fine fiber is collided with a high-pressure jet flow injected from a plurality of nozzles to refine the fine powder or the fine fiber. An object of the present invention is to provide a fine powder or fine fiber refinement method capable of easily cleaning the inside of a chamber so that a brand change for changing the type of fiber can be easily performed.

本発明者等は、前記課題を解決すべく検討した結果、ノズルから噴射した高圧噴射流を噴射衝合装置のチャンバ内に貯留した水の水面に向けて噴射したとき、水面に衝突した高圧噴射流は、その有する流体エネルギーを急激に喪失し、チャンバの内壁面に損傷を与えなくなり、図7に示す噴射衝合装置のセラミックボール116,116を不要にできることを知り、本発明に到達した。
すなわち、本発明に係る微粉体又は微小繊維の微細化方法は、微粉体又は微小繊維を含む溶液を複数のノズルからチャンバ内に噴射した複数本の高圧噴射流を一点で衝突合流させて、前記微粉体又は微小繊維を微細化する微粉体又は微小繊維の微細化方法において前記チャンバ内に噴出されてチャンバ内に貯留する前記溶液の液面を一定に保持しつつ、前記溶液を前記複数のノズルの各々から噴射し、噴射された高圧噴射流を前記溶液の液面よりも上方の一点で衝突合流させると共に、前記ノズルから噴射された高圧噴射流が、他のノズルから噴射された高圧噴射流と衝突合流しなかったとしても、該高圧噴射流が前記溶液の液面に衝突するように、前記各ノズルから高圧噴射流を前記チャンバ内の前記溶液の液面と交差する方向に噴射することを特徴とする。
As a result of studying to solve the above-mentioned problems, the present inventors have conducted high-pressure injection that collided with the water surface when the high-pressure injection flow injected from the nozzle is injected toward the water surface stored in the chamber of the injection collision device. Knowing that the flow suddenly loses its fluid energy and does not damage the inner wall of the chamber, eliminating the need for the ceramic balls 116, 116 of the jetting device shown in FIG.
That is, in the fine powder or microfiber refinement method according to the present invention , a plurality of high-pressure jets obtained by spraying a solution containing fine powder or microfibers from a plurality of nozzles into a chamber are collided at one point, and In the fine powder or microfiber miniaturization method for refining fine powder or microfiber, the solution is ejected into the chamber and retained at a constant liquid level, while the solution is retained in the chamber. High-pressure injection that is injected from each of the nozzles and causes the injected high-pressure injection flow to collide and merge at one point above the liquid level of the solution, and the high-pressure injection flow injected from the nozzle is injected from another nozzle Even if it does not collide with the flow, the high pressure jet flow is jetted from each nozzle in the direction intersecting the liquid level of the solution in the chamber so that the high pressure jet flow collides with the liquid level of the solution. It is characterized in.

かかる本発明において、高圧噴射流の各々をチャンバ内に貯留した溶液の液面よりも上方の一点で衝突合流させた溶液を、再度、前記ノズルの各々から噴射することによって、溶液中の微粉体又は微小繊維に対し繰り返して高圧噴射流の衝突合流の衝撃を与えることができ、更に微細化を図ることができる。
このノズルからの高圧噴射流の噴射方向を、前記高圧噴射流の噴射軌跡と前記高圧噴射流の衝突合流点からチャンバ内に貯留した溶液の液面に下ろした垂線との成す液面方向の噴射角度が鈍角となるように調整することによって、複数のノズルの各々からチャンバ内の溶液の液面と交差する方向に高圧噴射流を確実に噴射でき、チャンバの他の部分を高圧噴射流によって損傷させることを回避できると共に、高圧噴射流の衝突合流点をチャンバ内に貯留した溶液の液面よりも上方とすることができる。この際に、複数のノズルの各噴射角度を同一とすることによって、その調整を容易とすることができる。
また、チャンバの内壁面を平滑面に形成することによって、チャンバの内壁面の構造を簡素化でき、微粉体又は微小繊維の銘柄変更等を行う際に、チャンバ内を更に容易に清掃できる。
更に、複数のノズルからの高圧噴射流の噴射圧力を100MPa以上とし、前記高圧噴射流の衝突合流を20回以上繰り返すことによって、微粉体又は微小繊維の更に一層の微細化ができる。
かかる微粉体又は微小繊維を含む溶液としては、水に微粉体又は微小繊維を添加した溶液を用いることによって、微細化処理した溶液の処理を容易とすることができる。
本発明で微細化処理を施す微小繊維としては、カーボンナノチューブを好適に用いることができる。
尚、本発明において言う「微粉体又は微小繊維の微細化」とは、微粉体自体又は微小繊維自体を粉砕して微細化することは勿論のこと、微粉体又は微小繊維から成る凝集体を解砕して微細化することも含む。
In the present invention, the fine powder in the solution is obtained by injecting again each of the high-pressure jet flows from each of the nozzles at a point above the liquid level of the solution stored in the chamber. Alternatively, it is possible to repeatedly apply impacts of the high-pressure jet collision to the fine fibers, and further miniaturization can be achieved.
The injection direction of the high-pressure injection flow from this nozzle is the injection in the liquid surface direction formed by the injection trajectory of the high-pressure injection flow and the perpendicular drawn from the collision confluence of the high-pressure injection flow to the liquid level of the solution stored in the chamber. By adjusting the angle to be obtuse, it is possible to reliably inject a high-pressure jet flow from each of the plurality of nozzles in a direction intersecting the liquid level of the solution in the chamber, and damage other parts of the chamber by the high-pressure jet flow. It is possible to avoid this, and the collision confluence of the high-pressure jet flow can be set above the liquid level of the solution stored in the chamber. At this time, the adjustment can be facilitated by making the injection angles of the plurality of nozzles the same.
Further, by forming the inner wall surface of the chamber to be a smooth surface, the structure of the inner wall surface of the chamber can be simplified, and the interior of the chamber can be more easily cleaned when changing the brand of fine powder or microfiber.
Furthermore, the fine pressure or fine fiber can be further miniaturized by setting the injection pressure of the high-pressure jet flow from a plurality of nozzles to 100 MPa or more and repeating the collision merge of the high-pressure jet flow 20 times or more.
As such a solution containing fine powder or fine fiber, a solution obtained by adding fine powder or fine fiber to water can be used to facilitate the treatment of the refined solution.
Carbon nanotubes can be suitably used as the microfibers to be refined in the present invention.
In the present invention, “fine refinement of fine powder or microfiber” means not only that the fine powder itself or microfiber itself is pulverized but also an aggregate composed of fine powder or microfiber. It includes pulverization and refinement.

本発明では、チャンバ内に貯留した溶液の液面を一定に保持しつつ、微粉体又は微小繊維を含む溶液を複数のノズルの各々から噴射し、噴射された高圧噴射流を溶液の液面よりも上方の一点で衝突合流させるので、その衝撃によって溶液中の微粉体又は微小繊維を微細化できる。
しかも、各ノズルから噴射される高圧噴射流は、チャンバ内に貯留した溶液の液面と交差する方向に噴射されるので、一のノズルから噴射された高圧噴射流が、他のノズルから噴射された高圧噴射流と衝突合流しなかったとしても、チャンバ内に貯留した溶液の液面に衝突し、その流体エネルギーを急激に喪失して、チャンバの内壁面等の構造物を損傷することを防止できる。
したがって、図7に示す噴射衝合装置のセラミックボール116,116を不要にでき、チャンバ内の清掃を容易に施すことができ、また微細化対象の微粉体又は微小繊維の銘柄変更を容易に行うことができる。
In the present invention , while maintaining the liquid level of the solution stored in the chamber constant, a solution containing fine powder or fine fibers is jetted from each of the plurality of nozzles, and the jetted high-pressure jet stream is fed from the liquid level of the solution. In addition, since the collision merge is made at one point above, the fine powder or fine fiber in the solution can be refined by the impact.
Moreover, a high-pressure jet is ejected from each nozzle, since it is injected in a direction which intersects the liquid surface of the solution stored in the chamber, a high pressure jet which is injected from one nozzle, is injected from another nozzle Even if it does not collide with the high-pressure jet flow, it collides with the liquid level of the solution stored in the chamber, and suddenly loses its fluid energy to prevent damage to structures such as the inner wall surface of the chamber. it can.
Therefore, it becomes unnecessary ceramic balls 116, 116 of the injector abutting the apparatus shown in FIG. 7, can be applied to facilitate cleaning of the chamber, also facilitate the fine powder or brand changes microfibers miniaturization target be able to.

本発明に係る微細化方法の一例を、図1に示す概略図を用いて説明する。図1において、供給タンク10に貯留された微粉体又は微小繊維を含む溶液30aを、ポンプ12によって噴射衝合装置14に供給する。噴射衝合装置14によって微細化処理された微粉体又は微小繊維を含む溶液30は、配管15を経由して処理済タンク16に送られる。
かかる噴射衝合装置14では、図2に示す様に、ポンプ12によって本体部20の入口22に供給された微粉体又は微小繊維を含む溶液流は、本体部20内に形成された流路24a,24aを経由してノズル26a,26aから高圧噴射流としてチャンバ28内に噴射される。
このノズル26a,26aからの高圧噴射流の各々は、チャンバ28内に貯留された溶液の液面と交差する方向に噴射され、この液面よりも上方の一点で衝突合流する。かかるチャンバ28内に貯留された溶液は、ノズル26a,26aからの高圧噴射流の衝突合流によって含有する微粉体又は微小繊維に微細化処理が施された溶液30である。
衝突合流した溶液30はチャンバ28内に一時的に貯留された後、配管15を経由して処理済タンク16に収容される。
ここで、チャンバ28に貯留される溶液30の液面をセンサで検出し、ポンプ12による溶液30aの供給量を調整することによって、チャンバ28内の溶液30の液面を一定に保持できる。
尚、噴射衝合装置14による微細化処理を開始する際には、供給タンク10に貯留された溶液30aに用いた溶媒の所定量をチャンバ28に貯留した後、供給タンク10の溶液30aをポンプ12により噴射衝合装置14に供給を開始することによって、供給タンク10の溶液30aに含まれている全ての微粉体又は微小繊維に噴射衝合装置14による微細化処理を施すことができる。
An example of the miniaturization method according to the present invention will be described with reference to the schematic diagram shown in FIG. In FIG. 1, a solution 30 a containing fine powder or fine fibers stored in a supply tank 10 is supplied to an injection collision device 14 by a pump 12. The solution 30 containing fine powder or fine fibers refined by the jetting device 14 is sent to the treated tank 16 via the pipe 15.
In the injection collision device 14, as shown in FIG. 2, a solution flow containing fine powder or fine fibers supplied to the inlet 22 of the main body 20 by the pump 12 is a flow path 24 a formed in the main body 20. , 24a and is injected into the chamber 28 as a high-pressure injection flow from the nozzles 26a, 26a.
Each of the high-pressure jet flows from the nozzles 26a, 26a is jetted in a direction intersecting with the liquid level of the solution stored in the chamber 28, and collides and merges at one point above the liquid level. The solution stored in the chamber 28 is a solution 30 obtained by subjecting the fine powder or the fine fibers contained by the collision and joining of the high-pressure jets from the nozzles 26a and 26a to a refinement process.
The solution 30 that has collided and joined is temporarily stored in the chamber 28 and then stored in the treated tank 16 via the pipe 15.
Here, by detecting the liquid level of the solution 30 stored in the chamber 28 with a sensor and adjusting the supply amount of the solution 30a by the pump 12, the liquid level of the solution 30 in the chamber 28 can be kept constant.
When the atomization process by the injection collision device 14 is started, after a predetermined amount of the solvent used in the solution 30a stored in the supply tank 10 is stored in the chamber 28, the solution 30a in the supply tank 10 is pumped. By starting the supply to the injection abutting device 14 at 12, all the fine powders or microfibers contained in the solution 30a of the supply tank 10 can be subjected to a refinement process by the injection abutting device 14.

かかるノズル26a,26aから噴射された高圧噴射流の衝突合流の際に、その衝突による衝撃によって高圧噴射流中に含まれている微粉体自体又は微小繊維自体が微細化され、或いは微粉体又は微小繊維から成る凝集粒子が解砕されて微細化される。
このノズル26a,26aから噴射された高圧噴射流の噴射軌跡は、チャンバ28内に貯留された溶液30の液面と交差する方向である。このため、ノズル26a,26aの一方から噴射された高圧噴射流が、他方のノズルから噴射された高圧噴射流と衝突合流しなかったとしても、チャンバ28内に貯留した溶液30の液面に衝突し、その流体エネルギーを急激に喪失して、チャンバ28の内壁面を損失することを防止できる。
この様に、ノズル26a,26aから高圧噴射流を噴射するには、ノズル26a,26aからの高圧噴射流の噴射方向を、高圧噴射流の噴射軌跡と高圧噴射流の衝突合流点からチャンバ28内に貯留した溶液30の液面に下ろした垂線との成す液面方向の噴射角度θ1,θ2が鈍角となるように調整することが好ましい。かかる噴射角度θ1,θ2を同一とすることによって、ノズル26a,26aの噴射方向の調整を容易に行うことができる。
When the high pressure jet flow jetted from the nozzles 26a and 26a is collided and merged, the fine powder itself or the microfiber itself contained in the high pressure jet flow is refined by the impact of the collision, or the fine powder or the fine fiber Aggregated particles composed of fibers are crushed and refined.
The injection trajectory of the high-pressure injection flow injected from the nozzles 26 a and 26 a is a direction that intersects the liquid level of the solution 30 stored in the chamber 28. For this reason, even if the high-pressure jet flow injected from one of the nozzles 26 a and 26 a does not collide with the high-pressure jet flow injected from the other nozzle, it collides with the liquid level of the solution 30 stored in the chamber 28. Therefore, it is possible to prevent the fluid energy from being suddenly lost and the inner wall surface of the chamber 28 from being lost.
As described above, in order to inject the high-pressure injection flow from the nozzles 26a, 26a, the injection direction of the high-pressure injection flow from the nozzles 26a, 26a is changed from the injection locus of the high-pressure injection flow and the collision confluence of the high-pressure injection flow into the chamber 28. It is preferable to adjust so that the injection angles θ 1 and θ 2 in the liquid surface direction formed by the perpendicular line dropped to the liquid surface of the solution 30 stored in FIG. By making the injection angles θ 1 and θ 2 the same, the injection direction of the nozzles 26a and 26a can be easily adjusted.

図1に示す供給タンク10に貯留された微粉体又は微小繊維を含む溶液の全量を噴射衝合装置14に供給し終わったとき、チャンバ28に貯留されている溶液30及び処理済タンク16内の溶液30を供給タンク10に戻し、供給タンク10から溶液30aとして、再度、ノズル26a,26aの各々から噴射することによって、溶液中の微粉体又は微小繊維に対し繰り返して高圧噴射流の衝突合流の衝撃を与えることができ、溶液中の微粉体又は微小繊維を更に微細化を図ることができる。
特に、ノズル26a,26aからの高圧噴射流の噴射圧力を100MPa以上とし、この高圧噴射流の衝突合流を20回以上繰り返すことによって、溶液中の微粉体又は微小繊維を更に一層微細化できる。
ここで、図1では、溶液中の微粉体又は微小繊維に対し繰り返して高圧噴射流の衝突合流の衝撃を与えるべく、処理済タンク16内の溶液30を供給タンク10に戻しているが、図1に点線で示す様に、噴射衝合装置14から供給タンク10に戻す循環配管15′を設けてもよい。
この場合、溶液中の微粉体又は微小繊維に対する高圧噴射流の衝突合流の回数は、供給タンク10に貯留されている溶液量を一回処理する処理時間(滞留時間)を求めることによって、全処理時間から求めることができる。
When the entire amount of the solution containing fine powder or microfibers stored in the supply tank 10 shown in FIG. 1 has been supplied to the injection collision device 14, the solution 30 stored in the chamber 28 and the processed tank 16 The solution 30 is returned to the supply tank 10, and the solution 30a is again injected from the supply tank 10 from each of the nozzles 26a and 26a, thereby repeatedly colliding the high pressure injection flow with respect to the fine powder or the fine fiber in the solution. An impact can be given and the fine powder or microfiber in the solution can be further miniaturized.
In particular, by setting the injection pressure of the high-pressure jet flow from the nozzles 26a and 26a to 100 MPa or more and repeating the collision merge of the high-pressure jet flow 20 times or more, the fine powder or microfiber in the solution can be further refined.
Here, in FIG. 1, the solution 30 in the treated tank 16 is returned to the supply tank 10 in order to repeatedly apply the impact of the high-pressure jet collision to the fine powder or microfiber in the solution. As indicated by a dotted line in FIG. 1, a circulation pipe 15 ′ returning from the injection collision device 14 to the supply tank 10 may be provided.
In this case, the number of collision merges of the high-pressure jet flow with respect to the fine powder or fine fiber in the solution is determined by obtaining the processing time (residence time) for processing the amount of the solution stored in the supply tank 10 once. It can be obtained from time.

この様にして微細化された溶液中の微粉体又は微小繊維は、溶液状態で後工程に供給してもよく、溶媒を蒸発等させて微細化された微粉体又は微小繊維を乾燥した後、再度別の溶媒等に添加してもよく、乾燥状態で樹脂や金属等の添加剤として用いることができる。
かかる微粉体又は微小繊維を含む溶液としては、溶媒としての水やアルコール等の有機溶媒に微粉体又は微小繊維を添加した溶液を用いることができるが、溶媒として水を用いた溶液を用いることによって、微細化処理後の溶液の取り扱いを容易とすることができる。この微粉体又は微小繊維を含む溶液中に、その微粉体又は微小繊維の分散性を向上すべく、分散剤を添加してもよい。
また、噴射衝合装置14としては、図2に示す様に、チャンバ28の内壁面を平滑面に形成することによって、チャンバ28の内壁面の構造を簡素化でき、微粉体又は微小繊維の銘柄変更等を行う際に、チャンバ28内を容易に清掃できる。
尚、微小繊維として、カーボンナノチューブを好適に用いることができる。
The fine powder or microfiber in the solution thus refined may be supplied to the subsequent process in a solution state, and after the fine powder or microfiber refined by evaporating the solvent or the like, It may be added again to another solvent or the like, and can be used as an additive such as resin or metal in a dry state.
As a solution containing such fine powder or microfiber, a solution obtained by adding fine powder or microfiber to an organic solvent such as water or alcohol as a solvent can be used. By using a solution using water as a solvent, In addition, handling of the solution after the miniaturization treatment can be facilitated. In order to improve the dispersibility of the fine powder or microfiber, a dispersant may be added to the solution containing the fine powder or microfiber.
Further, as shown in FIG. 2, the injection collision device 14 can simplify the structure of the inner wall surface of the chamber 28 by forming the inner wall surface of the chamber 28 as a smooth surface, and the brand of fine powder or fine fiber. When changing or the like, the inside of the chamber 28 can be easily cleaned.
In addition, a carbon nanotube can be used suitably as a microfiber.

溶媒としての水に、微細繊維としての単層カーボンナノチューブを1g/リットルを添加した溶液を、図1に示す供給タンク10に供給し、噴射衝合装置14として図2に示す噴射衝合装置を用いてノズル26a,26aから高圧噴射流を噴射圧力220MPaで噴射した。ノズル26a,26aから噴射された高圧噴射流の噴射方向は、内壁面が平滑面に形成されたチャンバ28に貯留された溶液の液面に交差する方向とし、両高圧噴射流がチャンバ28に貯留された溶液の液面上で衝突合流するように、ノズル26a,26aの向きを調整した。このチャンバ28に貯留された溶液は、ノズル26a,26aからの高圧噴射流の衝突合流によって含有する微粉体又は微小繊維に微細化処理が施された溶液30である。
更に、チャンバ28からの溶液30の排出量を調整して、チャンバ28内に溶液30を貯留した。
ここで、噴射衝合装置14による微細化処理を開始する際には、供給タンク10に貯留された溶液30aに溶媒として用いた水の所定量をチャンバ28に貯留した後、供給タンク10の溶液30aをポンプ12により噴射衝合装置14に供給を開始した。
本実施例では、供給タンク10に貯留された溶液30aを噴射衝合装置14に供給し終わったとき、チャンバ28の溶液30及び処理済タンク16内の溶液30を供給タンク10に戻し、供給タンク10から溶液30aとして、再度、ノズル26a,26aの各々から噴射することによって、溶液中の単層カーボンナノチューブに対し繰り返して高圧噴射流の衝突合流の衝撃を与えた。かかる高圧噴射流の衝突合流の衝撃を、単層カーボンナノチューブに対して50回与えた。
A solution obtained by adding 1 g / liter of single-walled carbon nanotubes as fine fibers to water as a solvent is supplied to the supply tank 10 shown in FIG. 1, and the injection collision device shown in FIG. Using the nozzles 26a and 26a, a high-pressure jet was jetted at a jet pressure of 220 MPa. The injection direction of the high-pressure injection flow injected from the nozzles 26 a and 26 a is a direction intersecting the liquid level of the solution stored in the chamber 28 whose inner wall surface is formed in a smooth surface, and both high-pressure injection flows are stored in the chamber 28. The orientations of the nozzles 26a and 26a were adjusted so that they collided and merged on the liquid level of the solution. The solution stored in the chamber 28 is a solution 30 obtained by subjecting fine powder or fine fibers contained by collision of high-pressure jets from the nozzles 26a and 26a to a refinement process.
Further, the solution 30 was stored in the chamber 28 by adjusting the discharge amount of the solution 30 from the chamber 28.
Here, when starting the micronization process by the injection collision device 14, after storing a predetermined amount of water used as a solvent in the solution 30 a stored in the supply tank 10 in the chamber 28, the solution in the supply tank 10 is stored. Supply of 30a to the injection collision device 14 by the pump 12 was started.
In this embodiment, when the solution 30a stored in the supply tank 10 has been supplied to the injection collision device 14, the solution 30 in the chamber 28 and the solution 30 in the treated tank 16 are returned to the supply tank 10, and the supply tank By spraying again from each of the nozzles 26a and 26a as 10 to the solution 30a, the single-walled carbon nanotubes in the solution were repeatedly subjected to the impact of the high-pressure jet collision. The impact of the collision confluence of the high-pressure jet flow was applied 50 times to the single-walled carbon nanotube.

この高圧噴射流の衝突合流の衝撃回数と単層カーボンナノチューブの微細化程度とを、図3及び図4に示す。
図3(a)は、微細化処理前の単層カーボンナノチューブの電子顕微鏡写真である。単層カーボンナノチューブは不純物で覆われており、単層カーボンナノチューブを確認できない状態である。この状態では、単層カーボンナノチューブは不純物を介して大きな凝集体を形成している。
かかる図3(a)に示す微細化処理前の単層カーボンナノチューブの状態に対し、高圧噴射流の衝突合流の衝撃を5回繰り返したときの電子顕微鏡写真を図3(b)に示す。単層カーボンナノチューブを覆っていた不純物が破壊され、単層カーボンナノチューブが存在することを確認できる。
更に、高圧噴射流の衝突合流の衝撃を20回繰り返したときの電子顕微鏡写真を図4(a)に示す。独立した繊維状の単層カーボンナノチューブを確認できる。高圧噴射流の衝突合流の衝撃を20回繰り返したとき、溶液の粘度が急激に増加してきた。粉砕された不純物が溶液粘度を高めたものと考えられる。
かかる図4(a)に示す単層カーボンナノチューブの状態に対し、高圧噴射流の衝突合流の衝撃を50回繰り返したときの電子顕微鏡写真を図4(b)に示す。不純物が略破壊されて除去されていることを確認できる。この状態では、単層カーボンナノチューブを覆う不純物を介して形成されていた凝集体は略解砕されて微細化されている。
この様に、高圧噴射流の衝突合流の衝撃を50回繰り返しても、図4(b)に示す電子顕微鏡写真からも明らかな様に、高圧噴射流との衝突によってチャンバ28の内壁面の一部が損傷されたことによる破片の混入は認められなかった。
また、チャンバ28内の清掃は容易であり、単層カーボンナノチューブの銘柄変更を容易に行うことができた。
FIG. 3 and FIG. 4 show the number of impacts of this high-pressure jet collision and the degree of miniaturization of single-walled carbon nanotubes.
FIG. 3A is an electron micrograph of single-walled carbon nanotubes before the miniaturization process. The single-walled carbon nanotube is covered with impurities, and the single-walled carbon nanotube cannot be confirmed. In this state, the single-walled carbon nanotube forms a large aggregate through impurities.
FIG. 3 (b) shows an electron micrograph when the impact of the high-pressure jet collision / merging is repeated five times against the state of the single-walled carbon nanotube before the miniaturization shown in FIG. 3 (a). It can be confirmed that the impurities covering the single-walled carbon nanotubes are destroyed and the single-walled carbon nanotubes are present.
Further, FIG. 4A shows an electron micrograph obtained when the impact of the high-pressure jet collision is repeated 20 times. Independent fibrous single-walled carbon nanotubes can be confirmed. When the impact of the high-pressure jet collision was repeated 20 times, the viscosity of the solution increased rapidly. It is considered that the pulverized impurities have increased the solution viscosity.
FIG. 4B shows an electron micrograph when the impact of the high-pressure jet collision is repeated 50 times with respect to the state of the single-walled carbon nanotube shown in FIG. It can be confirmed that the impurities are substantially destroyed and removed. In this state, the aggregate formed through the impurities covering the single-walled carbon nanotube is substantially crushed and miniaturized.
As described above, even when the impact of the high-pressure jet collision collision is repeated 50 times, as is clear from the electron micrograph shown in FIG. No debris was found due to the damaged part.
Moreover, the inside of the chamber 28 was easy to clean, and the brand of the single-walled carbon nanotube could be easily changed.

実施例1において、微細繊維としての単層カーボンナノチューブに代えて、カップスタック状の多層カーボンナノチューブを用いた他は、実施例1と同様にして高圧噴射流の衝突合流の衝撃を50回繰り返した。
この高圧噴射流の衝突合流の衝撃回数と多層カーボンナノチューブの微細化程度とを、図5及び図6に示す。
図5(a)は、微細化処理前の多層カーボンナノチューブの電子顕微鏡写真である。数十μm程度の長さの多層カーボンナノチューブを確認できる。
かかる図5(a)に示す微細化処理前の多層カーボンナノチューブに対し、高圧噴射流の衝突合流の衝撃を25回繰り返したときの電子顕微鏡写真を図5(b)に示す。多層カーボンナノチューブの長さを、5〜10μm程度とすることができた。
更に、高圧噴射流の衝突合流の衝撃を50回繰り返したときの電子顕微鏡写真を図6に示す。多層カーボンナノチューブの長さを、5μm以下とすることができた。
この様に、高圧噴射流の衝突合流の衝撃を50回繰り返しても、図6に示す電子顕微鏡写真からも明らかな様に、高圧噴射流との衝突によってチャンバ28の内壁面の一部が損傷されたことによる破片の混入は認められなかった。
また、チャンバ28内の清掃は容易であり、多層カーボンナノチューブの銘柄変更を容易に行うことができた。
In Example 1, instead of using single-walled carbon nanotubes as fine fibers, cup-stacked multi-walled carbon nanotubes were used, and the impact of high-pressure jet collision / merging was repeated 50 times in the same manner as in Example 1. .
FIG. 5 and FIG. 6 show the number of impacts of this high-pressure jet collision and the degree of miniaturization of the multi-walled carbon nanotube.
FIG. 5A is an electron micrograph of multi-walled carbon nanotubes before the miniaturization process. A multi-walled carbon nanotube having a length of about several tens of μm can be confirmed.
FIG. 5B shows an electron micrograph of the multi-walled carbon nanotube before the miniaturization process shown in FIG. 5A when the impact of the high-pressure jet collision is repeated 25 times. The length of the multi-walled carbon nanotube could be about 5 to 10 μm.
Further, FIG. 6 shows an electron micrograph when the impact of the high-pressure jet stream is repeated 50 times. The length of the multi-walled carbon nanotube could be 5 μm or less.
As described above, even if the impact of the collision joining of the high-pressure jet flow is repeated 50 times, as is clear from the electron micrograph shown in FIG. 6, a part of the inner wall surface of the chamber 28 is damaged by the collision with the high-pressure jet flow. No debris was found to have been introduced.
Moreover, the inside of the chamber 28 was easy to clean, and the brand of the multi-walled carbon nanotube could be easily changed.

本発明に係る微粉体又は微小繊維の微細化方法で用いる処理装置の概要を説明する概略図である。It is the schematic explaining the outline | summary of the processing apparatus used with the refinement | miniaturization method of the fine powder or microfiber based on this invention. 図1で用いる噴射衝合装置14の概要を説明するための概略図である。It is the schematic for demonstrating the outline | summary of the injection collision apparatus 14 used in FIG. 微細化処理前の単層カーボンナノチューブの状態と、高圧噴射流の衝突合流の衝撃を5回繰り返したときの単層カーボンナノチューブの状態とを示す電子顕微鏡写真である。It is an electron micrograph which shows the state of the single-walled carbon nanotube before a refinement | miniaturization process, and the state of a single-walled carbon nanotube when the impact of the collision confluence of a high-pressure jet flow is repeated 5 times. 高圧噴射流の衝突合流の衝撃を20回繰り返したときの単層カーボンナノチューブの状態と、高圧噴射流の衝突合流の衝撃を50回繰り返したときの単層カーボンナノチューブの状態とを示す電子顕微鏡写真Electron micrographs showing the state of single-walled carbon nanotubes when the impact of the high-pressure jet collision is repeated 20 times and the state of single-walled carbon nanotubes when the impact of the high-pressure jet collision is repeated 50 times 微細化処理前の多層層カーボンナノチューブの状態と、高圧噴射流の衝突合流の衝撃を25回繰り返したときの多層カーボンナノチューブの状態とを示す電子顕微鏡写真である。It is an electron micrograph which shows the state of the multi-layer carbon nanotube before refinement | miniaturization process, and the state of a multi-layer carbon nanotube when the impact of the collision confluence of a high-pressure jet flow is repeated 25 times. 高圧噴射流の衝突合流の衝撃を50回繰り返したときの多層カーボンナノチューブの状態とを示す電子顕微鏡写真である。It is an electron micrograph which shows the state of a multi-walled carbon nanotube when the impact of the collision confluence of a high-pressure jet flow is repeated 50 times. 従来の噴射衝合装置を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the conventional injection collision apparatus.

符号の説明Explanation of symbols

10 供給タンク
12 ポンプ
14 噴射衝合装置
16 処理済タンク
20 本体部
22 入口
24a,24a 流路
26a,26a ノズル
28 チャンバ
30 溶液
θ1,θ2 噴射角度
DESCRIPTION OF SYMBOLS 10 Supply tank 12 Pump 14 Injection collision apparatus 16 Processed tank 20 Main-body part 22 Inlet 24a, 24a Flow path 26a, 26a Nozzle 28 Chamber 30 Solution (theta) 1 , (theta) 2 injection angle

Claims (8)

微粉体又は微小繊維を含む溶液を複数のノズルからチャンバ内に噴射した複数本の高圧噴射流を一点で衝突合流させて、前記微粉体又は微小繊維を微細化する微粉体又は微小繊維の微細化方法において
前記チャンバ内に噴出されてチャンバ内に貯留する前記溶液の液面を一定に保持しつつ、前記溶液を前記複数のノズルの各々から噴射し、噴射された高圧噴射流を前記溶液の液面よりも上方の一点で衝突合流させると共に、
前記ノズルから噴射された高圧噴射流が、他のノズルから噴射された高圧噴射流と衝突合流しなかったとしても、該高圧噴射流が前記溶液の液面に衝突するように、前記各ノズルから高圧噴射流を前記チャンバ内の前記溶液の液面と交差する方向に噴射することを特徴とする微粉体又は微小繊維の微細化方法。
Refinement of fine powder or microfiber by refining the fine powder or microfiber by colliding and joining a plurality of high-pressure jets in which a solution containing fine powder or microfiber is injected into the chamber from a plurality of nozzles In the method
The solution is ejected from each of the plurality of nozzles while the liquid level of the solution ejected into the chamber and stored in the chamber is kept constant, and the ejected high-pressure jet flow from the liquid level of the solution And the collision merge at one point above,
Even if the high-pressure jet flow jetted from the nozzle does not collide with the high-pressure jet jet jetted from the other nozzles, the high-pressure jet flow collides with the liquid level of the solution from each nozzle. A fine powder or fine fiber refinement method , wherein a high-pressure jet stream is jetted in a direction intersecting a liquid level of the solution in the chamber .
高圧噴射流の各々をチャンバ内に貯留した溶液の液面よりも上方の一点で衝突合流させた溶液を、再度、前記ノズルの各々から噴射する請求項1記載の微粉体又は微小繊維の微細化方法。   The fine powder or fine fiber refinement according to claim 1, wherein each of the high-pressure jet streams is sprayed from each of the nozzles again with a solution obtained by collision and joining at a point above the liquid level of the solution stored in the chamber. Method. ノズルからの高圧噴射流の噴射方向を、前記高圧噴射流の噴射軌跡と前記高圧噴射流の衝突合流点からチャンバ内に貯留した溶液の液面に下ろした垂線との成す液面方向の噴射角度が鈍角となるように調整する請求項1又は請求項2記載の微粉体又は微小繊維の微細化方法。   The injection direction of the high-pressure injection flow from the nozzle is the injection angle in the liquid-surface direction formed by the injection trajectory of the high-pressure injection flow and the perpendicular drawn from the collision confluence of the high-pressure injection flow to the liquid level of the solution stored in the chamber The fine powder or fine fiber refinement method according to claim 1 or 2, wherein the fine powder or the fine fiber is adjusted to have an obtuse angle. 複数のノズルの各噴射角度を同一とする請求項3記載の微粉体又は微小繊維の微細化方法。   4. The fine powder or fine fiber refinement method according to claim 3, wherein the spray angles of the plurality of nozzles are the same. チャンバの内壁面を平滑面に形成する請求項1〜4のいずれか一項記載の微粉体又は微小繊維の微細化方法。   The fine powder or fine fiber refinement method according to any one of claims 1 to 4, wherein the inner wall surface of the chamber is formed into a smooth surface. 複数のノズルからの高圧噴射流の噴射圧力を100MPa以上とし、前記高圧噴射流の衝突合流を20回以上繰り返す請求項1〜5のいずれか一項記載の微粉体又は微小繊維の微細化方法。   The method for refining fine powder or microfiber according to any one of claims 1 to 5, wherein an injection pressure of a high-pressure jet flow from a plurality of nozzles is set to 100 MPa or more, and the collision merge of the high-pressure jet flow is repeated 20 times or more. 微粉体又は微小繊維を含む溶液として、水に微粉体又は微小繊維を添加して得た溶液を用いる請求項1〜6のいずれか一項記載の微粉体又は微小繊維の微細化方法。   The method for refining a fine powder or microfiber according to any one of claims 1 to 6, wherein a solution obtained by adding the fine powder or microfiber to water is used as the solution containing the fine powder or microfiber. 微小繊維として、カーボンナノチューブを用いる請求項1〜7のいずれか一項記載の微粉体又は微小繊維の微細化方法。
The method for refining fine powder or fine fibers according to any one of claims 1 to 7, wherein carbon nanotubes are used as the fine fibers.
JP2005259003A 2005-09-07 2005-09-07 Method for refining fine powder or fine fiber Expired - Fee Related JP4989868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259003A JP4989868B2 (en) 2005-09-07 2005-09-07 Method for refining fine powder or fine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259003A JP4989868B2 (en) 2005-09-07 2005-09-07 Method for refining fine powder or fine fiber

Publications (2)

Publication Number Publication Date
JP2007069123A JP2007069123A (en) 2007-03-22
JP4989868B2 true JP4989868B2 (en) 2012-08-01

Family

ID=37931043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259003A Expired - Fee Related JP4989868B2 (en) 2005-09-07 2005-09-07 Method for refining fine powder or fine fiber

Country Status (1)

Country Link
JP (1) JP4989868B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291302B2 (en) * 2007-04-26 2013-09-18 株式会社御池鐵工所 Method for producing water containing fine product
JP2009160506A (en) * 2007-12-28 2009-07-23 Suzuki Sangyo Kk Crushing apparatus and sludge treatment system
JP2010013742A (en) * 2008-07-01 2010-01-21 Teijin Ltd Method for producing ultrafine carbon fiber
JP2013147367A (en) * 2012-01-18 2013-08-01 Toyo Jushi Kk Method for manufacturing modified carbon nanofiller
JP2015188853A (en) * 2014-03-28 2015-11-02 株式会社スギノマシン Wet micronization method
JP6949348B2 (en) * 2016-12-15 2021-10-13 中越パルプ工業株式会社 Opposed collision processing device and opposed collision processing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151706B2 (en) * 1997-06-09 2001-04-03 株式会社スギノマシン Jet collision device
JP2002177809A (en) * 2000-12-13 2002-06-25 Sugino Mach Ltd Jet collision device
JP3874269B2 (en) * 2002-07-24 2007-01-31 松下電器産業株式会社 Carbon nanotube purification method

Also Published As

Publication number Publication date
JP2007069123A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4989868B2 (en) Method for refining fine powder or fine fiber
JP5025358B2 (en) Cleaning method and apparatus and cleaning nozzle
JP6501191B2 (en) Micro-nano bubble cleaning method and apparatus
WO2011122325A1 (en) Fluid mixture spray device
JP5588582B2 (en) Cleaning device
JP2003062492A (en) Surface treatment and cleaning methods for mechanical part, etc., and apparatus therefor
JP2006314947A (en) Container cleaning device
JP2008149984A (en) Vehicle body washing method, spray nozzle used for it and vehicle body washing device
JP3712588B2 (en) Jet collision device
JP6865952B2 (en) 1 fluid nozzle
JP2007075958A (en) Under-liquid surface processing nozzle device
JP2006314945A (en) Apparus for cleaning vessel
JP5495299B2 (en) Bubble generation method and apparatus, and processing apparatus using the apparatus
JP2011098284A (en) Nozzle for mixing gas and liquid
JP2007075958A5 (en)
KR101976798B1 (en) Nozzle for recycling steam
JP6990848B2 (en) Injection nozzle and injection method
JP6494041B2 (en) Atomizer with back pressure function that can be cleaned and sterilized
JP4916018B2 (en) Deaerator
JP2011183239A (en) Washing apparatus
JP2018038998A (en) Fine particle manufacturing apparatus
JP6519493B2 (en) Cleaning apparatus and method
JPH0810726A (en) Washing method and washing device
EP3959037A1 (en) Device for generating a co2 snow jet
JP2717241B2 (en) Processing method of material by hydrojet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4989868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees