JP2013147367A - Method for manufacturing modified carbon nanofiller - Google Patents

Method for manufacturing modified carbon nanofiller Download PDF

Info

Publication number
JP2013147367A
JP2013147367A JP2012007848A JP2012007848A JP2013147367A JP 2013147367 A JP2013147367 A JP 2013147367A JP 2012007848 A JP2012007848 A JP 2012007848A JP 2012007848 A JP2012007848 A JP 2012007848A JP 2013147367 A JP2013147367 A JP 2013147367A
Authority
JP
Japan
Prior art keywords
treatment
cnf
modified
aqueous dispersion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012007848A
Other languages
Japanese (ja)
Inventor
Hiroshi Izawa
宏 井澤
Akiharu Tsuchimoto
昭春 土本
Kazuhiro Nojima
和宏 野島
Nagahiro Saito
永宏 齋藤
Nobuyuki Zettsu
信行 是津
Tomoe Ueno
智永 上野
Iku Tanabe
郁 田辺
Osamu Takai
治 高井
Tadashi Harada
征 原田
Michiya Nimura
道也 二村
Kazutaka Nakano
万敬 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Toyo Jushi Co Ltd
Original Assignee
Nagoya University NUC
Toyo Jushi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Toyo Jushi Co Ltd filed Critical Nagoya University NUC
Priority to JP2012007848A priority Critical patent/JP2013147367A/en
Publication of JP2013147367A publication Critical patent/JP2013147367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-modified carbon nanofiller(modified CNF) whose dispersible concentration in an aqueous dispersion medium can be a high concentration and whose dispersion holding time can be elongated remarkably.SOLUTION: There is provided a method for manufacturing CNF surface-modified with a hydrophilic group. The method includes a crushing step of crushing CNF charged in an aqueous dispersion medium by a wet jet mill, and a step of introducing a hydrophilic group to CNF by a solution plasma (SP) treatment. The hydrophilic group includes at least an amino group and/or its derivative. The surface modification with an amino group is carried out by the SP treatment in an ammonia water.

Description

本発明は、修飾カーボンナノフィラー(修飾CNF)の製造方法に関する。   The present invention relates to a method for producing a modified carbon nanofiller (modified CNF).

本明細書等において使用する技術用語の定義を次に記する。
修飾CNF:親水基を表面に導入したカーボンナノフィラー(CNF)。
水系分散媒:水、および水と自由混和可能なアルコール等の極性溶媒。
分散可能濃度:水系分散媒にCNFを投入して振盪分散させた後、1日経過したとき沈澱しない分散濃度。
なお以下の説明で、濃度を示す「%」は、「質量%」を意味する。
The definitions of technical terms used in this specification and the like are described below.
Modified CNF: Carbon nanofiller (CNF) having a hydrophilic group introduced on its surface.
Aqueous dispersion medium: Polar solvent such as water and alcohol freely miscible with water.
Dispersible concentration: A dispersion concentration in which CNF is added to an aqueous dispersion medium and shaken to disperse, and the precipitate does not precipitate when one day has passed.
In the following description, “%” indicating concentration means “mass%”.

カーボンナノチューブ(CNT)等のCNFは、そのもの自体の有する高強度、高導電性、高熱伝導性等の各特性を生かして、高強度材料(CNT添加ポリマーコンポジット)、高導電性材料(バッキーゲルラバー、電池・電極材料)、高熱伝導性材料(CNT添加アルミニウム合金)のフィラーとして多用されるようになってきている。   CNFs such as carbon nanotubes (CNT) take advantage of their own properties such as high strength, high conductivity, and high thermal conductivity, making them high strength materials (CNT-added polymer composites) and high conductivity materials (Bucky gel rubber). , Battery / electrode materials) and high thermal conductivity materials (CNT-added aluminum alloys) are increasingly used as fillers.

しかし、CNT等のCNF自体は、無極性で、極性溶媒や極性樹脂に対する分散性が良好でない。この分散性を改善するため、特にCNF表面に親水基を導入することが考えられる。例えば、特許文献1において、発煙硝酸中又は発煙硝酸と濃硫酸との混酸中で、超音波処理してCNTにニトロ基を付加後、ニトロ基を求核置換によりアミノ基等に置換する修飾CNTの製造方法が提案されている。   However, CNF itself, such as CNT, is nonpolar and has poor dispersibility in polar solvents and polar resins. In order to improve this dispersibility, it is conceivable to introduce a hydrophilic group particularly on the CNF surface. For example, in Patent Document 1, a modified CNT that adds a nitro group to CNT by sonication in fuming nitric acid or a mixed acid of fuming nitric acid and concentrated sulfuric acid, and then substitutes the nitro group with an amino group or the like by nucleophilic substitution The manufacturing method of this is proposed.

しかし、当該方法は、濃硫酸と発煙硝酸のような危険な試薬を使用する上、処理時間も長かった。例えば、実施例1では、90℃で6時間超音波処理をする旨の記載がある(段落0031)。   However, this method uses dangerous reagents such as concentrated sulfuric acid and fuming nitric acid, and has a long processing time. For example, in Example 1, there is a description that ultrasonic treatment is performed at 90 ° C. for 6 hours (paragraph 0031).

そして、特許文献1に記載されている発明は、CNFの特性を充分に発揮するために、より高濃度で水中分散させることが可能な表面修飾されたCNTを製造する方法を提供することを目的とするものである(段落0005)。   The invention described in Patent Document 1 aims to provide a method for producing a surface-modified CNT that can be dispersed in water at a higher concentration in order to fully exhibit the properties of CNF. (Paragraph 0005).

特許文献1に記載されている修飾CNTの、水中の分散濃度は10%前後が限界である。特許文献1に記載のアミノ化単層CNT(SWNT)の実施例評価では濃度は全て10%である(段落0039及び0054表1参照)。   The dispersion concentration of the modified CNT described in Patent Document 1 in water is around 10%. In the example evaluation of the aminated single-walled CNT (SWNT) described in Patent Document 1, all the concentrations are 10% (see Table 0039 and 0054 Table 1).

しかし、昨今、各CNF配合材料に、更なる、高強度、高導電性、高熱伝導性の要望に対応するために、CNFの分散性(分散可能濃度)の向上が要求されるようになってきている。   However, in recent years, each CNF compounding material has been required to improve the dispersibility (dispersible concentration) of CNF in order to meet further demands for high strength, high conductivity, and high thermal conductivity. ing.

そこで、上記課題を解決するために、本願出願人らは、「ポリアミドナノコンポジット」に係る先の出願(特願2010-157062号;平成22年7月9日出願:出願時未公開)において、未処理のCNFをアンモニア水中でソリューションプラズマ(SP)処理してアミノ基を導入した修飾CNFの調製方法を提案した(請求項7、段落0048等)。   Therefore, in order to solve the above-mentioned problem, the applicants of the present application in an earlier application related to “polyamide nanocomposite” (Japanese Patent Application No. 2010-157062; filed on July 9, 2010: unpublished at the time of filing), A method for preparing modified CNF in which an untreated CNF was treated with solution plasma (SP) in ammonia water to introduce an amino group was proposed (claim 7, paragraph 0048, etc.).

しかし、上記方法で調製した修飾CNFの水中分散性が充分でないことを、本発明者らは知見した。後述の分散可能濃度試験の結果である表1で示す如く、水中分散可能濃度約10%が限度であった。   However, the present inventors have found that the modified CNF prepared by the above method is not sufficiently dispersible in water. As shown in Table 1, which is the result of the dispersible concentration test described below, the limit was about 10%.

特開2010−24127号公報JP 2010-24127 A

本発明は、上記にかんがみて、水系分散媒における分散可能濃度を高濃度とすることができるとともに、水系分散媒における分散保持時間も格段に延長される修飾CNFの製造方法を提供することを目的とする。   In view of the above, it is an object of the present invention to provide a method for producing a modified CNF in which the dispersible concentration in an aqueous dispersion medium can be increased and the dispersion retention time in the aqueous dispersion medium can be significantly extended. And

本発明者らは、上記課題を解決するために鋭意開発に努力をする過程で、下記SP処理工程の前に、水中投入したCNFを湿式ジエットミルにより粉砕する粉砕処理工程を、組み合わせれば、上記課題を解決できることを見出して下記構成の修飾CNFの製造方法に想到した。   In the process of diligently developing to solve the above problems, the present inventors combined the pulverization process step of pulverizing CNF introduced into water with a wet jet mill before the following SP treatment step. The inventors have found that the problem can be solved and have come up with a method for producing a modified CNF having the following constitution.

親水基により表面修飾されたCNFを製造する方法であって、水系分散媒中に投入したCNFを湿式ジエットミルにより粉砕乃至解砕する粉砕処理工程、及び、CNFをSP処理によりCNFに親水基導入を行うSP処理工程をそれぞれ少なくとも1個ずつ含み、前記SP処理工程を最終工程とすることを特徴とする。   A method for producing CNF having a surface modified with a hydrophilic group, a pulverization treatment step of pulverizing or pulverizing CNF introduced into an aqueous dispersion medium with a wet jet mill, and introducing CNF into the CNF by SP treatment At least one SP processing step to be performed is included, and the SP processing step is a final step.

上記製造方法で得た修飾CNFの水系分散媒における分散性能が、後述の実施例で示す如く、水分散液において従来に達成し難かった分散可能濃度の高濃度化(10%以上)が可能となるとともに、水分散液における分散保持時間が格段に長くなる。   The dispersion performance of the modified CNF obtained by the above production method in an aqueous dispersion medium can be increased to a dispersible concentration (10% or more), which has been difficult to achieve in an aqueous dispersion, as shown in Examples below. At the same time, the dispersion holding time in the aqueous dispersion is significantly increased.

なお、粉砕処理の分散媒を水系分散液とするのは、粉砕処理後のCNFを分散させたまま(適宜濃縮して)、親水基を導入するSP処理をする必要があるためである。さらに、SP処理に際しては、通常、親水基導入に寄与するアンモニアや硝酸、カルボン酸等のイオン性化合物(極性化合物)を添加溶解させる必要があるためである。   The reason why the dispersion medium for the pulverization treatment is an aqueous dispersion is that it is necessary to perform an SP treatment for introducing a hydrophilic group while the CNF after the pulverization treatment is dispersed (concentrated as appropriate). Further, in SP treatment, it is usually necessary to add and dissolve ionic compounds (polar compounds) such as ammonia, nitric acid and carboxylic acid that contribute to the introduction of hydrophilic groups.

なお、水を他の水系分散液(極性有機溶媒)としても、高濃度化および長時間の分散保持が可能である。水に比して極性有機溶媒の方が、未処理CNFの分散性が良好なものが多く、粉砕処理及びSP処理の各処理効率が増大するものもある。   Even if water is used as another aqueous dispersion (polar organic solvent), it is possible to increase the concentration and maintain dispersion for a long time. Many polar organic solvents have better dispersibility of untreated CNF than water, and there are some which increase the processing efficiency of pulverization and SP treatment.

前記SP処理工程は、(1)硝酸水中でニトロ基を導入する一次SP処理後、アンモニア水中でアミノ基に還元する二次SP処理をする二段SP処理で行なう、又は(2)アンモニア水中でソリューションプラズマ(SP)により一段処理により行なうことが、望ましい。   The SP treatment step is performed by (1) a two-stage SP treatment in which a primary SP treatment for introducing a nitro group in nitric acid water is followed by a secondary SP treatment for reduction to an amino group in ammonia water, or (2) in ammonia water. It is desirable to carry out by one-step treatment with solution plasma (SP).

アミノ基で表面修飾されたCNFを短時間で調製することができるとともに、前者(1)では分散可能濃度のより高濃度化が容易となり、後者(2)では調製時間のより短縮化が可能となる。   It is possible to prepare CNF surface-modified with an amino group in a short time, the former (1) makes it easy to increase the dispersible concentration, and the latter (2) makes it possible to shorten the preparation time. Become.

上記方法で製造した修飾CNFは、(1)水分散液において分散可能濃度が1〜50%であるもの、及び/又は(2)7%の水分散液において分散保持時間が20日以上を示すもの、となる。   The modified CNF produced by the above method has (1) a dispersion concentration of 1 to 50% in an aqueous dispersion and / or (2) a dispersion retention time of 20 days or more in a 7% aqueous dispersion. Things.

本発明で使用する湿式ジエットミルの一例における概念断面図である。It is a conceptual sectional view in an example of a wet jet mill used by the present invention. 本発明で使用するバッチ式のSP処理装置の概念断面図である。It is a conceptual sectional view of a batch type SP processing apparatus used in the present invention. 同じく循環式のSP処理装置の概念断面図である。It is a conceptual sectional view of a circulation type SP processing device. 同じく多段循環式のSP処理装置の概念断面図である。It is a conceptual sectional view of a multistage circulation type SP processing apparatus. 本発明の一段SP処理におけるMWNTのアミノ基導入(1)、ε−アミノカプロン酸のグラフト化(2)、該グラフト化多層CNT(MWNT)とポリアミド6とのコンポジット(配合物)における親和性向上(3)の各概念図である。Amino group introduction of MWNT (1), grafting of ε-aminocaproic acid (2) in the one-stage SP treatment of the present invention, and improved affinity in the composite (compound) of the grafted multilayer CNT (MWNT) and polyamide 6 ( It is each conceptual diagram of 3). 本発明の、粉砕処理におけるMWNTの粉砕概念図(1)およびそれに続く二段SP処理におけるアミノ基導入(2)の各概念図である。It is each conceptual diagram of the grinding | pulverization conceptual diagram (1) of MWNT in a grinding | pulverization process of this invention, and the amino group introduction | transduction (2) in the subsequent two-stage SP process. 本発明の実施例における粉砕処理前後(SP処理前後)のSEM(電子走査顕微鏡)写真である。It is a SEM (Electron Scanning Microscope) photograph before and after a pulverization process (before and after SP process) in an example of the present invention. 本発明の実施例における二段SP処理の流れ図である。It is a flowchart of the two-stage SP process in the Example of this invention. 図8の実施例のSP処理の印加パルスの波形図である。It is a wave form diagram of the application pulse of SP process of the Example of FIG. 本発明の実施例における粉砕処理前MWNTおよび二段SP処理後MWNTのSEM写真である。It is a SEM photograph of MWNT before pulverization processing and MWNT after two-stage SP processing in an example of the present invention. アンモニア水中でSP処理したMWNTおよび未処理MWNTの赤外吸収スペクトル図である。It is an infrared absorption spectrum figure of MWNT which carried out SP processing in ammonia water, and untreated MWNT. SP処理前後のMWNTのラマン(Raman)スペクトル図である。It is a Raman (Raman) spectrum figure of MWNT before and after SP processing.

本発明におけるCNFの粉砕処理工程(1)およびSP処理工程(2)を具体的に説明する。   The CNF grinding treatment step (1) and the SP treatment step (2) in the present invention will be specifically described.

ここでは、水系分散媒として、水を例に採り説明する。水以外の水系分散媒としては、メタノール、エタノール、イソプロピルアルコール等の低級アルコール、ジオキサン、テトラヒドロフラン等のエーテル類、セロソルブ等の多価アルコールエーテル・エステル類、アセトン等のケトン類、エチレンジアミン、ピリジン等の含窒素化合物等の水と自由混和可能な極性有機溶媒及びそれらの混合溶媒を挙げることができる。   Here, water will be described as an example of the aqueous dispersion medium. Examples of the aqueous dispersion medium other than water include lower alcohols such as methanol, ethanol and isopropyl alcohol, ethers such as dioxane and tetrahydrofuran, polyhydric alcohol ethers and esters such as cellosolve, ketones such as acetone, ethylenediamine and pyridine. Examples thereof include polar organic solvents that are freely miscible with water, such as nitrogen-containing compounds, and mixed solvents thereof.

(1)CNFの粉砕処理工程:
本工程は、水(水系分散媒)中に投入したCNFを湿式ジエットミルにより粉砕処理を行う工程である。
(1) CNF grinding process:
This step is a step of pulverizing CNF charged into water (aqueous dispersion medium) with a wet jet mill.

水を媒体として、粒子同士(対向流ないし合流衝突)乃至他の硬質部材との衝突を繰り返すことにより、主としてせん断力により粉砕乃至解砕される(一次粒子化を含む)。特許文献1における超音波処理では、一次粒子化は行なわれ難いと考えられる。   By using water as a medium, the particles are pulverized or disintegrated mainly by shearing force (including primary particles) by repeating collisions between particles (opposite flow or confluence collision) or other hard members. In the ultrasonic treatment in Patent Document 1, it is considered that primary particles are hardly formed.

上記CNFとしては、通常、CNTとするが、熱化学気相法によるカーボンナノボール(CNB)でもよく、さらには、フラーレン、カーボンファイバ(ウィスカ)、カーボンブラック、グラフェンでもよい。なお、CNTには、多層CNT(MWNT)および単層CNT(SWNT)の双方を含む。なお、CNFは、適宜、前処理で親水基(COOH、OH、NH)乃至極性基(Cl、NO、エーテル基、エステル基等)を導入したものとすることもできる。 The CNF is usually CNT, but may be carbon nanoball (CNB) obtained by a thermal chemical vapor deposition method, and may be fullerene, carbon fiber (whisker), carbon black, or graphene. The CNT includes both multi-layer CNT (MWNT) and single-wall CNT (SWNT). CNF may be appropriately introduced with a hydrophilic group (COOH, OH, NH 2 ) to a polar group (Cl, NO 2 , ether group, ester group, etc.) by pretreatment.

湿式ジエットミルとは、ウォータジエットにより、原料を高圧に加圧し、微細ノズルから高速噴射させることにより、(i)噴射の際のセラミックボール等の球体や衝突用通路壁等の硬質部材への衝突(せん断)作用、ないし(ii)対向流によって生じる衝突混合作用、の一方又は双方を奏する機構を備えた装置をいう。   The wet jet mill is a water jet that pressurizes the raw material to a high pressure and injects it at high speed from a fine nozzle, thereby (i) collision with a spherical member such as a ceramic ball or a hard member such as a collision passage wall during injection ( (Shear) action or (ii) collision mixing action caused by counter flow.

より具体的には、株式会社スギノマシンから「スターバースト」(登録商標:第5197723号)の商品名や、株式会社常光から「ナノジエットパル」(登録商標:第5108452号)の各商品名で上市されているものなどが使用可能である。   More specifically, under the trade name of “Starburst” (registered trademark: No. 5197723) from Sugino Machine Co., Ltd., and “Nanojet Pal” (registered trademark: No. 5108452) from Jokotsu Co., Ltd. The ones on the market can be used.

なお、前記「スターバースト」に関連する特許(出願中を含む。)として、特開2007-69123・2009-11302号、特許3151706号、特許3686528号等を挙げることができ、また、前記「ナノジエットパル」に関連する特許として特許3296954・3149371・3149372・3149375・3167913号等を挙げることができ、これらの特許に開示された各機構を1個又は複数個有する湿式ジエットミルを使用可能である。   Patents (including pending applications) related to the “Starburst” include JP-A-2007-69123 / 2009-11302, Japanese Patent No. 3151706, Japanese Patent No. 3686528, etc. Patents relating to "Jet Pal" include Patents 369554, 3193741, 3143937, 3149375, 3167913, etc., and wet jet mills having one or more of the mechanisms disclosed in these patents can be used.

そして、そのときの粉砕処理工程における、運転条件は、湿式ジエットミルのタイプおよび原料であるCNFの種類およびCNF/水の混合比(g/L)により異なる。二次微粒子を粉砕乃至解砕して一次微粒子化して水中分散できれば、特に限定されない。   The operating conditions in the pulverization process at that time vary depending on the type of wet jet mill, the type of CNF that is the raw material, and the CNF / water mixing ratio (g / L). There is no particular limitation as long as the secondary fine particles can be pulverized or crushed into primary fine particles and dispersed in water.

例えば、本願添付図である図1に示す機構を備えた「スターバーストミニ」を用いる場合、CNF投入量0.5〜5g/Lにおいて、圧力:150〜245Mpa(望ましくは180〜220MPa)、処理速度:2〜4L/hで行なう。   For example, when using the “Starburst Mini” equipped with the mechanism shown in FIG. 1 attached to the present application, the pressure is 150 to 245 MPa (preferably 180 to 220 MPa) at a CNF input amount of 0.5 to 5 g / L, and processing Speed: 2-4 L / h.

(2)SP処理工程:
本工程は、CNF含有液(分散液)を、適宜、加熱乃至真空蒸発させて濃縮後、SP処理に適した水系分散液(例えば、アンモニア水)に対してソリューションプラズマ(SP)処理を行うものである。
このSP処理は、粉砕処理を経た又は粉砕処理を経ていないCNFに親水基導入の表面処理を行うのもので、親水基導入が可能なら処理態様は特に限定されない。
(2) SP treatment process:
In this step, the CNF-containing liquid (dispersion) is appropriately heated or vacuum evaporated and concentrated, and then subjected to solution plasma (SP) treatment on an aqueous dispersion (for example, aqueous ammonia) suitable for SP treatment. It is.
This SP treatment is a surface treatment for introducing a hydrophilic group to CNF that has undergone a pulverization treatment or has not undergone a pulverization treatment, and the treatment mode is not particularly limited as long as hydrophilic group introduction is possible.

上記SP処理に使用するプラズマ発生装置は、液(水系分散媒)中に形成された気泡内にプラズマを発生させ、液中に活性イオン種を浸透拡散させるものであれば、特に限定されない。   The plasma generator used for the SP treatment is not particularly limited as long as it generates plasma in bubbles formed in the liquid (aqueous dispersion medium) and permeates and diffuses active ion species in the liquid.

例えば、特開2007-207540号公報に記載されている下記構成の装置を使用可能である。   For example, an apparatus having the following configuration described in Japanese Patent Application Laid-Open No. 2007-207540 can be used.

「液体を流通又は保持する容器と、液体中に配設された1つ以上の電極対と、前記電極対に連続的な高電圧パルスを印加する電圧印加手段から少なくとも構成され、前記電極対の少なくとも一方は1つ以上の突出部と高電圧絶縁部を有し、前記電圧印加手段によって前記電極間に高繰返しの高電圧パルスを印加して前記高電圧電極近傍の液体をジュール加熱するとともに連続的又は断続的に沸騰気化させ、この気化泡により前記高電圧電極の突出部先端を少なくとも包囲する気化泡領域を形成し、前記高電圧パルスによる前記気化泡内の高電圧絶縁破壊放電により前記気泡内の気化物を電離(プラズマ化)して各種イオンを形成し、このプラズマ中のイオン種を前記液体中に浸透拡散させることを特徴とする液中プラズマ発生装置。」   “A container that circulates or holds a liquid, one or more electrode pairs disposed in the liquid, and a voltage applying unit that applies a continuous high-voltage pulse to the electrode pairs, At least one has one or more projecting portions and a high voltage insulating portion, and the voltage applying means applies a high repetitive high voltage pulse between the electrodes to joule heat the liquid near the high voltage electrode and continuously The vaporized bubble region is formed by the vaporization bubble, the vaporized bubble region surrounding at least the tip of the protruding portion of the high-voltage electrode is formed, and the bubble is generated by the high-voltage breakdown discharge in the vaporized bubble by the high-voltage pulse. An in-liquid plasma generator characterized by ionizing (plasmaizing) an inner vapor to form various ions, and diffusing the ion species in the plasma into the liquid. "

より具体的には、図2に示すようなプラズマ発生装置を使用できる。なお、該プラズマ発生装置は、図3に示すような循環式、ないし図4に示すような多段循環式としてもよい。   More specifically, a plasma generator as shown in FIG. 2 can be used. The plasma generator may be a circulation type as shown in FIG. 3 or a multistage circulation type as shown in FIG.

多段循環式とした場合は、未処理のCNFを効率良く放電領域に供給できる。また、多段式とした場合は、一段式で必要とする循環回数を低減でき、単時間でSP処理が可能となることが期待できる。   In the case of a multistage circulation type, untreated CNF can be efficiently supplied to the discharge region. In the case of a multi-stage system, the number of circulations required for the single-stage system can be reduced, and it can be expected that SP processing can be performed in a single time.

図2に示すプラズマ発生装置は、処理液を貯留する処理液容器11と、液体中に配設される対電極13と、該対電極13、13に連続的な高電圧パルスを印加する電圧印加手段(パルス電圧供給部)15とから構成され、前記対電極13、13は、高電圧絶縁部17を介して処理液容器11に保持されている。ここで、処理液容器11は例えばガラス・樹脂で、電極13は、針状電極とすることが好ましく、例えばタングステンで形成し、高電圧絶縁部17は例えばフッ素樹脂で、それぞれ形成する。また、対電極13、13の間隙は、印加パルス電圧・波形や、処理液の種類・濃度により異なるが、通常、1〜100mmの範囲で適宜設定する。なお、図2〜4において、19は高電圧側端子、21は接地側端子、23はアースであり電気回路に関係し、25は処理液槽、27はポンプ(図示しない)を備えた処理液循環路であり液循環機構に関係する。   The plasma generator shown in FIG. 2 includes a processing liquid container 11 for storing a processing liquid, a counter electrode 13 disposed in the liquid, and voltage application for applying a continuous high voltage pulse to the counter electrodes 13 and 13. Means (pulse voltage supply unit) 15, and the counter electrodes 13 and 13 are held in the processing liquid container 11 via a high voltage insulating unit 17. Here, the processing liquid container 11 is preferably made of glass / resin, for example, and the electrode 13 is preferably made of a needle-like electrode, and is made of, for example, tungsten, and the high voltage insulating portion 17 is made of, for example, a fluororesin. Further, the gap between the counter electrodes 13 and 13 varies depending on the applied pulse voltage / waveform and the type / concentration of the treatment liquid, but is usually set appropriately within a range of 1 to 100 mm. 2 to 4, 19 is a high-voltage side terminal, 21 is a ground-side terminal, 23 is a ground and relates to an electric circuit, 25 is a processing liquid tank, and 27 is a processing liquid provided with a pump (not shown). It is a circulation path and is related to the liquid circulation mechanism.

また、印加パルス電圧の条件は、砕料の態様(CNFの水に対する投入量)および溶液の添加薬剤により異なる。例えば、電圧:約1〜50kV、周波数:1〜100kHz、パルス幅:約1〜20μsの範囲から適宜選定する(同公報段落0038から引用)。   Moreover, the conditions of the applied pulse voltage differ depending on the mode of the crushed material (amount of CNF added to water) and the additive agent of the solution. For example, voltage: about 1 to 50 kV, frequency: 1 to 100 kHz, pulse width: about 1 to 20 μs are selected as appropriate (quoted from paragraph 0038 of the publication).

また、アンモニア水の濃度は、印加パルス電圧の条件にもよるが、通常、10-5〜1 mol/L、望ましくは、5×10-3〜1 mol/L、とする。 The concentration of aqueous ammonia is usually 10 −5 to 1 mol / L, preferably 5 × 10 −3 to 1 mol / L, although it depends on the conditions of the applied pulse voltage.

図5(1)にアンモニア水中のSP処理によるMWNTのアミノ化の概念図を示す。   FIG. 5 (1) shows a conceptual diagram of amination of MWNT by SP treatment in ammonia water.

上記のようにしてCNFを親水基で表面修飾したCNFは、液分散性に優れている。   CNF obtained by surface modification of CNF with a hydrophilic group as described above is excellent in liquid dispersibility.

そして、SP処理済液をろ過後乾燥させて修飾CNFを粉末体としてもよいが、修飾CNFを分散液の状態で、直接ないし、適宜、分散媒を濃縮して、ポリアミド(PA)等ポリマー材料に添加してナノコンポジットとすることができる。   Then, the SP-treated solution may be filtered and dried to form a modified CNF in the form of a powder. However, the modified CNF is not directly in the state of dispersion, or the dispersion medium is appropriately concentrated to form a polymer material such as polyamide (PA). It can be added to to form a nanocomposite.

なお、上記SP処理工程を、図6に示す如く、硝酸水溶液中での一次SP処理とアンモニア水溶液中の二次SP処理の二工程で行うこともできる。   Note that the SP treatment step can be performed in two steps, a primary SP treatment in an aqueous nitric acid solution and a secondary SP treatment in an aqueous ammonia solution, as shown in FIG.

その場合の各印加パルス電圧の条件も、前記と同様の範囲で設定できるが、電圧:約1.5〜2.5kV、周波数:10〜30kHz、パルス幅:1.5〜3μsとすることが望ましい。   In this case, the conditions of each applied pulse voltage can be set in the same range as described above, but the voltage: about 1.5 to 2.5 kV, the frequency: 10 to 30 kHz, and the pulse width: 1.5 to 3 μs. desirable.

また、一次SP処理および二次SP処理の処理条件は、下記の範囲から適宜選定する。なお、各水溶液濃度と処理時間の関係は反比例する。
一次SP処理…HNO濃度:0.1〜1mol/L×処理時間:1h〜10min
二次SP処理…NH濃度:0.1〜0.5mol/L×処理時間:1h〜10min
The processing conditions for the primary SP processing and the secondary SP processing are appropriately selected from the following ranges. The relationship between the concentration of each aqueous solution and the treatment time is inversely proportional.
Primary SP treatment: HNO 3 concentration: 0.1 to 1 mol / L x treatment time: 1 h to 10 min
Secondary SP treatment: NH 3 concentration: 0.1-0.5 mol / L × treatment time: 1 h-10 min

本発明は、上記粉砕処理工程(1)およびSP処理工程(2)を、それぞれ少なくとも1個づつ含み、SP処理工程(2)を最終工程とすれば、特に限定されない。即ち、最初にSP処理工程(2)を行い、間に粉砕処理工程(1)を最後にSP処理工程(2)としたり、粉砕処理工程(1)/SP処理工程(2)の組み工程を複数回繰り返すことも可能である。   The present invention is not particularly limited as long as it includes at least one pulverization step (1) and one SP treatment step (2), and the SP treatment step (2) is the final step. That is, the SP treatment process (2) is performed first, and the pulverization treatment process (1) is finally changed to the SP treatment process (2), or the combination process of the pulverization treatment process (1) / SP treatment process (2) is performed. It can be repeated multiple times.

上記のようにして製造した修飾CNFは、後述の実施例で示す如く、水分散媒における分散可能濃度を高濃度(10%超)とすることができるとともに、水分散液(7%)における分散維持時間も格段に延長される。   The modified CNF produced as described above can have a dispersible concentration in the aqueous dispersion medium of a high concentration (above 10%) and a dispersion in the aqueous dispersion (7%), as shown in Examples described later. Maintenance time is also extended significantly.

このため、CNF添加コンポジット(複合材料)に適用して各種製品における高機能化がより容易に達成可能となる。   For this reason, application to CNF-added composites (composite materials) makes it possible to more easily achieve high functionality in various products.

以下、実施例に基づいて、本発明をさらに詳細に説明する。ここでは、CNFとしてMWNTを例に採り説明するが、これに限られるものではない。なお、MWNTは、名城ナノカーボン社製(直径:10〜40nm、長さ:〜3μm)を使用した。   Hereinafter, the present invention will be described in more detail based on examples. Here, MWNT will be described as an example of CNF, but the present invention is not limited to this. Note that MWNTs manufactured by Meijo Nanocarbon Co., Ltd. (diameter: 10 to 40 nm, length: ˜3 μm) were used.

(1)粉砕処理:図1に示す機構を備えた「スターバーストミニ:SUGINO HJP 25003」を用いて、圧力:200MPa、処理時間:30min、CNT投入量:1g、溶媒:水(投入量1L)として、粉砕処理を行った。   (1) Grinding treatment: Using “Starburst Mini: SUGINO HJP 25003” equipped with the mechanism shown in FIG. 1, pressure: 200 MPa, treatment time: 30 min, CNT input amount: 1 g, solvent: water (input amount: 1 L) As a result, pulverization was performed.

図7に処理前後のMWNTのSEM像を示す。MWNTが粉砕乃至解砕されていることが分かる。   FIG. 7 shows SEM images of MWNTs before and after processing. It can be seen that MWNT is crushed or crushed.

(2)SP処理:図8に示す流れ図・処理条件に従って調製した。
なお、各SP処理におけるパルス波形は図9において、電圧:2.4kV、パルス幅:2μs、周波数:15kVとした。
(2) SP treatment: Prepared according to the flow chart and treatment conditions shown in FIG.
In FIG. 9, the pulse waveform in each SP process was set to voltage: 2.4 kV, pulse width: 2 μs, and frequency: 15 kV.

(3)上記で得た各段階のCNT投入水乃至SP処理液からSP処理後の修飾CNTをろ過して電気炉で60℃×24hの条件で乾燥して粉末の修飾CNTを採取した。   (3) The modified CNT after SP treatment was filtered from the CNT input water or SP treatment liquid obtained above, and dried in an electric furnace under the conditions of 60 ° C. × 24 h to collect powdered modified CNT.

図10に粉砕工程前のMWCNTおよび上記二段SP処理後のMWNTのSEM像を示す。再凝集していないことが伺える。   FIG. 10 shows SEM images of MWCNT before the pulverization step and MWNT after the two-stage SP treatment. It can be seen that it has not re-agglomerated.

この修飾CNTを分散試験容器(容量3.5mLの蓋付き円筒ガラス瓶)に0. 25gずつ充填して合計3.5gとなるように、水を加えて振盪し、CNTの分散試験液(濃度約7%;100×0.25g/3.5g)を調製した。そして、各分散試験液について分散保持時間を評価した結果は、下記の通りであった。なお、未処理CNTについても同様にして調製した。   This modified CNT is charged in a dispersion test container (cylindrical glass bottle with a capacity of 3.5 mL) by 0.25 g, and water is added and shaken so that the total amount becomes 3.5 g. 100 × 0.25 g / 3.5 g). And the result of having evaluated dispersion | distribution holding time about each dispersion test liquid was as follows. Note that untreated CNTs were prepared in the same manner.

未処理品:数時間で沈澱、粉砕処理品:1日程で沈澱、粉砕処理+二段階SP処理品:20日経過後も沈澱せずであった。     Untreated product: Precipitated in several hours, pulverized product: Precipitated in about 1 day, pulverized treatment + two-stage SP-treated product: No precipitation even after 20 days.

なお、先願の粉砕工程を含まない一段SP処理品について、同様の濃度で分散保持時間を測定した結果、1日で沈澱した。   In addition, about the 1 step | paragraph SP process goods which do not include the grinding | pulverization process of a prior application, as a result of measuring dispersion | distribution holding time by the same density | concentration, it settled in 1 day.

また、本実施例および、先願の一段SP処理品のみ、特許文献1の実施例1に基づいて調製した各修飾CNTについて、上記と同様にして表1に示す各濃度の分散試験液の調製を行なって、1日放置して分散可能濃度の判定をした。結果を表1に示す。   In addition, for each modified CNT prepared based on Example 1 of Patent Document 1 only for the present example and the first-stage SP-treated product of the prior application, preparation of dispersion test solutions having various concentrations shown in Table 1 in the same manner as described above And allowed to stand for 1 day to determine the dispersible concentration. The results are shown in Table 1.

本発明の修飾CNTは、濃度50%まで分散化可能であることが確認できた。これに対して、先願における一段SP処理工程(粉砕工程含まず)のみの場合は濃度1%まで、本発明の二段SP処理(粉砕工程含まず)のみの場合は濃度5%まで、特許文献1の混酸処理の場合は濃度10%が限度であった。   It was confirmed that the modified CNT of the present invention can be dispersed to a concentration of 50%. On the other hand, in the case of only the one-stage SP treatment process (not including the grinding process) in the prior application, the concentration is up to 1%, and in the case of only the two-stage SP treatment (not including the grinding process) of the present invention, the concentration is up to 5%. In the case of the mixed acid treatment of Document 1, the concentration was 10%.

先願における一段SP処理の実施例を下記に引用する。   An example of the one-stage SP processing in the prior application is cited below.

「NH濃度1×10−4mol/L(導電率30μS/cm)のアンモニア水溶液に100g/LのMWNTを添加して攪拌後、タングステン電極を距離2mmで向かい合わせ、バイポーラパルス電源(栗田製作所製)を用いて、振幅2.4kV、周波数15kHz、パルス幅2μsの高圧パルス電圧を印加した。 “After adding 100 g / L of MWNT to an aqueous ammonia solution with an NH 3 concentration of 1 × 10 −4 mol / L (conductivity 30 μS / cm) and stirring, the tungsten electrodes face each other at a distance of 2 mm. A high voltage pulse voltage having an amplitude of 2.4 kV, a frequency of 15 kHz, and a pulse width of 2 μs was applied.

その結果、SP処理前(放電開始直後)に水面上に浮遊していたMWNTが、放電開始2時間後に、液中にほぼ完全に分散し、墨汁のようになっていた。   As a result, MWNT floating on the water surface before SP treatment (immediately after the start of discharge) was almost completely dispersed in the liquid 2 hours after the start of discharge, and became like ink.

この溶液を乾燥して得られた粉末の赤外吸収スペクトルを図6における下側図として示す。NHに起因する吸収が現れており、アミノ化されていることを示している。   The infrared absorption spectrum of the powder obtained by drying this solution is shown as the lower diagram in FIG. Absorption due to NH appears and indicates amination.

従来のHSOやHNO等の酸を用いる手法では、総工程で1週間程度を要する処理を、SP処理を用いることによって2時間で完遂することが可能である。また、予めMWNTをスターラー等によって攪拌しておき、水面上に浮遊しているMWNTを水面下に位置させることによって、その時間を1時間まで半減できることを見出しており、プラズマと処理対象であるMWNTを接近させることによって更なる短時間化が可能である。 In the conventional technique using an acid such as H 2 SO 4 or HNO 3 , a process that requires about one week in the total process can be completed in 2 hours by using the SP process. In addition, it has been found that the MWNT can be halved up to 1 hour by stirring the MWNT in advance with a stirrer, etc., and placing the MWNT floating on the water surface below the water surface. It is possible to further shorten the time by bringing

なお、従来の溶液反応を用いたアミノ化と比較すると、プラズマに曝されるSP処理では、MWNTの構造の破壊が懸念される。そこで、SP処理前後のMWNTの可視ラマンスペクトルを測定した。図7(本願図11)に示したMWNTのラマンスペクトルには、典型的なDバンドとGバンドが現れている。Gバンドがグラファイト構造に起因するもので、Dバンドはその欠陥に起因するバンド帯域であるので、そのピーク強度比から欠陥密度の増減を評価することができる。このピーク強度比をSP処理前後で比較すると、どちらもほぼ1程度となり変化がない。この結果は、SP処理によってMWNTの構造が大きく破壊されていないことを示している。   In addition, compared with the amination using the conventional solution reaction, there is a concern about the destruction of the MWNT structure in the SP treatment exposed to plasma. Therefore, the visible Raman spectrum of MWNT before and after SP treatment was measured. Typical D band and G band appear in the Raman spectrum of MWNT shown in FIG. 7 (FIG. 11 of the present application). Since the G band is caused by the graphite structure and the D band is a band band caused by the defect, increase / decrease in the defect density can be evaluated from the peak intensity ratio. When this peak intensity ratio is compared before and after SP treatment, both are about 1 and there is no change. This result indicates that the structure of the MWNT is not largely destroyed by the SP process.

なお、得られた粉末とε-アミノカプロン酸の1:11の混合水溶液を250℃で加熱することによって、アミノ化MWNTのNHサイトへのグラフト重合を試みた。 In addition, graft polymerization to the NH 2 site of the aminated MWNT was attempted by heating a mixed aqueous solution of the obtained powder and ε-aminocaproic acid at 250 ° C.

図6(本願添付図11)における上側図として、加熱後に得られた粉末の赤外吸収スペクトルを示す。同図より、NHによる赤外吸収ピークが大きく減少し、アミドI、アミドIIに起因するピークが出現している。これは、ε-アミノカプロン酸がNHサイトにグラフト重合されたことを示している。」 An infrared absorption spectrum of the powder obtained after heating is shown as an upper view in FIG. 6 (FIG. 11 attached hereto). From the figure, the infrared absorption peak due to NH 2 is greatly reduced, and peaks due to amide I and amide II appear. This indicates that ε-aminocaproic acid was grafted to the NH 2 site. "

即ち、上記の如く、修飾CNFがアミノ基及び/又はその誘導体で表面修飾されていることにより、PA中のアミド結合との親和性が、他の親水基(−OH、−COOH等)に比して増大し、PA中での分散性を確保し易いことが期待できる。   That is, as described above, since the modified CNF is surface-modified with an amino group and / or a derivative thereof, the affinity for the amide bond in PA is higher than that of other hydrophilic groups (-OH, -COOH, etc.). Therefore, it can be expected that the dispersibility in PA is easily secured.

したがって、修飾CNFの分散性が、他の親水基の場合と同様に良好で少量の添加でPA成形品の機械的強度の改善が可能であることは勿論、多量の添加も可能となり、結果的に、従来にない機械的強度・耐熱性の確保が可能となる。例えば、混練押出機を用いたPAへのコンパウンディングにおいても、当然、コンパウンディング条件を厳しく制御しなくても、分散性良好なコンポジットのコンパウンディングが可能となる。   Therefore, the dispersibility of the modified CNF is good as in the case of other hydrophilic groups, and the mechanical strength of the PA molded product can be improved with a small amount of addition, and a large amount can be added. In addition, unprecedented mechanical strength and heat resistance can be secured. For example, in compounding into PA using a kneading extruder, it is naturally possible to compound a composite with good dispersibility without strictly controlling the compounding conditions.

さらに前記アミノ基を、上記の如く、ε-アミノカプロン酸でグラフト重合修飾すれば、さらに、母材であるPAとの親和性が増大して、さらなる機械的強度乃至耐熱性の向上が期待できる(図5(2)・(3))。   Further, if the amino group is modified by graft polymerization with ε-aminocaproic acid as described above, the affinity with PA as a base material is further increased, and further improvement in mechanical strength or heat resistance can be expected ( FIG. 5 (2) and (3)).

11 処理液容器
13 電極
15 電圧印加手段(パルス電圧供給部)
17 高電圧絶縁部
11 Treatment liquid container 13 Electrode 15 Voltage application means (pulse voltage supply unit)
17 High voltage insulation

Claims (8)

親水基により表面修飾された修飾カーボンナノフィラー(修飾CNF)を製造する方法であって、
水系分散媒中に投下したカーボンナノフィラー(CNF)を湿式ジエットミルにより粉砕乃至解砕する粉砕処理工程、及び、CNFをソリューションプラズマ処理(SP処理)によりCNFに親水基導入を行うSP処理工程をそれぞれ少なくとも1個ずつ含み、前記SP処理工程を最終工程とすることを特徴とする修飾CNFの製造方法。
A method for producing a modified carbon nanofiller (modified CNF) surface-modified with a hydrophilic group,
A pulverization process for pulverizing or pulverizing carbon nanofiller (CNF) dropped in an aqueous dispersion medium with a wet jet mill, and an SP treatment process for introducing a hydrophilic group into CNF by solution plasma treatment (SP treatment), respectively. A method for producing modified CNF, comprising at least one each, wherein the SP treatment step is the final step.
前記SP処理工程を、アンモニア水中でアミノ基を導入する一段SP処理により行なうことを特徴とする請求項1記載の修飾CNFの製造方法。   The method for producing modified CNF according to claim 1, wherein the SP treatment step is performed by a one-step SP treatment in which an amino group is introduced in ammonia water. 前記SP処理工程を、硝酸水中でニトロ基を導入する一次SP処理後、アンモニア水中でアミノ基を導入する(に還元する)二次SP処理をする二段SP処理で行なうことを特徴とする請求項1記載の修飾CNFの製造方法。   The SP treatment step is performed by a two-stage SP treatment in which a secondary SP treatment is carried out by introducing (reducing) an amino group in ammonia water after a primary SP treatment introducing a nitro group in nitric acid water. Item 2. A process for producing a modified CNF according to Item 1. 前記CNFが多層カーボンナノチューブ(MWNT)及び/又は単層カーボンナノチューブ(SWNT)であることを特徴とする請求項1、2又は3記載の修飾CNFの製造方法。   The method for producing a modified CNF according to claim 1, 2 or 3, wherein the CNF is a multi-walled carbon nanotube (MWNT) and / or a single-walled carbon nanotube (SWNT). 水分散液において分散可能濃度が1〜50質量%であることを特徴とする修飾CNF。   Modified CNF characterized by having a dispersible concentration of 1 to 50% by mass in an aqueous dispersion. 請求項1〜4のいずれか一記載の製造方法で製造されてなることを特徴とする請求項5記載の修飾CNF。   The modified CNF according to claim 5, which is produced by the production method according to any one of claims 1 to 4. 7質量%の水分散液において分散保持時間が20日以上を示すものであることを特徴とする修飾CNF。   A modified CNF characterized by having a dispersion retention time of 20 days or more in an aqueous dispersion of 7% by mass. 請求項1〜4のいずれか一記載の製造方法で製造されてなることを特徴とする請求項7記載の修飾CNF。   The modified CNF according to claim 7, which is produced by the production method according to any one of claims 1 to 4.
JP2012007848A 2012-01-18 2012-01-18 Method for manufacturing modified carbon nanofiller Pending JP2013147367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007848A JP2013147367A (en) 2012-01-18 2012-01-18 Method for manufacturing modified carbon nanofiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007848A JP2013147367A (en) 2012-01-18 2012-01-18 Method for manufacturing modified carbon nanofiller

Publications (1)

Publication Number Publication Date
JP2013147367A true JP2013147367A (en) 2013-08-01

Family

ID=49045274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007848A Pending JP2013147367A (en) 2012-01-18 2012-01-18 Method for manufacturing modified carbon nanofiller

Country Status (1)

Country Link
JP (1) JP2013147367A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065085A (en) * 2013-09-25 2015-04-09 株式会社栗田製作所 Paint for forming lithium ion secondary battery electrode, method for manufacturing the same, method for manufacturing electrode, and paint manufacturing apparatus
JP2016102034A (en) * 2014-11-27 2016-06-02 旭化成株式会社 Manufacturing method of conductive graphite and conductive graphite
JP2016107195A (en) * 2014-12-05 2016-06-20 株式会社スギノマシン Wet type atomization method and apparatus
JP2016108560A (en) * 2014-12-01 2016-06-20 株式会社サムスン日本研究所 Nanocomposite film and method for producing nanocomposite film
JP2016107196A (en) * 2014-12-05 2016-06-20 株式会社スギノマシン Wet type atomization method and apparatus
JP2017101301A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Method for forming copper film
JPWO2016129431A1 (en) * 2015-02-13 2017-10-19 日本スピンドル製造株式会社 Dispersion method and dispersion apparatus for material to be treated, and method for producing liquid in which material to be treated and dispersion medium produced thereby are mixed
JP2018027537A (en) * 2017-08-31 2018-02-22 好浩 岡 In-liquid plasma treatment device
JP2019130448A (en) * 2018-01-30 2019-08-08 株式会社スギノマシン Wet-type atomization method of raw material, and wet-type atomization apparatus
US10920085B2 (en) 2016-01-20 2021-02-16 Honda Motor Co., Ltd. Alteration of carbon fiber surface properties via growing of carbon nanotubes
WO2022145648A1 (en) * 2020-12-31 2022-07-07 울산과학기술원 Nano-material dispersion device using underwater plasma, and nano-material dispersion method using dispersion device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069123A (en) * 2005-09-07 2007-03-22 Shinano Kenshi Co Ltd Method for pulverizing fine powder or microfiber
WO2007083681A1 (en) * 2006-01-20 2007-07-26 Kyushu University, National University Corporation Method of solubilizing carbon nanomaterial
JP2010024127A (en) * 2008-07-24 2010-02-04 Toyota Central R&D Labs Inc Nitrated carbon nanotube and method for producing surface-modified carbon nanotube
WO2010041750A1 (en) * 2008-10-10 2010-04-15 保土谷化学工業株式会社 Aqueous dispersion of carbon microfibers, process for producing the aqueous dispersion, and article produced using same
JP2010097794A (en) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology Conductive thin film constituted of carbon nanotube with high aspect ratio and ionic liquid, and actuator element
JP2010222191A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method for manufacturing ceramic powder having improved dispersibility and method for producing dispersion of ceramic powder
JP2011127071A (en) * 2009-12-21 2011-06-30 Nikkiso Co Ltd Polymer graft carbon nanotube and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069123A (en) * 2005-09-07 2007-03-22 Shinano Kenshi Co Ltd Method for pulverizing fine powder or microfiber
WO2007083681A1 (en) * 2006-01-20 2007-07-26 Kyushu University, National University Corporation Method of solubilizing carbon nanomaterial
JP2010024127A (en) * 2008-07-24 2010-02-04 Toyota Central R&D Labs Inc Nitrated carbon nanotube and method for producing surface-modified carbon nanotube
WO2010041750A1 (en) * 2008-10-10 2010-04-15 保土谷化学工業株式会社 Aqueous dispersion of carbon microfibers, process for producing the aqueous dispersion, and article produced using same
JP2010097794A (en) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology Conductive thin film constituted of carbon nanotube with high aspect ratio and ionic liquid, and actuator element
JP2010222191A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method for manufacturing ceramic powder having improved dispersibility and method for producing dispersion of ceramic powder
JP2011127071A (en) * 2009-12-21 2011-06-30 Nikkiso Co Ltd Polymer graft carbon nanotube and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
上野智永ほか: "ソリューションプラズマを用いたカーボン材料の表面修飾と分散性の向上", 表面技術協会第124回講演大会講演要旨集, JPN6015030945, 9 September 2011 (2011-09-09), pages 114, ISSN: 0003127301 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065085A (en) * 2013-09-25 2015-04-09 株式会社栗田製作所 Paint for forming lithium ion secondary battery electrode, method for manufacturing the same, method for manufacturing electrode, and paint manufacturing apparatus
JP2016102034A (en) * 2014-11-27 2016-06-02 旭化成株式会社 Manufacturing method of conductive graphite and conductive graphite
JP2016108560A (en) * 2014-12-01 2016-06-20 株式会社サムスン日本研究所 Nanocomposite film and method for producing nanocomposite film
JP2016107195A (en) * 2014-12-05 2016-06-20 株式会社スギノマシン Wet type atomization method and apparatus
JP2016107196A (en) * 2014-12-05 2016-06-20 株式会社スギノマシン Wet type atomization method and apparatus
JPWO2016129431A1 (en) * 2015-02-13 2017-10-19 日本スピンドル製造株式会社 Dispersion method and dispersion apparatus for material to be treated, and method for producing liquid in which material to be treated and dispersion medium produced thereby are mixed
JP2017101301A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Method for forming copper film
US10920085B2 (en) 2016-01-20 2021-02-16 Honda Motor Co., Ltd. Alteration of carbon fiber surface properties via growing of carbon nanotubes
JP2018027537A (en) * 2017-08-31 2018-02-22 好浩 岡 In-liquid plasma treatment device
JP2019130448A (en) * 2018-01-30 2019-08-08 株式会社スギノマシン Wet-type atomization method of raw material, and wet-type atomization apparatus
WO2019151077A1 (en) * 2018-01-30 2019-08-08 株式会社スギノマシン Wet type atomization method for raw material and wet type atomization device
WO2022145648A1 (en) * 2020-12-31 2022-07-07 울산과학기술원 Nano-material dispersion device using underwater plasma, and nano-material dispersion method using dispersion device

Similar Documents

Publication Publication Date Title
JP2013147367A (en) Method for manufacturing modified carbon nanofiller
Ma et al. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field
Lee et al. Cryomilling application of graphene to improve material properties of graphene/chitosan nanocomposites
JP4752073B2 (en) Method for solubilizing carbon nanomaterials
Kim et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites
Špitalský et al. Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites
Tang et al. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres
Poutrel et al. Effect of pre and post-dispersion on electro-thermo-mechanical properties of a graphene enhanced epoxy
EP3640202B1 (en) Method for preparing carbon nanotube dispersion solution
JP6066184B2 (en) Method for producing surface-modified carbon material
Wang et al. Mechanical reinforcement of electrospun water‐soluble polymer nanofibers using nanodiamonds
KR20150135090A (en) Preparation method of carbon nanotube and dispersed composition of carbon nanotube
Sadek et al. Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites
KR102154790B1 (en) High carbon nanotube content fluids
Liu et al. One-step preparation of oxygen/fluorine dual functional MWCNTs with good water dispersibility by the initiation of fluorine gas
Ghavidel et al. A novel electro-mechanical technique for efficient dispersion of carbon nanotubes in liquid media
Im et al. Wet spinning of multi-walled carbon nanotube fibers
Diouri et al. Effect of carbon nanotubes dispersion on morphology, internal structure and thermal stability of electrospun poly (vinyl alcohol)/carbon nanotubes nanofibers
Othman et al. Carbon nanotube hybrids and their polymer nanocomposites
JP2012017443A (en) Polyamide nanocomposite
Rausch et al. Surfactant assisted processing of carbon nanotube/polypropylene composites: Impact of surfactants on the matrix polymer
Li et al. Plasma functionalization for improving dispersion and interfacial bonding of multi-wall carbon nanotubes in cyanate ester/epoxy nanocomposites
Chang et al. The dispersion stability of multi-walled carbon nanotubes in the presence of poly (styrene/α-methyl styrene/acrylic acid) random terpolymer
Guan et al. Dispersion and alignment of Carbon nanotubes in polymer matrix
Abu-Abdeen et al. An effective and novel approach for enhancement of the oxidative thermal stability of multiwalled carbon nanotubes loaded polymer blend

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126