JP4986041B2 - Structure subsidence suppression structure - Google Patents

Structure subsidence suppression structure Download PDF

Info

Publication number
JP4986041B2
JP4986041B2 JP2007145013A JP2007145013A JP4986041B2 JP 4986041 B2 JP4986041 B2 JP 4986041B2 JP 2007145013 A JP2007145013 A JP 2007145013A JP 2007145013 A JP2007145013 A JP 2007145013A JP 4986041 B2 JP4986041 B2 JP 4986041B2
Authority
JP
Japan
Prior art keywords
support
pile
layer
soil layer
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007145013A
Other languages
Japanese (ja)
Other versions
JP2008297802A (en
Inventor
英之 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2007145013A priority Critical patent/JP4986041B2/en
Publication of JP2008297802A publication Critical patent/JP2008297802A/en
Application granted granted Critical
Publication of JP4986041B2 publication Critical patent/JP4986041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、地盤上に構築される構造物の沈下抑制構造に関する。   The present invention relates to a structure for suppressing settlement of structures constructed on the ground.

従来、過圧密比の低い粘性土層を有する地盤上に構造物を構築する場合には、構造物の沈下を抑制する基礎工事が施されている。例えば粘性土層より浅い位置に杭の支持力が確保可能な程度の地盤強度を有する支持層(第1支持層)が存在する地盤の場合には、その第1支持層内に支持杭を打設した杭構造が構築されている。
図4は従来の支持杭8を用いた杭構造を示したものであり、地盤Gの深い部分に粘性土層G3がある場合には、それより浅い部分に第1支持層G2が存在しても、構造物2全体の荷重が第1支持層G2に作用し、この荷重応力Sbは第1支持層G2から粘性土層G3に伝達され、粘性土層G3に作用する応力がその圧密降伏応力Sbを超え(図4に示す符号Pの範囲)、圧密沈下が生じることになる。この場合には、粘性土層より深い位置に存在する岩盤等の支持層(第2支持層G4)に達するように支持杭8を打設し、この第2支持層G4に支持させる杭構造とするのが一般的となっている。
Conventionally, when constructing a structure on the ground having a viscous soil layer with a low overconsolidation ratio, foundation work for suppressing settlement of the structure has been performed. For example, in the case of a ground where the support layer (first support layer) has a ground strength that can secure the support force of the pile at a position shallower than the viscous soil layer, the support pile is driven into the first support layer. The installed pile structure is constructed.
FIG. 4 shows a conventional pile structure using support piles 8. When there is a viscous soil layer G3 in the deep part of the ground G, the first support layer G2 exists in a shallower part. However, the load of the entire structure 2 acts on the first support layer G2, and this load stress Sb is transmitted from the first support layer G2 to the viscous soil layer G3, and the stress acting on the viscous soil layer G3 is the consolidation yield stress. When Sb is exceeded (range P in FIG. 4), consolidation settlement occurs. In this case, a pile structure in which the support pile 8 is driven so as to reach a support layer (second support layer G4) such as a bedrock located deeper than the viscous soil layer and supported by the second support layer G4; It has become common to do.

また、他の構造物の杭構造として、摩擦杭を利用するものがあり、構造物の基礎盤底をなす直接基礎(ラフト)と杭(パイル)とを併用して構造物を支持することで、構造物の不同沈下を低減するパイルド・ラフト基礎がある(例えば、特許文献1参照)。パイルド・ラフト基礎は、摩擦杭を支持力を確保できる支持層内に打設させることなく、摩擦杭と地盤との摩擦力を利用して構造物を支持することを可能とした構造をなしている。
特許文献1は、構造物の分布荷重が大きくなる部分で摩擦杭を長尺とし、地盤と摩擦杭との摩擦を大きくするようにした杭構造について開示したものである。
特開2002−61203号公報
In addition, as a pile structure of other structures, there is one that uses friction piles, and the structure is supported by using a direct foundation (raft) and pile (pile) that form the foundation base of the structure in combination. There is a piled raft foundation that reduces the uneven settlement of structures (see, for example, Patent Document 1). The piled raft foundation has a structure that can support the structure using the friction force between the friction pile and the ground without placing the friction pile in the support layer that can secure the support force. Yes.
Patent Document 1 discloses a pile structure in which the friction pile is elongated at a portion where the distributed load of the structure is increased, and the friction between the ground and the friction pile is increased.
JP 2002-61203 A

しかしながら、従来の構造物の沈下抑制構造では以下のような問題があった。
すなわち、粘性土層より浅い位置に存在する支持層(第1支持層)内に支持杭を設ける図4に示すような杭構造では、上述したように粘性土層より深く且つ岩盤のように大きな支持力を有する支持層(第2支持層)に達するまで支持杭を打設する必要があり、とくに粘性土層の厚さが大きい場合には支持杭の杭長が長尺となるうえ、大規模な基礎工事となることから、大幅なコストアップとなる問題があった。
また、パイルド・ラフト基礎の場合には、構造物を直接基礎と摩擦杭とで支持するため、直接基礎の支持力を確保できるだけの地盤が構造物の床付け付近に必要であり、床付け付近が軟弱地盤の場合には、確実に不同沈下を抑制することができないといた問題があった。しかも、図4に示すように第1支持層G2にパイルド・ラフト基礎の摩擦杭の先端を位置させて支持させると、摩擦杭に過大な荷重が作用し、杭体の耐力を超えるおそれがあった。
However, the conventional structure settlement suppression structure has the following problems.
That is, in the pile structure as shown in FIG. 4 in which the support pile is provided in the support layer (first support layer) existing at a position shallower than the viscous soil layer, as described above, the pile structure is deeper than the viscous soil layer and large as a rock mass. It is necessary to drive the support pile until it reaches the support layer having the support force (second support layer). Especially when the thickness of the cohesive soil layer is large, the pile length of the support pile becomes long and large. There was a problem of significant cost increase due to the large-scale foundation work.
In the case of piled raft foundations, the structure is supported directly by the foundation and friction piles, so ground that can secure the support capacity of the foundation directly is necessary near the flooring of the structure. However, in the case of soft ground, there was a problem that it was impossible to reliably suppress the uneven settlement. In addition, if the tip of the piled raft foundation friction pile is positioned and supported by the first support layer G2 as shown in FIG. 4, an excessive load may be applied to the friction pile and the yield strength of the pile body may be exceeded. It was.

本発明は、上述する問題点に鑑みてなされたもので、構造物の沈下を確実に抑制することができ、しかもコストの低減が図れる構造物の沈下抑制構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a structure subsidence suppression structure that can reliably suppress the subsidence of the structure and can reduce the cost.

上記目的を達成するため、本発明に係る構造物の沈下抑制構造では、構造物の構築領域で、粘性土層より浅い部分に構造物の荷重を支持することができる支持層が存在する地盤に施工する構造物の沈下抑制構造であって、支持層内に達する深さまで打設される支持杭と、粘性土層内、又は粘性土層より深い地層内に達する深さまで打設される摩擦杭とからなり、摩擦杭は、摩擦杭の粘性土層に作用する応力が粘性土層の圧密降伏応力を超えないように設けられていることを特徴としている。
本発明では、摩擦杭を粘性土層内、又は粘性土層より深い地層内(以下、単に粘性土層とする)に打設させることで、摩擦杭で負担する構造物の荷重の支持力分だけ支持層内に設けられる支持杭の打設本数を減らすことができ、構造物の荷重に対する支持力を支持層と粘性土層とに分散させることができる。つまり、支持杭が打設されている支持層において構造物の荷重を受けることによって生じる応力(荷重応力)が小さくなり、支持層から粘性土層に伝達される応力を減少させることができるため、粘性土層に作用する応力(すなわち、粘性土層における有効応力と荷重応力との和)が粘性土層の圧密降伏応力より大きくなることを抑えることができ、粘性土層の圧密沈下を防ぎ、構造物の沈下を抑制することができる。
In order to achieve the above object, in the structure subsidence suppression structure according to the present invention, in the construction region of the structure, there is a support layer that can support the load of the structure in a portion shallower than the viscous soil layer. It is a structure to suppress the settlement of the structure to be constructed, and is a support pile that is driven to a depth that reaches the support layer, and a friction pile that is driven to a depth that reaches a depth within the viscous soil layer or a deeper layer than the viscous soil layer. Ri do from the friction piles, the stress acting on the cohesive soil layer of friction piles is characterized that you have provided so as not to exceed the consolidation yield stress of the viscous soil layer.
In the present invention, the friction pile is placed in a viscous soil layer or in a deeper layer than the viscous soil layer (hereinafter, simply referred to as a viscous soil layer), so that the bearing capacity of the load of the structure borne by the friction pile is reduced. Thus, the number of support piles provided in the support layer can be reduced, and the support force against the load of the structure can be distributed to the support layer and the viscous soil layer. In other words, since the stress (load stress) generated by receiving the load of the structure in the support layer where the support pile is placed is reduced, the stress transmitted from the support layer to the cohesive soil layer can be reduced. The stress acting on the cohesive soil layer (that is, the sum of effective stress and load stress in the cohesive soil layer) can be prevented from becoming larger than the consolidation yield stress of the cohesive soil layer, preventing the consolidation settlement of the cohesive soil layer, The settlement of the structure can be suppressed.

また、本発明に係る構造物の沈下抑制構造では、摩擦杭は複数設けられ、それらが複数の杭長となっていることが好ましい。
本発明では、粘性土層に打設された摩擦杭を複数の杭長とすることで、粘性土層に作用する構造物の荷重応力を深さ方向に複数に分散させ、その荷重応力の最大値を小さくすることができるため、粘性土層に作用する応力がその圧密降伏応力を超えることがなくなり、粘性土層の圧密沈下を防いで構造物の沈下を抑制させる効果をより一層高めることができる。
Moreover, in the settlement suppression structure of the structure based on this invention, it is preferable that a plurality of friction piles are provided and they become several pile length.
In the present invention, the friction pile placed in the viscous soil layer has a plurality of pile lengths, so that the load stress of the structure acting on the viscous soil layer is dispersed in the depth direction, and the maximum load stress is obtained. Since the value can be reduced, the stress acting on the viscous soil layer does not exceed the consolidation yield stress, and the effect of suppressing the settlement of the structure by preventing the consolidation settlement of the viscous soil layer can be further enhanced. it can.

また、本発明に係る構造物の沈下抑制構造では、支持杭は、地盤改良体によって形成されていてもよい。
本発明では、支持層内に達する深さまで施工された地盤改良体が支持杭と同様に構造物の荷重を支持する支持杭として作用することから、構造物の荷重(荷重応力)を支持層と粘性土層とに分散させることができ、支持層から粘性土層に伝達される応力を減少させることができる。
Moreover, in the settlement suppression structure of the structure which concerns on this invention, the support pile may be formed of the ground improvement body.
In this invention, since the ground improvement body constructed to the depth which reaches in the inside of a support layer acts as a support pile which supports the load of a structure like a support pile, the load (load stress) of a structure is made into a support layer. It can disperse | distribute to a viscous soil layer, and the stress transmitted to a viscous soil layer from a support layer can be reduced.

本発明の構造物の沈下抑制構造によれば、構造物の荷重の一部を粘性土層内、又は粘性土層より深い地層内(以下、単に粘性土層とする)に打設された摩擦杭で支持させることで、それら摩擦杭の支持力分だけ支持層内に打設される支持杭の本数を減らすことができ、支持層から粘性土層に伝達される構造物の荷重(荷重応力)を減少させることができる。そのため、粘性土層に作用する応力(粘性土層における有効応力と荷重応力との和)が粘性土層の圧密降伏応力より大きくなることを抑えることができ、粘性土層の圧密沈下を防いで構造物の沈下を確実に抑制することができる。
このように、支持層と粘性土層又は粘性土層より深い地層とに支持杭及び摩擦杭を設ける構造であることから、従来のように粘性土層の下方に存在して支持力を有する岩盤等の地層に達するように杭長の長い摩擦杭(或いは支持杭)を設置する必要がなくなり、コストの低減を図ることができる。
According to the structure subsidence suppression structure of the present invention, a part of the load of the structure is put in the viscous soil layer or in a deeper layer than the viscous soil layer (hereinafter simply referred to as a viscous soil layer). By supporting with piles, the number of support piles placed in the support layer can be reduced by the support force of these friction piles, and the load of the structure (load stress) transmitted from the support layer to the viscous soil layer ) Can be reduced. Therefore, it is possible to prevent the stress acting on the viscous soil layer (the sum of effective stress and load stress in the viscous soil layer) from becoming larger than the consolidation yield stress of the viscous soil layer, and prevent the consolidation settlement of the viscous soil layer. The settlement of the structure can be reliably suppressed.
As described above, since the support pile and the friction pile are provided in the support layer and the viscous soil layer or in the deeper layer than the viscous soil layer, the bedrock having the support force that exists below the viscous soil layer as in the past. Thus, it is not necessary to install a friction pile (or support pile) having a long pile length so as to reach a geological formation such as, and cost can be reduced.

以下、本発明による構造物の沈下抑制構造について、図1に基づいて説明する。
図1は本発明の第一の実施の形態による杭構造の構成と地盤中の応力分布とを示す図である。
Hereinafter, a structure settlement suppression structure according to the present invention will be described with reference to FIG.
FIG. 1 is a diagram showing a structure of a pile structure and a stress distribution in the ground according to the first embodiment of the present invention.

図1に示すように、本第一の実施の形態による構造物の沈下抑制構造(以下、「杭構造1」という)は、過圧密比の低い粘性土層G3が存在するとともに、その粘性土層G3の上方に例えばN値30〜50以上で構造物に対する支持力は十分であるが層厚がさほど厚くない支持層(第1支持層G2)が存在する地盤G上に構造物2を構築する場合に適用されるものであり、構造物2の沈下を抑制するための構造である。   As shown in FIG. 1, the structure settlement suppression structure (hereinafter referred to as “pile structure 1”) according to the first embodiment includes a viscous soil layer G3 having a low overconsolidation ratio, and the viscous soil. For example, the structure 2 is constructed on the ground G where the support layer (the first support layer G2) having an N value of 30 to 50 or more and sufficient support force to the structure but not so thick exists above the layer G3. This is a structure that is applied in order to suppress the settlement of the structure 2.

具体的に地盤Gは、地表側から深さ方向に向かって軟弱層G1、第1支持層G2(本発明の支持層に相当する)、粘性土層G3、第2支持層G4の順に積層された地層となっている。軟弱層G1は例えば埋立地等のように構造物2の直接基礎の支持力を確保できない程度の地層であり、第1支持層G2は上述したように構造物に対する支持力は十分であるが層厚がさほど厚くない地層であり、粘性土層G3は上述したように過圧密比の小さい地層である。そして、第2支持層G4は、構造物に対して十分な支持力と層厚を有する地層である。   Specifically, the ground G is laminated in order of the soft layer G1, the first support layer G2 (corresponding to the support layer of the present invention), the cohesive soil layer G3, and the second support layer G4 from the surface side toward the depth direction. It has become a stratum. The soft layer G1 is a ground layer that cannot secure the supporting force of the direct foundation of the structure 2 such as a landfill, and the first supporting layer G2 has a sufficient supporting force for the structure as described above. The stratum is not so thick, and the viscous soil layer G3 is a stratum with a small overconsolidation ratio as described above. The second support layer G4 is a formation having sufficient support force and layer thickness for the structure.

図1に示すように、杭構造1は、構造物2が構築される領域において、略鉛直方向に打設された複数の摩擦杭によって構造物2の荷重を支持する構造となっている。つまり、杭構造1は、第1支持層G2内に達する深さまで打設された複数の支持杭3、3、…と、支持杭3より長尺をなしていて粘性土層G3内に達する深さまで打設された複数の摩擦杭4、4、…とからなる。   As shown in FIG. 1, the pile structure 1 has a structure in which a load of the structure 2 is supported by a plurality of friction piles driven in a substantially vertical direction in a region where the structure 2 is constructed. That is, the pile structure 1 has a plurality of support piles 3, 3,. It consists of a plurality of friction piles 4, 4,.

支持杭3、3、…は、軟弱層G1及び第1支持層G2から受ける周面摩擦抵抗と第1支持層G2の先端支持力とによって構造物2の荷重を支持するものである。
摩擦杭4、4、…は、軟弱層G1、第1支持層G2及び粘性土層G3から受ける周面摩擦抵抗と粘性土層G3の先端支持力とによって構造物2の荷重を支持するものであって、構造物2の圧密沈下を抑えるためのものである。摩擦杭4は、粘性土層G3への応力が圧密降伏応力を超えないように配置されている。
The support piles 3, 3,... Support the load of the structure 2 by the circumferential frictional resistance received from the soft layer G1 and the first support layer G2 and the tip support force of the first support layer G2.
The friction piles 4, 4,... Support the load of the structure 2 by the peripheral frictional resistance received from the soft layer G1, the first support layer G2, and the viscous soil layer G3 and the tip support force of the viscous soil layer G3. Therefore, it is for suppressing the consolidation settlement of the structure 2. The friction pile 4 is arranged so that the stress on the viscous soil layer G3 does not exceed the consolidation yield stress.

これら摩擦杭4、4、…の打設本数は、支持杭3の本数によって設定される。つまり、支持杭3は、詳しくは後述するが、粘性土層G3に作用する応力(粘性土層G3における有効応力と支持杭3により粘性土層G3に伝達される構造物2の荷重応力との和)が許容値、すなわち粘性土層G3の圧密降伏応力より大きくならないような打設本数で施工されている。   The number of friction piles 4, 4,... Is set according to the number of support piles 3. That is, although the support pile 3 will be described in detail later, the stress acting on the viscous soil layer G3 (the effective stress in the viscous soil layer G3 and the load stress of the structure 2 transmitted to the viscous soil layer G3 by the support pile 3) The sum is set at an allowable value, i.e., the number of placements that does not exceed the consolidation yield stress of the cohesive soil layer G3.

次に、このように構成される杭構造1の作用について図面を参照して説明する。
図1の右側に示す応力分布図は、本第一の実施の形態による地盤に作用する応力を示したものである。この応力分布図において、図中の符号Saの線は構造物2の影響を受けていない状態の地盤(以下、「原地盤」ともいう)の有効応力、符号Sbの点線は粘性土層G3の圧密降伏応力を示している。
そして、符号S0の領域(図中斜線部)は、杭構造1(支持杭3、摩擦杭4)を介して構造物2の荷重が地盤Gに与える応力(荷重応力)を示している。
Next, the effect | action of the pile structure 1 comprised in this way is demonstrated with reference to drawings.
The stress distribution diagram shown on the right side of FIG. 1 shows the stress acting on the ground according to the first embodiment. In this stress distribution diagram, the line Sa in the figure indicates the effective stress of the ground (hereinafter also referred to as “original ground”) that is not affected by the structure 2, and the dotted line Sb indicates the viscous soil layer G3. The consolidation yield stress is shown.
And the area | region (shaded part in a figure) of code | symbol S0 has shown the stress (load stress) which the load of the structure 2 gives to the ground G via the pile structure 1 (support pile 3, friction pile 4).

原地盤の有効応力Saは、土粒子の骨格構造を通して伝達される圧縮力やせん断力であって土の変形と破壊を支配する応力をなし、本地盤Gでは深度が大きくなるにしたがって応力が大きくなっている。
圧密降伏応力Sbは、粘性土層G3の上部から下部に向けてその応力値が大きくなる。そして、本第一の実施の形態では、粘性土層G3の上端付近(第1支持層G2との境界付近)で圧密降伏応力Sbが最小値となっている。
The effective stress Sa of the original ground is a compressive force or shear force transmitted through the skeletal structure of the soil particles, and controls the deformation and fracture of the soil. In this ground G, the stress increases as the depth increases. It has become.
The consolidation yield stress Sb increases in stress value from the upper part to the lower part of the viscous soil layer G3. In the first embodiment, the consolidation yield stress Sb has a minimum value near the upper end of the cohesive soil layer G3 (near the boundary with the first support layer G2).

そして、応力分布図に示すように、杭構造1における構造物2の荷重応力S0は、支持杭3、3、…によって影響を受ける第1荷重応力S1と、摩擦杭4、4、…によって影響を受ける第2荷重応力S2とに分割されている。第1荷重応力S1は、支持杭3の先端部(下端部)付近で最大応力となり、深度が大きくなるにしたがって減少している。第2荷重応力S2は、摩擦杭4のある深度で最大応力となり、深度が大きくなるにしたがって減少している。   As shown in the stress distribution diagram, the load stress S0 of the structure 2 in the pile structure 1 is affected by the first load stress S1 affected by the support piles 3, 3,... And the friction piles 4, 4,. The second load stress S <b> 2 is divided. The first load stress S1 is the maximum stress near the tip (lower end) of the support pile 3, and decreases as the depth increases. The second load stress S2 becomes the maximum stress at a certain depth of the friction pile 4, and decreases as the depth increases.

具体的には、本杭構造1は、第1支持層G2内に打設される支持杭3、3、…と、粘性土層G4内に打設される摩擦杭4、4、…とが、それぞれ周面摩擦抵抗と先端支持力とによって構造物2の荷重を支持する状態となっている。
本杭構造1では、摩擦杭の一部に粘性土層G3内に達する摩擦杭4を設けることで、第1支持層G2内で構造物2を支持する支持杭3の打設本数が少なくなっている。
なお、第1荷重応力S1の影響範囲は、第1支持層G2から粘性土層G3の上部に及ぶことから、第1荷重応力S1が大きくなると粘性土層G3に作用する応力が圧密降伏応力Sbを上まわり圧密沈下を起こすことになる。そのため、前記粘性土層G3の応力が圧密降伏応力Sbを超えないように、第1荷重応力S1を管理し、支持杭3の打設本数が設定されている。
Specifically, the pile structure 1 includes support piles 3, 3,... That are driven into the first support layer G2, and friction piles 4, 4,. The load of the structure 2 is supported by the circumferential frictional resistance and the tip support force.
In the present pile structure 1, by providing the friction pile 4 reaching the viscous soil layer G3 in a part of the friction pile, the number of the support piles 3 that support the structure 2 in the first support layer G2 is reduced. ing.
The range of influence of the first load stress S1 extends from the first support layer G2 to the upper part of the viscous soil layer G3. Therefore, when the first load stress S1 increases, the stress acting on the viscous soil layer G3 becomes the consolidation yield stress Sb. Will cause consolidation settlement. Therefore, the first load stress S1 is managed so that the stress of the cohesive soil layer G3 does not exceed the consolidation yield stress Sb, and the number of support piles 3 is set.

本杭構造1では、上述したように摩擦杭4、4、…を粘性土層G3内に打設させることで、摩擦杭4、4、…で負担する構造物2の荷重の支持力分だけ第1支持層G2内に設けられる支持杭3、3、…の打設本数を減らすことができる。これにより、構造物2の荷重に対する支持力を第1支持層G2と粘性土層G3とに分散させることができる。つまり、支持杭3、3、…が打設されている第1支持層G2において構造物2の荷重を受けることによって生じる応力(荷重応力S0)が小さくなり、第1支持層G2から粘性土層G3に伝達される有効応力を減少させることができるため、粘性土層G3に作用する有効応力(すなわち、粘性土層G3の初期有効応力と荷重応力S0の和)が粘性土層G3の圧密降伏応力Sbより大きくなることを抑えることができ、粘性土層G3の圧密沈下を防ぎ、構造物2の沈下を抑制することができる。   In the present pile structure 1, as described above, by placing the friction piles 4, 4,... In the viscous soil layer G3, only the support force of the load of the structure 2 borne by the friction piles 4, 4,. The number of placement of the support piles 3, 3, ... provided in the first support layer G2 can be reduced. Thereby, the supporting force with respect to the load of the structure 2 can be disperse | distributed to the 1st support layer G2 and the viscous soil layer G3. That is, the stress (load stress S0) generated by receiving the load of the structure 2 in the first support layer G2 in which the support piles 3, 3,. Since the effective stress transmitted to G3 can be reduced, the effective stress acting on the viscous soil layer G3 (that is, the sum of the initial effective stress of the viscous soil layer G3 and the load stress S0) is consolidated yielding of the viscous soil layer G3. It can suppress becoming larger than the stress Sb, the consolidation settlement of the viscous soil layer G3 can be prevented, and the settlement of the structure 2 can be suppressed.

また、本杭構造1では、上述したように粘性土層G3に対して圧密沈下を生じさせない範囲内で最大数の支持杭3を粘性土層G3より浅い深度に位置する第1支持層G2に打設することができるので、杭長の短い支持杭3を多数使用することができコストの低減を図ることができる。   Further, in the present pile structure 1, as described above, the maximum number of support piles 3 are arranged in the first support layer G2 located at a depth shallower than the viscous soil layer G3 within a range that does not cause consolidation settlement to the viscous soil layer G3. Since it can be driven, many support piles 3 with a short pile length can be used, and the cost can be reduced.

上述した本第一の実施の形態による構造物の沈下抑制構造では、構造物2の荷重の一部を粘性土層G3内に打設された摩擦杭4、4、…で支持させることで、それら摩擦杭4、4、…の支持力分だけ第1支持層G2内に打設される支持杭3、3、…の本数を減らすことができ、第1支持層G2から粘性土層G3に伝達される構造物2の荷重(荷重応力S0)を減少させることができる。そのため、粘性土層G3に作用する有効応力(粘性土層G3における初期有効応力Saと荷重応力S0との和)が粘性土層G3の圧密降伏応力Sbより大きくなることを抑えることができ、粘性土層G3の圧密沈下を防いで構造物2の沈下を確実に抑制することができる。
このように、第1支持層G2と粘性土層G3に支持杭3及び摩擦杭4を設ける構造であることから、従来のように粘性土層の下方に位置する第2支持層G4に達するように杭長の長い摩擦杭(或いは支持杭)を設置する必要がなくなり、コストの低減を図ることができる。
In the structure settlement suppression structure according to the first embodiment described above, by supporting a part of the load of the structure 2 with the friction piles 4, 4,... The number of support piles 3, 3,... To be placed in the first support layer G2 can be reduced by the support force of the friction piles 4, 4,..., And the first support layer G2 is changed to the viscous soil layer G3. The load (load stress S0) of the structure 2 to be transmitted can be reduced. Therefore, the effective stress acting on the viscous soil layer G3 (the sum of the initial effective stress Sa and the load stress S0 in the viscous soil layer G3) can be suppressed from becoming larger than the consolidation yield stress Sb of the viscous soil layer G3. Consolidation settlement of the soil layer G3 can be prevented and settlement of the structure 2 can be reliably suppressed.
Thus, since it is the structure which provides the support pile 3 and the friction pile 4 in the 1st support layer G2 and the viscous soil layer G3, it will reach the 2nd support layer G4 located under a viscous soil layer like before. Thus, it is not necessary to install a friction pile (or support pile) having a long pile length, and the cost can be reduced.

次に、本発明の第二及び第三の実施の形態について、図2及び図3に基づいて説明するが、上述の第一の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第一の実施の形態と異なる構成について説明する。
図2は本発明の第二の実施の形態による杭構造の構成と地盤中の応力分布とを示す図である。
図2に示すように、第二の実施の形態による杭構造1Aは、第一の実施の形態と比べて粘性土層G3の過圧密比が構造物2の荷重に比して小さい場合に適用されている。そして、本杭構造1Aでは、摩擦杭4の長さが一様ではなく、粘性土層G3に作用する応力が許容値(すなわち、粘性土層G3の圧密降伏応力Sb)以内となるように複数の杭長をなす摩擦杭4A、4Bを用いたものである。なお、支持杭3は、第一の実施の形態と同様に第1支持層G2内に打設されている。
Next, the second and third embodiments of the present invention will be described with reference to FIGS. 2 and 3, but the same reference numerals are used for the same or similar members and parts as those of the first embodiment. A description of the configuration different from that of the first embodiment will be given by omitting the description.
FIG. 2 is a diagram showing the structure of the pile structure and the stress distribution in the ground according to the second embodiment of the present invention.
As shown in FIG. 2, the pile structure 1A according to the second embodiment is applied when the overconsolidation ratio of the viscous soil layer G3 is smaller than the load of the structure 2 as compared with the first embodiment. Has been. In this pile structure 1A, the length of the friction pile 4 is not uniform, and the stress acting on the viscous soil layer G3 is within a permissible value (that is, the consolidation yield stress Sb of the viscous soil layer G3). Friction piles 4A and 4B having the same pile length are used. The support pile 3 is driven into the first support layer G2 as in the first embodiment.

具体的に本杭構造1Aは、粘性土層G3における摩擦杭4A、4Bを複数の杭長とすることで、粘性土層G3に作用する構造物2の荷重応力S0を深さ方向に複数に分散させることができる。つまり、荷重応力S0は第1〜第3荷重応力S1、S2、S3に分散されることになり、各荷重応力S1、S2、S3の最大値を小さくすることができる。
そのため、本第二の実施の形態では、粘性土層G3に作用する応力がその圧密降伏応力Sbを超えることがなくなり、第一の実施の形態と同様に粘性土層G3の圧密沈下を防いで構造物2の沈下を抑制させる効果をより一層高めることができる。
Specifically, this pile structure 1A makes the load stress S0 of the structure 2 acting on the viscous soil layer G3 plural in the depth direction by making the friction piles 4A, 4B in the viscous soil layer G3 have a plurality of pile lengths. Can be dispersed. That is, the load stress S0 is distributed to the first to third load stresses S1, S2, and S3, and the maximum values of the load stresses S1, S2, and S3 can be reduced.
Therefore, in the second embodiment, the stress acting on the viscous soil layer G3 does not exceed the consolidation yield stress Sb, and the consolidation settlement of the viscous soil layer G3 is prevented as in the first embodiment. The effect of suppressing the settlement of the structure 2 can be further enhanced.

なお、本杭構造1Aでは、構造物2の沈下量が大きくなる平面視で中央領域T1には最も長尺な符号4Aで示す摩擦杭を多く配置し、沈下量が前記中央領域T1より小さくなる構造物2の外周領域T2には中央領域T1の摩擦杭4Aより短尺な符号4Bに示す摩擦杭を多く配置させることで、構造物2の沈下に対して効率的に対応できる構造となっている。   In the present pile structure 1A, many friction piles indicated by the longest reference numeral 4A are arranged in the central region T1 in a plan view in which the amount of settlement of the structure 2 increases, and the amount of settlement is smaller than that of the central region T1. The outer peripheral region T2 of the structure 2 has a structure that can efficiently cope with the settlement of the structure 2 by disposing a large number of friction piles indicated by reference numeral 4B shorter than the friction pile 4A of the central region T1. .

また、図3は本発明の第三の実施の形態による杭構造の構成と地盤中の応力分布とを示す図である。
図3に示すように、第三の実施の形態による杭構造1Bは、第一の実施の形態における支持杭3(図1参照)に代えて円柱形状の地盤改良体6(本発明の支持杭に相当する)を複数施工した構造である。具体的には、構造物2の構築領域において、例えばソイルモルタルからなる地盤改良体6を第1支持層G2内に達するようにして形成させたものである。なお、粘性土層G3には、第一の実施の形態と同様に複数の摩擦杭4、4、…が打設されている。
Moreover, FIG. 3 is a figure which shows the structure of the pile structure by 3rd embodiment of this invention, and the stress distribution in a ground.
As shown in FIG. 3, the pile structure 1 </ b> B according to the third embodiment replaces the support pile 3 (see FIG. 1) according to the first embodiment with a cylindrical ground improvement body 6 (support pile according to the present invention). This is a structure in which multiple constructions are applied. Specifically, in the construction region of the structure 2, the ground improvement body 6 made of, for example, soil mortar is formed so as to reach the first support layer G2. Note that a plurality of friction piles 4, 4,... Are placed in the viscous soil layer G3 as in the first embodiment.

このような構成をなす本杭構造1Bは、地盤改良体6が第一の実施の形態の支持杭3と同様に構造物2の荷重を支持する支持杭として作用する。そして、地盤Gに作用する応力分布における構造物2の荷重応力S0は、地盤改良体6によって影響を受ける第1荷重応力S1と、摩擦杭4によって影響を受ける第2荷重応力S2とに分散されることになる。
そのため、本第三の実施の形態では、第一及び第二の実施の形態と同様に粘性土層G3の圧密沈下を防いで構造物2の沈下を抑制できるといった作用、効果を奏する。
This pile structure 1B which comprises such a structure acts as a support pile in which the ground improvement body 6 supports the load of the structure 2 similarly to the support pile 3 of 1st embodiment. The load stress S0 of the structure 2 in the stress distribution acting on the ground G is distributed into the first load stress S1 affected by the ground improvement body 6 and the second load stress S2 affected by the friction pile 4. Will be.
Therefore, in the third embodiment, as in the first and second embodiments, there is an effect that the consolidation of the viscous soil layer G3 can be prevented and the settlement of the structure 2 can be suppressed.

以上、本発明による構造物の沈下抑制構造の第一乃至第三の実施の形態について説明したが、本発明は上記の第一乃至第三の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、支持杭3、摩擦杭4における本数、外径寸法、杭長等は、構造物2の荷重、大きさ、形状等や、地盤Gの条件(例えば各地層の厚さ、粘性土層G3の圧密状態)、構造物2の沈下分布に対応して任意に設定することができる。
また、本第一乃至第三の実施の形態では地表側から軟弱層G1、第1支持層G2、粘性土層G3、第2支持層G4の順で積層された地盤Gとしているが、このような地盤Gであることに制限されることはない。要は、粘性土層G3より浅い位置に第1支持層G2を有する地盤Gであればよく、本杭構造1を適用できる対象地盤とすることができる。
The first to third embodiments of the structure settlement suppression structure according to the present invention have been described above, but the present invention is not limited to the first to third embodiments described above, and the gist thereof is described. As long as it does not deviate from the above, it can be appropriately changed.
For example, the number of support piles 3, friction piles 4, outer diameter dimensions, pile length, etc. are the load, size, shape, etc. of the structure 2, ground G conditions (for example, thickness of each layer, viscous soil layer G3 Can be arbitrarily set according to the settlement distribution of the structure 2.
In the first to third embodiments, the ground layer G is laminated in the order of the soft layer G1, the first support layer G2, the viscous soil layer G3, and the second support layer G4 from the ground surface side. The ground G is not limited. In short, the ground G having the first support layer G2 at a position shallower than the viscous soil layer G3 may be used, and the target ground to which the present pile structure 1 can be applied can be obtained.

そして、本第二の実施の形態では粘性土層G3内に打設される摩擦杭4A、4Bを二つの異なる杭長としているが、これに限らず、三つ以上の異なる杭長の摩擦杭4としてもかまわない。
さらに、摩擦杭4は、必要に応じてその先端部(下端部)を粘性土層G3内ではなく、粘性土層G3よりさらに深い地層内に達するまで打設して根入れさせるようにしてもかまわない。この場合、第一乃至第三の実施の形態と同様に、支持層G2に打設される支持杭3の設置本数を減らすことができ、粘性土層G3に作用する応力がその圧密降伏応力を超えることをなくすことができることから、粘性土層G3の圧密沈下を防いで構造物2の沈下を抑制させることができる。
And in this 2nd embodiment, although the friction piles 4A and 4B cast in the viscous soil layer G3 are made into two different pile lengths, it is not restricted to this, The friction pile of three or more different pile lengths 4 is also acceptable.
Further, the friction pile 4 may be driven to be rooted until it reaches a deeper layer than the viscous soil layer G3 instead of the tip (lower end) of the friction pile 4 as necessary. It doesn't matter. In this case, as in the first to third embodiments, the number of support piles 3 placed in the support layer G2 can be reduced, and the stress acting on the cohesive soil layer G3 can reduce its consolidation yield stress. Since it can be eliminated, consolidation settlement of the viscous soil layer G3 can be prevented and settlement of the structure 2 can be suppressed.

本発明の第一の実施の形態による杭構造の構成と地盤中の応力分布とを示す図である。It is a figure which shows the structure of the pile structure by 1st embodiment of this invention, and the stress distribution in the ground. 第二の実施の形態による杭構造の構成と地盤中の応力分布とを示す図である。It is a figure which shows the structure of the pile structure by 2nd embodiment, and the stress distribution in the ground. 第三の実施の形態による杭構造の構成と地盤中の応力分布とを示す図である。It is a figure which shows the structure of the pile structure by 3rd embodiment, and the stress distribution in the ground. 従来の杭構造の構成と地盤中の応力分布とを示す図である。It is a figure which shows the structure of the conventional pile structure, and the stress distribution in the ground.

符号の説明Explanation of symbols

1、1A、1B 杭構造(沈下抑制構造)
2 構造物
3 支持杭
4 摩擦杭
6 地盤改良体(支持杭)
G 地盤
G1 軟弱層
G2 第1支持層(支持層)
G3 粘性土層
G4 第2支持層
Sa 原地盤の有効応力
Sb 粘性土層の圧密降伏応力
S0 荷重応力
1, 1A, 1B Pile structure (subsidence suppression structure)
2 Structure 3 Support pile 4 Friction pile 6 Ground improvement body (support pile)
G Ground G1 Soft layer G2 First support layer (support layer)
G3 Cohesive soil layer G4 2nd support layer Sa Effective stress of raw ground Sb Consolidation yield stress of viscous soil layer S0 Load stress

Claims (3)

構造物の構築領域で、粘性土層より浅い部分に前記構造物の荷重を支持することができる支持層が存在する地盤に施工する構造物の沈下抑制構造であって、
前記支持層内に達する深さまで打設される支持杭と、
前記粘性土層内、又は前記粘性土層より深い地層内に達する深さまで打設される摩擦杭と、
からなり、
前記摩擦杭は、該摩擦杭の前記粘性土層に作用する応力が前記粘性土層の圧密降伏応力を超えないように設けられていることを特徴とする構造物の沈下抑制構造。
In the construction region of the structure, the structure is a subsidence suppression structure for the structure to be constructed on the ground where the support layer that can support the load of the structure exists in a portion shallower than the viscous soil layer,
A support pile to be driven to a depth reaching the support layer;
A friction pile that is driven to a depth that reaches in the viscous soil layer or in a deeper layer than the viscous soil layer;
Tona is,
Said friction piles, subsidence suppressing structure of the structure, characterized in Rukoto stress acting on the viscous soil layer of the friction pile provided so as not to exceed the consolidation yield stress of the viscous soil layer.
前記摩擦杭は複数設けられ、それらが複数の杭長となっていることを特徴とする請求項1に記載の構造物の沈下抑制構造。 The structure according to claim 1, wherein a plurality of the friction piles are provided, and the piles have a plurality of pile lengths. 前記支持杭は、地盤改良体によって形成されていることを特徴とする請求項1又は2に記載の構造物の沈下抑制構造。 The structure according to claim 1 or 2, wherein the support pile is formed of a ground improvement body.
JP2007145013A 2007-05-31 2007-05-31 Structure subsidence suppression structure Active JP4986041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145013A JP4986041B2 (en) 2007-05-31 2007-05-31 Structure subsidence suppression structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145013A JP4986041B2 (en) 2007-05-31 2007-05-31 Structure subsidence suppression structure

Publications (2)

Publication Number Publication Date
JP2008297802A JP2008297802A (en) 2008-12-11
JP4986041B2 true JP4986041B2 (en) 2012-07-25

Family

ID=40171564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145013A Active JP4986041B2 (en) 2007-05-31 2007-05-31 Structure subsidence suppression structure

Country Status (1)

Country Link
JP (1) JP4986041B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071852B2 (en) * 2007-12-19 2012-11-14 清水建設株式会社 Structure subsidence suppression structure
JP2010209605A (en) * 2009-03-11 2010-09-24 Takenaka Komuten Co Ltd Piled-raft foundation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324330A (en) * 1994-05-31 1995-12-12 Toda Constr Co Ltd Pile driving construction method
JP2002061203A (en) * 2000-06-09 2002-02-28 Ohbayashi Corp Uneven settlement controlling foundation of structure
JP2002129584A (en) * 2000-10-24 2002-05-09 Shimizu Corp Foundation structure
JP2004068253A (en) * 2002-08-01 2004-03-04 Nippon Steel Corp Foundation structure of structure
JP2006077447A (en) * 2004-09-09 2006-03-23 Taisei Corp Foundation structure of construction
JP2007063915A (en) * 2005-09-01 2007-03-15 Sekkeishitsu Soil:Kk Foundation structure of small-scale building

Also Published As

Publication number Publication date
JP2008297802A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5421165B2 (en) Earth retaining structure and its construction method
JP5494880B1 (en) Liquefaction countermeasure basic structure and liquefaction countermeasure construction method
JP5043582B2 (en) Foundation structure
JP4986041B2 (en) Structure subsidence suppression structure
JP6357323B2 (en) Liquefaction countermeasure structure and its construction method
JP2002061203A (en) Uneven settlement controlling foundation of structure
JPH11256563A (en) Soil improvement foundation construction method in soft foundation
JP5210202B2 (en) Support structure between concrete soil
JP2006233666A (en) Foundation structure of building receiving partial earth pressure
JP5071852B2 (en) Structure subsidence suppression structure
JP2012219581A (en) Foundation structure and structure including the same
JP2010126991A (en) Earth retaining wall and method of reinforcing the same
JP2007169898A (en) Pile foundation structure for restraining unequal settlement and its construction method
JP5074151B2 (en) Foundation structure using wall foundation
JP2007277830A (en) Core material, continuous underground wall, soil cement wall, continuous underground wall pile, soil cement wall pile, cast-in-place concrete pile, underground structure, and foundation structure of building
KR20170046362A (en) Helix steel pipe pile for reinforcement of buckling and construction method of the same
JP2006214201A (en) Composite foundation of piles and continuous underground wall
JP2007169879A (en) Pile foundation structure for restraining unequal settlement and its construction method
JP7265409B2 (en) Building foundation structure
JP2009102951A (en) Substructure
KR101732133B1 (en) Reinforcement structure for pile and construction method of reinforcement structure for pile using the same
JP7467815B2 (en) Ground improvement structure
JP2006077447A (en) Foundation structure of construction
JPH0559717A (en) Structure for improved ground section
JP2016041871A (en) Building foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

R150 Certificate of patent or registration of utility model

Ref document number: 4986041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3