JP2004068253A - Foundation structure of structure - Google Patents

Foundation structure of structure Download PDF

Info

Publication number
JP2004068253A
JP2004068253A JP2002224415A JP2002224415A JP2004068253A JP 2004068253 A JP2004068253 A JP 2004068253A JP 2002224415 A JP2002224415 A JP 2002224415A JP 2002224415 A JP2002224415 A JP 2002224415A JP 2004068253 A JP2004068253 A JP 2004068253A
Authority
JP
Japan
Prior art keywords
pile
foundation
foundation concrete
load
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002224415A
Other languages
Japanese (ja)
Inventor
Masao Nakagawa
中川 雅夫
Yutaka Hirashima
平嶋 裕
Yuki Yamada
山田 祐輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002224415A priority Critical patent/JP2004068253A/en
Publication of JP2004068253A publication Critical patent/JP2004068253A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem in a pile draft foundation structure wherein, when a gap is formed at the lower surface of foundation concrete due to ground subsidence, the total load of a structure born by a subgrade reaction on the lower surface of the foundation concrete is transmitted to a pile. <P>SOLUTION: In this foundation structure, pile heads of a pluralty piles 3b reaching a pile tip layer 5 are coupled to the foundation concrete 1 constructed on the ground 10 to bear the load of a structure constructed on the foundation concrete 1 by the subgrade reaction under the foundation concrete and the pile reaction applied through the piles 3b. At least one or more columnar bodies 8 longer than the gap formed at the lower surface of the foundation concrete 1 with the ground subsidence are disposed, and the heads of the columnar bodies 8 are fixed to the foundation concrete 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、構造物の基礎構造形式に関するものである。
【0002】
【従来の技術】
従来のこの種の構造物の基礎構造は、大別して、直接基礎、杭基礎、パイルドラフト基礎がある。直接基礎は構造物の全荷重を地盤反力で負担し、杭基礎は構造物の全荷重を杭を介して杭反力で負担し、パイルドラフト基礎は、構造物の荷重を地盤反力と杭反力とで負担するものである。
【0003】
杭基礎とパイルドラフトについてさらに説明する。まず杭基礎には、摩擦杭と支持杭があり、摩擦杭を例に説明すると、図3(a)に示すように、基礎コンクリート1上に構築された構造物2の荷重は、複数本の杭3bのみによって支持されている。この杭3bは、杭頭部3aが基礎コンクリート1に結合されるとともに、杭中間層4による杭の周面摩擦力により支持されている。
これにより、杭3bは、構造物2の荷重を負担するに足りる杭径及び長さが必要となる。
【0004】
他方、近年図3(b)に示すように、杭3bと基礎コンクリート1との両方で構造物2の荷重を負担する設計法(パイルドラフト基礎と称されている)が普及し始めている。
【0005】
このパイルドラフト基礎の構成自体は、前記する杭基礎と同じであるが、このパイルドラフト基礎によると、基礎コンクリート1上の構造物2の鉛直荷重は、当該基礎コンクリート1下の地盤反力(上向きの矢印ロで示す)と、杭3bを介して作用する杭反力(上向きの矢印イで示す)との両方で支持することになる。
【0006】
したがって、このパイルドラフト基礎によると、杭3bが負担する鉛直荷重は、図3(a)の通常の杭基礎における杭3に比べて小さく、杭3bに要求される強度ならびに支持力は小さくてよいことから、例えば図3(b)のように杭径を通常の杭基礎に比べて細くできる。また、細くする以外にも使用本数を減らしたり、杭長を短くしたり、もしくは材料強度を低くしたりするなど、材料面での経済性、施工面での容易性などの利点がある。
【0007】
しかし、このパイルドラフト基礎工法にも問題点がある。その問題点は、例えば図2に示すように、基礎コンクリート1の下部に堆積する中間層(軟弱層)4に圧密沈下層(圧密未完層)6が存在した場合、圧密沈下層6が時間の経過ともに圧密されて地盤沈下が発生して、結果、基礎コンクリート(フーチング)1の下面に間隙7が形成される。このように間隙7が形成されると基礎コンクリート(フーチング)1の下面に地盤反力(図3(b)に上向きの矢印ロで示す)が期待できなくなり、パイルドラフトとしての利点が発揮できない。
【0008】
このため、間隙7ができると構造物2の荷重のほとんどが杭3bに流れることになり、当該杭3bには本来予定していた以上の荷重が作用することから、過荷重の負担で杭3bが破損するおそれや、予測値以上の沈下の発生などが考えられることから、パイルドラフト基礎工法で構造物を設計することに難色を示す技術者が少なくない。
【0009】
このような特異な地盤以外でも、杭は弾性体であり、地盤は弾塑性体であることから、基礎コンクリートに繰返し転倒荷重を受ける場合等でも、基礎コンクリート1の下部に間隙7が生じる可能性がある。
【0010】
【発明が解決しようとする課題】
本発明は、前記の問題点を解消するために提案されたもので、基礎コンクリート下に生じる間隙の長さ以上の柱状体を基礎コンクリートの下面に固着させることで、間隙が発生した場合でも、構造物の荷重を当該間隙に関係なく前記柱状体を通して地盤に伝達し負担させるようにした、改良型パイルドラフトによる基礎構造を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記の課題を解決するため、本発明は、次にように構成する。
【0012】
第1の発明は、基礎コンクリート下の地盤反力と、基礎コンクリートに杭頭を結合した杭を介して作用する杭反力とにより、前記基礎コンクリート上に構築される構造物の荷重を支持するパイルドラフト基礎構造において、基礎コンクリート下に生じる間隙による地盤反力の低下を抑えるべく、基礎コンクリート下に生じる間隙の長さ以上の柱状体を少なくとも1本以上配置し、この柱状体を基礎コンクリートの下面に固着させることを特徴とする。
【0013】
第2の発明は、第1の発明において、柱状体の形状に、管状、棒状、ないしは鋼製の場合は形鋼のいずれかを用いることを特徴とする。
【0014】
【作用】
(1)本発明によると、圧密沈下層での時間の経過とともに発生する地盤沈下や、風荷重及び地震荷重等の水平荷重による繰返し転倒荷重(鉛直荷重の押引き)により基礎コンクリート下に間隙ができ、これにより、基礎コンクリート下の地盤反力が期待できなくなった場合、その間隙寸法より長い柱状体を介して地盤が構造物の荷重を負担するので、構造物の全ての鉛直荷重が杭に流れることを避けることができる。したがって、パイルドラフト基礎の本来の機能が十分発揮され、当該杭の破損や予測値を超える沈下量の発生等の不具合を無くすことができる。
【0015】
(2)基礎コンクリート下の間隙の長さは、「道路橋示方書」、「建築基礎構造設計指針」などで示される圧密沈下量及び弾性沈下等の計算式に基づき推定できる。
【0016】
(3)柱状体の長さは、間隙長より長くする必要があり、その長さ、または本数、形状は、柱状体自体の支持力が基礎コンクリート下の地盤反力以上となるようにする。
【0017】
【発明の実施の形態】
以下、本発明の実施形態に係る改良型パイルドラフト基礎を図を参照して説明する。
【0018】
本発明を理解するうえでの比較例として、図3を再度参照して説明する。図3は、従来の杭基礎及びパイルドラフト基礎の説明図である。図3(b)に示すパイルドラフト基礎は、地盤10の上に基礎コンクリート1を構築することにより、当該基礎コンクリート1の直下の地盤反力(図3(b)の矢印(ロ)で示す)で構造物2の鉛直荷重を負担すると共に、杭3bを介しての杭反力(先端支持力及び周面摩擦力)により構造物2の鉛直荷重を負担する。杭3bが負担する構造物2の鉛直荷重は、基礎コンクリート1の直下の地盤反力で受ける分小さくできることから、図3(a)の杭基礎に比べ杭3bの杭径を細くしたり、使用本数を低減できることである。
【0019】
図1は、本発明の実施形態1の説明図である。本発明では、前記の構成に加えて、基礎コンクリート1の下面において、杭3bと杭3bの間に所定本数の柱状体8を設けた点に特徴がある。この柱状体8の長さ寸法および機能は、既設の杭3bの長さおよび機能とは異なるので、以下その構成と作用を説明する。
【0020】
柱状体8の頭部は、基礎コンクリート1の下面に埋設され固着されており、また、基礎コンクリート1の下面から柱状体8の先端までの長さ(L)と、あらかじめ予想される間隙7の長さ(L)と、基礎コンクリート1の下面から杭3bの先端までの長さ(L)の寸法は、L>L>Lに設けてある。
【0021】
したがって、中間層4の地盤が沈下し、基礎コンクリート1の下部に間隙7が形成されて、図3(b)に示す地盤反力(ロ)が期待できなくなった場合、構造物2の荷重のほとんどが杭3bに作用するが、本発明では間隙7の長さ(L)よりも長い、長さ(L)の柱状体8が杭中間層4に貫入しているので、間隙7が形成される前の地盤反力(ロ)に相当する力が、地盤反力(ハ)となって柱状体8を介して構造物2の荷重を負担する。したがって、間隙7が生じても構造物2の全荷重が杭3bに流れることが避けられ、柱状体8を介して地盤に荷重を負担させることが可能となり、これにより、杭3bの破損または想定以上の沈下量の発生などの不具合をなくすことができると共に、パイルドラフトとしての設計を可能とすることができる。
【0022】
本発明の実施形態1の作用をまとめると、まず、パイルドラフト基礎である点で、従来の杭のみで構造物の全荷重を負担する設計法に比べ、杭径、杭本数、杭長を減らして、経済性が向上するとともに、工期の短縮になる。
【0023】
次に、図2は、本発明の実施形態2の説明図である。先の実施形態1では柱状体8を平面的にみて構造物2の構築エリアの内側に設けた例を示したが、柱状体8は構造物2の外側であってもよく、また、その場合は柱状体8の配置密度を粗にして設置してよく、実施形態2はその例を図示している。実施形態2のその他の作用は実施形態1と同じである。したがって、実施形態1と同等要素には、同一符号を付して説明を省略する。
【0024】
また、実施形態2では、間隙7が最も大きくなる一例として、杭3bは杭中間層4より硬い支持層に貫入され、また杭中間層4に圧密沈下層6(未圧密状態)が堆積した例を示している。
【0025】
【発明の効果】
以上説明したように、本発明によると、パイルドラフトによる基礎構造において、地盤の沈下により、基礎コンクリート下に間隙が生じ、基礎コンクリート下での地盤反力による構造物荷重の負担を期待できなくなったとき、当該地盤反力に変わって、間隙量より長い柱状体により構造物の荷重を負担させることができる。
【0026】
したがって、パイルドラフト基礎として設計している場合には、間隙ができた瞬間に、それまで基礎コンクリート下の地盤反力にて負担していた荷重が杭に作用するため、杭が許容応力を満足できず、破壊する可能性があり、または想定以上の基礎の沈下量が発生する可能性があったが、本発明の改良型パイルドラフト基礎によると、そのような状況を克服でき、杭径や杭本数を減らすことができて経済性が向上すると同時に、工期も短縮できるというパイルドラフト基礎本来の機能を確実に発揮させることが可能となる。
【0027】
また、柱状体には、鉛直荷重の負担のみでなく、水平過重を負担させることも可能であり、これにより更なる杭仕様の経済性を追求することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るパイルドラフトによる基礎構造の作用の説明図である。
【図2】本発明の第2実施形態に係るパイルドラフトによる基礎構造の作用の説明図である。
【図3】(a)は従来一般の構造物の基礎構造の説明図、(b)は従来のパイルドラフト基礎工法による基礎構造の説明図である。
【符号の説明】
1 基礎コンクリート
2 構造物
3 杭
3a 杭頭部
3b 杭
4 中間層
5 杭先端層
6 圧密沈下層
7 間隙
8 柱状体
10 地盤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a basic structure type of a structure.
[0002]
[Prior art]
Conventional foundation structures of this type of structure are roughly classified into direct foundations, pile foundations and piled raft foundations. The direct foundation bears the full load of the structure with the ground reaction force, the pile foundation bears the full load of the structure with the pile reaction force via the pile, and the piled raft foundation takes the load of the structure with the ground reaction force. It is paid by the pile reaction force.
[0003]
The pile foundation and piled raft will be further explained. First, a pile foundation has a friction pile and a support pile. Taking the friction pile as an example, as shown in FIG. 3 (a), the load of the structure 2 constructed on the foundation concrete 1 is a plural number. It is supported only by the pile 3b. The pile 3b has a pile head 3a connected to the foundation concrete 1 and is supported by a pile frictional force of the pile intermediate layer 4.
Accordingly, the pile 3b needs a pile diameter and a length sufficient to bear the load of the structure 2.
[0004]
On the other hand, in recent years, as shown in FIG. 3 (b), a design method (referred to as a piled raft foundation) in which both the pile 3b and the foundation concrete 1 bear the load of the structure 2 has begun to spread.
[0005]
Although the configuration of the piled raft foundation itself is the same as the pile foundation described above, according to this piled raft foundation, the vertical load of the structure 2 on the foundation concrete 1 is caused by the ground reaction force (upward) under the foundation concrete 1. And the pile reaction force (indicated by an upward arrow a) acting via the pile 3b.
[0006]
Therefore, according to this piled raft foundation, the vertical load borne by the pile 3b is smaller than that of the pile 3 in the ordinary pile foundation shown in FIG. 3A, and the strength and supporting force required for the pile 3b may be small. Therefore, for example, as shown in FIG. 3B, the pile diameter can be made smaller than that of a normal pile foundation. In addition to thinning, there are advantages in terms of material economy, ease of construction, etc., such as reducing the number of pieces used, shortening the pile length, or reducing the material strength.
[0007]
However, this Pildraft foundation method also has problems. The problem is, for example, as shown in FIG. 2, when a consolidation subsidence layer (consolidation incomplete layer) 6 is present in an intermediate layer (soft layer) 4 deposited below the base concrete 1, the consolidation subsidence layer 6 takes time. As the process proceeds, consolidation occurs and ground subsidence occurs. As a result, a gap 7 is formed on the lower surface of the foundation concrete (footing) 1. When the gap 7 is formed in this manner, a ground reaction force (indicated by an upward arrow B in FIG. 3B) cannot be expected on the lower surface of the foundation concrete (footing) 1, and the advantage as a piled draft cannot be exhibited.
[0008]
For this reason, when the gap 7 is formed, most of the load of the structure 2 flows to the pile 3b, and a load more than originally expected acts on the pile 3b. There are many engineers who are not comfortable designing structures with the Pildraft foundation method because there is a possibility that the structure will be damaged or the settlement may exceed the predicted value.
[0009]
Other than such a peculiar ground, the pile is an elastic body and the ground is an elasto-plastic body. Therefore, even when the foundation concrete is repeatedly subjected to a falling load, a gap 7 may be formed at a lower portion of the foundation concrete 1. There is.
[0010]
[Problems to be solved by the invention]
The present invention has been proposed in order to solve the above problems, even if a gap is generated by fixing a columnar body longer than the length of the gap generated under the foundation concrete to the lower surface of the foundation concrete, It is an object of the present invention to provide a foundation structure using an improved piled raft, in which a load of a structure is transmitted to the ground through the columnar body regardless of the gap and the load is transmitted.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is configured as follows.
[0012]
The first invention supports a load of a structure built on the foundation concrete by a ground reaction force under the foundation concrete and a pile reaction force acting via a pile in which a pile head is connected to the foundation concrete. In the pile draft foundation structure, at least one columnar body with a length equal to or greater than the gap generated under the foundation concrete is arranged in order to suppress a decrease in the ground reaction force due to the gap produced under the foundation concrete. It is characterized by being fixed to the lower surface.
[0013]
The second invention is characterized in that, in the first invention, any one of a tubular shape, a rod shape, and a shape steel in the case of steel is used as the shape of the column.
[0014]
[Action]
(1) According to the present invention, a gap is formed beneath the foundation concrete due to land subsidence that occurs with time in the consolidation subsidence layer, and repeated overturning load (pulling of vertical load) due to horizontal load such as wind load and seismic load. If the ground reaction under the foundation concrete can no longer be expected, the ground will bear the load of the structure via the columnar body longer than the gap size, so all vertical loads of the structure will be applied to the pile. Flow can be avoided. Therefore, the original function of the piled raft foundation is sufficiently exhibited, and problems such as breakage of the pile and occurrence of a settlement amount exceeding the predicted value can be eliminated.
[0015]
(2) The length of the gap under the foundation concrete can be estimated based on the formulas for the amount of consolidation settlement, elastic settlement, etc. indicated in the "Road Bridge Specification" and "Guidelines for Designing Building Basic Structure".
[0016]
(3) The length of the columnar body needs to be longer than the gap length, and the length, number, and shape of the columnar body are such that the supporting force of the columnar body itself is equal to or greater than the ground reaction force under the foundation concrete.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an improved piled raft foundation according to an embodiment of the present invention will be described with reference to the drawings.
[0018]
As a comparative example for understanding the present invention, a description will be given with reference to FIG. 3 again. FIG. 3 is an explanatory view of a conventional pile foundation and a piled raft foundation. The piled raft foundation shown in FIG. 3B is constructed by constructing the foundation concrete 1 on the ground 10 so that the ground reaction force immediately below the foundation concrete 1 is indicated (indicated by an arrow (b) in FIG. 3B). In addition to bearing the vertical load of the structure 2, the pile reaction force (tip support force and peripheral friction force) via the pile 3b bears the vertical load of the structure 2. Since the vertical load of the structure 2 borne by the pile 3b can be reduced by the ground reaction force directly below the foundation concrete 1, the pile diameter of the pile 3b can be reduced or used compared to the pile foundation of FIG. That is, the number can be reduced.
[0019]
FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention. The present invention is characterized in that a predetermined number of pillars 8 are provided between the piles 3b on the lower surface of the foundation concrete 1 in addition to the above configuration. Since the length and function of the columnar body 8 are different from the length and function of the existing pile 3b, its configuration and operation will be described below.
[0020]
The head of the columnar body 8 is buried and fixed to the lower surface of the foundation concrete 1, and has a length (L) from the lower surface of the foundation concrete 1 to the tip of the columnar body 8, and the gap 7 expected in advance. The length (L 1 ) and the dimension of the length (L 2 ) from the lower surface of the foundation concrete 1 to the tip of the pile 3b are provided in L 2 >L> L 1 .
[0021]
Therefore, when the ground of the middle layer 4 sinks and the gap 7 is formed in the lower part of the foundation concrete 1 and the ground reaction force (b) shown in FIG. Most of them act on the pile 3b, but in the present invention, the column 7 having a length (L) longer than the length (L 1 ) of the gap 7 penetrates into the pile intermediate layer 4, so that the gap 7 is formed. The force corresponding to the ground reaction force (b) before being applied becomes the ground reaction force (c) and bears the load of the structure 2 via the columnar body 8. Therefore, even if the gap 7 occurs, the entire load of the structure 2 is prevented from flowing to the pile 3b, and the load can be borne on the ground via the columnar body 8, whereby the pile 3b is damaged or assumed. Problems such as the occurrence of the above-mentioned settlement amount can be eliminated, and design as a piled raft can be made possible.
[0022]
To summarize the operation of the first embodiment of the present invention, first, in terms of a piled raft foundation, the pile diameter, the number of piles, and the pile length are reduced as compared with the conventional design method in which only the piles bear the entire load of the structure. Therefore, economic efficiency is improved and the construction period is shortened.
[0023]
Next, FIG. 2 is an explanatory diagram of Embodiment 2 of the present invention. In the first embodiment, an example is shown in which the columnar body 8 is provided inside the construction area of the structure 2 when viewed in a plane. However, the columnar body 8 may be outside the structure 2. May be installed with the arrangement density of the columnar members 8 being coarse, and Embodiment 2 shows an example thereof. Other operations of the second embodiment are the same as those of the first embodiment. Therefore, the same reference numerals are given to the same elements as those in the first embodiment, and the description is omitted.
[0024]
In the second embodiment, as an example in which the gap 7 is the largest, the pile 3 b is penetrated into a support layer harder than the pile intermediate layer 4, and the consolidation subsidence layer 6 (unconsolidated state) is deposited on the pile intermediate layer 4. Is shown.
[0025]
【The invention's effect】
As described above, according to the present invention, in a foundation structure made of piled raft, a gap is formed under the foundation concrete due to the subsidence of the ground, and it is impossible to expect the burden of the structure load due to the ground reaction force under the foundation concrete. At this time, instead of the ground reaction force, the load of the structure can be borne by the columnar body longer than the gap amount.
[0026]
Therefore, when the pile is designed as a piled raft foundation, at the moment when the gap is formed, the load that had been borne by the ground reaction force under the foundation concrete acts on the pile, and the pile satisfies the allowable stress. It was not possible, there was a possibility of breaking, or there was a possibility that the amount of settlement of the foundation was greater than expected, but according to the improved piled raft foundation of the present invention, such a situation can be overcome, and the pile diameter and As a result, the number of piles can be reduced, and the economy can be improved. At the same time, the construction period can be shortened, and the original function of the piled raft foundation can be reliably exhibited.
[0027]
Further, the columnar body can bear not only the load of the vertical load but also the load of the horizontal, thereby pursuing further economical efficiency of the pile specification.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an operation of a foundation structure by a piled draft according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of an operation of a foundation structure by a piled draft according to a second embodiment of the present invention.
FIG. 3A is an explanatory diagram of a basic structure of a conventional general structure, and FIG. 3B is an explanatory diagram of a basic structure by a conventional piled raft foundation method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Foundation concrete 2 Structure 3 Pile 3a Pile head 3b Pile 4 Middle layer 5 Pile tip layer 6 Consolidation subsidence layer 7 Gap 8 Columnar body 10 Ground

Claims (2)

基礎コンクリート下の地盤反力と、基礎コンクリートに杭頭を結合した杭を介して作用する杭反力とにより、前記基礎コンクリート上に構築される構造物の荷重を支持するパイルドラフト基礎構造において、基礎コンクリート下に生じる間隙による地盤反力の低下を抑えるべく、基礎コンクリート下部に生じる間隙の長さ以上の柱状体を少なくとも1本以上配置し、この柱状体を基礎コンクリート下面に固着させることを特徴とする構造物の基礎構造。In the piled raft foundation structure that supports the load of the structure built on the foundation concrete, by the ground reaction force under the foundation concrete and the pile reaction force acting via the pile that couples the pile head to the foundation concrete, In order to suppress the decrease in the ground reaction force due to the gap created under the foundation concrete, at least one columnar body with a length equal to or greater than the gap created under the foundation concrete is arranged, and this columnar body is fixed to the lower surface of the foundation concrete. The basic structure of the structure. 請求項1において、柱状体の形状に、管状、棒状、ないしは鋼製の場合は形鋼のいずれかを用いることを特徴とする構造物の基礎構造。2. The basic structure of a structure according to claim 1, wherein the columnar body is formed of any one of a tubular shape, a bar shape, and a steel shape when made of steel.
JP2002224415A 2002-08-01 2002-08-01 Foundation structure of structure Withdrawn JP2004068253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224415A JP2004068253A (en) 2002-08-01 2002-08-01 Foundation structure of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224415A JP2004068253A (en) 2002-08-01 2002-08-01 Foundation structure of structure

Publications (1)

Publication Number Publication Date
JP2004068253A true JP2004068253A (en) 2004-03-04

Family

ID=32012375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224415A Withdrawn JP2004068253A (en) 2002-08-01 2002-08-01 Foundation structure of structure

Country Status (1)

Country Link
JP (1) JP2004068253A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077447A (en) * 2004-09-09 2006-03-23 Taisei Corp Foundation structure of construction
JP2007063915A (en) * 2005-09-01 2007-03-15 Sekkeishitsu Soil:Kk Foundation structure of small-scale building
JP2007113202A (en) * 2005-10-18 2007-05-10 Maeda Seikan Kk Foundation structure for supporting upper structure
JP2007113270A (en) * 2005-10-20 2007-05-10 Nippon Steel Corp Foundation structure and construction method of the foundation structure
JP2008297802A (en) * 2007-05-31 2008-12-11 Shimizu Corp Settlement suppressing structure of structures
JP2010209605A (en) * 2009-03-11 2010-09-24 Takenaka Komuten Co Ltd Piled-raft foundation
JP2011047274A (en) * 2010-12-06 2011-03-10 Nippon Steel Corp Foundation structure and construction method of the foundation structure
KR101072958B1 (en) 2011-05-18 2011-10-12 삼성물산 주식회사 Foundation structure using the micropile and truss, and construction method thereof in a surrounding structure and the places that it is adjacent to
CN106049196A (en) * 2016-06-08 2016-10-26 杭州江润科技有限公司 Construction method of ballastless track subgrade with combined flexible piles and pile rafts at same fracture surfaces

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077447A (en) * 2004-09-09 2006-03-23 Taisei Corp Foundation structure of construction
JP2007063915A (en) * 2005-09-01 2007-03-15 Sekkeishitsu Soil:Kk Foundation structure of small-scale building
JP2007113202A (en) * 2005-10-18 2007-05-10 Maeda Seikan Kk Foundation structure for supporting upper structure
JP2007113270A (en) * 2005-10-20 2007-05-10 Nippon Steel Corp Foundation structure and construction method of the foundation structure
JP4713297B2 (en) * 2005-10-20 2011-06-29 新日本製鐵株式会社 Foundation structure and construction method of foundation structure
JP2008297802A (en) * 2007-05-31 2008-12-11 Shimizu Corp Settlement suppressing structure of structures
JP2010209605A (en) * 2009-03-11 2010-09-24 Takenaka Komuten Co Ltd Piled-raft foundation
JP2011047274A (en) * 2010-12-06 2011-03-10 Nippon Steel Corp Foundation structure and construction method of the foundation structure
KR101072958B1 (en) 2011-05-18 2011-10-12 삼성물산 주식회사 Foundation structure using the micropile and truss, and construction method thereof in a surrounding structure and the places that it is adjacent to
CN106049196A (en) * 2016-06-08 2016-10-26 杭州江润科技有限公司 Construction method of ballastless track subgrade with combined flexible piles and pile rafts at same fracture surfaces
CN106049196B (en) * 2016-06-08 2018-04-06 杭州江润科技有限公司 Flexible pile combines ballastless track roadbed construction method with stake raft with section

Similar Documents

Publication Publication Date Title
JP6219644B2 (en) Seismic reinforcement method for abutments by reducing earth pressure
JP2004068253A (en) Foundation structure of structure
CN110080388A (en) A kind of connection structure and its construction method improving PC frame joint anti-seismic performance
KR100926300B1 (en) Foundation structure reinfoeced by pile and the construction method for the same
JP2001311314A (en) Method for realizing base isolation structure of existing building
JP6182402B2 (en) Seismic reinforcement method for bridges to prevent falling bridges
JP2009121114A (en) Construction bearing structure, method of constructing underground construction, and method of replacing bearing of foundation load
KR100756517B1 (en) Hollow type composite pier
JP2007009421A (en) Foundation structure of structure
JP2002129584A (en) Foundation structure
JP5131121B2 (en) Seismic reinforcement structure for columns and seismic reinforcement method
Elwood et al. Performance-based issues from the 22 February 2011 Christchurch earthquake
JP4675226B2 (en) Method for joining concrete piles
JP2004332478A (en) Earthquake resistant structure for bridge
JP2005351047A (en) Reinforcing structure of guard fence
KR20060048843A (en) Reinforcement structure for a foundation pile
CN207633197U (en) Damping bridge pier
JPH1082057A (en) Method of earthquake-resisting pile foundation construction
JP4337140B2 (en) Protective structure
JP2019210743A (en) Retaining wall structure
JP2005200876A (en) Foundation structure of building
JPH0617414A (en) Drainage reinforcement pile
JP2005248428A (en) Foundation structure for construction
JP2006176975A (en) Lightweight banking structure and composite banking structure composed of this structure and reinforcing earth wall structure
JPH09228391A (en) Earthquake proof underground wall

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004