JP4337140B2 - Protective structure - Google Patents

Protective structure Download PDF

Info

Publication number
JP4337140B2
JP4337140B2 JP2004156628A JP2004156628A JP4337140B2 JP 4337140 B2 JP4337140 B2 JP 4337140B2 JP 2004156628 A JP2004156628 A JP 2004156628A JP 2004156628 A JP2004156628 A JP 2004156628A JP 4337140 B2 JP4337140 B2 JP 4337140B2
Authority
JP
Japan
Prior art keywords
mountain
support
roof
side support
mountain side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004156628A
Other languages
Japanese (ja)
Other versions
JP2005336837A (en
Inventor
修 若林
Original Assignee
日本サミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本サミコン株式会社 filed Critical 日本サミコン株式会社
Priority to JP2004156628A priority Critical patent/JP4337140B2/en
Publication of JP2005336837A publication Critical patent/JP2005336837A/en
Application granted granted Critical
Publication of JP4337140B2 publication Critical patent/JP4337140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Description

本発明は、本発明は道路、鉄道用軌道並びに家屋、建物施設等の被保護物を落石,雪崩,土砂崩落などから防護するために設置されるシェッド等の保護構造物に関する。   The present invention relates to a protective structure such as a shed installed to protect roads, railroad tracks, and protected objects such as houses and building facilities from falling rocks, avalanches and landslides.

一般にこの種の保護構造物は、屋根を支持体により支持して構成されており、鋼製とPC,RCによるコンクリート製のものなどが知られている。例えばコンクリート製のシェッドは、複数のコンクリート製壁体である主桁を道路又は軌道長手方向に向う横締用PC鋼材により一体に緊結して屋根を形成し、この屋根の道路又は軌道方向の両側を柱または壁に剛結して構成(例えば特許文献1、特許文献2)されている。そして、その主桁構造は断面T型のものや断面矩形のもの等が知られており、また主桁の支持構造は主桁の両側を親柱と子柱で支持するもの、または擁壁と親柱あるいは擁壁と擁壁とで支持するもの等種々のものが知られている。   In general, this type of protective structure is constructed by supporting a roof with a support, and steel, concrete made of PC, RC, and the like are known. For example, in a concrete shed, a main girder, which is a plurality of concrete wall bodies, is integrally fastened with PC steel for lateral fastening in the longitudinal direction of the road or the track to form a roof, and both sides of the roof in the road or track direction are formed. Are rigidly connected to a column or wall (for example, Patent Document 1 and Patent Document 2). The main girder structure is known to have a T-shaped cross section, a rectangular cross section, etc., and the main girder support structure is a structure in which both sides of the main girder are supported by a main column and a sub-column, or a retaining wall. Various things, such as what is supported by a main pillar or a retaining wall and a retaining wall, are known.

上記のような保護構造物の設計においては、該構造物の受ける設計荷重に対して、主に許容応力度法で強度を設定するようにしている。   In the design of the protection structure as described above, the strength is set mainly by the allowable stress method for the design load received by the structure.

すなわち、設計上予想される落石や地震などの最大荷重に対して、構造物の各応力度が所定の許容応力度を越えないように強度計算され、保護構造物が塑性変形を起こさない弾性範囲に収まるように強度設計がなされる。
実公平1−4895号公報 特公平1−2722号公報
In other words, the strength is calculated so that each stress level of the structure does not exceed the predetermined allowable stress level for the maximum load such as falling rocks and earthquakes that are expected in the design, and the elastic range where the protective structure does not cause plastic deformation The strength is designed so that it fits within the range.
No. 1-4895 Japanese Patent Publication No. 1-2722

しかし、実際の保護構造物は、降伏点を越えて塑性変形を起こしても、防護機能は損なわれないから、修復利用を考慮せずに防護機能のみを考慮する場合、弾性範囲による設計では強度が過剰になる面がある。   However, even if the actual protective structure is subjected to plastic deformation beyond the yield point, the protective function is not impaired. There is an aspect that becomes excessive.

そこで、本発明は、防護に必要な強度を備えた保護構造物を提供することを目的とする。   Then, an object of this invention is to provide the protection structure provided with the intensity | strength required for protection.

請求項1の発明は、山に沿う被保護物の少なくとも一部を覆い該山に沿って設けられる屋根の両側を、山側支持体と反山側支持体とにより支持してなる保護構造物において、前記反山側支持体の下部と基礎をヒンジ結合し、前記反山側支持体の上部と前記屋根をヒンジ結合し、前記屋根と前記山側支持体をヒンジ結合し、この山側支持体の下部を剛結部により基礎に剛結し、前記屋根に所定以上の荷重が加わると、前記剛結部において前記山側支持体が反山側に倒れる変位を許容し、前記山側支持体の上部が設定量だけ反山側に変位した際、前記山側支持体を山に支持する支持手段を備え、前記支持手段は、前記山に固定されると共に前記山側支持体に挿通したアンカーと、前記山側支持体の上部が前記設定量だけ反山側に変位した際、前記山側支持体に前記アンカーの支持力を伝える伝達手段とを備え前記伝達手段は、前記アンカーの先端に設けられた支持力伝達部材と、前記山側支持体に設けられ前記支持力伝達部材により支持力を受ける支持受部とを備え、前記支持力伝達部材と前記支持受部との間に間隔を設け、この間隔は前記設定量に対応して設定され、前記山側支持体の上部が前記設定量だけ反山側に変位した際、前記支持力伝達部材が前記支持受部に前記アンカーの支持力を伝えるように構成したものである。 The invention according to claim 1 is a protective structure that covers at least a part of an object to be protected along a mountain and supports both sides of a roof provided along the mountain by a mountain side support body and an anti-mountain side support body. The lower part of the anti mountain side support and the foundation are hinged, the upper part of the anti mountain side support and the roof are hinged, the roof and the mountain side support are hinged, and the lower part of the mountain side support is rigidly connected. When the load is applied to the roof more than a predetermined amount, the mountain side support body is allowed to be displaced to the anti-mountain side when the load is applied to the roof, and the upper part of the mountain side support body is set to the anti-mountain side by a set amount. when displaced, comprising a support means for supporting said mountain support mountain, the supporting means includes an anchor inserted through the Rutotomoni the mountain side support fixed to the mountain, the top of the front Kiyama side support when displaced by the anti mountainside the set amount, the And a transmitting means for transmitting the supporting forces of the anchor to the side support, wherein the transmission means support, a support force transmission member provided at the tip of the anchor, by the supporting force transmission member provided in the mountain side support A support receiving portion for receiving a force, and an interval is provided between the support force transmitting member and the support receiving portion, the interval is set corresponding to the set amount, and the upper portion of the mountain side support is set to the setting The displacement transmitting member transmits the support force of the anchor to the support receiving portion when displaced to the opposite side by an amount .

また、請求項の発明は、前記屋根は、長さ方向に複数の主桁を並べると共にPC鋼材により一体化してなり、雪崩などによる前記屋根の長さ方向に連続する所定の荷重に対して前記剛結部に塑性ヒンジを発生しない強度を備えるものである。 In the invention of claim 2 , the roof is formed by arranging a plurality of main girders in the length direction and integrated with a PC steel material, and with respect to a predetermined load continuous in the length direction of the roof due to an avalanche or the like. The rigid connection portion has a strength that does not generate a plastic hinge.

請求項1の構成によれば、反山側支持体の下部と基礎、反山側支持体の上部と屋根、屋根と山側支持体の3ヒンジ構造において、落石や雪崩などにより屋根に所定以上の荷重が加わると、山側支持体の下部と基礎との剛結箇所に応力が集中するため、剛結箇所が塑性変形しないように強度を上げると、不効率となるが、剛結箇所において設定量だけ反山側に倒れる変位を許容し、山側支持体の上部が設定量だけ反山側に変位した際、或いはその変位により剛結箇所に塑性ヒンジが生じた際、支持手段により山側支持体を山に支持することにより、山側支持体の変位を制御でき、これにより剛結箇所周りの設計強度を抑えることができるから、保護構造物の耐力を抑えながら、必要な強度を得ることができる。   According to the configuration of claim 1, in the three-hinged structure of the lower part and foundation of the anti-mountain side support, the upper part of the anti-mountain side support and the roof, and the roof and the mountain side support, a load exceeding a predetermined amount is applied to the roof due to falling rocks, avalanches, etc. If applied, stress concentrates on the rigid connection between the lower part of the hillside support and the foundation, so increasing the strength so that the rigid connection does not deform plastically becomes inefficient. Displacement that falls to the mountain side is allowed, and when the upper part of the mountain side support body is displaced to the anti-mountain side by a set amount, or when a plastic hinge is generated at the rigid connection due to the displacement, the mountain side support body is supported by the mountain. Thus, the displacement of the mountain-side support can be controlled, and thereby the design strength around the rigid connection portion can be suppressed. Therefore, the required strength can be obtained while suppressing the proof stress of the protective structure.

また、請求項の構成によれば、落石や雪崩などにより屋根に所定以上の荷重が加わると、山側支持体を反山側に倒す力を受け、山側支持体の上部が設定量だけ反山側に変位し、前記山側支持体の下部と基礎との間に塑性ヒンジが発生するか、該塑性ヒンジが発生する近くまで、山側支持体が反山側に倒れた後、該山側支持体をアンカーが支持し、アンカーにより支持された4ヒンジ構造として安定した構造が得られる。 In addition, according to the configuration of claim 1 , when a load exceeding a predetermined value is applied to the roof due to falling rocks or avalanches, the force is applied to the mountain side support to the anti-mountain side, and the upper part of the mountain side support is set to the anti-mountain side by a set amount. The anchor supports the mountain-side support after the mountain-side support has fallen to the anti-mountain side until it is displaced and a plastic hinge is generated between the lower part of the mountain-side support and the foundation or near to the occurrence of the plastic hinge. Thus, a stable structure is obtained as a four-hinge structure supported by the anchor.

また、請求項の構成によれば、落石や雪崩などにより屋根に所定以上の荷重が加わり、山側支持体が反山側に倒す力を受けて倒れると、前記山側支持体の下部と基礎との間に塑性ヒンジが発生するか、該塑性ヒンジが発生する近くまで山側支持体が倒れ、支持受部に支持力伝達部材が当接すると、アンカーが該山側支持体を支持し、アンカーにより支持された4ヒンジ構造或いは3ヒンジ構造として安定した構造が得られる。 Moreover, according to the structure of Claim 1 , when the load more than predetermined is added to the roof by a falling rock, an avalanche, etc., and the mountain side support body falls by receiving the force which falls to the anti-mountain side, the lower part of the said mountain side support body and the foundation When a plastic hinge is generated between them or the mountain side support body falls down to the vicinity where the plastic hinge is generated and the supporting force transmission member comes into contact with the support receiving portion, the anchor supports the mountain side support body and is supported by the anchor. In addition, a stable structure can be obtained as a 4-hinge structure or a 3-hinge structure.

また、請求項の構成によれば、屋根に局部的に荷重が加わる場合は、荷重が加わった箇所に塑性ヒンジが生じても長さ方向に隣合う主桁には塑性ヒンジは発生せず、前記局部的荷重に抗する強度を設定すればよい。一方、雪崩などで屋根の長さ方向に対して連続する荷重が加わり、屋根の長さ方向に連続する塑性ヒンジが発生すると、下部の剛結箇所に塑性ヒンジが発生するか、該塑性ヒンジが発生する近くまで山側支持体が倒れる前に、屋根が崩壊するから、屋根に雪崩などによる該屋根の長さ方向に連続する所定の荷重に対して塑性ヒンジを発生しない強度を付与することにより、屋根の崩壊を防止できる。 According to the second aspect of the present invention, when a load is locally applied to the roof, the plastic hinge is not generated in the main girder adjacent in the length direction even if the plastic hinge is generated at the position where the load is applied. The strength against the local load may be set. On the other hand, when a continuous load is applied in the length direction of the roof due to an avalanche or the like and a plastic hinge that is continuous in the length direction of the roof is generated, a plastic hinge is generated at the lower rigid joint or the plastic hinge is Since the roof collapses before the mountain side support collapses to the vicinity where it occurs, by giving the roof a strength that does not generate a plastic hinge for a predetermined load that continues in the length direction of the roof due to avalanche etc. It can prevent the roof from collapsing.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる新規な保護構造物を採用することにより、従来にない保護構造物が得られ、その保護構造物について記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all the configurations described below are not necessarily essential requirements of the present invention. In each embodiment, a novel protective structure different from the conventional one is employed to obtain an unprecedented protective structure, and the protective structure will be described.

以下、本発明の保護構造物の実施例について、図1〜図6は本発明の実施例1を示し、同図はコンクリート製のロックシェッドを示し、このロックシェッドは、複数の主桁1を道である道路M又は軌道の長さ方向に向う横締用PC鋼材2により一体に緊結して山Yに沿う屋根3を形成し、その主桁1は、道路M又は軌道幅方向に向うPC鋼材4によりプレテンション方式で緊張力が付与されており、前記屋根3の道路M又は軌道方向の両側を、反山側支持体である柱5および山側支持体である壁体6上の受面6Aに載置し、屋根3の幅方向両側をアンカー7とアンカー7Aによりそれぞれ柱5と壁体6に結合し、屋根3と柱5の間にゴム板8を介在してヒンジ結合部H1とし、屋根3と壁体6との間にはゴム板8を介在してヒンジ結合部H2としている。そして、前記柱5の下部にはメナーゼヒンジ状の接点部9が形成され、前記柱5の下部が反山側基礎である谷側基礎10とヒンジ結合されている。また、壁体6の下部は横方向の山側基礎11に剛結部12により剛結されている。尚、前記壁体6と山側基礎11との間には図示しない鉄筋が連続して設けられている。また、前記道路M又は軌道が被保護物である。尚、反山側は谷Tであり、道路Mの反山側が谷になっている。また、壁体6の背面側上部に山Yが位置し、山Yの斜面と壁体6の背面側上部との間には平坦部Hが形成されており、この平坦部Hは既設の山を削り平坦にして形成される。   FIG. 1 to FIG. 6 show a first embodiment of the present invention, which shows a concrete lock shed, and this lock shed includes a plurality of main girders 1. The roof 3 along the mountain Y is formed by tightly fastening with the laterally tightening PC steel material 2 facing the road M or the track length direction, and the main girder 1 is the PC facing the road M or the track width direction. The tension force is given by the steel material 4 by the pretension method, and the receiving surface 6A on the wall 5 which is the anti-mountain side support body 5 and the wall 6 which is the mountain side support body on both sides of the road M or the track direction of the roof 3. And both sides of the roof 3 in the width direction are coupled to the pillar 5 and the wall body 6 by the anchor 7 and the anchor 7A, respectively, and a rubber plate 8 is interposed between the roof 3 and the pillar 5 to form a hinge coupling portion H1. A rubber plate 8 is interposed between the roof 3 and the wall body 6 so that the hinge joint H2 It is. A contact portion 9 having a menase hinge shape is formed at the lower part of the pillar 5, and the lower part of the pillar 5 is hinged to a valley-side foundation 10 that is an anti-mountain side foundation. Further, the lower portion of the wall body 6 is rigidly connected to a lateral mountain-side foundation 11 by a rigid connection portion 12. A reinforcing bar (not shown) is continuously provided between the wall body 6 and the mountain side foundation 11. The road M or the track is a protected object. The anti-mountain side is a valley T, and the anti-mountain side of the road M is a valley. Further, a mountain Y is located at the upper part on the back side of the wall body 6, and a flat part H is formed between the slope of the mountain Y and the upper part on the back side of the wall body 6, and this flat part H is an existing mountain. Is formed by flattening.

また、前記屋根3の上面3Mが保護構造物の防護面であり、前記屋根3の谷T側には囲いブロック13が設けられ、この囲いブロック13は現場打ちコンクリートにより形成されたり、あるいはプレキャスト製の囲いブロック13を屋根3に固定して設けられる。そして、前記防護面13M上には、緩衝層31として、囲いブロック13と山Yと間に砂層を設けている。   Further, the upper surface 3M of the roof 3 is a protective surface of the protective structure, and an enclosure block 13 is provided on the valley T side of the roof 3, and the enclosure block 13 is made of cast-in-place concrete or made of precast. The enclosure block 13 is fixed to the roof 3. A sand layer is provided as a buffer layer 31 between the enclosure block 13 and the mountain Y on the protective surface 13M.

前記保護構造物は、前記壁体6の下部と基礎11との間に塑性ヒンジが生じるか、該塑性ヒンジが発生する近くまで壁体6が谷側に倒れ際、壁体6を山Yに支持する支持手段21を備える。この支持手段21について説明すると、山Yにアンカー22を固定すると共に、このアンカー22を前記壁体6の上部側の挿通孔23に挿通し、前記アンカー22の先端に伝達手段を構成する板状の支持力伝達部材24を固定し、壁体6内面の挿通孔23箇所が支持受部25であり、この支持受部25と前記支持力伝達部材24との間に間隔26を設ける。この間隔26は前記壁体6が谷T側に倒れ、前記剛結部12が塑性ヒンジ化するか、該塑性ヒンジが発生する近くまで壁体6が谷側に倒れる寸法に設定することができる。すなわち、前記間隔26は保護構造物の設計により得られる設定量Sに設定され、この設定量Sは、壁体6の上部が谷側に倒れる変位量に対応して設定され、壁体6の上部が谷側に倒れ、強度計算により剛結部12が塑性ヒンジ化する変位量、あるいは塑性ヒンジ化する前後の変位量に設定する。すなわち、設定量Sは、壁体6が倒れる方向の弾性変形を起こし、剛結部12が塑性ヒンジ化する前の領域から、剛結部12が塑性ヒンジ化し、さらに変形するまでの領域で適宜設定することができる。   When the protective structure has a plastic hinge between the lower portion of the wall body 6 and the foundation 11 or the wall body 6 falls to the valley side to the vicinity where the plastic hinge is generated, the wall body 6 is turned to a mountain Y. Supporting means 21 for supporting is provided. The support means 21 will be described. The anchor 22 is fixed to the mountain Y, and the anchor 22 is inserted into the insertion hole 23 on the upper side of the wall body 6 so that the tip of the anchor 22 constitutes a transmission means. The supporting force transmitting member 24 is fixed, and 23 insertion holes on the inner surface of the wall 6 are supporting receiving portions 25, and a space 26 is provided between the supporting receiving portion 25 and the supporting force transmitting member 24. The interval 26 can be set to such a dimension that the wall body 6 falls to the valley T side and the rigid coupling portion 12 becomes a plastic hinge or the wall body 6 falls to the valley side until the plastic hinge is generated. . That is, the interval 26 is set to a set amount S obtained by designing the protective structure, and this set amount S is set corresponding to the amount of displacement in which the upper portion of the wall body 6 falls to the valley side. The displacement is set to a displacement amount at which the upper portion falls to the valley side and the rigid connection portion 12 becomes a plastic hinge by strength calculation, or a displacement amount before and after the plastic hinge. That is, the set amount S is appropriately determined in a region where the wall body 6 is elastically deformed in the direction in which the wall body 6 is tilted, and before the rigid coupling portion 12 is plastic hinged and the rigid coupling portion 12 is plastic hinged and further deformed. Can be set.

尚、前記間隔26には、クッションなどの弾性体を設けてもよい。尚、壁体6の長さにもよるが、支持手段21のアンカー22は壁体6の長さ方向に複数設けることができる。   The interval 26 may be provided with an elastic body such as a cushion. Although depending on the length of the wall body 6, a plurality of anchors 22 of the support means 21 can be provided in the length direction of the wall body 6.

このようなロックシェッドにおける設計方法を以下に説明する。図3は、図1及び図2に示した保護構造物の骨組図であり、屋根3の反山側が谷Tとなっている場合、谷側において大きな支持力を得るには、谷側基礎10を大型化すると共に、所定の支持力を得る構造としなければならないため、山側に比べて別途施工が必要でかつ条件が悪い分だけ施工費用も割高になるから、設計上不利である。これに対し、構造的に安定する山側の壁体6及び山側基礎11により荷重に対抗することが構造上有利であり、同図に示すように3ヒンジ構造を採用する。この構造では、屋根3に落石などを受けても、接点部9により谷側基礎10には柱5から縦断方向の力のみが加わり、谷側基礎10水平力を受けないから、谷側基礎10は比較的小型で済む。   A design method in such a lock shed will be described below. FIG. 3 is a skeleton diagram of the protective structure shown in FIGS. 1 and 2. When the opposite mountain side of the roof 3 is a valley T, in order to obtain a large supporting force on the valley side, the valley side foundation 10 Therefore, it is disadvantageous in terms of design because it requires a construction to obtain a predetermined supporting force and requires a separate construction compared to the mountain side, and the construction cost is higher due to poor conditions. On the other hand, it is structurally advantageous to resist the load by the structurally stable mountain-side wall body 6 and mountain-side foundation 11, and a three-hinge structure is adopted as shown in FIG. In this structure, even if the roof 3 receives a fallen stone, the contact portion 9 applies only a longitudinal force to the valley foundation 10 from the pillar 5 and does not receive a horizontal force on the valley foundation 10. Is relatively small.

前記屋根3は、複数の主桁1を道路などの長さ方向に並べると共に複数の横締用PC鋼材2により緊張一体化されている。このような屋根3上に、山Yの斜面から落石が落下すると、屋根3に局部的に荷重が加わる。直接落石を受けるのは主桁1の1〜数個程度であり、これら主桁1は複数が横締用PC鋼材2により緊張一体化されているから、落石を受けた主桁1には塑性ヒンジが発生しても、隣合う複数の主桁1が支えることにより、屋根3の長さ方向に連続して塑性ヒンジが発生し難く、設計最大荷重である設計最大落石荷重に対して、屋根3長さ方向に連続して塑性ヒンジが発生して屋根3が崩壊しないように該屋根3の強度を設定すると共に、屋根3に設計最大落石荷重を受けた場合に、前記剛結部12が塑性ヒンジするように壁体6及び山型基礎11の強度を設定する。前記屋根3の強度計算には立体解析などを用いることができる。尚、設計最大落石荷重は、原地調査等により照査すべき最大の落石条件を設定する。   The roof 3 has a plurality of main girders 1 arranged in the longitudinal direction of a road or the like and is tension-integrated by a plurality of PC steel materials 2 for lateral fastening. When falling rocks fall on the roof 3 from the slope of the mountain Y, a load is locally applied to the roof 3. One to several of the main girders 1 are directly subjected to falling rocks, and a plurality of these main girders 1 are tensioned and integrated by the PC steel material 2 for lateral fastening. Even if a hinge is generated, it is difficult to generate a plastic hinge continuously in the length direction of the roof 3 by supporting a plurality of adjacent main girders 1, and the roof is against the design maximum rock fall load that is the design maximum load. The strength of the roof 3 is set so that the plastic hinge does not continuously collapse in the three length directions, and the roof 3 is not collapsed. The strength of the wall body 6 and the mountain-shaped foundation 11 is set so as to make a plastic hinge. A solid analysis or the like can be used for calculating the strength of the roof 3. In addition, the maximum rock fall condition that should be verified by the field survey etc. is set for the design maximum rock fall load.

一方、山Yの斜面から落下する雪崩の場合、屋根3の長さ方向に連続して落下する場合があるから、設計最大荷重である設計最大雪崩荷重に対して、屋根3が長さ方向に連続して塑性ヒンジを生じない強度に設計する。尚、設計最大雪崩荷重は、原地調査等により照査すべき最大の雪崩条件を設定し、屋根3に加わる荷重とその範囲(長さ)を考慮し、例えば屋根3の中央に予想される荷重と長さで雪崩を受けるとして、長さ方向に連続して塑性ヒンジを生じない強度を計算する。このように設計することにより、屋根3が設計最大落石荷重又は設計最大雪崩荷重を受けた場合、屋根3に塑性ヒンジが発生することなく、剛結部12が塑性ヒンジ化するように設定する。尚、屋根3の上側の山Yは斜面になっているから、該斜面から落下する落石及び雪崩は、白抜き矢印に示すように、鉛直方向力に加えて谷側に向く水平方向力を備えるから、それらを屋根3に受けると、壁体6の上部を谷側に倒す力が加わる。   On the other hand, in the case of an avalanche falling from the slope of the mountain Y, the roof 3 may fall continuously in the length direction of the roof 3, so the roof 3 in the length direction against the design maximum avalanche load that is the design maximum load. The strength is designed so as not to continuously produce a plastic hinge. The maximum design avalanche load is determined by setting the maximum avalanche condition to be verified by the original site survey, etc., and considering the load applied to the roof 3 and its range (length), for example, the load expected at the center of the roof 3 Assuming that an avalanche is received by the length, the strength that does not produce a plastic hinge continuously in the length direction is calculated. By designing in this way, when the roof 3 receives the design maximum rock fall load or the design maximum avalanche load, the rigid connection portion 12 is set to be a plastic hinge without generating a plastic hinge on the roof 3. In addition, since the mountain Y on the upper side of the roof 3 is a slope, falling rocks and avalanches falling from the slope have a horizontal force directed to the valley side in addition to the vertical force, as indicated by the white arrow. Then, when they are received by the roof 3, a force is applied to bring down the upper part of the wall body 6 to the valley side.

図6は、屋根3が設計最大落石荷重又は設計最大雪崩荷重を受けた場合、屋根3に塑性ヒンジが発生する状態を例示しており、図6(B)とならないように設計する。尚、図1に示す保護構造物では、柱5の上面及び壁体6の前記受面6Aは屋根Mの幅方向に所定の幅を有するから、屋根3に塑性ヒンジが発生しても、柱5の上面及び壁体6の前記受面6Aの幅方向両端側に位置する角部に、屋根M下面が当たり、新たに屋根Mを支持する支持点が発生するから、中央に塑性ヒンジが発生しても屋根Mが崩壊することはない。 6, when the roof 3 is subjected to a maximum rockfall load or design maximum avalanche load design exemplifies a state in which the plastic hinge occurs roof 3 is designed so as not to FIG. 6 (B). In the protective structure shown in FIG. 1, the upper surface of the column 5 and the receiving surface 6A of the wall 6 have a predetermined width in the width direction of the roof M. Therefore, even if a plastic hinge occurs on the roof 3, the column 5 and the corners of the wall 6 positioned on both ends of the receiving surface 6A in the width direction are hit by the lower surface of the roof M, and a new support point for supporting the roof M is generated, so that a plastic hinge is generated at the center. However, the roof M will not collapse.

屋根3に落石及び雪崩などを受け、該屋根3に所定以上の荷重が加わると、壁体6が山側に倒れ、剛結部12が塑性ヒンジ化するか、塑性ヒンジ化する前後まで壁体6が変位する。あるいは、屋根3に直接荷重が加わる以外でも、図3の白抜き矢印に示すように、前記平坦部Hに落石及び雪崩などを受けると、壁体6を山側に倒す力が生じ、壁体6が山側に倒れ、剛結部12が塑性ヒンジ化するか、塑性ヒンジ化する前後まで壁体6が変位する。このようにして、壁体6が倒れ、剛結部12が塑性ヒンジ化するか、塑性ヒンジ化する前後まで壁体6が変位すると、倒れた壁体6の支持受部25が支持力伝達部材24に当接し、アンカー22が壁体6を支持する。図4及び図5の骨組図は、剛結部12が塑性ヒンジ化した状態を示し、塑性ヒンジ化すると保護構造物は4ヒンジの門形構造で、壁体6のアンカー22箇所が支点となった静定構造物となり、このように所定以上の荷重を受ける前は3ヒンジ構造物、所定以上の荷重を受けて壁体6下部が塑性ヒンジ化した後は、アンカー22により壁体6の倒れを防止するように支持した4ヒンジ構造として弾性領域で強度計算を行うことにより、従来に比べて部材強度を抑えながら、所定の構造強度を備えた保護構造物が得られる。また、図5の骨組図で、剛結部12が塑性ヒンジ化することなく塑性ヒンジ化する近くまで壁体6が山側に倒れる変位を生じ、アンカー22により壁体6の倒れを防止するように支持された場合も、アンカー22による支持点が増設された3ヒンジ構造として強度計算を行うことができ、従来に比べて部材強度を抑えながら、所定の構造強度を備えた保護構造物が得られる。   When the roof 3 receives falling rocks, avalanches, etc. and a load exceeding a predetermined value is applied to the roof 3, the wall body 6 falls to the mountain side, and the rigid body 12 becomes a plastic hinge, or the wall body 6 until before or after the plastic hinge is formed. Is displaced. Alternatively, even if a load is not directly applied to the roof 3, as shown by the white arrow in FIG. 3, if the flat part H receives a falling rock, an avalanche, or the like, a force to tilt the wall body 6 to the mountain side is generated. Falls to the mountain side, and the wall body 6 is displaced until the rigid connection portion 12 becomes a plastic hinge or before and after the plastic hinge. In this way, when the wall body 6 falls down and the rigid coupling portion 12 becomes a plastic hinge, or when the wall body 6 is displaced before and after the plastic hinge, the support receiving portion 25 of the fallen wall body 6 becomes a support force transmission member. The anchor 22 supports the wall body 6 in contact with 24. 4 and 5 show a state in which the rigid connection portion 12 is formed into a plastic hinge. When the plastic hinge is formed, the protective structure is a four-hinge portal structure, and 22 anchors of the wall 6 serve as fulcrums. In this way, a three-hinge structure before receiving a load exceeding a predetermined value, and a wall 6 lowering by an anchor 22 after the lower part of the wall 6 is plastic hinged by receiving a load exceeding a predetermined value. By performing the strength calculation in the elastic region as a four-hinge structure that is supported so as to prevent this, a protective structure having a predetermined structural strength can be obtained while suppressing the member strength as compared with the conventional case. Further, in the framework diagram of FIG. 5, the wall body 6 is displaced to the mountain side near the rigid connection portion 12 without being plastic hinged, and the anchor member 22 prevents the wall body 6 from falling over. Even when supported, the strength can be calculated as a three-hinge structure with additional support points by the anchor 22, and a protective structure having a predetermined structural strength can be obtained while suppressing the member strength compared to the conventional structure. .

このように本実施例では、請求項1に対応して、山Yに沿う被保護物たる道路M又は軌道なくとも一部を覆い該山Yに沿って設けられる屋根3の両側を、山側支持体たる壁体6と反山側支持体たる柱5とにより支持してなる保護構造物において、柱5の下部と谷側基礎10をヒンジ結合し、柱5の上部と屋根3をヒンジ結合し、屋根3と壁体6をヒンジ結合し、この壁体6の下部を山側基礎10に剛結部12により剛結し、屋根3に所定以上の荷重が加わると、剛結部12において壁鯛6が反山側である谷側に倒れる変位を許容し、壁体6の上部が設定量Sだけ反山側たる谷側に変位した際、壁体6を山Yに支持する支持手段21を備え、支持手段21は、山Yに固定されると共に壁体6に挿通したアンカー22と、壁体5の上部が設定量Sだけ谷側に変位した後に壁体6にアンカー22の支持力を伝える伝達手段たる支持力伝達部材24及び支持受部25とを備え、伝達手段は、アンカー22の先端に設けられた支持力伝達部材24と、壁体6に設けられ支持力伝達部材24により支持力を受ける支持受部25とを備え、支持力伝達部材24と支持受部25との間に間隔26を設け、この間隔26は設定量Sに対応して設定され、壁体6の上部が設定量Sだけ谷側に変位した際、支持力伝達部材24が支持受部25にアンカー22の支持力を伝えるように構成したから、ヒンジ結合部H1,H2及びヒンジ結合部たる接点部9の3ヒンジ構造において、落石などにより屋根3に所定以上の荷重が加わると、壁体6の下部と基礎との剛結部12に応力が集中するため、剛結部12が塑性変形しないように強度を上げると、不効率となるが、剛結部12において設定量Sだけ谷側に倒れる変位を許容し、壁体6の上部が設定量Sだけ谷側に変位した際、或いはその変位により剛結部12に塑性ヒンジが生じた際、支持手段21により壁体6を山Yに支持することにより、壁体6の変位を制御でき、これにより剛結部12周りの設計強度を抑えることができるから、保護構造物の耐力を抑えながら、必要な強度を得ることができる。 In this way, in this embodiment, corresponding to claim 1, the road M or the track that is to be protected along the mountain Y is covered at least on both sides of the roof 3 that covers a part and is provided along the mountain Y. In the protection structure formed by supporting the wall 6 as the body and the pillar 5 as the anti-mountain side support, the lower part of the pillar 5 and the valley base 10 are hinged, and the upper part of the pillar 5 and the roof 3 are hinged. When the roof 3 and the wall body 6 are hinge-coupled, and the lower part of the wall body 6 is rigidly connected to the mountain side foundation 10 by the rigid connection portion 12 and a load exceeding a predetermined value is applied to the roof 3, There permit displacement to fall to the valley side is anti mountainside, when the upper part of the wall 6 is displaced in the set amount S counter mountain serving the valley, it comprises a support means 21 for supporting the wall 6 in mountain Y, the support The means 21 is fixed to the mountain Y and the anchor 22 inserted through the wall body 6 and the upper part of the wall body 5 are displaced to the valley side by a set amount S. Are provided with a supporting force transmitting member 24 and a supporting receiving portion 25 as transmitting means for transmitting the supporting force of the anchor 22 to the wall body 6. The transmitting means includes a supporting force transmitting member 24 provided at the tip of the anchor 22, and a wall body. 6 is provided with a support receiving portion 25 that receives a support force by the support force transmitting member 24, and an interval 26 is provided between the support force transmitting member 24 and the support receiving portion 25. The interval 26 corresponds to the set amount S. Since the support force transmitting member 24 transmits the support force of the anchor 22 to the support receiving portion 25 when the upper portion of the wall body 6 is displaced to the valley side by the set amount S , the hinge coupling portion H1 , H2 and the three-hinge structure of the contact portion 9 that is the hinge coupling portion, when a load exceeding a predetermined value is applied to the roof 3 due to falling rocks or the like, stress concentrates on the rigid connection portion 12 between the lower portion of the wall body 6 and the foundation. Increasing the strength to prevent the rigid joint 12 from being plastically deformed is inefficient. When the upper portion of the wall 6 is displaced to the valley side by the set amount S or when the plastic hinge is generated in the rigid portion 12 by the displacement, the supporting means 21 is allowed. By supporting the wall body 6 on the mountain Y by means of the above, it is possible to control the displacement of the wall body 6, thereby suppressing the design strength around the rigid coupling portion 12, so that it is necessary while suppressing the proof stress of the protective structure. Strength can be obtained.

また、このように本実施例では、請求項に対応して、落石や雪崩などにより屋根3に所定以上の荷重が加わり、壁体6が反山側に倒す力を受けて倒れ、壁体6の上部が設定量Sだけ谷側に変位し、壁体6の下部と山側基礎11との間に塑性ヒンジが発生するか、該塑性ヒンジが発生する近くまで、壁体6が谷側に倒れた後、壁体6をアンカー22が支持し、アンカー22により支持された4ヒンジ構造として安定した構造が得られる。 In this way, in this embodiment, corresponding to claim 1 , a load exceeding a predetermined value is applied to the roof 3 due to falling rocks, avalanches, etc., and the wall body 6 falls due to the force to fall on the anti-mountain side, and the wall body 6 The upper portion of the wall 6 is displaced to the valley side by a set amount S, and the wall body 6 falls to the valley side until the plastic hinge is generated between the lower portion of the wall body 6 and the mountain side foundation 11 or near the generation of the plastic hinge. After that, the wall 22 is supported by the anchor 22, and a stable structure is obtained as a four-hinge structure supported by the anchor 22.

また、このように本実施例では、請求項に対応して、落石や雪崩などにより屋根3に所定以上の荷重が加わり、壁体6が谷側に倒す力を受けて倒れると、壁体6の下部と山側基礎11との間に塑性ヒンジが発生するか、該塑性ヒンジが発生する近くまで山側支持体が倒れ、支持受部25に支持力伝達部材24が当接すると、アンカー22が壁体6を支持し、アンカー22により支持された4ヒンジ構造或いは3ヒンジ構造として安定した構造が得られる。このように支持力伝達部材24と支持受部25とが当接した後は、アンカー22に設けた支持力伝達部材24が、壁体6の倒れを防止する支持力を壁体6に与えるものである。 In this way, in this embodiment, in response to claim 1, when a load of a predetermined level or more is applied to the roof 3 due to falling rocks, avalanches, etc. When a plastic hinge is generated between the lower portion of 6 and the mountain side base 11 or the mountain side support body is brought down to the vicinity where the plastic hinge is generated and the supporting force transmitting member 24 comes into contact with the support receiving portion 25, the anchor 22 is A stable structure is obtained as a four-hinge structure or a three-hinge structure that supports the wall body 6 and is supported by the anchor 22. After the support force transmission member 24 and the support receiving portion 25 are in contact with each other in this way, the support force transmission member 24 provided on the anchor 22 gives the wall body 6 a support force for preventing the wall body 6 from falling down. It is.

また、このように本実施例では、請求項に対応して、屋根3は、長さ方向に複数の主桁1を並べると共に横締用PC鋼材2により一体化してなり、雪崩などによる屋根3の長さ方向に連続する所定の荷重に対して剛結部12に塑性ヒンジを発生しない強度を備えるから、屋根3に局部的に荷重が加わる場合は、荷重が加わった箇所に塑性ヒンジが生じても長さ方向に隣合う主桁1には塑性ヒンジは発生せず、局部的荷重に抗する強度を設定すればよい。一方、雪崩などで屋根3の長さ方向に対して連続する荷重が加わり、屋根3の長さ方向に連続する塑性ヒンジが発生か、該塑性ヒンジが発生する近くまで山側支持体が倒れる前に、屋根3が崩壊するから、屋根3に雪崩などによる該屋根の長さ方向に連続する所定の荷重に対して塑性ヒンジを発生しない強度を付与することにより、屋根3の崩壊を防止できる。 In this way, in this embodiment, in accordance with claim 2 , the roof 3 is formed by arranging a plurality of main girders 1 in the length direction and integrating them with the PC steel material 2 for side fastening, and is a roof caused by an avalanche or the like. 3 is provided with a strength that does not generate a plastic hinge at the rigid joint 12 for a predetermined load continuous in the length direction of 3. When the load is locally applied to the roof 3, the plastic hinge is provided at the place where the load is applied. Even if it occurs, a plastic hinge is not generated in the main girder 1 adjacent in the length direction, and the strength against the local load may be set. On the other hand, a continuous load is applied in the length direction of the roof 3 due to an avalanche or the like, and a plastic hinge continuous in the length direction of the roof 3 occurs or before the mountain side support body collapses to the vicinity where the plastic hinge is generated. Since the roof 3 collapses, the roof 3 can be prevented from collapsing by giving the roof 3 strength that does not generate a plastic hinge against a predetermined load that continues in the length direction of the roof due to an avalanche or the like.

図7は本発明の実施例2を示し、上記実施例1と同一部分に同一符号を付し、その詳細な説明を省略して詳述すると、この例では、前記アンカー22の先端に支持力伝達部材たるボルト24Aを固定し、壁体6内面の挿通孔23箇所が支持受部24であり、この支持受部24側に受板28を配置し、この受板と前記ボルト24Aとの間の間隔26にコイルスプリング29を設けており、前記間隔26はボルト24Aと支持受部25との間に設けられており、壁体6が山側に倒れると、前記コイルスプリング29が収縮し、ボルト24Aにより支持受部25にアンカー22の支持力が伝達され、上記実施例1と同様な作用・効果を奏する。   FIG. 7 shows a second embodiment of the present invention. The same reference numerals are given to the same parts as those in the first embodiment, and the detailed description thereof will be omitted. A bolt 24A as a transmission member is fixed, and 23 insertion holes on the inner surface of the wall body 6 are support receiving portions 24. A receiving plate 28 is disposed on the support receiving portion 24 side, and between the receiving plate and the bolt 24A. Is provided between the bolt 24A and the support receiving portion 25. When the wall body 6 is tilted to the mountain side, the coil spring 29 is contracted and the bolt spring 29 is provided. The support force of the anchor 22 is transmitted to the support receiving portion 25 by 24A, and the same operations and effects as in the first embodiment are achieved.

なお、本発明は、前記実施例に限定されるものではなく、種々の変形実施が可能である。例えば、実施例では、ロックシェッドを示したが、屋根の両側を支持体により支持するものであれば各種のものに適用可能であり、また、山側支持体は連続した壁体以外でも柱などでもよい。さらに、実施例では、コンクリート製の保護構造物を示したが、プレキャストコンクリート(PC)製、鉄筋コンクリート(RC)製のいずれでもよく、また、保護構造物は、工場製作でも現場内コンクリート製でもよく、さらに、コンクリート製以外に鋼製でもよい。   In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible. For example, in the embodiment, the lock shed is shown, but it can be applied to various types as long as both sides of the roof are supported by the support, and the mountain side support can be a pillar other than a continuous wall. Good. Furthermore, although the concrete protective structure was shown in the embodiment, it may be made of either precast concrete (PC) or reinforced concrete (RC), and the protective structure may be made by factory or on-site concrete. Furthermore, steel may be used in addition to concrete.

本発明の実施例1を示す保護構造物の断面図である。It is sectional drawing of the protection structure which shows Example 1 of this invention. 同上、一部を切欠いた保護構造物の斜視図である。It is a perspective view of the protection structure which a part was notched same as the above. 同上、保護構造物の骨組図である。It is a skeleton figure of a protection structure same as the above. 同上、山側支持体の下部が塑性ヒンジ化した状態を示す構造物の骨組図である。It is a skeleton figure of the structure which shows the state which the lower part of the mountain side support body turned into plastic hinge same as the above. 同上、骨組概略図である。FIG. 同上、骨組概略図であり、図6(A)は屋根に塑性ヒンジが発生する前、図6(B)は屋根に塑性ヒンジが発生した状態を示す。FIG. 6A is a schematic diagram of the framework. FIG. 6A shows a state where a plastic hinge is generated on the roof, and FIG. 6B shows a state where the plastic hinge is generated on the roof. 本発明の実施例2を示す支持手段周りの断面図である。It is sectional drawing around the support means which shows Example 2 of this invention.

2 横締用PC鋼材
3 屋根
5 柱(反山側支持体)
6 壁体(山側支持体)
H1 ヒンジ結合部
H2 ヒンジ結合部
9 接点部
10 谷側基礎(反山側基礎)
11 山側基礎
12 剛結部
21 支持手段
22 アンカー
24 支持力伝達部材(伝達手段)
24A ボルト(支持力伝達部材・伝達手段)
25 支持受部(伝達手段)
26 間隔
S 設定値
2 PC steel for lateral fastening 3 Roof 5 Column (anti-mountain side support)
6 Wall (mountain side support)
H1 Hinge joint H2 Hinge joint 9 Contact part
10 Valley side foundation (anti-mountain side foundation)
11 Mountain side foundation
12 Rigid joint
21 Support means
22 Anchor
24 Support force transmission member (transmission means)
24A bolt (support force transmission member / transmission means)
25 Support receiving part (transmission means)
26 intervals
S Set value

Claims (2)

山に沿う被保護物の少なくとも一部を覆い該山に沿って設けられる屋根の両側を、山側支持体と反山側支持体とにより支持してなる保護構造物において、前記反山側支持体の下部と基礎をヒンジ結合し、前記反山側支持体の上部と前記屋根をヒンジ結合し、前記屋根と前記山側支持体をヒンジ結合し、この山側支持体の下部を剛結部により基礎に剛結し、前記屋根に所定以上の荷重が加わると、前記剛結部において前記山側支持体が反山側に倒れる変位を許容し、
前記山側支持体の上部が設定量だけ反山側に変位した際、前記山側支持体を山に支持する支持手段を備え
前記支持手段は、前記山に固定されると共に前記山側支持体に挿通したアンカーと、前記山側支持体の上部が前記設定量だけ反山側に変位した際、前記山側支持体に前記アンカーの支持力を伝える伝達手段とを備え
前記伝達手段は、前記アンカーの先端に設けられた支持力伝達部材と、前記山側支持体に設けられ前記支持力伝達部材により支持力を受ける支持受部とを備え、前記支持力伝達部材と前記支持受部との間に間隔を設け、この間隔は前記設定量に対応して設定され、
前記山側支持体の上部が前記設定量だけ反山側に変位した際、前記支持力伝達部材が前記支持受部に前記アンカーの支持力を伝えるように構成したことを特徴とする保護構造物。
A protective structure that covers at least a part of an object to be protected along a mountain and supports both sides of a roof provided along the mountain by a mountain side support and an anti-mountain side support, and a lower part of the anti-mountain side support And the foundation is hinged, the upper part of the anti-mountain side support and the roof are hinged, the roof and the mountain side support are hinged, and the lower part of the mountain side support is rigidly connected to the foundation by a rigid connection part. When a load of a predetermined value or more is applied to the roof, the mountain-side support body is allowed to displace to the anti-mountain side in the rigid connection portion,
When the upper part of the mountain-side support is displaced to the anti-mountain side by a set amount, it comprises a support means for supporting the mountain-side support to the mountain ,
It said support means includes an anchor inserted through the fixed Rutotomoni the mountain side support to the mountains, before the time the upper portion of Kiyama side support is displaced only in the counter mountainside the set amount, of the anchor to the mountain side support A transmission means for transmitting support force ,
The transmission means includes a support force transmission member provided at a tip of the anchor , and a support receiving portion provided on the mountain side support body and receiving a support force by the support force transmission member, and the support force transmission member and the An interval is provided between the support receiving portion, and this interval is set corresponding to the set amount,
The protection structure according to claim 1, wherein the support force transmission member transmits the support force of the anchor to the support receiving portion when the upper portion of the mountain side support body is displaced to the anti-mountain side by the set amount .
前記屋根は、長さ方向に複数の主桁を並べると共にPC鋼材により一体化してなり、雪崩などによる前記屋根の長さ方向に連続する所定の荷重に対して前記剛結部に塑性ヒンジを発生しない強度を備えることを特徴とする請求項1記載の保護構造物。 The roof is formed by arranging a plurality of main girders in the length direction and integrated with PC steel material, and generates a plastic hinge in the rigid connection portion for a predetermined load that continues in the length direction of the roof due to an avalanche or the like. claim 1 Symbol placement of protective structure, characterized in that it comprises an intensity that does not.
JP2004156628A 2004-05-26 2004-05-26 Protective structure Expired - Lifetime JP4337140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156628A JP4337140B2 (en) 2004-05-26 2004-05-26 Protective structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156628A JP4337140B2 (en) 2004-05-26 2004-05-26 Protective structure

Publications (2)

Publication Number Publication Date
JP2005336837A JP2005336837A (en) 2005-12-08
JP4337140B2 true JP4337140B2 (en) 2009-09-30

Family

ID=35490704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156628A Expired - Lifetime JP4337140B2 (en) 2004-05-26 2004-05-26 Protective structure

Country Status (1)

Country Link
JP (1) JP4337140B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108824242A (en) * 2018-05-28 2018-11-16 中铁第勘察设计院集团有限公司 Two storied gate shape pier adds the anti-fall stone structure of beam in length and breadth
KR102269357B1 (en) * 2020-12-24 2021-06-28 (주) 대현이엔씨 Rock Shed Structure

Also Published As

Publication number Publication date
JP2005336837A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
Dicleli A rational design approach for prestressed-concrete-girder integral bridges
US8196368B2 (en) Ductile seismic shear key
JP2008196135A (en) Reinforcing structure of bridge
Abbasi et al. Effect of shear keys on seismic response of irregular bridge configurations
KR100756517B1 (en) Hollow type composite pier
JP4337140B2 (en) Protective structure
JP4199634B2 (en) Retaining wall with rockfall protection function and road formation method
JP4576564B2 (en) Protective structures and construction methods
JP4038821B2 (en) Road expansion structure
JP2006132150A (en) Seismic response control column and its construction method
JP2004270168A (en) Earthquake-proof reinforcement structure and method
JP3690495B2 (en) Building construction method and building
JP4053057B2 (en) Wall fall prevention structure
JP2006233655A (en) Method of absorbing impact force of falling rock, and falling rock protective structure
JP2015045212A (en) Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure
JP2006077552A (en) Foundation structure and protective structure using the same
JP4441736B2 (en) Avalanche or rockfall protective walls, sound barriers, protective wall or sound barrier columns, precast concrete blocks
JP2000001848A (en) Earthquake-resistant pile foundation structure and earthquake-resistant pile
JP2005163532A (en) Designing method for falling-stone protective structure and falling-stone protective structure
JP3881342B2 (en) Bubble mortar embankment structure
JP4560843B2 (en) Construction method of protective structure
KR102439580B1 (en) A milti-funtional deck road system
JP2002242128A (en) Roof slab for protective structure
JP2958951B1 (en) Concrete beam
JP2005076208A (en) Foundation structure for guardrail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090621

R150 Certificate of patent or registration of utility model

Ref document number: 4337140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term