JP2004270168A - Earthquake-proof reinforcement structure and method - Google Patents

Earthquake-proof reinforcement structure and method Download PDF

Info

Publication number
JP2004270168A
JP2004270168A JP2003058495A JP2003058495A JP2004270168A JP 2004270168 A JP2004270168 A JP 2004270168A JP 2003058495 A JP2003058495 A JP 2003058495A JP 2003058495 A JP2003058495 A JP 2003058495A JP 2004270168 A JP2004270168 A JP 2004270168A
Authority
JP
Japan
Prior art keywords
pile
additional
brace
frame
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003058495A
Other languages
Japanese (ja)
Other versions
JP4140028B2 (en
Inventor
Motoyuki Okano
素之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003058495A priority Critical patent/JP4140028B2/en
Publication of JP2004270168A publication Critical patent/JP2004270168A/en
Application granted granted Critical
Publication of JP4140028B2 publication Critical patent/JP4140028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten the yield strength of a foundation structure without the re-construction of an underground beam. <P>SOLUTION: In a lower structure 11 of an elevated bridge as this earthquake-proof reinforcement structure, a rigid frame 3 of reinforced concrete formed of columns 1, 1 and a beam 2 stretched between column capitals thereof is supported by piles 12, 12, and the columns 1, 1 are erected on footings 13, 13 installed on pile heads of existing piles. In the lower structure 11 of the elevated bridge, a new pile is provided as a pile 14 for reinforcing in a position separate from the existing piles 12, 12, and a footing 15 provided on the pile head of the pile for reinforcing and vicinities of both ends of the beam 2 are connected to each other through braces 16, 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として土木分野で使用される耐震補強構造及び方法に関する。
【0002】
【従来の技術】
鉄道、自動車等の輸送車両が走行する橋梁としては、河川、海峡等を横断する狭義の橋梁のほかに市街地において連続的に建設される、いわゆる高架橋がある。かかる高架橋は、効率的な土地利用の観点から、道路上、鉄道上あるいは河川上の空間に連続して建設されるものであり、高架橋下の道路あるいは鉄道が立体交差することとなるため、交通渋滞の解消にも貢献する。
【0003】
ところで、このような高架橋の下部構造は、通常、鉄筋コンクリートのラーメン架構として構築されることが多いが、その設計施工の際には、地震時における高架橋の耐震性が十分検討されなければならない。
【0004】
【特許文献1】
特開2001−020228号公報
【0005】
【発明が解決しようとする課題】
かかる状況下、本出願人は図6に示すように、柱1,1及び梁2からなる鉄筋コンクリートのラーメン架構3内にダンパー4及びブレース5,5からなるダンパーブレース6を配設した高架橋の下部構造7を提案しており、かかる構成によれば、耐震性の向上を大幅に向上させることが可能となる。
【0006】
しかしながら、上述した高架橋の下部構造7を既に建設された高架橋の下部構造に適用して耐震補強しようとする場合には以下のような問題が生じる。
【0007】
すなわち、ラーメン架構3内にダンパー4及びブレース5,5からなるダンパーブレース6を配設することにより、ラーメン架構の耐力はたしかに向上するが、それに見合う分だけ、フーチングや杭といった基礎構造の耐力も大きくしなければ、高架橋の下部構造7を全体として耐震補強したことにならない。
【0008】
したがって、新設の場合には、杭径を太くするなどの方法によって基礎構造の耐力を当初から向上させることができるものの、既設の場合には、あらたに杭を設けて増し杭とするとともに、地中梁を再施工する等の対策を施すことによって増し杭を既設の杭と一体化させなければならない。
【0009】
しかしながら、地中梁の再施工等には多額の費用と時間を要するため、経済性の観点で改良の余地があった。
【0010】
本発明は、上述した事情を考慮してなされたもので、地中梁等の再施工を行わずとも、基礎構造の耐力を高めることが可能な耐震補強構造及び方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る耐震補強構造は請求項1に記載したように、ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設けるとともに、該増し杭の杭頭と前記ラーメン架構を構成する梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結してなるものである。
【0012】
また、本発明に係る耐震補強構造は、矩形状地盤領域の隅部に立設された4本の柱と該柱の頭部をロノ字状に連結する4本の梁とで前記ラーメン架構を構成するとともに、前記増し杭を前記矩形状地盤領域内に設けたものである。
【0013】
また、本発明に係る耐震補強構造は、前記ブレースを前記梁の下面に沿って固着された取付け用鋼材を介して前記梁の両端近傍に連結したものである。
【0014】
また、本発明に係る耐震補強構造は、前記増し杭の杭頭と前記ブレースとの間にダンパーを介在させたものである。
【0015】
また、本発明に係る耐震補強方法は請求項5に記載したように、ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設け、該増し杭の杭頭と前記ラーメン架構を構成する梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結するものである。
【0016】
本発明に係る耐震補強構造及び方法においては、ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設けるとともに、該増し杭の杭頭と前記ラーメン架構を構成する梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結してある。
【0017】
このようにすると、鉛直荷重しか作用しない通常時においては、ラーメン架構の自重や該ラーメン架構の上の載荷荷重は、主として既設の杭で支持され、耐震補強前と力の流れ方は概ね変わらない。
【0018】
一方、地震時水平力がラーメン架構に作用する場合、該地震時水平力は、従来のようにすべて既設の杭に流れるのではなく、一部がブレースを介して増し杭に伝達される。
【0019】
すなわち、ブレースを設置することによってラーメン架構の水平耐力が増加するが、基礎構造である杭の水平耐力も、増し杭による水平抵抗力の増大という形で増加し、かくしてラーメン架構の耐力増加に見合った分だけ、基礎構造の耐力も高めることが可能となる。
【0020】
地震時水平力が既設の杭と増し杭にそれぞれ伝達される割合は、ラーメン架構及び既設の杭の剛性を合わせたラーメン架構水平剛性と、ブレース及び増し杭の剛性を合わせたブレース水平剛性との比率に依存し、ブレース及び増し杭の水平剛性を大きくすれば、地震時水平力の大部分を増し杭に伝達させることが可能となる。
【0021】
増し杭は、必ずしも鉛直杭である必要はなく、斜杭でもかまわない。
【0022】
ラーメン架構は、主として高架橋の下部構造を構成するラーメン架構を対象とするが、耐震補強が必要であれば、どのような用途の構造物でも本発明を適用することが可能であり、建築分野であるか土木分野であるかは問わない。
【0023】
また、ラーメン架構は、高架橋の下部構造を例に説明すれば、例えば構面が橋軸方向に直交するものでもよいし、橋軸方向に平行なものでもよい。さらには、ラーメン架構が一対の柱及び該柱の頭部を連結する梁から構成されるものに限定されるものではなく、立体ラーメン架構にも適用することができる。
【0024】
すなわち、矩形状地盤領域の隅部に立設された4本の柱と該柱の頭部をロノ字状に連結する4本の梁とで前記ラーメン架構を構成するとともに、前記増し杭を前記矩形状地盤領域内に設けた構成が考えられる。
【0025】
かかる立体ラーメン架構においては、地震時水平力がX,Yいずれの方向から作用しても増し杭に確実に伝達されるため、きわめて安定した耐震補強構造を実現することが可能となる。
【0026】
増し杭の杭頭とラーメン架構を構成する梁の両端近傍とをブレースを介して相互に連結する場合において、ブレースの先端を梁の両端近傍に直接連結するようにしてもかまわないが、これに代えて、梁の下面に沿って固着された取付け用鋼材を介して梁の両端近傍に連結するようにしてもかまわない。
【0027】
かかる間接的な連結においては、ブレースに作用する引張力は、取付け用鋼材に分散して梁の下面全体に伝達することとなる。すなわち、直接連結では集中的な引張力となるため、大きな引張力に耐える定着構造がラーメン架構側で必要となるのに対し、間接的な連結では分散的な引張力となるため、ラーメン架構側では簡易な定着構造で足りる。
【0028】
ブレースと増し杭の杭頭との間においても、直接連結してもかまわないし、フーチングを介して間接的に連結するようにしてもかまわない。
【0029】
また、ブレースと増し杭の杭頭との間にダンパーを介在させるようにしてもよい。
【0030】
かかる構成によれば、ダンパーの減衰作用によってラーメン架構の振動エネルギーを吸収し、該ラーメン架構の振動を速やかに収斂させることができる。
【0031】
ダンパーは、前記増し杭の杭頭と前記ブレースとの間に生じる相対水平振動のエネルギーを吸収することができるのであれば、どのようなものでもよく、例えば、せん断履歴型ダンパーなどの弾塑性ダンパー、粘性体ダンパー、オイルダンパー、摩擦ダンパーなどを採用することができる。
【0032】
【発明の実施の形態】
以下、本発明に係る耐震補強構造及び方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0033】
図1は、本実施形態に係る耐震補強構造としての高架橋の下部構造を示したものである。同図に示すように、本実施形態に係る高架橋の下部構造11は、柱1,1及びそれらの柱頭に架け渡された梁2からなる鉄筋コンクリートのラーメン架構3を既設の杭12,12で支持してあり、柱1,1は、該既設の杭の杭頭に設置されたフーチング13,13の上に立設してある。
【0034】
ここで、高架橋の下部構造11は、既設の杭12,12から離間した位置にあらたな杭を増し杭14として設けるとともに、該増し杭の杭頭に設けられたフーチング15と梁2の両端近傍とをブレース16,16を介して相互に連結してある。なお、ここで言う梁2は、あくまでラーメン架構3を構成する梁2を意味するものであって、梁2から柱1,1の側方に水平方向に延設された張出部分17,17は、梁2には含まれない。
【0035】
増し杭14は、既設の杭12,12の中間点に配置するとともに、ブレース16,16は、ラーメン架構3の構面内に配置するのが望ましい。
【0036】
ブレース16は例えばH鋼で構成することができる。
【0037】
本実施形態に係る耐震補強構造を構築するには、まず、既設の杭12,12の中間点に増し杭14を設ける。増し杭14は、鋼管杭、コンクリート杭等の打込み杭でもよいし、現場打ちコンクリート杭でもよい。
【0038】
次に、増し杭14の杭頭にフーチング15を設け、次いで、ブレース16,16の下端をフーチング15に、上端を梁2の両端近傍の下面にそれぞれ連結する。
【0039】
ブレース16,16を連結するにあたっては、予め埋設されたアンカーボルトやコンクリートアンカー等を利用することにより、想定地震動に対して十分な引張強度が確保されるよう、フーチング15及び梁2の両端下面に連結する。
【0040】
このようにすると、鉛直荷重Pしか作用しない通常時においては、図2(a)に示すようにラーメン架構3の自重や該ラーメン架構の上の載荷荷重は、主として既設の杭12,12でP/2ずつ支持され、耐震補強前と力の流れ方は概ね変わらない。
【0041】
一方、地震時水平力Hがラーメン架構3に作用する場合、該地震時水平力は同図(b)に示すように、ブレース16,16を介して増し杭14に伝達され、水平反力Hが増し杭14の杭頭に発生するとともに、残りの水平力が柱1,1を介して既設の杭12,12に伝達され、水平反力Hが既設の杭12,12にそれぞれ発生する。
【0042】
地震時水平力が既設の杭12,12と増し杭14にそれぞれ伝達される割合は、ラーメン架構3及び既設の杭12,12の剛性を合わせたラーメン架構水平剛性と、ブレース16,16及び増し杭14の剛性を合わせたブレース水平剛性との比率に依存し、ブレース水平剛性がラーメン架構水平剛性よりも十分大きくなるようにブレース断面や増し杭14の杭径を設定すれば、地震時水平力Hの大部分を増し杭14に伝達させることができる。
【0043】
以上説明したように、本実施形態に係る耐震補強構造11及び方法によれば、ブレース16,16を設置することによって、ラーメン架構3の水平耐力を増加させるとともに、該ブレースをあらたに設けられた増し杭14に連結することで基礎構造である杭全体の水平耐力を増加させるようにしたので、従来のように地中梁の再構築あるいはあらたな構築を行い、該地中梁を介して既設の杭と増し杭との一体化を行わずとも、ラーメン架構3の耐力増加に見合った分だけ、基礎構造の耐力も高めることが可能となる。
【0044】
したがって、地中梁の再構築あるいは新規構築及び該地中梁を介した杭の一体化を図る必要がない分だけ、従来よりも短工期でラーメン架構3を耐震補強することが可能となる。
【0045】
また、本実施形態に係る耐震補強構造及び方法によれば、ブレース水平剛性がラーメン架構水平剛性よりも十分大きくなるようにブレース16,16の断面や増し杭14の杭径を設定することにより、地震時水平力Hの大部分を増し杭14に伝達させることができる。
【0046】
そのため、上述した作用効果に加えて、ラーメン架構3の柱1,1や既設の杭12,12の耐震補強も不要となり、かくして、耐震補強工事のさらなる工期短縮が可能となる。
【0047】
本実施形態では、ブレースの上端を梁2の両端下面に連結するようにしたが、これに代えて柱1の柱頭側面に連結するようにしてもよい。
【0048】
また、本実施形態では、ブレース16をラーメン架構3の構面内に設けるようにしたが、必ずしも構面内に設ける必要はなく、ラーメン架構3の側面にあてがうように設置してもかまわない。
【0049】
この場合における具体的構成としては例えば、梁2の両端近傍の側面にブレース取付部材を固着するとともに、既設の杭12,12を結ぶ仮想線から該仮想線に直交する方向に例えば柱径だけずらした位置に増し杭14を設けるようにすればよい。
【0050】
また、本実施形態では、増し杭14の杭頭にフーチング15を設け、該フーチングにブレース16,16の下端を連結するようにしたが、これに代えてフーチング15を省略し、該ブレースを増し杭14の杭頭に直接連結するようにしてもかまわない。
【0051】
また、本実施形態では、ブレース16,16と増し杭14の杭頭に設けられたフーチング15とを直接連結するようにしたが、これに代えて、ブレース16,16とフーチング15との間にダンパーとしてのせん断履歴型ダンパーを介在させるようにしてもよい。
【0052】
図3は、かかる変形例を示した耐震補強構造31であり、該耐震補強構造は、上述の実施形態と同様、ラーメン架構3を既設の杭12,12で支持してあり、柱1,1は、該既設の杭の杭頭に設置されたフーチング13,13の上に立設してあるとともに、既設の杭12,12から離間した位置にあらたな杭を増し杭14として設け、該増し杭の杭頭に設けられたフーチング15と梁2の両端近傍とをブレース16,16を介して相互に連結してあるが、本変形例では、ブレース16,16とフーチング15との間にせん断履歴型ダンパー32を介在させてある。
【0053】
かかる構成によれば、ラーメン架構3が地震時水平力を受けて水平振動したとき、かかるラーメン架構3の水平振動は、ブレース16,16を介してせん断履歴型ダンパー32に繰り返し強制変形として加わり、ラーメン架構3の振動エネルギーは、せん断履歴型ダンパー32の履歴減衰によって吸収され該ラーメン架構の水平振動は速やかに収斂する。もちろん、この場合においても、既設の杭12,12及び増し杭14への地震時水平力の伝達に関しては上述した実施形態で述べた通りである。
【0054】
また、本実施形態では、ブレース16,16の先端を梁2の両端近傍に直接連結するようにしたが、これに代えて、梁2の下面に沿って固着された取付け用鋼材を介して梁2の両端近傍に連結するようにしてもかまわない。
【0055】
図4は、かかる変形例を示した耐震補強構造41であり、該耐震補強構造は、上述の実施形態と同様、ラーメン架構3を既設の杭12,12で支持してあり、柱1,1は、該既設の杭の杭頭に設置されたフーチング13,13の上に立設してあるとともに、既設の杭12,12から離間した位置にあらたな杭を増し杭14として設け、該増し杭の杭頭に設けられたフーチング15と梁2の両端近傍とをブレース16,16を介して相互に連結してあるが、本変形例では、ブレース16,16と梁2との間に取付け用鋼材42を介在させてある。
【0056】
かかる構成においては、梁2の長さ(柱1,1間の内法)とほぼ同じ長さ寸法を有する取付け用鋼材42をコンクリートアンカー等を用いて梁2の下面に固着し、次いで、ブレース16,16の上端を取付け用鋼材42の両端にボルト又は溶接でそれぞれ接合する。
【0057】
かかる間接的な連結においては、地震時にブレース16,16に作用する引張力は、取付け用鋼材42に分散して梁2の下面全体に伝達することとなる。すなわち、直接連結では集中的な引張力となるため、大きな引張力に耐える定着構造がラーメン架構3側で必要となるのに対し、本変形例に係る間接的な連結では分散的な引張力となるため、ラーメン架構3側では簡易な定着構造で足りることとなる。
【0058】
なお、かかる変形例においても、上述したせん断履歴型ダンパー32を併用することはもちろん可能である。
【0059】
また、本実施形態では、ラーメン架構3を平面ラーメン架構としたが、これに代えて立体ラーメン架構を採用することも可能である。
【0060】
図5は、かかる変形例を示した耐震補強構造としての高架橋の下部構造51であり、同図でわかるように、該高架橋の下部構造51は、矩形状地盤領域52の隅部に立設された4本の柱53と該柱の頭部をロノ字状に連結された4本の梁54とで構成してなるラーメン架構55を4本の既設の杭12で支持してあり、柱53は、該既設の杭の杭頭に設置されたフーチング13の上にそれぞれ立設してある。
【0061】
ここで、高架橋の下部構造51は、既設の杭12,12から離間した位置であってかつ矩形状地盤領域52内にあらたな杭を増し杭56として設けるとともに、該増し杭の杭頭に設けられたフーチング57と4本の梁54の両端近傍とを4本のブレース58を介して相互に連結してある。
【0062】
ここで、4本のブレース58の上端については、4本の柱53の柱頭にそれぞれ接合された梁54,54の各端の内方側面に4つのブレース取付部材59をそれぞれ固定し、該4つのブレース取付け部材59にそれぞれ連結してある。
【0063】
かかる立体ラーメン架構によれば、地震時水平力がX,Yいずれの方向から作用しても、該地震力は、増し杭56に確実に伝達されるため、きわめて安定した耐震補強構造を実現することが可能となる。
【0064】
なお、かかる変形例において、ブレース取付部材59を省略し、これに代えて、4本のブレース58を梁54の両端近傍あるいは柱53の柱頭近傍に直接連結するようにしてもかまわない。また、かかる変形例においても、上述したせん断履歴型ダンパー32を併用することはもちろん可能である。
【0065】
【発明の効果】
以上述べたように、本発明に係る耐震補強構造及び方法によれば、従来のように地中梁の再構築あるいはあらたな構築を行い、該地中梁を介して既設の杭と増し杭との一体化を行わずとも、ラーメン架構の耐力増加に見合った分だけ、基礎構造の耐力も高めることが可能となる。
【0066】
したがって、地中梁の再構築あるいは新規構築及び該地中梁を介した杭の一体化を図る必要がない分だけ、従来よりも短工期でラーメン架構を耐震補強することが可能となる。
【0067】
【図面の簡単な説明】
【図1】本実施形態に係る耐震補強構造の正面図。
【図2】本実施形態に係る耐震補強構造及び方法の作用を示した図。
【図3】変形例に係る耐震補強構造の正面図。
【図4】同じく変形例に係る耐震補強構造の正面図。
【図5】同じく変形例に係る耐震補強構造の図で(a)は斜視図、(b)は水平断面図。
【図6】従来技術に係る高架橋の下部構造。
【符号の説明】
1,53 柱
2,54 梁
3,55 ラーメン架構
11,31,41,51 高架橋の下部構造(耐震補強構造)
12 既設の杭
14,56 増し杭
16,58 ブレース
32 せん断履歴型ダンパー(ダンパー)
42 取付け用鋼材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic reinforcement structure and a method mainly used in the field of civil engineering.
[0002]
[Prior art]
As bridges on which transportation vehicles such as railroads and automobiles travel, there are so-called viaducts that are continuously constructed in urban areas, in addition to narrow bridges that cross rivers and straits. From the viewpoint of efficient land use, such viaducts are constructed continuously on the road, on the railroad or in the space on the river. It also contributes to eliminating traffic jams.
[0003]
By the way, such a substructure of the viaduct is usually often constructed as a reinforced concrete rigid frame, but when designing and constructing it, the seismic resistance of the viaduct during an earthquake must be sufficiently studied.
[0004]
[Patent Document 1]
JP-A-2001-020228 [0005]
[Problems to be solved by the invention]
Under such circumstances, as shown in FIG. 6, the present applicant has constructed a lower part of a viaduct in which a damper 4 and a damper brace 6 composed of braces 5 and 5 are arranged in a reinforced concrete frame frame 3 composed of columns 1, 1 and beams 2. The structure 7 is proposed, and according to such a configuration, it is possible to greatly improve the earthquake resistance.
[0006]
However, when the above-described viaduct lower structure 7 is applied to an already constructed viaduct lower structure to perform seismic reinforcement, the following problems occur.
[0007]
That is, by arranging the damper brace 6 including the damper 4 and the braces 5 and 5 in the ramen frame 3, the strength of the ramen frame is certainly improved. Unless it is made larger, it does not mean that the lower structure 7 of the viaduct has been seismically reinforced as a whole.
[0008]
Therefore, in the case of a new construction, the strength of the foundation structure can be improved from the beginning by increasing the diameter of the pile, etc., but in the case of the existing construction, a new pile is provided and the pile is increased. The additional piles must be integrated with the existing piles by taking measures such as rebuilding the center beam.
[0009]
However, rebuilding of underground beams requires a lot of cost and time, and there is room for improvement from the viewpoint of economy.
[0010]
The present invention has been made in consideration of the above-described circumstances, and has as its object to provide an earthquake-resistant reinforcement structure and a method capable of increasing the strength of a foundation structure without reconstructing an underground beam or the like. I do.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the seismic retrofit structure according to the present invention, as described in claim 1, provides a new pile as an additional pile at a position separated from an existing pile supporting the rigid frame, and And the vicinity of both ends of the beam or the vicinity of the head of the column constituting the ramen frame are interconnected via a brace.
[0012]
Further, the seismic retrofit structure according to the present invention is characterized in that the ramen frame is composed of four pillars erected at the corners of the rectangular ground area and four beams connecting the heads of the pillars in a Lonno shape. And the additional pile is provided in the rectangular ground area.
[0013]
Further, in the seismic retrofit structure according to the present invention, the brace is connected to the vicinity of both ends of the beam via a mounting steel material fixed along the lower surface of the beam.
[0014]
Further, in the earthquake-resistant reinforcement structure according to the present invention, a damper is interposed between the pile head of the additional pile and the brace.
[0015]
Further, according to the seismic retrofitting method according to the present invention, a new pile is provided as an additional pile at a position separated from the existing pile supporting the frame, and a pile head of the additional pile and the ramen are provided. The vicinity of both ends of the beam constituting the frame or the vicinity of the head of the column is interconnected via a brace.
[0016]
In the seismic retrofit structure and method according to the present invention, a new pile is provided as an additional pile at a position separated from the existing pile supporting the rigid frame, and a pile head of the extra pile and a beam forming the rigid frame are provided. The vicinity of both ends or the vicinity of the head of the column are interconnected via a brace.
[0017]
In this case, in normal times when only a vertical load acts, the own weight of the ramen frame and the load on the ramen frame are mainly supported by the existing piles, and the flow of force is almost the same as before the seismic reinforcement. .
[0018]
On the other hand, when the horizontal force at the time of the earthquake acts on the frame, the horizontal force at the time of the earthquake does not flow to the existing piles as in the conventional case, but is partially transmitted to the piles via the braces.
[0019]
In other words, by installing braces, the horizontal strength of the ramen frame increases, but the horizontal strength of the pile, which is the foundation structure, also increases in the form of an increase in the horizontal resistance due to the additional piles, thus meeting the increase in the strength of the ramen frame. The proof stress of the foundation structure can be increased accordingly.
[0020]
The rate at which the horizontal force during an earthquake is transmitted to the existing pile and the additional pile is determined by the horizontal rigidity of the rigid frame and the rigidity of the existing pile and the horizontal rigidity of the brace and the additional pile. If the horizontal rigidity of the brace and the additional pile is increased depending on the ratio, it is possible to increase most of the horizontal force during the earthquake and transmit it to the pile.
[0021]
The additional pile does not necessarily have to be a vertical pile, but may be an inclined pile.
[0022]
The ramen frame is mainly intended for the ramen frame that constitutes the lower structure of the viaduct, but the present invention can be applied to structures for any use if seismic reinforcement is necessary. It does not matter whether it is in the civil engineering field.
[0023]
In addition, the ramen frame may be, for example, a structure whose cross-section is orthogonal to the bridge axis direction or parallel to the bridge axis direction, if a viaduct lower structure is described as an example. Furthermore, the ramen frame is not limited to a pair of pillars and a beam connecting the heads of the pillars, but may be applied to a three-dimensional frame frame.
[0024]
That is, the ramen frame is composed of four pillars erected at the corners of the rectangular ground region and four beams connecting the heads of the pillars in a rono shape, and the additional pile is A configuration provided in a rectangular ground area is conceivable.
[0025]
In such a three-dimensional frame structure, even if the horizontal force at the time of the earthquake acts from any of the X and Y directions, the additional force is reliably transmitted to the pile, so that an extremely stable earthquake-resistant reinforcing structure can be realized.
[0026]
When the pile head of the additional pile and the vicinity of both ends of the beam constituting the ramen frame are connected to each other via braces, the tip of the brace may be directly connected to the vicinity of both ends of the beam. Alternatively, it may be connected to the vicinity of both ends of the beam via a mounting steel material fixed along the lower surface of the beam.
[0027]
In such an indirect connection, the tensile force acting on the brace is distributed to the mounting steel and transmitted to the entire lower surface of the beam. In other words, the direct connection results in a concentrated tensile force, so a fixing structure that can withstand a large tensile force is required on the side of the rigid frame, whereas the indirect connection results in a dispersive tensile force. Then, a simple fixing structure is sufficient.
[0028]
The connection between the brace and the pile head of the additional pile may be made directly, or may be made indirectly via footing.
[0029]
Further, a damper may be interposed between the brace and the pile head of the additional pile.
[0030]
According to such a configuration, the vibration energy of the rigid frame is absorbed by the damping action of the damper, and the vibration of the rigid frame can be quickly converged.
[0031]
The damper may be of any type as long as it can absorb the energy of the relative horizontal vibration generated between the pile head of the extra pile and the brace. For example, an elastic-plastic damper such as a shear history type damper may be used. , Viscous material dampers, oil dampers, friction dampers and the like can be employed.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a seismic retrofit structure and method according to the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to components and the like that are substantially the same as those in the related art, and description thereof is omitted.
[0033]
FIG. 1 shows a lower structure of a viaduct as an earthquake-resistant reinforcement structure according to the present embodiment. As shown in the figure, the viaduct lower structure 11 according to the present embodiment supports the reinforced concrete frame structure 3 composed of the columns 1 and 1 and the beams 2 bridged over the column capitals by the existing piles 12 and 12. The pillars 1, 1 are erected on footings 13, 13 installed on the pile head of the existing pile.
[0034]
Here, the lower structure 11 of the viaduct is provided with a new pile as a pile 14 at a position separated from the existing piles 12, 12, and near both ends of the footing 15 and the beam 2 provided at the pile head of the pile. Are interconnected via braces 16, 16. Note that the beam 2 referred to here means only the beam 2 constituting the ramen frame 3, and the projecting portions 17, 17 extending horizontally from the beam 2 to the sides of the columns 1, 1. Is not included in the beam 2.
[0035]
It is desirable that the additional pile 14 be disposed at an intermediate point between the existing piles 12, 12, and the braces 16, 16 be disposed within the plane of the ramen frame 3.
[0036]
The brace 16 can be made of, for example, H steel.
[0037]
In order to construct the earthquake-resistant reinforcement structure according to the present embodiment, first, an additional pile 14 is provided at an intermediate point between the existing piles 12, 12. The additional pile 14 may be a driven pile such as a steel pipe pile or a concrete pile, or may be a cast-in-place concrete pile.
[0038]
Next, a footing 15 is provided on the pile head of the additional pile 14, and then the lower ends of the braces 16, 16 are connected to the footing 15, and the upper ends thereof are connected to the lower surfaces near both ends of the beam 2, respectively.
[0039]
When connecting the braces 16, 16, the anchor bolts or concrete anchors buried in advance are used so that sufficient tensile strength against the assumed earthquake motion is secured on the bottom surfaces of both ends of the footing 15 and the beam 2. connect.
[0040]
In this way, in the normal state where only the vertical load P acts, as shown in FIG. 2A, the weight of the rigid frame 3 and the load on the rigid frame mainly depend on the existing piles 12,12. / 2 each, and the flow of force is almost the same as before seismic reinforcement.
[0041]
On the other hand, when the horizontal force H at the time of the earthquake acts on the frame 3, the horizontal force at the time of the earthquake is increased through the braces 16 and 16 and transmitted to the pile 14 as shown in FIG. with b increases occur pile head pile 14, the remainder of the horizontal force is transmitted to the existing pile 12, 12 through the posts 1,1, respectively generating a horizontal reaction force H f to the existing pile 12 and 12 I do.
[0042]
The ratio at which the horizontal force at the time of the earthquake is transmitted to the existing piles 12, 12 and the additional piles 14, respectively, is the horizontal rigidity of the ramen frame 3 and the rigidity of the existing piles 12, 12, the braces 16, 16 and the additional. If the brace section and the pile diameter of the additional pile 14 are set so that the brace horizontal rigidity is sufficiently larger than the rigid frame frame horizontal rigidity depending on the ratio of the brace horizontal rigidity to the combined rigidity of the pile 14, the horizontal force during an earthquake can be obtained. Most of the H can be transmitted to the pile 14.
[0043]
As described above, according to the seismic retrofit structure 11 and the method according to the present embodiment, by installing the braces 16, 16, the horizontal strength of the rigid frame 3 is increased, and the braces are newly provided. Since the horizontal strength of the entire pile, which is the basic structure, is increased by connecting to the additional pile 14, the underground beam is reconstructed or newly constructed as in the past, and the existing underground beam is connected through the underground beam. Even if the pile and the additional pile are not integrated, the strength of the foundation structure can be increased by the amount corresponding to the increase in the strength of the ramen frame 3.
[0044]
Therefore, it is possible to reinforce the ramen frame 3 in a shorter construction period than before, because there is no need to rebuild or newly construct the underground beam and integrate the piles via the underground beam.
[0045]
According to the seismic retrofit structure and method according to the present embodiment, by setting the cross-section of the braces 16 and the pile diameter of the additional pile 14 so that the horizontal rigidity of the brace is sufficiently larger than the horizontal rigidity of the rigid frame. Most of the horizontal force H during an earthquake can be increased and transmitted to the pile 14.
[0046]
Therefore, in addition to the above-described effects, the seismic strengthening of the columns 1 and 1 of the ramen frame 3 and the existing piles 12 and 12 is not required, and thus the construction period of the seismic strengthening work can be further shortened.
[0047]
In the present embodiment, the upper end of the brace is connected to the lower surface of both ends of the beam 2, but may be connected to the side surface of the column 1 instead of this.
[0048]
Further, in the present embodiment, the brace 16 is provided in the plane of the ramen frame 3. However, it is not always necessary to provide the brace 16 in the plane of the frame.
[0049]
As a specific configuration in this case, for example, a brace attachment member is fixed to the side surface near both ends of the beam 2, and is shifted from a virtual line connecting the existing piles 12, for example, by a column diameter in a direction orthogonal to the virtual line. In this case, the additional pile 14 may be provided at the position.
[0050]
Further, in this embodiment, the footing 15 is provided at the pile head of the additional pile 14 and the lower ends of the braces 16, 16 are connected to the footing. However, instead of this, the footing 15 is omitted and the brace is increased. It may be connected directly to the pile head of the pile 14.
[0051]
Further, in the present embodiment, the braces 16, 16 are directly connected to the footing 15 provided on the pile head of the additional pile 14, but instead, the braces 16, 16 and the footing 15 are provided between the braces 16, 16 and the footing 15. A shear history type damper as a damper may be interposed.
[0052]
FIG. 3 shows an earthquake-resistant reinforcing structure 31 showing such a modified example. In the earthquake-resistant reinforcing structure, the ramen frame 3 is supported by the existing piles 12, 12, similarly to the above-described embodiment. Is installed on the footings 13, 13 installed at the pile head of the existing pile, and a new pile is provided as an additional pile 14 at a position separated from the existing piles 12, 12. Although the footing 15 provided on the pile head of the pile and the vicinity of both ends of the beam 2 are interconnected via the braces 16, 16, in this modified example, the shearing is provided between the braces 16, 16 and the footing 15. The history type damper 32 is interposed.
[0053]
According to such a configuration, when the ramen frame 3 is horizontally vibrated by receiving a horizontal force during an earthquake, the horizontal vibration of the ramen frame 3 is repeatedly applied to the shear history type damper 32 through the braces 16 as forced deformation. The vibration energy of the rigid frame 3 is absorbed by the hysteresis damping of the shear history damper 32, and the horizontal vibration of the rigid frame rapidly converges. Of course, also in this case, the transmission of the horizontal force at the time of the earthquake to the existing piles 12, 12, and the additional pile 14 is as described in the above-described embodiment.
[0054]
Further, in the present embodiment, the ends of the braces 16, 16 are directly connected to the vicinity of both ends of the beam 2, but instead of this, the beam is attached via a mounting steel material fixed along the lower surface of the beam 2. 2 may be connected near both ends.
[0055]
FIG. 4 shows an earthquake-resistant reinforcing structure 41 showing such a modified example. In the earthquake-resistant reinforcing structure, the ramen frame 3 is supported by the existing piles 12, 12, similarly to the above-described embodiment. Is installed on the footings 13, 13 installed at the pile head of the existing pile, and a new pile is provided as an additional pile 14 at a position separated from the existing piles 12, 12. The footing 15 provided on the pile head of the pile and the vicinity of both ends of the beam 2 are connected to each other via braces 16, 16. In this modification, the footing 15 is attached between the braces 16, 16 and the beam 2. Steel material 42 is interposed.
[0056]
In such a configuration, a mounting steel material 42 having substantially the same length as the length of the beam 2 (the inner dimension between the columns 1 and 1) is fixed to the lower surface of the beam 2 using a concrete anchor or the like, and then the brace is used. The upper ends of 16 and 16 are joined to both ends of the mounting steel material 42 by bolts or welding, respectively.
[0057]
In such an indirect connection, the tensile force acting on the braces 16, 16 during an earthquake is distributed to the mounting steel 42 and transmitted to the entire lower surface of the beam 2. That is, since the direct connection results in a concentrated tensile force, a fixing structure that can withstand a large tensile force is required on the side of the rigid frame 3, whereas the indirect connection according to the present modification has a dispersive tensile force. Therefore, a simple fixing structure is sufficient on the ramen frame 3 side.
[0058]
In this modified example, it is of course possible to use the above-mentioned shear history type damper 32 together.
[0059]
Further, in the present embodiment, the ramen frame 3 is a flat ramen frame, but a three-dimensional ramen frame may be employed instead.
[0060]
FIG. 5 shows a viaduct lower structure 51 as an earthquake-resistant reinforcement structure showing such a modification. As can be seen from FIG. 5, the viaduct lower structure 51 is erected at a corner of a rectangular ground area 52. A ramen frame 55 composed of the four pillars 53 and four beams 54 whose heads are connected in a Lono-shape is supported by the four existing piles 12. Are erected on the footing 13 installed on the pile head of the existing pile.
[0061]
Here, the lower structure 51 of the viaduct is provided at the position apart from the existing piles 12 and 12 as a new pile in the rectangular ground area 52 as an additional pile 56, and is provided at the pile head of the additional pile. The footing 57 and the vicinity of both ends of the four beams 54 are interconnected via four braces 58.
[0062]
Here, with respect to the upper ends of the four braces 58, four brace mounting members 59 are respectively fixed to the inner side surfaces of the ends of the beams 54, 54 joined to the capitals of the four columns 53, respectively. The two brace mounting members 59 are connected to each other.
[0063]
According to such a three-dimensional frame structure, even if a horizontal force during an earthquake acts in any of the X and Y directions, the seismic force is reliably transmitted to the additional pile 56, thereby realizing an extremely stable seismic reinforcement structure. It becomes possible.
[0064]
In this modified example, the brace attachment member 59 may be omitted, and instead, the four braces 58 may be directly connected to the vicinity of both ends of the beam 54 or the vicinity of the capital of the column 53. Also in such a modified example, it is of course possible to use the above-mentioned shear history type damper 32 together.
[0065]
【The invention's effect】
As described above, according to the seismic retrofit structure and method according to the present invention, the underground beam is reconstructed or newly constructed as in the related art, and the existing pile and the additional pile are connected via the underground beam. Without the integration of the above, it is possible to increase the strength of the foundation structure by an amount corresponding to the increase in the strength of the rigid frame.
[0066]
Therefore, since it is not necessary to reconstruct or newly construct the underground beam and integrate the piles via the underground beam, it becomes possible to reinforce the ramen frame in a shorter construction period than before.
[0067]
[Brief description of the drawings]
FIG. 1 is a front view of an earthquake-resistant reinforcement structure according to an embodiment.
FIG. 2 is a view showing the operation of the earthquake-resistant reinforcement structure and the method according to the embodiment.
FIG. 3 is a front view of a seismic retrofit structure according to a modification.
FIG. 4 is a front view of an earthquake-resistant reinforcement structure according to a modification.
5 (a) is a perspective view and FIG. 5 (b) is a horizontal sectional view of the seismic retrofit structure according to the modification.
FIG. 6 shows a viaduct undercarriage according to the prior art.
[Explanation of symbols]
1,53 pillar 2,54 beam 3,55 ramen frame 11,31,41,51 Underpass structure (seismic reinforcement structure)
12 Existing piles 14,56 Additional piles 16,58 Brace 32 Shear history type damper (damper)
42 Steel for mounting

Claims (5)

ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設けるとともに、該増し杭の杭頭と前記ラーメン架構を構成する梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結してなることを特徴とする耐震補強構造。A new pile is provided as an additional pile at a position separated from the existing pile supporting the ramen frame, and a brace is attached between the pile head of the extra pile and the vicinity of both ends of the beam or the column head near the ramen frame. A seismic retrofit structure characterized by being interconnected via 矩形状地盤領域の隅部に立設された4本の柱と該柱の頭部をロノ字状に連結する4本の梁とで前記ラーメン架構を構成するとともに、前記増し杭を前記矩形状地盤領域内に設けた請求項1記載の耐震補強構造。The ramen frame is composed of four pillars erected at the corners of the rectangular ground area and four beams connecting the heads of the pillars in a rono shape, and the additional pile is formed in the rectangular shape. The seismic retrofit structure according to claim 1 provided in a ground area. 前記ブレースを前記梁の下面に沿って固着された取付け用鋼材を介して前記梁の両端近傍に連結した請求項1又は請求項2記載の耐震補強構造。The seismic retrofit structure according to claim 1 or 2, wherein the brace is connected to the vicinity of both ends of the beam via a mounting steel material fixed along a lower surface of the beam. 前記増し杭の杭頭と前記ブレースとの間にダンパーを介在させた請求項1乃至請求項3のいずれか一記載の耐震補強構造。The seismic reinforcement structure according to any one of claims 1 to 3, wherein a damper is interposed between the pile head of the additional pile and the brace. ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設け、該増し杭の杭頭と前記ラーメン架構を構成する梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結することを特徴とする耐震補強方法。A new pile is provided as an additional pile at a position separated from the existing pile that supports the ramen frame, and the pile head of the extra pile and the vicinity of both ends of the beam constituting the ramen frame or the vicinity of the column head are interposed through braces. A seismic retrofitting method characterized in that they are connected to each other.
JP2003058495A 2003-03-05 2003-03-05 Seismic reinforcement structure Expired - Fee Related JP4140028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058495A JP4140028B2 (en) 2003-03-05 2003-03-05 Seismic reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058495A JP4140028B2 (en) 2003-03-05 2003-03-05 Seismic reinforcement structure

Publications (2)

Publication Number Publication Date
JP2004270168A true JP2004270168A (en) 2004-09-30
JP4140028B2 JP4140028B2 (en) 2008-08-27

Family

ID=33121594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058495A Expired - Fee Related JP4140028B2 (en) 2003-03-05 2003-03-05 Seismic reinforcement structure

Country Status (1)

Country Link
JP (1) JP4140028B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223327A (en) * 2007-03-13 2008-09-25 Ohbayashi Corp Earthquake-resisting reinforcing structure of viaduct
JP2009243091A (en) * 2008-03-31 2009-10-22 Railway Technical Res Inst Aseismatic reinforcing structure of viaduct
RU2465422C1 (en) * 2011-05-10 2012-10-27 Государственное образовательное учреждение высшего профессионального образования Московский государственный строительный университет (ГОУ ВПО МГСУ) Device to unload stone structures of building and method of its assembly
JP2015094094A (en) * 2013-11-11 2015-05-18 阪神高速道路株式会社 Bridge structure and method of reinforcing existing bridge
JP2017155566A (en) * 2016-03-04 2017-09-07 国土交通省関東地方整備局長 Structure and construction method for reinforcing water area structure
CN112442948A (en) * 2020-10-30 2021-03-05 重庆交通大学 Bridge shock attenuation reinforcing apparatus
JP7438313B1 (en) 2022-11-21 2024-02-26 株式会社新井組 External steel reinforcement structure for existing buildings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106677077B (en) * 2016-12-01 2018-10-16 浙江海洋大学 Bridge strengthening device
CN110835889B (en) * 2019-12-20 2021-04-20 招商局重庆交通科研设计院有限公司 Single-column pier type viaduct reinforcing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223327A (en) * 2007-03-13 2008-09-25 Ohbayashi Corp Earthquake-resisting reinforcing structure of viaduct
JP2009243091A (en) * 2008-03-31 2009-10-22 Railway Technical Res Inst Aseismatic reinforcing structure of viaduct
RU2465422C1 (en) * 2011-05-10 2012-10-27 Государственное образовательное учреждение высшего профессионального образования Московский государственный строительный университет (ГОУ ВПО МГСУ) Device to unload stone structures of building and method of its assembly
JP2015094094A (en) * 2013-11-11 2015-05-18 阪神高速道路株式会社 Bridge structure and method of reinforcing existing bridge
JP2017155566A (en) * 2016-03-04 2017-09-07 国土交通省関東地方整備局長 Structure and construction method for reinforcing water area structure
CN112442948A (en) * 2020-10-30 2021-03-05 重庆交通大学 Bridge shock attenuation reinforcing apparatus
CN112442948B (en) * 2020-10-30 2022-09-06 重庆交通大学 Bridge shock attenuation reinforcing apparatus
JP7438313B1 (en) 2022-11-21 2024-02-26 株式会社新井組 External steel reinforcement structure for existing buildings

Also Published As

Publication number Publication date
JP4140028B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US6722088B2 (en) Elevated bridge infrastructure and design method for designing the same
JP4957295B2 (en) Seismic control pier structure
JP4140028B2 (en) Seismic reinforcement structure
JP3869236B2 (en) Seismic reinforcement method for existing reinforced concrete viaduct
JP3559025B2 (en) Seismic retrofit method for existing building and brace mounting device used for it
KR101198286B1 (en) Non-wale strut system for top-down construction and top-down construction method thereby
JP3712178B2 (en) Seismic frame structure and its design method
JP4242673B2 (en) Damping device and damping structure using the same
JP4960731B2 (en) Seismic reinforcement structure for viaduct
JP4076186B2 (en) How to design an extended floor slab
JP4282003B2 (en) Vibration control structure
JP3549183B2 (en) Underpass structure of viaduct
JP4780618B2 (en) Seismic reinforcement structure for viaduct
JP3835676B2 (en) Seismic frame structure and its design method
JP5142213B2 (en) Seismic reinforcement structure for viaduct
JP4479138B2 (en) Column base structure and seismic reinforcement method
JP3081833B1 (en) Three-dimensional rigid frame high bridge structure
JP4445587B2 (en) Seismic frame structure and its design method
JP5142214B2 (en) Seismic reinforcement structure for viaduct
JP3835677B2 (en) Seismic frame structure and its design method
JP3869235B2 (en) Vibration control and vibration control structure of reinforced concrete viaduct
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP2012117364A (en) Vibration control bridge pier structure
JP3232517U (en) Seismic retrofitting structure
JP4113458B2 (en) Bridge structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees