JP2009243091A - Aseismatic reinforcing structure of viaduct - Google Patents

Aseismatic reinforcing structure of viaduct Download PDF

Info

Publication number
JP2009243091A
JP2009243091A JP2008089244A JP2008089244A JP2009243091A JP 2009243091 A JP2009243091 A JP 2009243091A JP 2008089244 A JP2008089244 A JP 2008089244A JP 2008089244 A JP2008089244 A JP 2008089244A JP 2009243091 A JP2009243091 A JP 2009243091A
Authority
JP
Japan
Prior art keywords
brace
viaduct
cylinder
seismic reinforcement
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008089244A
Other languages
Japanese (ja)
Inventor
Masamichi Sogabe
正道 曽我部
Yukihiro Tanimura
幸裕 谷村
Motoyuki Okano
素之 岡野
Original Assignee
Railway Technical Res Inst
財団法人鉄道総合技術研究所
Ohbayashi Corp
株式会社大林組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Res Inst, 財団法人鉄道総合技術研究所, Ohbayashi Corp, 株式会社大林組 filed Critical Railway Technical Res Inst
Priority to JP2008089244A priority Critical patent/JP2009243091A/en
Publication of JP2009243091A publication Critical patent/JP2009243091A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To dispense with or rationalize the aseismatic reinforcement of an underground area, when the ground area of a lower structure is reinforced against an earthquake. <P>SOLUTION: This aseismatic reinforcing structure 1 of a viaduct comprises a rigid-frame structure 4 supporting the upper structure 3 of the viaduct 2, footings 5 and piles 6 used as a foundation structure and a three-dimensional brace 7. The three-dimensional brace 7, in order to form the entire shape into a quadrangular pyramid shape, has the upper ends of four brace bodies 10 respectively jointed to the specified lower face position of the upper structure 3, and has the lower ends of the four brace bodies 10 respectively jointed to the footings 5 on which poles 8 are erected. The four brace bodies 10 are secured, in the top ends, to the outer circumferential face of an outer tube member 42, and an inner tube member 41 comprising a hysteresis attenuating material projected on the lower face of the upper structure 3 is fitted in the inside of the outer tube member 42, allowing the inner tube member 41 and outer tube member 42 to function as a damper mechanism 43. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、主として鉄道用に係る高架橋の耐震補強構造に関する。   The present invention relates to a viaduct seismic reinforcing structure mainly for railways.

鉄道用高架橋の下部構造は、通常、鉄筋コンクリートのラーメン架構として構築されることが多いが、その設計施工の際には、地震時における高架橋の耐震性が十分検討されなければならない。特に、橋軸直交方向については、列車の脱線を未然に防止できるよう、同方向の剛性を十分に高めておく必要がある。   The substructure of a railway viaduct is usually constructed as a reinforced concrete ramen frame. However, when designing and constructing it, the seismic resistance of the viaduct during an earthquake must be fully considered. In particular, in the direction orthogonal to the bridge axis, it is necessary to sufficiently increase the rigidity in the same direction so that derailment of the train can be prevented.

かかる状況下、鉄筋コンクリートのラーメン架構内にダンパーブレースを配設した高架橋の下部構造が研究開発され、耐震性の向上が図られてきた。   Under such circumstances, the underpass structure of a viaduct with a damper brace arranged in a reinforced concrete rigid frame has been researched and developed to improve earthquake resistance.

ここで、既設の高架橋にダンパーブレースを配置する場合には、地上に構築される部分のみならず、地下部分についても耐震性を向上させる必要があるところ、基礎梁の再施工には多額の費用と時間を要する。   Here, when placing damper braces on existing viaducts, it is necessary to improve earthquake resistance not only on the part built on the ground but also on the underground part. And takes time.

そのため、ラーメン架構を支持する既設の杭から離間した位置にあらたな杭を増し杭として設けるとともに、該増し杭の杭頭と梁の両端近傍又は柱の頭部近傍とをブレースを介して相互に連結する耐震補強構造が提案されている。   Therefore, a new pile is provided as an additional pile at a position separated from the existing pile that supports the ramen frame, and the pile head and the both ends of the beam or the vicinity of the column head are mutually connected via braces. A seismic reinforcement structure to connect is proposed.

特開2001−020228号公報JP 2001-020228 A 特開2004−270168号公報JP 2004-270168 A

上述した耐震補強構造によれば、鉛直荷重は従前通り、既設の杭で支持する一方、地震時水平力については、その一部をブレースを介して増し杭に伝達させることが可能となり、かくして高架橋の下部構造を地上部分のみならず地下部分についても耐震補強することが可能となる。   According to the seismic reinforcement structure described above, the vertical load is supported by the existing pile as before, while the horizontal force during the earthquake can be partially transmitted to the pile via the brace, thus the viaduct. It is possible to seismically reinforce the substructure of not only the ground part but also the underground part.

しかしながら、かかる耐震補強構造であっても、増設される杭を大断面杭としなければならないため、経済性の観点では未だ開発の余地があった。   However, even with such a seismic reinforcement structure, the pile to be added must have a large cross-sectional pile, so there is still room for development from the viewpoint of economy.

本発明は、上述した事情を考慮してなされたもので、下部構造の地上部分を耐震補強する際、地下部分の耐震補強を不要にし又は合理化することが可能な高架橋の耐震補強構造を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and provides a viaduct seismic reinforcement structure that can eliminate or rationalize the seismic reinforcement of the underground part when the ground part of the substructure is seismically reinforced. For the purpose.

上記目的を達成するため、本発明に係る高架橋の耐震補強構造は請求項1に記載したように、高架橋の上部構造を支持するラーメン架構と、該ラーメン架構を構成する柱が立設された基礎構造と、複数のブレース本体からなる立体ブレースとを備え、該立体ブレースは、全体形状が角錐状になるように前記複数のブレース本体の上端を前記上部構造の下面所定位置にそれぞれ接合するとともにそれらの下端を前記柱の脚部又は該柱の立設位置近傍にそれぞれ接合してなるものである。   In order to achieve the above object, the viaduct seismic reinforcement structure according to the present invention is a foundation in which a ramen frame supporting the superstructure of the viaduct and a pillar constituting the ramen frame are erected as described in claim 1. And a three-dimensional brace composed of a plurality of brace bodies, wherein the three-dimensional braces are respectively joined at predetermined positions on the lower surface of the upper structure with the upper ends of the plurality of brace bodies so that the overall shape is a pyramid shape. Are joined to the leg portions of the pillars or in the vicinity of the standing positions of the pillars.

また、本発明に係る高架橋の耐震補強構造は、前記ブレース本体の上端と前記上部構造との間にダンパー機構を介在させたものである。   Moreover, the viaduct seismic reinforcement structure according to the present invention is such that a damper mechanism is interposed between the upper end of the brace body and the upper structure.

また、本発明に係る高架橋の耐震補強構造は、前記ダンパー機構を、履歴減衰材で形成され前記上部構造の下面から下方に向けて突設された内筒部材と該内筒部材が嵌め込まれ前記複数のブレース本体の上端が周面に固定された外筒部材とで構成したものである。   In addition, the viaduct seismic reinforcement structure according to the present invention includes an inner cylinder member that is formed of a hysteresis damping material and protrudes downward from the lower surface of the upper structure, and the inner cylinder member is fitted into the damper mechanism. The upper end of a plurality of brace bodies is composed of an outer cylinder member fixed to the peripheral surface.

また、本発明に係る高架橋の耐震補強構造は、前記外筒部材及び前記内筒部材を、それらの鉛直相対移動が拘束されるように構成したものである。   Moreover, the viaduct seismic reinforcement structure according to the present invention is configured such that the vertical relative movement of the outer cylinder member and the inner cylinder member is restricted.

ラーメン架構を耐震補強する場合においては、ラーメン架構を耐震補強した分だけ、基礎構造により多くの水平地震力が伝達される。そのため、耐震補強による荷重増加分を安全確実に地盤に伝達させる技術が重要になるところ、増し杭に水平地震力の一部を負担させる方法が知られていることは既に述べた通りである。   When a ramen frame is seismically reinforced, much horizontal seismic force is transmitted to the foundation as much as the ramen frame is seismically reinforced. For this reason, the technology for safely and reliably transmitting the load increase due to seismic reinforcement to the ground is important, and as already mentioned, a method for bearing a part of the horizontal seismic force on the additional pile is known.

しかしながら、増し杭の構築は、用地の確保やあらたな杭打ちが必要になるなど、経済面での負担が大きい。   However, the construction of additional piles has a large economic burden, such as securing land and driving new piles.

ここで、従来の高架橋下部構造を支持する基礎構造においては、水平地震力が特定の部位に集中しても、基礎構造の健全性が十分に確保されるよう、かなりの余裕をもって安全側に耐震設計されている。   Here, in the foundation structure that supports the conventional viaduct substructure, even if the horizontal seismic force is concentrated on a specific part, the safety side is seismically resistant with sufficient margin so that the soundness of the foundation structure is sufficiently secured. Designed.

本出願人は、このような基礎構造の耐震余裕をうまく利用することができないかに着眼して研究開発を行った結果、高架橋上部構造からの水平地震力をラーメン架構に全て流すのではなく、その一部を立体ブレースを介して基礎構造に分散伝達させる技術の開発に成功した。   As a result of research and development focusing on whether or not the seismic margin of such foundation structure can be used well, the present applicant does not flow all the horizontal seismic force from the viaduct superstructure to the ramen frame, We have succeeded in developing a technology that allows a part of this to be distributed and transmitted to the basic structure via solid braces.

すなわち、本発明に係る高架橋の耐震補強構造においては、複数のブレース本体からなる立体ブレースを備えており、該立体ブレースは、全体形状が角錐状になるように複数のブレース本体の上端を上部構造の下面所定位置にそれぞれ接合するとともにそれらの下端を柱の脚部又は該柱の立設位置近傍にそれぞれ接合してなる。   That is, the viaduct seismic reinforcement structure according to the present invention includes a three-dimensional brace composed of a plurality of brace bodies, and the three-dimensional brace has an upper structure at the upper ends of the plurality of brace bodies so that the overall shape is a pyramid shape. The lower end of each of the columns is joined to a predetermined position, and the lower ends thereof are joined to the leg portions of the column or in the vicinity of the standing position of the column.

このようにすると、高架橋上部構造からの水平地震力の一部、主としてラーメン架構を耐震補強したことによる荷重増加分が複数のブレース本体を介して基礎構造に分散伝達され、立体ブレースは、ラーメン架構を耐震補強する役割だけではなく、上部構造からの地震時水平力の一部を基礎構造に分散伝達する役割をも果たす。   In this way, part of the horizontal seismic force from the viaduct superstructure, mainly the increase in load due to the seismic reinforcement of the ramen frame, is distributed and transmitted to the foundation structure via the multiple brace bodies. In addition to the role of seismic reinforcement, the part of the horizontal force during the earthquake from the superstructure is also distributed and transmitted to the foundation structure.

すなわち、ラーメン架構を耐震補強したことの荷重増加分は、従前のように基礎構造の特定部位に集中することなく、基礎構造全体に広く分散伝達されるとともに、その結果として、基礎構造の構成要素である杭やフーチングが負担すべきそれぞれの荷重増加分はわずかで済む。   In other words, the increase in load due to the seismic reinforcement of the rigid frame is not distributed to a specific part of the foundation structure as before, but is widely distributed throughout the foundation structure. The amount of load increase that each pile or footing should bear is small.

そのため、ラーメン架構の耐震補強による荷重増加分を、基礎構造が潜在的に保有していた耐震余裕で概ね吸収することが可能となり、かくして既存の基礎構造をあえて耐震補強する必要がなくなり、又は仮に基礎構造を耐震補強する必要が生じたとしても、その補強規模を大幅に軽減することが可能となる。   Therefore, it is possible to absorb the increase in load due to the seismic reinforcement of the ramen frame with the seismic margin that the foundation structure potentially possessed, thus eliminating the need for the existing foundation structure to be seismically reinforced. Even if the foundation structure needs to be seismically reinforced, the scale of the reinforcement can be greatly reduced.

ちなみに、ラーメン架構の構面内にブレースを設置する従前の耐震補強構造で地震時水平力を基礎構造に均等に伝達させようとすると、ブレースをラーメン架構ごとに設置せねばならない、言い換えると、多数のブレースを橋軸方向に沿って設置せねばならないため、経済面で現実的ではない。   By the way, if you want to transmit the horizontal force during an earthquake evenly to the foundation structure with the conventional seismic reinforcement structure that installs braces in the frame of the ramen frame, you must install braces for each ramen frame, in other words, many This is not economically realistic because the brace must be installed along the bridge axis.

本願発明に係る立体ブレースは、高架橋を橋軸方向に沿って合理的に耐震補強することが可能な手段であって、従前のブレースより格段に経済性に優れたブレースであると云える。   The three-dimensional brace according to the present invention is a means capable of rationally seismically reinforcing the viaduct along the bridge axis direction, and can be said to be a brace much more economical than the conventional brace.

立体ブレースは、全体形状が角錐状になるように、ブレース本体の上端を上部構造の下面所定位置にそれぞれ接合し、下端を、柱の脚部又は該柱の立設位置近傍にそれぞれ接合する限り、どのように構成するかは任意であり、例えば、矩形隅部に相当する4カ所に立設された4本の柱の脚部に4本のブレース本体の下端をそれぞれ接合するとともに、これら4本のブレース本体の上端を、矩形中心を水平位置とする上部構造の下面位置に接合する例が考えられる。この場合、立体ブレースはピラミッド(四角錐)状となる。   As long as the three-dimensional brace is joined to the lower part of the upper structure at a predetermined position on the lower surface of the upper structure and the lower end is joined to the vicinity of the column leg or the standing position of the pillar so that the overall shape is a pyramid The configuration is arbitrary. For example, the lower ends of the four brace bodies are joined to the leg portions of the four pillars erected at the four positions corresponding to the rectangular corners. An example is conceivable in which the upper end of the main brace body is joined to the lower surface position of the upper structure with the rectangular center as the horizontal position. In this case, the solid brace has a pyramid shape.

ブレース本体の上端は、上部構造の下面に直接固定してもかまわないが、これらの間にダンパー機構を介在させたならば、上部構造と立体ブレースの頂点との間に生じる相対変形がダンパー機構に強制変形として入力され、変形方向に沿った振動が減衰する。   The upper end of the brace body may be directly fixed to the lower surface of the superstructure, but if a damper mechanism is interposed between them, the relative deformation that occurs between the superstructure and the top of the three-dimensional brace is caused by the damper mechanism. Is input as forced deformation, and the vibration along the deformation direction is attenuated.

例えば、橋軸直交方向の水平振動を減衰させたいのであれば、該橋軸直交方向で減衰が効くようにダンパー機構を構成し、橋軸方向の水平振動を減衰させたいのであれば、該橋軸方向で減衰が効くようにダンパー機構を構成すればよい。また、車両走行時に生じる鉛直振動を抑制したいのであれば、鉛直方向で減衰が効くようにダンパー機構を構成すればよい。   For example, if it is desired to damp horizontal vibration in the direction perpendicular to the bridge axis, a damper mechanism is configured so that damping is effective in the direction orthogonal to the bridge axis, and if it is desired to damp horizontal vibration in the bridge axis direction, the bridge The damper mechanism may be configured so that attenuation is effective in the axial direction. Further, if it is desired to suppress the vertical vibration generated when the vehicle travels, the damper mechanism may be configured so that attenuation is effective in the vertical direction.

具体的には、ダンパー機構を、履歴減衰材で形成され上部構造の下面から下方に向けて突設された内筒部材と、該内筒部材が嵌め込まれ複数のブレース本体の上端が周面に固定された外筒部材とで構成することが考えられる。   Specifically, the damper mechanism includes an inner cylinder member formed of a hysteresis damping material and projecting downward from the lower surface of the upper structure, and the upper ends of the plurality of brace bodies are fitted on the circumferential surface. It may be configured with a fixed outer cylinder member.

かかる構成によれば、水平2軸の相対変形が強制変形として内筒部材に作用するので、該内筒部材を形成する履歴減衰材による減衰効果が期待できる。   According to such a configuration, since the relative deformation of the two horizontal axes acts on the inner cylinder member as forced deformation, the damping effect by the hysteresis damping material forming the inner cylinder member can be expected.

これに加えて、外筒部材及び内筒部材を、それらの鉛直相対移動が拘束されるように構成したならば、鉛直方向の相対変形も強制変形として内筒部材に作用するため、車両走行時の鉛直振動も抑制することが可能となる。   In addition to this, if the outer cylinder member and the inner cylinder member are configured so that their vertical relative movement is restricted, the vertical relative deformation also acts on the inner cylinder member as forced deformation. It is also possible to suppress vertical vibrations.

以下、本発明に係る高架橋の耐震補強構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a viaduct seismic reinforcement structure according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1乃至図3は、本実施形態に係る高架橋の耐震補強構造を示した図である。これらの図でわかるように、本実施形態に係る高架橋の耐震補強構造1は、高架橋2の上部構造3を支持するラーメン架構4と、基礎構造としてのフーチング5及び杭6と、立体ブレース7とからなる。   1 to 3 are views showing a seismic reinforcing structure of a viaduct according to the present embodiment. As can be seen from these drawings, the viaduct seismic reinforcement structure 1 according to the present embodiment includes a rigid frame 4 that supports the upper structure 3 of the viaduct 2, a footing 5 and a pile 6 as a foundation structure, and a three-dimensional brace 7. Consists of.

ラーメン架構4は、橋軸直交方向に沿って対向配置された一対の柱8,8、それらの柱頭に架け渡された梁9a及び橋軸方向に沿って対向配置された柱8,8の柱頭に架け渡された梁9bからなり、柱8は、既設の杭6の杭頭に設置されたフーチング5の上に立設してある。   The frame 4 includes a pair of pillars 8 and 8 arranged opposite to each other in the direction orthogonal to the bridge axis, a beam 9a spanned between those pillars, and the pillars 8 and 8 arranged opposite to each other along the bridge axis direction. The pillar 8 is erected on the footing 5 installed on the pile head of the existing pile 6.

立体ブレース7は、全体形状が四角錐状になるように、4本のブレース本体10の上端を、上部構造3の下面所定位置にそれぞれ接合するとともに、それらの下端を柱8が立設されたフーチング5にそれぞれ接合して構成してある。   The three-dimensional brace 7 has the upper ends of the four brace bodies 10 joined to predetermined positions on the lower surface of the upper structure 3 so that the overall shape is a quadrangular pyramid, and the pillars 8 are erected at the lower ends thereof. The footings 5 are joined to each other.

ここで、4本のブレース本体10は図4に示すように、鋼製パイプで形成された外筒部材42の外周面にそれらの上端を溶接等で固定するとともに、その内側に、上部構造3の下面に突設された履歴減衰材からなる内筒部材41を嵌め入れてあり、内筒部材41及び外筒部材42は、上部構造3と立体ブレース7の頂点との間に生じる水平2軸の相対変形が強制変形として入力されたとき、該強制変形の方向に沿った振動を減衰させるダンパー機構43として機能する。   Here, as shown in FIG. 4, the four brace bodies 10 have their upper ends fixed to the outer peripheral surface of the outer cylindrical member 42 formed of steel pipes by welding or the like, and the upper structure 3 An inner cylinder member 41 made of a hysteresis damping material projecting on the lower surface of the inner cylinder member 41 is fitted, and the inner cylinder member 41 and the outer cylinder member 42 are two horizontal axes generated between the upper structure 3 and the apex of the three-dimensional brace 7. When the relative deformation of is input as forced deformation, it functions as a damper mechanism 43 that attenuates vibration along the direction of the forced deformation.

内筒部材41は、4本の柱8の立設位置を矩形隅部としたときの該矩形中心が平面位置となるように、上部構造3の下面に突設するのがよい。   The inner cylinder member 41 is preferably projected from the lower surface of the upper structure 3 so that the rectangular center when the standing position of the four pillars 8 is a rectangular corner is a planar position.

ブレース本体10は例えばH鋼で構成することができる。   The brace body 10 can be made of, for example, H steel.

本実施形態に係る高架橋の耐震補強構造1においては、複数のブレース本体10からなる立体ブレース7を備えており、該立体ブレースは、全体形状が四角錐状になるように4本のブレース本体10の上端を上部構造3の下面側に接合するとともに、下端を、柱8が立設された4つのフーチング5にそれぞれ接合してある。   The viaduct seismic reinforcement structure 1 according to the present embodiment includes a three-dimensional brace 7 including a plurality of brace bodies 10, and the three-dimensional braces have four brace bodies 10 so that the overall shape is a quadrangular pyramid. Are joined to the four footings 5 on which the pillars 8 are erected.

このようにすると、上部構造3からの水平地震力の一部、主としてラーメン架構4を耐震補強したことによる荷重増加分は、複数のブレース本体10を介してフーチング5に分散伝達され、立体ブレース7は、ラーメン架構4を耐震補強する役割だけではなく、上部構造3からの地震時水平力の一部をフーチング5に分散伝達する役割をも果たすこととなる。   In this way, a part of the horizontal seismic force from the upper structure 3, mainly the increase in load due to the seismic reinforcement of the rigid frame 4, is distributed and transmitted to the footing 5 via the plurality of brace bodies 10, and the three-dimensional brace 7 Not only plays a role of seismic reinforcement of the rigid frame 4 but also plays a role of distributing and transmitting a part of the horizontal force at the time of the earthquake from the upper structure 3 to the footing 5.

それに対し、従前の耐震補強方法においては、経済性あるいは合理性の観点から、すべてのラーメン架構4にブレースを設置することが困難であって数スパンごとにブレースを設置せざるを得ないところ、かかる配置構成では、結果として剛性が高い箇所、すなわちブレースが配置されたフーチング5に地震時水平力が集中してしまう。   On the other hand, in the conventional seismic reinforcement method, from the viewpoint of economy or rationality, it is difficult to install braces on all the ramen frames 4, and braces must be installed every few spans. In such an arrangement, as a result, the horizontal force during an earthquake is concentrated on a portion having high rigidity, that is, the footing 5 on which the brace is arranged.

本実施形態に係る立体ブレース7は、このような従来のブレースとは異なり、高架橋2を橋軸方向に沿って合理的に耐震補強することが可能な手段であって、従前のブレースより格段に経済性に優れたブレースであると云える。   The three-dimensional brace 7 according to the present embodiment is a means capable of rationally seismically reinforcing the viaduct 2 along the bridge axis direction, unlike such a conventional brace, and is significantly more than a conventional brace. It can be said that it is an economical brace.

以上説明したように、本実施形態に係る高架橋の耐震補強構造1によれば、ラーメン架構4を耐震補強したことの荷重増加分は、従前のように特定のフーチング5に集中するのではなく、4つのフーチング5に均等に分散伝達されるとともに、その結果として、各フーチング5が負担すべきそれぞれの荷重増加分はわずかで済む。   As explained above, according to the viaduct seismic reinforcement structure 1 according to the present embodiment, the load increase due to the seismic reinforcement of the rigid frame 4 is not concentrated on the specific footing 5 as before, The four footings 5 are equally distributed and transmitted, and as a result, each load increase to be borne by each footing 5 is small.

そのため、ラーメン架構4を耐震補強したことによる荷重増加分を、フーチング5及び杭6が潜在的に保有している耐震余裕で概ね吸収することが可能となり、かくして既存のフーチング5又は杭6をあえて耐震補強する必要がなくなり、又は、仮に既存のフーチング5又は杭6を耐震補強する必要が生じたとしても、その補強規模を大幅に軽減することが可能となる。   Therefore, it becomes possible to absorb the load increase due to the seismic reinforcement of the rigid frame 4 with the seismic margin that the footing 5 and the pile 6 potentially hold, and thus the existing footing 5 or the pile 6 is dared. Even if it is not necessary to perform seismic reinforcement, or if it is necessary to seismically reinforce the existing footing 5 or pile 6, the scale of reinforcement can be greatly reduced.

また、本実施形態に係る高架橋の耐震補強構造1によれば、ブレース本体10と上部構造3との間に、内筒部材41及び外筒部材42からなるダンパー機構43を介在させるようにしたので、上部構造3と立体ブレース7の頂点との間に生じる水平2軸の相対変形に沿った振動に対し、これを減衰させることが可能となる。   Further, according to the viaduct seismic reinforcement structure 1 according to the present embodiment, the damper mechanism 43 including the inner cylinder member 41 and the outer cylinder member 42 is interposed between the brace body 10 and the upper structure 3. It is possible to attenuate the vibration along the relative deformation of the two horizontal axes generated between the upper structure 3 and the top of the solid brace 7.

本実施形態では特に言及しなかったが、ダンパー機構43に代えて、内筒部材41に上段鍔部51aと下段鍔部51bとを設け、該上段鍔部及び下段鍔部によって内筒部材41に対する外筒部材42の鉛直相対移動が拘束されるように構成されたダンパー機構43aとしてもよい。   Although not particularly mentioned in the present embodiment, instead of the damper mechanism 43, the inner cylinder member 41 is provided with an upper ridge part 51a and a lower ridge part 51b, and the upper tier part and the lower ridge part are used to It is good also as the damper mechanism 43a comprised so that the vertical relative movement of the outer cylinder member 42 might be restrained.

かかる変形例によれば、鉛直方向の相対変形も強制変形として内筒部材41に作用するため、車両走行時の鉛直振動も抑制することが可能となる。   According to such a modification, since the relative deformation in the vertical direction also acts on the inner cylinder member 41 as forced deformation, it is possible to suppress vertical vibration during vehicle travel.

本実施形態に係る耐震補強構造1の橋軸方向から見た矢視図。The arrow line view seen from the bridge axis direction of the earthquake-proof reinforcement structure 1 which concerns on this embodiment. 図1のA−A線方向から見た矢視図。The arrow line view seen from the AA line direction of FIG. 図2のB−B線に沿った水平断面図。The horizontal sectional view along the BB line of FIG. ダンパー機構43を示した詳細図。A detailed view showing a damper mechanism 43. FIG. ダンパー機構43aを示した詳細図。The detailed view which showed the damper mechanism 43a.

符号の説明Explanation of symbols

1 高架橋の耐震補強構造
2 高架橋
3 上部構造
4 ラーメン架構
5 フーチング(基礎構造)
6 杭(基礎構造)
7 立体ブレース
8 柱
9a,9b 梁
10 ブレース本体
41 内筒部材
42 外筒部材
43,43a ダンパー機構
1 Seismic reinforcement structure of viaduct 2 Viaduct 3 Superstructure 4 Ramen frame 5 Footing (basic structure)
6 Pile (foundation structure)
7 Three-dimensional brace 8 Columns 9a, 9b Beam 10 Brace body 41 Inner cylinder member 42 Outer cylinder member 43, 43a Damper mechanism

Claims (4)

高架橋の上部構造を支持するラーメン架構と、該ラーメン架構を構成する柱が立設された基礎構造と、複数のブレース本体からなる立体ブレースとを備え、該立体ブレースは、全体形状が角錐状になるように前記複数のブレース本体の上端を前記上部構造の下面所定位置にそれぞれ接合するとともにそれらの下端を前記柱の脚部又は該柱の立設位置近傍にそれぞれ接合してなることを特徴とする高架橋の耐震補強構造。 It has a ramen frame that supports the superstructure of the viaduct, a foundation structure on which pillars constituting the ramen frame are erected, and a three-dimensional brace made up of a plurality of brace bodies. The upper ends of the plurality of brace bodies are joined to predetermined positions on the lower surface of the upper structure, and the lower ends thereof are joined to the leg portions of the pillars or in the vicinity of the standing positions of the pillars, respectively. Seismic reinforcement structure for viaduct. 前記ブレース本体の上端と前記上部構造との間にダンパー機構を介在させた請求項1記載の高架橋の耐震補強構造。 The viaduct seismic reinforcement structure according to claim 1, wherein a damper mechanism is interposed between an upper end of the brace body and the upper structure. 前記ダンパー機構を、履歴減衰材で形成され前記上部構造の下面から下方に向けて突設された内筒部材と該内筒部材が嵌め込まれ前記複数のブレース本体の上端が周面に固定された外筒部材とで構成した請求項2記載の高架橋の耐震補強構造。 The damper mechanism is formed of a hysteresis damping material and protrudes downward from the lower surface of the upper structure, and the inner cylinder member is fitted, and the upper ends of the plurality of brace bodies are fixed to the peripheral surface 3. The viaduct seismic reinforcement structure according to claim 2, wherein the structure is composed of an outer cylinder member. 前記外筒部材及び前記内筒部材を、それらの鉛直相対移動が拘束されるように構成した請求項3記載の高架橋の耐震補強構造。 The earthquake resistance reinforcement structure of the viaduct of Claim 3 which comprised the said outer cylinder member and the said inner cylinder member so that those vertical relative movement was restrained.
JP2008089244A 2008-03-31 2008-03-31 Aseismatic reinforcing structure of viaduct Pending JP2009243091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089244A JP2009243091A (en) 2008-03-31 2008-03-31 Aseismatic reinforcing structure of viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089244A JP2009243091A (en) 2008-03-31 2008-03-31 Aseismatic reinforcing structure of viaduct

Publications (1)

Publication Number Publication Date
JP2009243091A true JP2009243091A (en) 2009-10-22

Family

ID=41305300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089244A Pending JP2009243091A (en) 2008-03-31 2008-03-31 Aseismatic reinforcing structure of viaduct

Country Status (1)

Country Link
JP (1) JP2009243091A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029260B1 (en) * 1966-05-20 1975-09-22
JP2001020228A (en) * 1999-07-12 2001-01-23 Ohbayashi Corp Lower structure of viaduct and design method therefor
JP2002227127A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Bridge and aseismatic strength reinforcing method for bridge pier
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge
JP2003064620A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Vibration control and vibration isolation structure of reinforced concrete elevated bridge
JP2004270168A (en) * 2003-03-05 2004-09-30 Ohbayashi Corp Earthquake-proof reinforcement structure and method
JP2006274613A (en) * 2005-03-29 2006-10-12 Shimizu Corp Earthquake resistant reinforcing structure
JP2007278411A (en) * 2006-04-07 2007-10-25 Building Research Institute Damper device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029260B1 (en) * 1966-05-20 1975-09-22
JP2001020228A (en) * 1999-07-12 2001-01-23 Ohbayashi Corp Lower structure of viaduct and design method therefor
JP2002227127A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Bridge and aseismatic strength reinforcing method for bridge pier
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge
JP2003064620A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Vibration control and vibration isolation structure of reinforced concrete elevated bridge
JP2004270168A (en) * 2003-03-05 2004-09-30 Ohbayashi Corp Earthquake-proof reinforcement structure and method
JP2006274613A (en) * 2005-03-29 2006-10-12 Shimizu Corp Earthquake resistant reinforcing structure
JP2007278411A (en) * 2006-04-07 2007-10-25 Building Research Institute Damper device

Similar Documents

Publication Publication Date Title
JP6640459B2 (en) Seismic isolation method for seismic isolation structure, steel frame support structure and existing steel frame support structure
JP4585046B1 (en) Post restraint device in seismic retrofitting frame
JP2005207111A (en) Seismic response controlled bridge pier
JP2007077698A (en) Structure having base isolation/seismic response control function
JP4010981B2 (en) Upper extension method for existing buildings
JP4140028B2 (en) Seismic reinforcement structure
JP2004332478A (en) Earthquake resistant structure for bridge
JP4282003B2 (en) Vibration control structure
JP4960731B2 (en) Seismic reinforcement structure for viaduct
JP3854606B2 (en) Vibration control mechanism
JP2011043031A (en) Seismic isolation structure and seismic isolation construction
JP2009243091A (en) Aseismatic reinforcing structure of viaduct
JP2017101516A (en) Structure combining base isolation with vibration control
JP4837145B1 (en) Seismic retrofitting structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP5142213B2 (en) Seismic reinforcement structure for viaduct
JP2004225347A (en) Seismic control structure of structure
JPH10280725A (en) Damping skeleton construction
JP5142214B2 (en) Seismic reinforcement structure for viaduct
JP3925868B2 (en) Seismic retrofit structure and seismic control structure using the same
JP4943190B2 (en) Seismic reinforcement structure for viaduct
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
KR102209624B1 (en) Seismic reinforcing structure
JP2017040102A (en) Vibration control structure of building
JP2012117327A (en) Vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110223

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120704

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130624