JP4113458B2 - Bridge structure - Google Patents

Bridge structure Download PDF

Info

Publication number
JP4113458B2
JP4113458B2 JP2003151344A JP2003151344A JP4113458B2 JP 4113458 B2 JP4113458 B2 JP 4113458B2 JP 2003151344 A JP2003151344 A JP 2003151344A JP 2003151344 A JP2003151344 A JP 2003151344A JP 4113458 B2 JP4113458 B2 JP 4113458B2
Authority
JP
Japan
Prior art keywords
bridge
earthquake
pier
brace
brace material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003151344A
Other languages
Japanese (ja)
Other versions
JP2004353255A (en
Inventor
角谷務
宮内秀敏
今井義明
堀口政一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2003151344A priority Critical patent/JP4113458B2/en
Publication of JP2004353255A publication Critical patent/JP2004353255A/en
Application granted granted Critical
Publication of JP4113458B2 publication Critical patent/JP4113458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、橋脚と床版及び橋脚同士を連結させるブレス材によって構成される橋梁の構造に関するものである。
【0002】
【従来の技術】
兵庫県南部地震以降、耐震基準の見直し等に伴い構造物には高度な耐震性能が要求されている。耐震性能を有する構造は、中規模地震程度の地震時外力に対しては構造物の備えた剛性(構造物を構成する部材の弾性範囲内における剛性)にて抵抗でき、大規模地震時の地震時外力に対しては構造物の備えた靭性性能(構造物を構成する部材の非線形範囲を考慮した性能)にて追随できる構造のことである。すなわち、大規模地震時の地震時外力に対しても構造物の剛性(弾性範囲)のみで抵抗しようとした場合には構造物の規模が各段に大きなものとなり不経済であること等より、構造物の持つ靭性性能を積極的に取り入れて経済的かつ正当な構造特性評価に基づいた設計および施工をおこなうこととしている。
ここで、中規模地震とは、例えば橋梁の供用期間中に発生する確率が高い地震動のことである。一方、大規模地震とは、例えば橋梁の供用期間中に発生する確率は低いが大きな強度をもつ地震動のことである。
【0003】
従来の橋梁は、杭基礎形式、直接基礎形式のいずれにおいてもフーチング上に橋脚を構築し、かかる橋脚上に橋桁及び床版などの上部工を構築している。また、上記する大規模地震時の地震時外力(地震エネルギー)を吸収するために、橋脚(または橋台)と上部工の間に高減衰ゴムなどを使用した免震支承を設ける場合がある。かかる免震支承は、例えば鉛プラグ入りの積層ゴムによって構成され、平常時の交通荷重及び上部工荷重などは剛性の高い鉛プラグを介して橋脚に伝達させる。また、一定以上の地震力に対しては積層ゴムにより履歴減衰や粘性減衰などの原理に基づいて地震時エネルギーを吸収させ、橋梁の固有周期を長周期化させることによって地震力を低減させている。
【0004】
【発明が解決しようとする課題】
前記した従来の橋梁の構造にあっては、次のような問題点がある。
橋梁の供用期間中の発生確率が極めて低い大規模地震対策として高価な免震支承を設けることは不経済である。
【0005】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、大規模地震対策としての免震支承を設けることを要しない橋梁の構造を提供することを目的とする。さらに、大規模地震動にも構造体が脆性的に破壊しない橋梁の構造を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0006】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の橋梁の構造は、橋桁及び床版からなる上部工と橋脚より構成される橋梁の構造において、橋軸方向及び橋軸直角方 向に間隔を置いて複数設けた前記橋脚と、前記橋脚の上部に設けた前記橋桁及び前記床版からなる前記上部工と、並列する前記橋脚同士を連結させるブレス材と、によってラーメン構造の橋梁を構成し、前記橋軸直角方向の前記橋脚同士に連結させた前記ブレス材は地震時の地震時外力に対して破損不能に設け、前記橋軸方向の前記橋脚同士に連結させた前記ブレス材は前記地震時地震時の地震時外力に対して破損可能に設けたことを特徴とする橋梁の構造である。
【0007】
また、前記する橋梁の構造は、大規模地震時の地震時外力が前記橋梁に作用した際に破損可能な破損箇所を、前記橋軸方向に設けた前記ブレス材と前記橋脚の連結部または前記ブレス材同士の格点部とすることを特徴とする橋梁の構造を使用できる。
【0008】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0009】
<イ>大規模地震
大規模地震とは、構造物(橋梁)の供用期間中に発生する確率は低いが大きな強度をもった地震のことである。さらに大規模地震としては、プレート境界型の地震(タイプI地震)と内陸直下型の地震(タイプII地震)に大別することができる。タイプI地震動の代表例として関東地震の東京周辺における地震動が挙げられ、タイプII地震動の代表例として兵庫県南部地震が挙げられる。
タイプI地震は大きな振幅が長時間繰り返して作用する地震であり、タイプII地震は継続時間は短いものの極めて大きな強度を有する地震である。
耐震設計においては、構造物の固有周期と地震動の有する周波数特性(特定の地震動について固有周期ごとに算定された加速度応答値)との関係から構造物に作用する地震時外力(地震時の設計水平震度)を算定するのが一般的である。タイプII地震はタイプI地震に比べて加速度応答値が大きいものの、上記する地震動特性から固有周期が長周期(例えば固有周期が1.0秒以上)に及ぶ場合の加速度応答値の減少割合が高い。もっとも、タイプI地震、タイプII地震ともに構造物の固有周期が長周期になるにつれて地震時外力が減少する点は共通している。
したがって、構造物の固有周期を長周期化させることにより構造物に作用する地震時外力を減少させ、構造物の構造をスリム化することができる。
本発明の橋梁の構造は、上記のごとく低廉に構造物(橋梁)の固有周期を長周期化することができる構造を提供するものである。
なお、中規模地震とは、橋梁の供用期間中に発生する確率は高いが地震の規模が大きくはない地震(おおよそ、加速度200gal程度の地震)のことである。
【0010】
<ロ>ラーメン構造の橋梁(図1、図2)
本発明の対象とする橋梁の構造はラーメン構造である。橋軸方向5及び橋軸直角方向4に複数並列させた橋脚2を、その上部を橋桁11にて連結させ、かかる橋桁11は床版12と一体化させることによって橋軸方向5及び橋軸直角方向4のラーメン構造を構成する。
橋桁11は橋軸方向5にのみ、または橋軸方向5及び橋軸直角方向4の双方に設けることができる。橋軸方向5にのみ橋桁11を設ける場合には、橋軸直角方向4のラーメン構造を構成する部材は橋脚2と床版12となる。その他の場合(橋軸方向5にのみ橋桁11を設ける場合の橋軸方向5、橋桁11を橋軸方向5及び橋軸直角方向4の双方に設ける場合)には、ラーメン構造を構成する部材は橋脚2と橋桁11となる。
橋脚2と橋桁11の連結方法は、橋脚2を橋桁11に埋め込んで構築した剛結合構造とするのが好ましい。
【0011】
また、本発明において使用する橋脚2は杭基礎と兼用することも可能である。すなわち、杭(橋脚2)を地盤に打ち込んで(または埋め込んで)地盤上に突出させ、杭(橋脚2)の上部に橋桁11を構築するものである。かかる構造によれば、フーチングを構築する時間及び費用を削減できるため、工期及び工費の面で大幅な効果が期待できる。
なお、杭の支持機構としては支持地盤に杭を貫入させて支持する支持杭のほか、杭の周面摩擦力に支持力の多くを期待する摩擦杭を使用することができる。
杭は橋脚2としての性能を備える必要があるため、所要の曲げ剛性やせん断剛性、圧縮特性を備える必要がある。上記する強度特性と施工性等を勘案すると、杭(橋脚2)としては鋼管杭を使用するのが好ましい。また、所要の強度特性を確保するために鋼管内にコンクリートを充填して補強した杭とするのもよい。
【0012】
<ハ>ブレス材
ブレス材3は、並列する橋脚2同士を連結させることにより、ラーメン構造の剛性を高めるために設けるものである。ブレス材3の接合方法は多様に選定できるが、例えば並列する橋脚2夫々に2本のブレス材3を相互に交差するように、橋脚2に対して所定の角度(例えば45度、60度など)をもって接合させる方法が一般的である。かかる格点部は格点部プレート32などを使用して補強することもできる(図3(c)参照)。ラーメン架構に地震時水平力などが作用した際にはかかる水平力によってラーメン架構が変位し、変位に伴って一方のブレス材3には引張り力が生じる。もっとも、ブレス材3が組み込まれたラーメン架構は、ブレス材3がない場合に比べて全体剛性が向上するため、ブレス材3が引張り力に抵抗できる耐力を備えていれば、高い剛性を維持した状態でラーメン架構全体の変位量も低く抑えることができる。一方、ブレス材3が引張り力に抗しきれずに破断した場合にはラーメン架構全体の変位量も大きくなり、変位量の増大に伴ってラーメン架構構成部材(橋脚2や橋桁11など)に生じる応力も増大することとなる。
ここで、ブレス材3の破断についてはブレス材3自体が引張り耐力不足のために破断する場合と、ブレス材3が破断する前にブレス材3と橋脚2(又は橋桁11)との連結部71(仕口)またはブレス材3同士の格点部72が破断する場合が考えられる。
【0013】
本発明の橋梁の構造は、上記する大規模地震時において、橋梁の橋軸直角方向4のブレス材3が地震時外力に抵抗できるように設ける構造とし、橋軸方向5のブレス材3は大規模地震時の地震時外力に対して破損を許容する構造とするのが好ましい。
すなわち、平常時及び中規模地震時には橋軸方向5及び橋軸直角方向4のブレス材3は破損することなく橋梁全体に過度の変位量を生じさせることのない構造とする。過度の変位は平常時の橋梁の供用に支障を来たすおそれがあるからである。
それに対し、大規模地震時には橋軸直角方向4のラーメン架構剛性を確保しながら橋軸方向5の固有周期を長周期化させて地震時エネルギーを橋軸方向5の靭性性 能で吸収・緩和させることを目標とする。大規模地震時の地震時外力に橋軸方向5のラーメン架構全体の剛性にて抗し得る構造とするためには使用する部材を過大なものとする必要があり、またその他の対策としては高価な免震支承を設置するなどが考えられるもののいずれの構造を使用するにしても不経済となるからである。また、橋軸直角方向4の剛性が低下することは橋梁構造の不安定化をもたらすこととなるとともに、橋軸直角方向4には大きな靭性を確保できるだけのスパン長が確保できないのが一般的であるため、橋軸直角方向4はブレス材3が破損しなような構造とするものである。
【0014】
橋軸方向5と橋軸直角方向4のブレス材3の接合方法については、例えば図1及び図2に示すように、橋軸直角方向4においては並列する橋脚2同士を連結する相互に交差したブレス材3を2組(または3組以上)設置し、橋軸方向5においてはかかる交差ブレス材3を1組(または橋軸直角方向4の組数以下)とするように設けることができる。また、橋軸直角方向4において使用するブレス材3は対象とする大規模地震時外力に抗し得るブレス材3を選定し、橋軸方向5において使用するブレス材3は中規模地震時外力には抗し得るが大規模地震時外力に抗し得るまでの耐力を備えないブレス材3を選定することができる。
ブレス材3としては所望強度を確保できる材料を選定できるが、例えばH型鋼材33やL型鋼材34、C型鋼材などを使用でき、またブレス材3の格点部72は格点部プレート32などにて補強するのもよい。また、ブレス材3と橋脚2の連結部71においてはブレス材3として使用したH型鋼材33のウエブ及びフランジに補剛プレートを溶接するなどの補強をおこなうことにより、連結部71の補強をおこなうこともできる。
【0015】
また、橋軸方向5においては、ブレス材3と橋脚2等の連結部71又はブレス材3同士の格点部72の破断耐力をブレス材3の破断耐力以下となるように設計することもできる。例えば、連結部71の構造として橋脚2及び橋桁11の取り合い箇所に溶着させたプレート(ガセットプレート31)とブレス材3をボルト接合する場合(図3(b)参照)には、使用するボルト92の仕様及び本数を調整することによりかかるボルト92のせん断耐力をブレス材3の引張り耐力以下としておくことができる。また、例えばH型鋼材33を橋脚2に溶接91にて接合する方法もある(図3(a)参照)。そのほか、使用する連結部71の構造が備える耐力を使用するブレス材3の引張り耐力以下とする方法は多様に選定できる。
破損箇所を上記のようにブレス材3と橋脚2等の連結部71又はブレス材3同士の格点部72とすることにより、破損箇所の特定が容易となり、大規模地震後の復旧や補修が容易となり得る。
【0016】
<ニ>解析方法及び解析結果
本発明における橋梁の構造のうち、橋軸方向のラーメン構造について大規模地震時にブレス材3が破損することによってラーメン構造全体の剛性が低下し靭性が向上することにより構造体の固有周期を長周期化できることを実証するための構造解析をおこなった。固有周期が長周期化することにより、構造体に作用する地震時外力(加速度応答スペクトル)を低減できることを検証する。
構造解析においては、4径間連続ラーメンモデルを使用する。図2の実施例においては橋軸方向に4径間間隔で橋桁11及び床版12間に緩衝材6を設ける構造としており、かかる緩衝材6にて連続する隣接4径間ブロックとは実質的に縁が切れた構造となるため、解析モデルもかかる実施例に対応すべく4径間連続ラーメンモデルとしたものである。
【0017】
供用時及び中規模地震時におけるモデル図を図4(a)に示す。橋桁11、橋脚2、ブレス材3を夫々橋桁梁モデル81、橋脚梁モデル82、ブレス材梁モデル83とし、橋脚2(杭)のうち地盤に埋め込まれた部分には地盤の水平バネ84及び鉛直バネ84をモデル化する。本モデルにおいてブレス材3は破損することがないため(破損しないように設計されているため)、ラーメン構造体を構成する構成部材となっている。一方、大規模地震時にブレス材3(またはブレス材3と橋脚2等の連結部71またはブレス材3同士の格点部72)が破損した後のモデル図を図4(b)に示す。破損箇所が上記のいずれの箇所であっても、破損後はすでにブレス材3が引張り材としての機能を果たさなくなっているため、ラーメン構造体を構成する構成部材からブレス材3は除外される。
構造解析は、各モデルごとに所定の地震時水平力(慣性力)を作用させて構造体の慣性力作用位置における変位量を算定して固有周期を求める方法によりおこなった。かかる算定方法は道路橋示方書・同解説(V 耐震設計編 平成8年12月 社団法人日本道路協会)(以下単に「道路橋」という)に基づいておこなっている。
固有周期の算定式は以下の式による。
【0018】
【数1】
T=2.01√δ ・・・・・・(1)
【0019】
ここで、Tは構造体の固有周期(秒)を、δは構造体に所定の慣性力を慣性力作用位置に作用させた場合のかかる慣性力作用位置における変位(m)を示している。
【0020】
中規模地震時及び大規模地震時の固有周期結果を以下に示す。
【0021】
【表1】

Figure 0004113458
【0022】
上記の固有周期を用いて、道路橋の設計水平震度算定式より各地震時ごとの設計水平震度を算定した結果を以下に示す。なお、本解析においては設計上最も堅い地盤である地盤種別I種の地盤を対象とする。
【0023】
大規模地震(タイプI地震)の設計水平震度の算定式を(2)、(3)に示す。
【0024】
【数2】
T<1.4秒の場合 k=0.7・・・・・・・・・・(2)
T≧1.4秒の場合 k=0.876T−2/3 ・・・ (3)
【0025】
ここで、Tは固有周期(秒)を、kは設計水平震度を示す。
【0026】
大規模地震(タイプII地震)の設計水平震度の算定式を(4)〜(6)に示す。
【0027】
【数3】
T<0.3秒の場合 k=4.46T2/3 ・・・・・(4)
0.3秒≦T≦0.7秒の場合 k=2.0 ・・・・・・・・・(5)
T>0.7秒の場合 k=1.24T4/3 ・・・・・(6)
【0028】
上記(2)〜(6)式より構造物の固有周期が長周期化するにつれて設計水平震度(地震時外力)も小さくなる傾向にある。
【0029】
【表2】
Figure 0004113458
【0030】
解析結果より、タイプI地震、タイプII地震ともに構造物の固有周期を長周期化することができ、地震時外力(設計水平震度)を低減することが可能となる。
【0031】
【発明の効果】
本発明の橋梁の構造は以上説明したようになるから次のような効果を得ることができる。
<イ>大規模地震に対するラーメン構造の橋梁の靭性性能の向上を安価に実現できる。
<ロ>大規模地震後の橋梁の損傷箇所の補修や復旧が比較的容易となる。
【図面の簡単な説明】
【図1】本発明の橋梁の構造の実施例の正面図。
【図2】本発明の橋梁の構造の実施例の縦断図。
【図3】(a)橋脚とブレス材の連結部の実施例を示した説明図。(b)橋脚とブレス材の連結部の実施例を示した説明図。(c)ブレス材の交差部の実施例を示した説明図。
【図4】構造解析で使用した橋軸方向の4径間連続ラーメンモデルを説明した図であり、(a)平常時及び中規模地震時のモデル図。(b)大規模地震時のモデル図。
【符号の説明】
1・・・上部工
11・・橋桁
12・・床版
2・・・橋脚
3・・・ブレス材
4・・・橋軸直角方向
5・・・橋軸方向
71・・連結部
72・・格点部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a bridge composed of a bridge pier, a floor slab, and a brace material that connects the piers.
[0002]
[Prior art]
Since the Hyogoken-Nanbu Earthquake, the structure has been required to have a high level of seismic performance due to the review of seismic standards. The structure with seismic performance can resist the external force at the time of a medium-scale earthquake by the rigidity of the structure (stiffness within the elastic range of the members constituting the structure), and the earthquake at the time of a large-scale earthquake It is a structure that can follow the external force by the toughness performance of the structure (performance considering the non-linear range of the members constituting the structure). In other words, when trying to resist the external force at the time of a large-scale earthquake with only the rigidity (elastic range) of the structure, the scale of the structure becomes large at each stage, which is uneconomical. The toughness performance of the structure is positively taken into account, and the design and construction based on economical and valid structural property evaluation is performed.
Here, a medium-scale earthquake is an earthquake motion that has a high probability of occurring during, for example, a bridge service period. On the other hand, a large-scale earthquake is a strong ground motion with a low probability of occurring during the in-service period of a bridge, for example.
[0003]
In the conventional bridge, the bridge pier is constructed on the footing in either the pile foundation type or the direct foundation type, and the superstructure such as the bridge girder and the floor slab is constructed on the bridge pier. Moreover, in order to absorb the external force (earthquake energy) at the time of the above-mentioned large-scale earthquake, there may be a case where a seismic isolation bearing using high-damping rubber is provided between the pier (or abutment) and the superstructure. Such a seismic isolation bearing is composed of, for example, laminated rubber containing lead plugs, and normal traffic loads and superstructure loads are transmitted to the pier via the highly rigid lead plugs. Also, for seismic forces above a certain level, laminated rubber absorbs earthquake energy based on principles such as hysteresis damping and viscous damping, and the seismic force is reduced by extending the natural period of the bridge. .
[0004]
[Problems to be solved by the invention]
The above-described conventional bridge structure has the following problems.
It is uneconomical to install expensive seismic isolation bearings as a countermeasure for large-scale earthquakes with a very low probability of occurrence during the in-service period of the bridge.
[0005]
OBJECT OF THE INVENTION
The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a bridge structure that does not require a seismic isolation support as a countermeasure for a large-scale earthquake. Another object of the present invention is to provide a bridge structure in which the structure does not break brittlely even in a large-scale earthquake motion.
The present invention achieves at least one of these objects.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the bridge structure of the present invention is a bridge structure composed of a superstructure consisting of a bridge girder and a floor slab and a bridge pier, and is spaced in the direction of the bridge axis and the direction perpendicular to the bridge axis. A bridge having a ramen structure is constituted by the bridge pier provided in a plurality, the superstructure composed of the bridge girder and the floor slab provided on the upper part of the pier, and a brace material for connecting the bridge piers in parallel, the bridge axis perpendicular direction of the pier between the breath was ligated into material provided non damage for the seismic force of the earth Shinji, the breath material was ligated into the piers between the bridge axis direction the earthquake It is a bridge structure characterized by being able to break against external forces during an earthquake.
[0007]
Further, the structure of the bridge described above is a connecting portion between the brace material provided in the bridge axis direction and the bridge pier, or a breakage point that can be damaged when an external force at the time of a large-scale earthquake is applied to the bridge. It is possible to use a bridge structure characterized by a grading part between the brace materials.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
<A> Large-scale earthquakes A large-scale earthquake is an earthquake with a high intensity but a low probability of occurring during the in-service period of a structure (bridge). Large-scale earthquakes can be broadly divided into plate boundary earthquakes (type I earthquakes) and inland earthquakes (type II earthquakes). A typical example of Type I ground motion is the Kanto Earthquake around Tokyo, and a typical example of Type II ground motion is the Hyogo-ken Nanbu Earthquake.
A type I earthquake is an earthquake in which a large amplitude repeatedly acts for a long time, and a type II earthquake is an earthquake having a very large intensity although its duration is short.
In seismic design, the external force during an earthquake (horizontal design during an earthquake) acting on the structure based on the relationship between the natural period of the structure and the frequency characteristics of the ground motion (acceleration response value calculated for each natural period for a specific ground motion) It is common to calculate seismic intensity. Although type II earthquakes have a larger acceleration response value than type I earthquakes, the rate of decrease in acceleration response values is high when the natural period extends to a long period (for example, the natural period is 1.0 seconds or more) from the ground motion characteristics described above. . However, both Type I and Type II earthquakes have the common point that the external force during an earthquake decreases as the natural period of the structure becomes longer.
Therefore, by extending the natural period of the structure, the external force acting on the structure can be reduced, and the structure of the structure can be slimmed.
The structure of the bridge of the present invention provides a structure capable of increasing the natural period of the structure (bridge) at a low cost as described above.
A medium-scale earthquake is an earthquake (approximately an acceleration of about 200 gal) that has a high probability of occurring during the in-service period of the bridge but is not large.
[0010]
<Ro> Ramen bridge (Figs. 1 and 2)
The structure of the bridge targeted by the present invention is a ramen structure. A plurality of bridge piers 2 arranged in parallel in the bridge axis direction 5 and the bridge axis perpendicular direction 4 are connected at the upper part by a bridge girder 11, and the bridge girder 11 is integrated with the floor slab 12, whereby the bridge axis direction 5 and the bridge axis right angle are integrated. A ramen structure in direction 4 is formed.
The bridge girder 11 can be provided only in the bridge axis direction 5 or in both the bridge axis direction 5 and the bridge axis perpendicular direction 4. When the bridge girder 11 is provided only in the bridge axis direction 5, the members constituting the rigid frame structure in the direction perpendicular to the bridge axis 4 are the pier 2 and the floor slab 12. In other cases (when the bridge girder 11 is provided only in the bridge axis direction 5 and when the bridge girder 11 is provided in both the bridge axis direction 5 and the bridge axis perpendicular direction 4), the members constituting the ramen structure are It becomes the pier 2 and the bridge girder 11.
The connecting method of the pier 2 and the bridge girder 11 is preferably a rigid coupling structure constructed by embedding the pier 2 in the bridge girder 11.
[0011]
Moreover, the pier 2 used in the present invention can also be used as a pile foundation. That is, a pile (bridge pier 2) is driven into (or embedded in) the ground and protrudes on the ground, and the bridge girder 11 is constructed on the top of the pile (pier pier 2). According to such a structure, since the time and cost for constructing the footing can be reduced, a significant effect can be expected in terms of construction period and construction cost.
In addition, as a support mechanism of a pile, the friction pile which expects much support force to the surrounding surface friction force other than the support pile which penetrates a pile into a support ground and supports can be used.
Since the pile needs to have the performance as the pier 2, it is necessary to have the required bending rigidity, shear rigidity, and compression characteristics. Considering the strength characteristics and workability described above, it is preferable to use a steel pipe pile as the pile (pier 2). Moreover, in order to ensure a required strength characteristic, it is good also as a pile which filled the concrete in the steel pipe and was reinforced.
[0012]
<C> Breath material The brace material 3 is provided to increase the rigidity of the rigid frame structure by connecting the parallel piers 2 to each other. Various methods of joining the brace material 3 can be selected. For example, a predetermined angle (for example, 45 degrees, 60 degrees, etc.) with respect to the pier 2 so that the two brace members 3 intersect each other in each of the parallel piers 2. ) Is generally used. Such a grading part can be reinforced by using a grading part plate 32 or the like (see FIG. 3C). When a horizontal force or the like during an earthquake acts on the ramen frame, the ramen frame is displaced by the horizontal force, and a tensile force is generated in one of the brace members 3 along with the displacement. However, since the overall rigidity of the frame structure incorporating the brace material 3 is improved compared to the case without the brace material 3, if the brace material 3 has a strength capable of resisting the tensile force, high rigidity is maintained. In this state, the amount of displacement of the entire frame can be kept low. On the other hand, when the brace material 3 breaks without resisting the tensile force, the displacement amount of the entire rigid frame frame increases, and the stress generated in the rigid frame structural members (such as the pier 2 and the bridge girder 11) as the displacement amount increases. Will also increase.
Here, regarding the breakage of the brace material 3, the brace material 3 itself breaks due to insufficient tensile strength, and the connecting portion 71 between the brace material 3 and the pier 2 (or the bridge girder 11) before the brace material 3 breaks. It is conceivable that the rating part 72 between the (joint) or the brace material 3 is broken.
[0013]
The bridge structure of the present invention has a structure in which the brace material 3 in the direction perpendicular to the bridge axis 4 of the bridge can resist external force during the earthquake in the event of a large-scale earthquake, and the brace material 3 in the bridge axis direction 5 is large. It is preferable to adopt a structure that allows damage to the external force during an earthquake during a large-scale earthquake.
In other words, the bridge material 3 in the bridge axis direction 5 and the bridge axis perpendicular direction 4 is not damaged during normal and medium-scale earthquakes, and does not cause excessive displacement in the entire bridge. This is because excessive displacement may interfere with normal use of the bridge.
On the other hand, in the case of a large-scale earthquake, while securing the rigid frame structure in the direction perpendicular to the bridge axis 4, the natural period in the bridge axis direction 5 is lengthened to absorb and relax the energy during the earthquake with the toughness performance in the bridge axis direction 5 The goal is to. In order to make the structure capable of resisting the external force at the time of a large-scale earthquake with the rigidity of the entire rigid frame frame in the direction of the bridge axis 5, it is necessary to use excessive members, and as other measures are expensive This is because it is uneconomical to use any structure, although it is possible to install a seismic isolation bearing. In addition, a decrease in rigidity in the direction perpendicular to the bridge axis 4 will cause instability of the bridge structure, and a span length sufficient to ensure large toughness in the direction perpendicular to the bridge axis 4 is generally not secured. some reason, the bridge axis perpendicular 4 is for a structure such as brace member 3 is not a broken.
[0014]
As for the method of joining the brace members 3 in the bridge axis direction 5 and the bridge axis perpendicular direction 4, for example, as shown in FIGS. 1 and 2, in the bridge axis perpendicular direction 4, the bridge piers 2 connected in parallel cross each other. Two sets (or three or more sets) of the brace members 3 can be installed, and in the bridge axis direction 5, the cross brace members 3 can be provided as one set (or less than the number of sets in the direction perpendicular to the bridge axis 4). Also, the brace material 3 used in the direction perpendicular to the bridge axis 4 selects the brace material 3 that can withstand the external force at the time of the large-scale earthquake, and the brace material 3 used in the bridge axis direction 5 has an external force during the medium-scale earthquake. However, it is possible to select a brace material 3 that can resist the external force during a large-scale earthquake but does not have a proof strength.
Although the material which can ensure desired strength can be selected as the brace material 3, for example, the H-type steel material 33, the L-type steel material 34, the C-type steel material, etc. can be used. It is also good to reinforce it with such as. Further, in the connecting portion 71 between the brace material 3 and the bridge pier 2, the connecting portion 71 is reinforced by performing reinforcement such as welding a stiffening plate to the web and flange of the H-shaped steel material 33 used as the brace material 3. You can also.
[0015]
Further, in the bridge axis direction 5, the breaking strength of the connecting portion 71 such as the brace material 3 and the pier 2 or the grading portion 72 of the brace materials 3 can be designed to be equal to or less than the breaking strength of the brace material 3. . For example, when the plate (gusset plate 31) and the brace material 3 that are welded to the place where the bridge pier 2 and the bridge girder 11 are joined as a structure of the connecting portion 71 are bolted (see FIG. 3B), the bolt 92 to be used is used. By adjusting the specifications and the number of bolts, the shear strength of the bolt 92 can be made equal to or less than the tensile strength of the brace material 3. Further, for example, there is a method of joining the H-shaped steel material 33 to the pier 2 by welding 91 (see FIG. 3A). In addition, various methods can be selected for reducing the tensile strength of the brace material 3 that uses the proof strength of the structure of the connecting portion 71 to be used.
By making the breakage point into the connecting part 71 such as the brace material 3 and the bridge pier 2 or the grading part 72 between the brace material 3 as described above, the breakage point can be easily identified, and restoration and repair after a large-scale earthquake can be performed. Can be easy.
[0016]
<D> Analysis method and analysis results Among the bridge structures in the present invention, the brace material 3 is damaged in the case of a large-scale earthquake in the bridge axis direction, thereby reducing the rigidity of the entire ramen structure and improving the toughness. Structural analysis was performed to demonstrate that the natural period of the structure can be increased. It is verified that the external force (acceleration response spectrum) acting on the structure can be reduced by increasing the natural period.
In the structural analysis, a 4-span continuous ramen model is used. In the embodiment of FIG. 2, the cushioning material 6 is provided between the bridge girder 11 and the floor slab 12 at intervals of 4 spans in the direction of the bridge axis. Therefore, the analysis model is a four-span continuous ramen model corresponding to the embodiment.
[0017]
Fig. 4 (a) shows a model diagram in service and during a medium-scale earthquake. The bridge girder 11, the pier 2, and the brace material 3 are a bridge girder beam model 81, a pier beam model 82, and a brace material beam model 83, respectively, and a portion of the pier 2 (pile) embedded in the ground has a horizontal spring 84 and a vertical The spring 84 is modeled. In this model, since the brace material 3 is not damaged (designed so as not to be damaged), it is a constituent member constituting the rigid frame structure. On the other hand, FIG. 4B shows a model diagram after the brace material 3 (or the connecting portion 71 such as the brace material 3 and the pier 2 or the grading portion 72 between the brace materials 3) is damaged during a large-scale earthquake. Regardless of the location where the breakage occurs, since the brace material 3 no longer functions as a tensile material after the breakage, the brace material 3 is excluded from the constituent members constituting the ramen structure.
The structural analysis was performed by calculating the amount of displacement at the inertial force application position of the structure by applying a predetermined horizontal force (inertial force) during earthquake for each model and obtaining the natural period. This calculation method is based on the Road Bridge Specification / Description (V Japan Earthquake Association, December 1996 Japan Road Association) (hereinafter simply “Road Bridge”).
The formula for calculating the natural period is as follows.
[0018]
[Expression 1]
T = 2.01√δ (1)
[0019]
Here, T represents the natural period (second) of the structure, and δ represents the displacement (m) at the inertial force acting position when a predetermined inertial force is applied to the structure at the inertial force acting position.
[0020]
The results of natural period at the time of medium-scale earthquake and large-scale earthquake are shown below.
[0021]
[Table 1]
Figure 0004113458
[0022]
The results of calculating the design horizontal seismic intensity for each earthquake using the above-mentioned natural period and the design horizontal seismic intensity calculation formula for the road bridge are shown below. In this analysis, the ground of type I, which is the hardest ground in design, is targeted.
[0023]
Calculation formulas for the design horizontal seismic intensity of large-scale earthquakes (Type I earthquakes) are shown in (2) and (3).
[0024]
[Expression 2]
In the case of T <1.4 seconds k = 0.7 (2)
In the case of T ≧ 1.4 seconds k = 0.876T -2/3 ··· (3)
[0025]
Here, T represents the natural period (second), and k represents the design horizontal seismic intensity.
[0026]
Calculation formulas for the design horizontal seismic intensity of large-scale earthquakes (type II earthquakes) are shown in (4) to (6).
[0027]
[Equation 3]
In case of T <0.3 seconds k = 4.46T 2/3 (4)
In the case of 0.3 seconds ≦ T ≦ 0.7 seconds k = 2.0 (5)
When T> 0.7 seconds k = 1.24T 4/3 (6)
[0028]
From the above formulas (2) to (6), the design horizontal seismic intensity (external force during earthquake) tends to decrease as the natural period of the structure becomes longer.
[0029]
[Table 2]
Figure 0004113458
[0030]
From the analysis results, it is possible to lengthen the natural period of the structure for both Type I and Type II earthquakes, and to reduce the external force during the earthquake (design horizontal seismic intensity).
[0031]
【The invention's effect】
Since the structure of the bridge of the present invention is as described above, the following effects can be obtained.
<I> Improvement in toughness performance of ramen-structured bridges against large-scale earthquakes can be realized at low cost.
<B> Repair and restoration of damaged parts of a bridge after a large-scale earthquake will be relatively easy.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment of a bridge structure according to the present invention.
FIG. 2 is a longitudinal sectional view of an embodiment of a bridge structure according to the present invention.
FIG. 3A is an explanatory view showing an embodiment of a connecting portion between a bridge pier and a brace material. (B) Explanatory drawing which showed the Example of the connection part of a bridge pier and a brace material. (C) Explanatory drawing which showed the Example of the cross | intersection part of a brace material.
FIG. 4 is a diagram for explaining a four-span continuous ramen model in the bridge axis direction used in the structural analysis, and (a) a model diagram during normal and medium-scale earthquakes. (B) Model diagram during a large-scale earthquake.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Superstructure 11 ... Bridge girder 12 ... Floor slab 2 ... Pier 3 ... Breath material 4 ... Bridge axis perpendicular direction 5 ... Bridge axis direction 71 ... Connection part 72 ... Case Point

Claims (2)

橋桁及び床版からなる上部工と橋脚より構成される橋梁の構造において、
橋軸方向及び橋軸直角方向に間隔を置いて複数設けた前記橋脚と、
前記橋脚の上部に設けた前記橋桁及び前記床版からなる前記上部工と、
並列する前記橋脚同士を連結させるブレス材と、によってラーメン構造の橋梁を構成し、
前記橋軸直角方向の前記橋脚同士に連結させた前記ブレス材は地震時の地震時外力に対して破損不能に設け、
前記橋軸方向の前記橋脚同士に連結させた前記ブレス材は前記地震時の地震時外力に対して破損可能に設けた、ことを特徴とする、
橋梁の構造。
In the structure of a bridge composed of a superstructure consisting of bridge girders and floor slabs and piers,
A plurality of the piers provided at intervals in the bridge axis direction and the bridge axis perpendicular direction; and
The upper work consisting of the bridge girder and the floor slab provided on the upper part of the pier;
A brace material that connects the bridge piers in parallel with each other to form a ramen-structured bridge,
The breath material was ligated into the piers between the bridge axis perpendicular corruption incapable provided for the seismic force of the earth Shinji,
The bridge axis direction of the pier between the breath was ligated into material was arranged to be broken against the seismic force at the time of the earthquake, characterized in that
Bridge structure.
大規模地震時の地震時外力が前記橋梁に作用した際に破損可能な破損箇所を、前記橋軸方向に設けた前記ブレス材と前記橋脚の連結部または前記ブレス材同士の格点部とすることを特徴とする、
請求項1記載の橋梁の構造。
A breakable portion that can be damaged when an external force during an earthquake during a large-scale earthquake is applied to the bridge is defined as a connecting portion between the brace material and the bridge pier provided in the bridge axis direction or a grading portion between the brace materials. It is characterized by
The bridge structure according to claim 1.
JP2003151344A 2003-05-28 2003-05-28 Bridge structure Expired - Fee Related JP4113458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151344A JP4113458B2 (en) 2003-05-28 2003-05-28 Bridge structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151344A JP4113458B2 (en) 2003-05-28 2003-05-28 Bridge structure

Publications (2)

Publication Number Publication Date
JP2004353255A JP2004353255A (en) 2004-12-16
JP4113458B2 true JP4113458B2 (en) 2008-07-09

Family

ID=34046893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151344A Expired - Fee Related JP4113458B2 (en) 2003-05-28 2003-05-28 Bridge structure

Country Status (1)

Country Link
JP (1) JP4113458B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879828B1 (en) * 2017-11-08 2018-07-18 임철수 Steel-concrete composite hybrid integral continuous bridging system using cast steel node and precast slab and construction method thereof
US20220237335A1 (en) * 2019-06-03 2022-07-28 Nippon Telegraph And Telephone Corporation Equipment state analysis device, equipment state analysis method, and program

Also Published As

Publication number Publication date
JP2004353255A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US6425157B1 (en) Elevated bridge infrastructure design method
TWI541413B (en) Earthquake resisting design method on the basis of pc binding articulation construction method
Alashkar et al. A comparative study of seismic strengthening of RC building by steel bracings and concrete shear walls
Callister et al. Seismic evaluation of an existing low ductility braced frame building in California
JP2008214973A (en) Seismic-control bridge pier structure
Park Improving the resistance of structures to earthquakes
JP3755886B1 (en) Bearing structure of fixed bearings in bridges and seismic reinforcement method for existing bridges
JPH09316892A (en) Pile foundation reinforcing structure
JP3869236B2 (en) Seismic reinforcement method for existing reinforced concrete viaduct
JP4113458B2 (en) Bridge structure
JP4140028B2 (en) Seismic reinforcement structure
Abdel-Ghaffar et al. Effects of the hinge restrainers on the response of the Aptos Creek Bridge during the 1989 Loma Prieta Earthquake
Ranzo et al. Vertical oscillations due to axial‐bending coupling during seismic response of RC bridge piers
Naser Comparative Study of Seismic Design for Different Bridges Structures
JP2009068295A (en) Elevated structure
Jain et al. A state-of-the-art review on seismic design of bridges-Part I: Historical development and AASHTO code
JP2012117364A (en) Vibration control bridge pier structure
KR102094814B1 (en) Bridge seismic reinforcement structure
Arzoumanidis et al. The new Tacoma Narrows suspension bridge: critical issues in seismic analysis and design
EL-HAWAT et al. IMPACTS OF TRANSVERSE EARTHQUAKES ON SEISMIC RESPONSE OF BRIDGES WITH ROCKING FOUNDATIONS AND VARIOUS SHEAR KEYS
Hassoun et al. Seismic effectiveness of different restraining systems for skewed bridge decks supported on elastomeric bearings
JP6006352B2 (en) Seismic control pier structure
Baker et al. Seismic retrofit of Vincent Thomas suspension bridge
Tao et al. Seismic Design of Cable-Supported Bridges
VIADUCT EVALUATION OF GRAY’S RETROFIT PROPOSAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Ref document number: 4113458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees