JP4985351B2 - Exhaust gas treatment catalyst and exhaust gas purification device - Google Patents

Exhaust gas treatment catalyst and exhaust gas purification device Download PDF

Info

Publication number
JP4985351B2
JP4985351B2 JP2007306932A JP2007306932A JP4985351B2 JP 4985351 B2 JP4985351 B2 JP 4985351B2 JP 2007306932 A JP2007306932 A JP 2007306932A JP 2007306932 A JP2007306932 A JP 2007306932A JP 4985351 B2 JP4985351 B2 JP 4985351B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
gas treatment
treatment catalyst
purification device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007306932A
Other languages
Japanese (ja)
Other versions
JP2009125736A (en
Inventor
将利 勝木
秀治 藤井
裕介 山田
厚 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007306932A priority Critical patent/JP4985351B2/en
Publication of JP2009125736A publication Critical patent/JP2009125736A/en
Application granted granted Critical
Publication of JP4985351B2 publication Critical patent/JP4985351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排ガス処理触媒および排ガス浄化装置に関し、特にディーゼルエンジン等から排出される排ガス中の窒素酸化物、炭化水素、一酸化炭素を除去する場合に用いて有効である。   The present invention relates to an exhaust gas treatment catalyst and an exhaust gas purification device, and is particularly effective when used for removing nitrogen oxides, hydrocarbons, and carbon monoxide in exhaust gas discharged from a diesel engine or the like.

ディーゼルエンジン等から排出される排ガス中の窒素酸化物を除去する排ガス処理触媒として、例えば、貴金属と、NOxを吸蔵する吸蔵材とが担持される担体をハニカム状の基材に塗布してなるものが挙げられる。前記担体として、アルミナ、セリア、ジルコニア、チタニア等が挙げられる。また、前記貴金属として、白金、ロジウム、パラジウムが挙げられる。前記吸蔵材として、カリウムなどのアルカリ金属やバリウムなどのアルカリ土類金属が挙げられる。   As an exhaust gas treatment catalyst for removing nitrogen oxides in exhaust gas discharged from a diesel engine or the like, for example, a honeycomb substrate is coated with a carrier on which a noble metal and a storage material that stores NOx are supported Is mentioned. Examples of the carrier include alumina, ceria, zirconia, and titania. Moreover, platinum, rhodium, and palladium are mentioned as said noble metal. Examples of the occlusion material include alkali metals such as potassium and alkaline earth metals such as barium.

このような排ガス処理触媒をディーゼルエンジン等の排気管に設置することで、排ガス中の窒素酸化物を除去するようにしている。すなわち、排ガスがリーン状態(酸素濃度が高い(3%以上))の場合には、貴金属上にてNOと酸素とが反応してNOxを生成し、このNOxを吸蔵材に吸蔵している。   By installing such an exhaust gas treatment catalyst in an exhaust pipe of a diesel engine or the like, nitrogen oxides in the exhaust gas are removed. That is, when the exhaust gas is in a lean state (oxygen concentration is high (3% or more)), NO and oxygen react on the noble metal to generate NOx, and this NOx is occluded in the occlusion material.

また、排ガス処理触媒に還元剤となる有機化合物や燃料を噴霧したり、エンジンにて燃料の噴射量を多くしたりして、排ガスがリッチ状態(酸素濃度が低い)である還元雰囲気を作ることで、吸蔵材に吸蔵されていたNOxが貴金属上に移動し、このNOxと炭化水素およびCOとが反応して水,窒素,二酸化炭素を生成し、これらが排出している。そのため、排ガス処理触媒では、窒素酸化物の吸蔵と、吸蔵された窒素酸化物を窒素としての排出(触媒の再生処理)が繰り返し行われている。   Also, create a reducing atmosphere in which exhaust gas is rich (oxygen concentration is low) by spraying organic compounds and fuels that serve as reducing agents on the exhaust gas treatment catalyst, or by increasing the amount of fuel injected by the engine. Thus, the NOx stored in the storage material moves onto the noble metal, and this NOx reacts with hydrocarbons and CO to produce water, nitrogen and carbon dioxide, which are discharged. Therefore, in the exhaust gas treatment catalyst, occlusion of nitrogen oxides and discharge of the occluded nitrogen oxides as nitrogen (catalyst regeneration treatment) are repeatedly performed.

ところが、上述した吸蔵材の塩基性金属(アルカリ金属、アルカリ土類金属)は燃料に含まれる硫黄分で被毒して、その窒素酸化物の吸蔵性能が低下する。このような硫黄被毒した吸蔵材を高温で還元雰囲気にさらすことで硫黄を脱離除去している。前記還元雰囲気は、例えば燃料の噴射や排ガス温度の上昇などで作ることができるが、このような運転により燃費が悪化してしまう。また、触媒が高温に曝されるため、熱劣化が生じてしまう。さらには、活性金属がシンタリングしてしまい排ガス処理触媒の性能が低下してしまう。さらに、排ガスに含まれる微粒子状物質(PM)を除去するディーゼルパティキュレートフィルタ(DPF)を排気管に設置している場合、DPFで捕集したPMを燃焼除去しており、排ガス処理触媒が高温にさらされてしまう機会が増加する。   However, the basic metal (alkali metal, alkaline earth metal) of the above-described occlusion material is poisoned by sulfur contained in the fuel, and the occlusion performance of the nitrogen oxide is lowered. Sulfur is desorbed and removed by exposing the sulfur-poisoned occlusion material to a reducing atmosphere at a high temperature. The reducing atmosphere can be created by, for example, fuel injection or exhaust gas temperature increase, but the fuel consumption is deteriorated by such operation. Moreover, since the catalyst is exposed to a high temperature, thermal degradation occurs. Furthermore, the active metal is sintered and the performance of the exhaust gas treatment catalyst is degraded. Furthermore, when a diesel particulate filter (DPF) that removes particulate matter (PM) contained in the exhaust gas is installed in the exhaust pipe, the PM collected by the DPF is removed by combustion, and the exhaust gas treatment catalyst is hot. The chance of being exposed to increases.

NOx吸蔵触媒などの脱硝触媒において耐硫黄性および耐熱性が高い触媒として、ペロブスカイト型触媒、いわゆる複合酸化物を含む排ガス処理触媒が種々開発されている(例えば、特許文献1等参照)。   Various types of exhaust gas treatment catalysts containing perovskite catalysts, so-called complex oxides, have been developed as catalysts having high sulfur resistance and heat resistance in NOx storage catalysts such as NOx storage catalysts (see, for example, Patent Document 1).

特開2006−346602号公報JP 2006-346602 A

上述した複合酸化物を含む排ガス処理触媒にて排ガスに含まれる窒素酸化物を除去することができるものの、このような排ガス処理触媒にてさらなる脱硝性能の向上が望まれている。   Although nitrogen oxides contained in exhaust gas can be removed with the above-described exhaust gas treatment catalyst containing the composite oxide, further improvement in denitration performance is desired with such an exhaust gas treatment catalyst.

そこで、本発明は、前述した問題に鑑み提案されたもので、脱硝性能をさらに向上させた排ガス処理触媒および排ガス浄化装置を提供することを目的とする。   Therefore, the present invention has been proposed in view of the above-described problems, and an object of the present invention is to provide an exhaust gas treatment catalyst and an exhaust gas purification device with further improved denitration performance.

上述した課題を解決する第1の発明に係る排ガス処理触媒は、LaxBa(1-x)(CoyNb1-y(1-z)Pdz3(ただし、0.5≦x≦0.9であり、0.60≦y≦0.90であり、0.01≦z≦0.15であり、Nbのモル量が0.15から0.25の範囲である。)からなる複合酸化物を有し、セリウム酸化物を主成分とするバインダーを含むことを特徴とする。 The exhaust gas treatment catalyst according to the first invention for solving the above-mentioned problem is La x Ba (1-x) (Co y Nb 1-y ) (1-z) Pd z O 3 (where 0.5 ≦ x ≦ 0.9, 0.60 ≦ y ≦ 0.90, 0.01 ≦ z ≦ 0.15, and the molar amount of Nb is in the range of 0.15 to 0.25. comprising composite oxides have a, characterized in that it comprises a binder consisting mainly of cerium oxide.

上述した課題を解決する第2の発明に係る排ガス処理触媒は、LaxBa1-xNb1-zPdz3(ただし、0.5≦x≦0.9であり、0.01≦z≦0.15である。)からなる複合酸化物を有し、セリウム酸化物を主成分とするバインダーを含むことを特徴とする。 The exhaust gas treatment catalyst according to the second invention for solving the above-mentioned problem is La x Ba 1-x Nb 1-z Pd z O 3 (where 0.5 ≦ x ≦ 0.9, 0.01 ≦ a z ≦ 0.15 is.) the composite oxide possess consisting, characterized in that it contains a binder consisting mainly of cerium oxide.

上述した課題を解決する第3の発明に係る排ガス処理触媒は、第1または第2の発明に係る排ガス処理触媒であって、Pt,Rh,Ir,Ruのうちの少なくとも一種の貴金属を含むことを特徴とする。   An exhaust gas treatment catalyst according to a third invention that solves the above-described problem is an exhaust gas treatment catalyst according to the first or second invention, and includes at least one kind of noble metal of Pt, Rh, Ir, and Ru. It is characterized by.

上述した課題を解決する第4の発明に係る排ガス処理触媒は、第3の発明に係る排ガス処理触媒であって、前記貴金属が、前記複合酸化物に対して0.01〜5wt%含まれていることを特徴とする。   An exhaust gas treatment catalyst according to a fourth invention that solves the above-described problem is an exhaust gas treatment catalyst according to the third invention, wherein the noble metal is contained in an amount of 0.01 to 5 wt% with respect to the composite oxide. It is characterized by being.

上述した課題を解決する第の発明に係る排ガス浄化装置は、排ガス中の窒素酸化物を還元して浄化する排ガス浄化装置であって、前記排ガス中の微粒子状物質を捕集する捕集手段と、前記捕集手段よりも前記排ガスの流通方向下流側に配置され、第1乃至第の発明の何れか一つに係る排ガス処理触媒を有することを特徴とする。 An exhaust gas purifying apparatus according to a fifth aspect of the present invention that solves the above-described problem is an exhaust gas purifying apparatus that reduces and purifies nitrogen oxides in exhaust gas, and is a collecting means that collects particulate matter in the exhaust gas. And an exhaust gas treatment catalyst according to any one of the first to fourth inventions, which is disposed downstream of the collecting means in the flow direction of the exhaust gas.

上述した課題を解決する第の発明に係る排ガス浄化装置は、第の発明に係る排ガス浄化装置であって、前記捕集手段よりも前記排ガスの流通方向上流側に配置され、当該排ガス中の未燃炭化水素類、一酸化炭素、窒素酸化物や黒鉛炭素成分を酸化する酸化触媒をさらに有することを特徴とする。 An exhaust gas purifying apparatus according to a sixth invention for solving the above-mentioned problem is an exhaust gas purifying apparatus according to the fifth invention, and is disposed upstream of the collecting means in the flow direction of the exhaust gas, It further has an oxidation catalyst for oxidizing unburned hydrocarbons, carbon monoxide, nitrogen oxides and graphite carbon components.

第1の発明に係る排ガス処理触媒によれば、LaxBa(1-x)(CoyNb1-y(1-z)Pdz3(ただし、0.5≦x≦0.9であり、0.60≦y≦0.90であり、0.01≦z≦0.15であり、Nbのモル量が0.15から0.25の範囲である。)からなる複合酸化物を有することにより、セリア、ジルコニアまたはアルミナからなる基材に、炭酸バリウム及び白金、パラジウム、ロジウムのうちの少なくとも一種を含む貴金属を塗布もしくは担持などして付着させた従来の窒素酸化物吸蔵触媒と比べ、排ガス温度が350℃や400℃といった高温において脱硝率が向上する。セリウム酸化物を主成分とするバインダーを含むことにより、アルミニウム酸化物やケイ素酸化物やジルコニア酸化物を含む従来のバインダーを含む場合と比較して、脱硝率の低下を抑制することができる。 According to the exhaust gas treatment catalyst of the first invention, La x Ba (1-x) (Co y Nb 1-y ) (1-z) Pd z O 3 (where 0.5 ≦ x ≦ 0.9 And 0.60 ≦ y ≦ 0.90, 0.01 ≦ z ≦ 0.15, and the molar amount of Nb is in the range of 0.15 to 0.25. A conventional nitrogen oxide storage catalyst in which a noble metal containing at least one of barium carbonate and platinum, palladium, and rhodium is applied to or supported on a base material made of ceria, zirconia, or alumina. In comparison, the denitration rate is improved when the exhaust gas temperature is as high as 350 ° C. or 400 ° C. By including a binder containing cerium oxide as a main component, it is possible to suppress a decrease in the denitration rate as compared with the case where a conventional binder including aluminum oxide, silicon oxide, or zirconia oxide is included.

第2の発明に係る排ガス処理触媒によれば、LaxBa1-xNb1-zPdz3(ただし、0.5≦x≦0.9であり、0.01≦z≦0.15である。)からなる複合酸化物を有することにより、セリア、ジルコニアまたはアルミナからなる基材に、炭酸バリウム及び白金、パラジウム、ロジウムのうちの少なくとも一種を含む貴金属を塗布もしくは担持などして付着させた従来の窒素酸化物吸蔵触媒と比べ、排ガス温度が約310℃以上の高温の温度領域にて脱硝率が向上する。また、セリウム酸化物を主成分とするバインダーを含むことにより、アルミニウム酸化物やケイ素酸化物やジルコニア酸化物を含む従来のバインダーを含む場合と比較して、脱硝率の低下を抑制することができる。 According to the exhaust gas treatment catalyst of the second invention, La x Ba 1-x Nb 1-z Pd z O 3 (where 0.5 ≦ x ≦ 0.9 and 0.01 ≦ z ≦ 0. 15)), it adheres to a base material made of ceria, zirconia or alumina by applying or carrying a noble metal containing at least one of barium carbonate and platinum, palladium and rhodium. Compared with the conventional nitrogen oxide storage catalyst, the NOx removal rate is improved in a high temperature range where the exhaust gas temperature is about 310 ° C. or higher. In addition, by including a binder mainly composed of cerium oxide, it is possible to suppress a decrease in the denitration rate as compared with the case of including a conventional binder including aluminum oxide, silicon oxide, and zirconia oxide. .

第3および第4の発明に係る排ガス処理触媒によれば、第1および第2の発明に係る排ガス処理触媒と同様な作用効果を奏する上に、排ガス温度が高温である場合の脱硝性能を維持しつつ、低温側での脱硝性能が向上する。   According to the exhaust gas treatment catalyst according to the third and fourth inventions, the same effect as the exhaust gas treatment catalyst according to the first and second inventions can be obtained, and the denitration performance when the exhaust gas temperature is high is maintained. However, the denitration performance on the low temperature side is improved.

の発明に係る排ガス浄化装置によれば、排ガス中の窒素酸化物を還元して浄化する排ガス浄化装置であって、前記排ガス中の微粒子状物質を捕集する捕集手段と、前記捕集手段よりも前記排ガスの流通方向下流側に配置され、第1乃至第の発明の何れか一つに係る排ガス処理触媒を有することにより、排ガス処理触媒の排ガス流通方向上流側にて、捕集手段が排ガス中の微粒子状物質を捕集し除去しており、前記微粒子状物質の付着による排ガス処理触媒の経年劣化を抑制することができ、運用コストの増加を抑制することができる。 According to the exhaust gas purification apparatus of the fifth aspect of the present invention, there is provided an exhaust gas purification apparatus that reduces and purifies nitrogen oxides in the exhaust gas, the collecting means for collecting the particulate matter in the exhaust gas, and the capture unit The exhaust gas treatment catalyst according to any one of the first to fourth inventions is disposed on the downstream side in the exhaust gas flow direction of the exhaust gas treatment catalyst. The collecting means collects and removes the particulate matter in the exhaust gas, can suppress the aged deterioration of the exhaust gas treatment catalyst due to the adhesion of the particulate matter, and can suppress an increase in operation cost.

の発明に係る排ガス浄化装置によれば、前記捕集手段よりも前記排ガスの流通方向上流側に配置され、当該排ガス中の未燃炭化水素類、一酸化炭素、窒素酸化物や黒鉛炭素成分を酸化する酸化触媒をさらに有することにより、第の発明に係る排ガス浄化装置と同様な作用効果を奏する他、酸化触媒により排ガス処理触媒の排ガス流通方向上流側にて排ガス中の未燃炭化水素類、一酸化炭素、窒素酸化物や黒鉛炭素成分を酸化しており、当該排ガス処理触媒にて窒素酸化物を効率良く浄化することができる。 According to the exhaust gas purification apparatus of the sixth aspect of the present invention, the exhaust gas purification device is disposed upstream of the collection means in the flow direction of the exhaust gas, and unburned hydrocarbons, carbon monoxide, nitrogen oxide, and graphite carbon in the exhaust gas. By having an oxidation catalyst that oxidizes the components, the same effect as the exhaust gas purifying apparatus according to the fifth aspect of the invention can be obtained, and unburned carbonization in the exhaust gas can be performed upstream of the exhaust gas treatment catalyst in the exhaust gas flow direction by the oxidation catalyst. Hydrogen, carbon monoxide, nitrogen oxides and graphite carbon components are oxidized, and nitrogen oxides can be efficiently purified by the exhaust gas treatment catalyst.

以下に、本発明に係る排ガス処理触媒および排ガス浄化装置の実施形態について、図面に基づき具体的に説明する。   Hereinafter, embodiments of an exhaust gas treatment catalyst and an exhaust gas purification apparatus according to the present invention will be specifically described with reference to the drawings.

[第一の実施形態]
本発明に係る排ガス処理触媒の第一の実施形態は、排ガス中の窒素酸化物を窒素に還元して当該排ガスを浄化するペロブスカイト型触媒からなる複合酸化物を含有するものである。具体的には、以下の一般式(1)にて表される。
[First embodiment]
The first embodiment of the exhaust gas treatment catalyst according to the present invention contains a composite oxide composed of a perovskite catalyst that purifies the exhaust gas by reducing nitrogen oxide in the exhaust gas to nitrogen. Specifically, it is represented by the following general formula (1).

xA´(1-x)(ByB´(1-y)(1-z)(PM)z3 ・・・(1)
ただし、A成分をランタン(La)とし、A´成分をバリウム(Ba)とし、B成分をコバルト(Co)とし、B´成分をニオブ(Nb)とし、PM(貴金属)をパラジウム(Pd)とする。
A x A ′ (1-x) (B y B ′ (1-y) ) (1-z) (PM) z O 3 (1)
However, the A component is lanthanum (La), the A ′ component is barium (Ba), the B component is cobalt (Co), the B ′ component is niobium (Nb), and PM (noble metal) is palladium (Pd). To do.

上述した一般式(1)にて、xの範囲を0.5以上0.9以下とし、yの範囲を0.60以上0.90以下もしくは0とし、zの範囲を0.01以上0.15以下とする。好適には、一般式(1)にて、xの範囲を0.7以上0.9以下とし、yの範囲を0.70以上0.90以下もしくは0とし、zの範囲を0.01以上0.10以下とする。   In the above general formula (1), the range of x is 0.5 or more and 0.9 or less, the range of y is 0.60 or more and 0.90 or less, or 0, and the range of z is 0.01 or more and 0.00. 15 or less. Preferably, in the general formula (1), the range of x is 0.7 or more and 0.9 or less, the range of y is 0.70 or more and 0.90 or less or 0, and the range of z is 0.01 or more. 0.10 or less.

[排ガス処理触媒の調製方法]
ここで、上述した排ガス処理触媒の調製方法としては、以下の2種(液相法および固相法)挙げるが、特にこれに限定するものではない。
[Method for preparing exhaust gas treatment catalyst]
Here, examples of the method for preparing the exhaust gas treatment catalyst described above include the following two types (liquid phase method and solid phase method), but are not particularly limited thereto.

<液相法>
この方法では、出発原料として、La、Ba、Co、およびPdを含む金属塩溶液と、上述したNb成分を含む有機酸水溶液(酢酸、シュウ酸、アミノ酸、二酸化ニオブの過酸化水素水溶液やシュウ酸水素ニオブ出発源とした水溶液など)水溶液とが用いられる。ただし、前述した出発原料は、以下の調製工程前に任意の濃度の水溶液に調製される。
<Liquid phase method>
In this method, as a starting material, a metal salt solution containing La, Ba, Co, and Pd and an organic acid aqueous solution (acetic acid, oxalic acid, amino acid, niobium dioxide aqueous hydrogen peroxide solution or oxalic acid containing the above-described Nb component) Aqueous solutions such as aqueous niobium hydrogen starting sources). However, the above-mentioned starting materials are prepared in an aqueous solution having an arbitrary concentration before the following preparation process.

<調製手順>
(1)最初に、上述した各金属塩溶液と有機酸水溶液などの有機化合物を所定の元素比となるようにそれぞれ秤量する。
(2)続いて、秤量された各金属塩水溶液を反応器内に添加し混合する。この液を混合液と以下称する。
(3)続いて、混合液を攪拌しながら上述した有機酸水溶液を徐々に加え、全量が溶解するまで攪拌する。
(4)続いて、エバポレータにて水分を蒸発させて濃縮する。
(5)続いて、乾燥器内に入れ、この器内雰囲気を250℃として乾燥し、粉末にする。
(6)続いて、この粉末を乳鉢で粉砕した後、600〜1200℃にて5時間焼成し、排ガス処理触媒が得られる。
(7)必要に応じて、上記(6)にて得られた排ガス処理触媒に貴金属を含ませる。例えば、貴金属が溶解した有機酸水溶液に上記排ガス処理触媒を含浸し、当該触媒に当該貴金属を担持させて貴金属を含有する排ガス処理触媒が得られる。
<Preparation procedure>
(1) First, each metal salt solution and an organic compound such as an organic acid aqueous solution are weighed so as to have a predetermined element ratio.
(2) Subsequently, each weighed aqueous metal salt solution is added to the reactor and mixed. This liquid is hereinafter referred to as a mixed liquid.
(3) Subsequently, the organic acid aqueous solution described above is gradually added while stirring the mixed solution, and stirred until the entire amount is dissolved.
(4) Subsequently, the water is evaporated and concentrated by an evaporator.
(5) Subsequently, it is put in a dryer, and the atmosphere in the vessel is dried at 250 ° C. to make a powder.
(6) Subsequently, the powder is pulverized in a mortar and then calcined at 600 to 1200 ° C. for 5 hours to obtain an exhaust gas treatment catalyst.
(7) If necessary, a noble metal is included in the exhaust gas treatment catalyst obtained in (6) above. For example, an exhaust gas treatment catalyst containing a noble metal can be obtained by impregnating the exhaust gas treatment catalyst in an organic acid aqueous solution in which the noble metal is dissolved and supporting the noble metal on the catalyst.

<固相法>
この方法では、出発原料である、La、Ba、Co、Nb、Pdを含む酸化物または炭酸化物と、分散剤と、各種溶媒(H2O、エタノール、メタノール等)が用いられる。ただし、前述した出発原料は、以下の調製工程前に内部の雰囲気が120℃の乾燥器に入れられ十分に乾燥される。
<Solid phase method>
In this method, starting materials such as oxides or carbonates containing La, Ba, Co, Nb, and Pd, a dispersant, and various solvents (H 2 O, ethanol, methanol, etc.) are used. However, the above-described starting materials are sufficiently dried by placing them in a dryer having an internal atmosphere of 120 ° C. before the following preparation steps.

<調製手順>
(1)最初に、各種出発原料(120℃にて乾燥済み)と分散剤および溶媒を秤量する(分散剤量は粉体重量の5wt%、溶媒は原料粉末と同量)。
(2)続いて、秤量された各出発原料、分散剤、溶媒および粉砕用ボールを容器に入れる。
(3)続いて、ボールミルにて粉砕、攪拌、および混合を行う。
(4)続いて、エバポレータにて水分を蒸発させて濃縮する。
(5)続いて、乾燥器内に入れ、この器内雰囲気を120℃として乾燥し、粉末にする。
(6)続いて、この粉末を乳鉢で粉砕した後、800〜1200℃にて5時間焼成し、排ガス処理触媒が得られる。
(7)必要に応じて、上記(6)にて得られた排ガス処理触媒に貴金属を含ませる。例えば、貴金属が溶解した有機酸水溶液に上記排ガス処理触媒を含浸し、当該触媒に当該貴金属を担持させて貴金属を含有する排ガス処理触媒が得られる。
<Preparation procedure>
(1) First, various starting materials (dried at 120 ° C.), a dispersant and a solvent are weighed (the amount of the dispersant is 5 wt% of the powder weight, and the solvent is the same amount as the raw material powder).
(2) Subsequently, each weighed starting material, dispersant, solvent and grinding ball are placed in a container.
(3) Subsequently, pulverization, stirring, and mixing are performed in a ball mill.
(4) Subsequently, the water is evaporated and concentrated by an evaporator.
(5) Subsequently, it is put in a dryer, and the atmosphere in the vessel is dried at 120 ° C. to make a powder.
(6) Subsequently, the powder is pulverized in a mortar and then calcined at 800 to 1200 ° C. for 5 hours to obtain an exhaust gas treatment catalyst.
(7) If necessary, a noble metal is included in the exhaust gas treatment catalyst obtained in (6) above. For example, an exhaust gas treatment catalyst containing a noble metal can be obtained by impregnating the exhaust gas treatment catalyst in an organic acid aqueous solution in which the noble metal is dissolved and supporting the noble metal on the catalyst.

[二酸化ニオブの過酸化水素水溶液の調製]
上述した二酸化ニオブの過酸化水素水溶液を、例えば以下のように調製する。
塩化ニオブ(NbCl5)5gを希アンモニア水(50mL水+4mLアンモニア水(28%))に溶かし、室温で30分攪拌し、析出した白色の沈殿物をろ取し水洗する。水洗後、ただちに、水洗したろ取物を、過酸化水素水(35%水溶液25mL+水25mL)とアンモニア水(28%、6mL)の混合溶液に加え攪拌して無色の溶液を得る。この無色の溶液をアセトン100mLに加え(添加し)、得られた白色沈殿物をろ取する。ろ取した白色沈殿物を3.5%過酸化水素水に溶かして二酸化ニオブの3.5%過酸化水素水溶液を得た。
[Preparation of aqueous solution of niobium dioxide in hydrogen peroxide]
The above-described aqueous solution of niobium dioxide in hydrogen peroxide is prepared, for example, as follows.
Dissolve 5 g of niobium chloride (NbCl 5 ) in dilute aqueous ammonia (50 mL water + 4 mL aqueous ammonia (28%)), stir at room temperature for 30 minutes, collect the precipitated white precipitate by filtration and wash with water. Immediately after washing with water, the filtered product washed with water is added to a mixed solution of hydrogen peroxide (35% aqueous solution 25 mL + water 25 mL) and aqueous ammonia (28%, 6 mL) to obtain a colorless solution. This colorless solution is added (added) to 100 mL of acetone, and the resulting white precipitate is collected by filtration. The white precipitate collected by filtration was dissolved in 3.5% aqueous hydrogen peroxide to obtain a 3.5% aqueous hydrogen peroxide solution of niobium dioxide.

上述した排ガス処理触媒の調製法にて用いられる貴金属としては、白金(Pt)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)のうちの少なくとも一種を含む貴金属が特に有効である。この貴金属の含有量は、複合酸化物に対して0.01〜5wt%であると好ましい。なぜなら、前記貴金属の含有量が、0.01wt%より少ないと排ガス処理触媒が貴金属を含有しない場合と同様の脱硝性能しか発現しなくなり、5wt%より多くなっても脱硝性能が一定となり向上しなくなる。   As the noble metal used in the above-described method for preparing an exhaust gas treatment catalyst, a noble metal containing at least one of platinum (Pt), rhodium (Rh), iridium (Ir), and ruthenium (Ru) is particularly effective. The precious metal content is preferably 0.01 to 5 wt% with respect to the composite oxide. This is because if the content of the noble metal is less than 0.01 wt%, only the denitration performance similar to the case where the exhaust gas treatment catalyst does not contain the noble metal appears, and even if it exceeds 5 wt%, the denitration performance is constant and cannot be improved. .

上述した排ガス処理触媒の調製法にて用いられるバインダーとしては、セリウム酸化物を主成分とするものが特に有効である。   As the binder used in the above-described method for preparing an exhaust gas treatment catalyst, a binder containing cerium oxide as a main component is particularly effective.

[触媒調製法1]
硝酸ランタン6水和物、硝酸バリウム、硝酸コバルト6水和物、上記二酸化ニオブの3.5%過酸化水素水溶液および硝酸パラジウム溶液(Pd=50g/L)を、それぞれ、水を用いて、1mol/L、0.2mol/L、1mol/L、0.08mol/Lおよび0.05mol/Lの濃度の溶液を調製する。
[Catalyst Preparation Method 1]
1 mol of lanthanum nitrate hexahydrate, barium nitrate, cobalt nitrate hexahydrate, 3.5% hydrogen peroxide aqueous solution of niobium dioxide and palladium nitrate solution (Pd = 50 g / L) were each added with water. Solutions with concentrations of / L, 0.2 mol / L, 1 mol / L, 0.08 mol / L and 0.05 mol / L are prepared.

続いて、所定の濃度に調製された溶液を所定量分取し、混合する。具体的には、硝酸ランタン水溶液量を180mlとし、硝酸バリウム水溶液量を100mlとし、硝酸コバルト水溶液量を155mlとし、水酸化ニオブ水溶液量を242mlとし、硝酸パラジウム水溶液量を120mlとして、各金属イオン量のモル比(La:Ba:Co:Nb:Pd)が0.90:0.10:0.776:0.194:0.03となるように混合して混合溶液を得た。   Subsequently, a predetermined amount of the solution prepared to a predetermined concentration is taken and mixed. Specifically, the amount of lanthanum nitrate aqueous solution is 180 ml, the amount of barium nitrate aqueous solution is 100 ml, the amount of cobalt nitrate aqueous solution is 155 ml, the amount of niobium hydroxide aqueous solution is 242 ml, the amount of palladium nitrate aqueous solution is 120 ml, the amount of each metal ion Were mixed so that the molar ratio (La: Ba: Co: Nb: Pd) was 0.90: 0.10: 0.776: 0.194: 0.03 to obtain a mixed solution.

さらに、上記混合溶液にグリシンを240g添加し、30分間攪拌した。続いて、グリシンが添加された混合溶液をロータリーエバポレータにより濃縮してゲル化させた。ゲル化した試料を乾燥器中に入れ、250℃にて乾燥させ、乾燥した試料を700℃にて5時間焼成して複合酸化物(La0.9Ba0.1Co0.776Nb0.194Pd0.033)を有する排ガス処理触媒を50g得た。得られた排ガス処理触媒を試験触媒(No.1)とした。 Further, 240 g of glycine was added to the above mixed solution and stirred for 30 minutes. Subsequently, the mixed solution to which glycine was added was concentrated by a rotary evaporator to be gelled. The gelled sample is put in a dryer, dried at 250 ° C., and the dried sample is calcined at 700 ° C. for 5 hours to have a composite oxide (La 0.9 Ba 0.1 Co 0.776 Nb 0.194 Pd 0.03 O 3 ). 50 g of an exhaust gas treatment catalyst was obtained. The obtained exhaust gas treatment catalyst was used as a test catalyst (No. 1).

[触媒調製法2]
上述した触媒調製法1にて所定の濃度に調製された溶液を所定量分取し、混合する。具体的には、硝酸ランタン水溶液量を180mlとし、硝酸バリウム水溶液量を100mlとし、水酸化ニオブ水溶液量を1212mlとし、硝酸パラジウム水溶液量を120mlとして、各金属イオン量のモル比(La:Ba:Nb:Pd)が0.90:0.10:0.97:0.03となるように混合して混合溶液を得た。
[Catalyst preparation method 2]
A predetermined amount of the solution prepared to a predetermined concentration by the catalyst preparation method 1 described above is taken and mixed. Specifically, the amount of lanthanum nitrate aqueous solution is 180 ml, the amount of barium nitrate aqueous solution is 100 ml, the amount of niobium hydroxide aqueous solution is 1212 ml, the amount of palladium nitrate aqueous solution is 120 ml, and the molar ratio of each metal ion (La: Ba: Nb: Pd) was mixed so as to be 0.90: 0.10: 0.97 : 0.03 to obtain a mixed solution.

以下、上述した触媒調製法1と同様に操作し、複合酸化物(La0.9Ba0.1Nb0.97Pd0.033)を有する排ガス処理触媒を50g得た。得られた排ガス処理触媒を試験触媒(No.2)とした。 Thereafter, the same operation as in the above-described catalyst preparation method 1 was performed to obtain 50 g of an exhaust gas treatment catalyst having a composite oxide (La 0.9 Ba 0.1 Nb 0.97 Pd 0.03 O 3 ). The obtained exhaust gas treatment catalyst was used as a test catalyst (No. 2).

[触媒調製法3]
上述した触媒調製法2にて得られた試験触媒(No.2)に触媒100に対してセリウム酸化物を主成分とするバインダーを5〜20wt%となるように配合して試験触媒(No.3)を得た。
[Catalyst Preparation Method 3]
The test catalyst (No. 2) obtained by the catalyst preparation method 2 described above was blended with the catalyst 100 so that the binder containing cerium oxide as the main component was 5 to 20 wt% with respect to the catalyst 100 (No. 2). 3) was obtained.

[触媒調製法4]
上述した触媒調製法1にて得られた試験触媒(No.1)に対してPt,Rhを含浸担持させて試験触媒(No.4)を得た。ただし、Pt量及びRh量は、試験触媒(No.1)に対して重量比で0.4wt%及び0.04wt%とした。
[Catalyst preparation method 4]
The test catalyst (No. 4) was obtained by impregnating and supporting Pt and Rh on the test catalyst (No. 1) obtained by the catalyst preparation method 1 described above. However, the amount of Pt and the amount of Rh were 0.4 wt% and 0.04 wt% in weight ratio with respect to the test catalyst (No. 1).

(比較例1)
[比較触媒調製法1]
セリア、ジルコニアまたはアルミナからなる基材に、炭酸バリウム及び白金、パラジウム、ロジウムのうちの少なくとも一種を含む貴金属を塗布もしくは担持などして付着させて窒素酸化物吸蔵触媒(比較触媒(No.1))を得た。
(Comparative Example 1)
[Comparative Catalyst Preparation Method 1]
A nitrogen oxide storage catalyst (comparative catalyst (No. 1)) is prepared by applying or supporting a noble metal containing at least one of barium carbonate and platinum, palladium and rhodium to a base material made of ceria, zirconia or alumina. )

(比較例2)
[比較触媒調製法2]
上述した触媒調製法2にて得られた試験触媒(No.2)に触媒100に対してケイ素酸化物を主成分とするバインダーを5〜20wt%となるように配合して比較触媒(No.2)を得た。
(Comparative Example 2)
[Comparative Catalyst Preparation Method 2]
The test catalyst (No. 2) obtained by the catalyst preparation method 2 described above was blended with the catalyst 100 so that the binder mainly composed of silicon oxide was 5 to 20 wt%, and the comparative catalyst (No. 2) was obtained.

(比較例3)
[比較触媒調製法3]
上述した触媒調製法2にて得られた試験触媒(No.2)に触媒100に対してジルコニウム酸化物を主成分とするバインダーを5〜20wt%となるように配合して比較触媒(No.3)を得た。
(Comparative Example 3)
[Comparative Catalyst Preparation Method 3]
The test catalyst (No. 2) obtained by the catalyst preparation method 2 described above was blended with the catalyst 100 so that the binder mainly composed of zirconium oxide was 5 to 20 wt%, and the comparative catalyst (No. 2). 3) was obtained.

(比較例4)
[比較触媒調製法4]
上述した触媒調製法2にて得られた試験触媒(No.2)に触媒100に対してアルミニウム酸化物を主成分とするバインダーを5〜20wt%となるように配合して比較触媒(No.4)を得た。
(Comparative Example 4)
[Comparative Catalyst Preparation Method 4]
The test catalyst (No. 2) obtained by the catalyst preparation method 2 described above was blended with the catalyst 100 so that the binder mainly composed of aluminum oxide was 5 to 20 wt% with respect to the catalyst 100 as a comparative catalyst (No. 4) was obtained.

(比較例5)
[比較触媒調製法5]
セリウムを含む酸化物に白金及び炭酸バリウムを付着させ、窒素酸化物吸蔵触媒(比較触媒(No.5))を得た。
(Comparative Example 5)
[Comparative Catalyst Preparation Method 5]
Platinum and barium carbonate were attached to an oxide containing cerium to obtain a nitrogen oxide storage catalyst (comparative catalyst (No. 5)).

[第一の脱硝性能評価試験]
上記試験触媒(No.1)および比較触媒(No.1)に対して、下記の表1に示す条件で排ガスを流通させて、脱硝性能をそれぞれ測定した。表1において、SVは空間速度(流体の流量/触媒の体積)を示し、Lean/Richは、リーン/リッチの処理時間の比を示す。
[First denitration performance evaluation test]
With respect to the test catalyst (No. 1) and the comparative catalyst (No. 1), exhaust gas was circulated under the conditions shown in Table 1 below, and the denitration performance was measured. In Table 1, SV indicates space velocity (fluid flow rate / catalyst volume), and Lean / Rich indicates the ratio of lean / rich processing time.

Figure 0004985351
Figure 0004985351

上記測定結果を図1に示す。
図1において、脱硝率は、処理ガスがリーン状態である場合の脱硝率と、処理ガスがリッチ状態である場合の脱硝率との平均である。
The measurement results are shown in FIG.
In FIG. 1, the denitration rate is the average of the denitration rate when the processing gas is in a lean state and the denitration rate when the processing gas is in a rich state.

排ガス温度が350℃においては、図1(a)に示すように、上述した試験触媒(No.1)は、ニオブが0.2モルを中心としてその前後約0.05モルの範囲にて、脱硝率が約42%よりも高くなっており、比較触媒(No.1)の場合と比べて脱硝率が高いことが分かった。   When the exhaust gas temperature is 350 ° C., as shown in FIG. 1A, the test catalyst (No. 1) described above has a niobium content of about 0.05 mol around 0.2 mol. The denitration rate was higher than about 42%, and it was found that the denitration rate was higher than that of the comparative catalyst (No. 1).

他方、排ガス温度が400℃においては、図1(b)に示すように、上述した試験触媒(No.1)は、ニオブが0.2モルを中心としてその前後約0.08モルの範囲にて、脱硝率が約32%よりも高くなっており、比較触媒(No.1)の場合と比べて脱硝率が高いことが分かった。   On the other hand, when the exhaust gas temperature is 400 ° C., as shown in FIG. 1 (b), the test catalyst (No. 1) described above has a niobium content of about 0.08 mol around 0.2 mol. Thus, the denitration rate was higher than about 32%, and it was found that the denitration rate was higher than that of the comparative catalyst (No. 1).

したがって、本発明の第1の実施例に係る排ガス処理触媒によれば、LaxBa(1-x)(CoyNb1-y(1-z)Pdz3(ただし、0.5≦x≦0.9であり、0.60≦y≦0.90であり、0.01≦z≦0.15である。)からなる複合酸化物を有することにより、セリア、ジルコニアまたはアルミナからなる基材に、炭酸バリウム及び白金、パラジウム、ロジウムのうちの少なくとも一種を含む貴金属を塗布もしくは担持などして付着させた従来の窒素酸化物吸蔵触媒と比べて、排ガス温度が350℃や400℃といった高温において脱硝率が向上する。さらに、その結果、エンジンの運転状況が高回転、高負荷のような排ガス温度が高い場合にも、従来の触媒と比較して高い脱硝率を有することができ、さらに排気圧力が上昇し排ガス温度が上昇してしまう高比表面積の触媒基材を使用でき脱硝装置をコンパクトにできる。さらに貴金属元素としてパラジウムを使用しているため、白金を含有する触媒と比較して大幅に安価に製造することができ、また高温での耐熱性に優れる。よって触媒性能劣化時に必要となる硫黄除去処理(再生処理)を実施する場合に、触媒劣化が少ない。 Therefore, according to the exhaust gas treatment catalyst of the first embodiment of the present invention, La x Ba (1-x) (Co y Nb 1 -y ) (1-z) Pd z O 3 (however, 0.5 ≦ x ≦ 0.9, 0.60 ≦ y ≦ 0.90, and 0.01 ≦ z ≦ 0.15.) By having a composite oxide consisting of ceria, zirconia, or alumina The exhaust gas temperature is 350 ° C. or 400 ° C. compared to a conventional nitrogen oxide storage catalyst in which a noble metal containing at least one of barium carbonate and platinum, palladium, and rhodium is applied or supported on the base material. The denitration rate is improved at such high temperatures. Furthermore, as a result, even when the exhaust gas temperature is high, such as when the engine is operating at high speed and high load, it can have a higher NOx removal rate compared to conventional catalysts, and the exhaust pressure increases and the exhaust gas temperature increases. As a result, the catalyst substrate having a high specific surface area that increases the temperature can be used, and the denitration apparatus can be made compact. Furthermore, since palladium is used as a noble metal element, it can be produced at a significantly lower cost than a catalyst containing platinum and is excellent in heat resistance at high temperatures. Therefore, when performing the sulfur removal process (regeneration process) required at the time of catalyst performance deterioration, there is little catalyst deterioration.

なお、上記では、各実施例にて液相法により調製した排ガス処理触媒を用いて説明したが、固相法により調製した排ガス処理触媒とすることも可能である。このような手法により調製した排ガス処理触媒であっても、上述した排ガス処理触媒と同様な作用効果を奏する。   In the above description, the exhaust gas treatment catalyst prepared by the liquid phase method in each example has been described. However, an exhaust gas treatment catalyst prepared by the solid phase method may be used. Even the exhaust gas treatment catalyst prepared by such a technique has the same effects as the above-described exhaust gas treatment catalyst.

[第二の脱硝性能評価試験]
上記試験触媒(No.2)および比較触媒(No.1)に対して、下記の表2に示す条件で排ガスを流通させて、脱硝性能をそれぞれ測定した。表2において、SVは空間速度(流体の流量/触媒の体積)を示し、Lean/Richは、リーン/リッチの処理時間の比を示す。
[Second denitration performance evaluation test]
With respect to the test catalyst (No. 2) and the comparative catalyst (No. 1), exhaust gas was circulated under the conditions shown in Table 2 below, and the denitration performance was measured. In Table 2, SV indicates space velocity (fluid flow rate / catalyst volume), and Lean / Rich indicates the ratio of lean / rich processing time.

Figure 0004985351
Figure 0004985351

上記測定結果を図2に示す。
図2において、脱硝率は、処理ガスがリーン状態である場合の脱硝率と、処理ガスがリッチ状態である場合の脱硝率との平均である。
The measurement results are shown in FIG.
In FIG. 2, the denitration rate is an average of the denitration rate when the processing gas is in a lean state and the denitration rate when the processing gas is in a rich state.

上述した試験触媒(No.2)は、図2に示すように、排ガス温度が約310℃以上において、比較触媒(No.1)の場合と比べて脱硝率が高くなることが分かった。   As shown in FIG. 2, the test catalyst (No. 2) described above was found to have a higher denitration rate than the comparative catalyst (No. 1) when the exhaust gas temperature was about 310 ° C. or higher.

したがって、本発明の第2の実施例に係る排ガス処理触媒によれば、LaxBa1-xNb1-zPd0.033(ただし、0.5≦x≦0.9であり、0.01≦z≦0.15である。)からなる複合酸化物を有することにより、セリア、ジルコニアまたはアルミナからなる基材に、炭酸バリウム及び白金、パラジウム、ロジウムのうちの少なくとも一種を含む貴金属を塗布もしくは担持などして付着させた従来の窒素酸化物吸蔵触媒と比べて、排ガス温度が約310℃以上の高温の温度領域にて脱硝率が向上する。さらに、その結果、エンジンの運転状況が高回転、高負荷のような排ガス温度が高い場合にも、従来の触媒と比較して高い脱硝率を有することができ、さらに排気圧力が上昇し排ガス温度が上昇してしまう高比表面積の触媒基材を使用でき脱硝装置をコンパクトにできる。さらに貴金属元素としてパラジウムを使用しているため、白金を含有する触媒と比較し大幅に安価に製造することができ、また高温での耐熱性に優れる。よって触媒性能劣化時に必要となる硫黄除去処理(再生処理)を実施する場合に、触媒劣化が少ない。 Therefore, according to the exhaust gas treatment catalyst of the second embodiment of the present invention, La x Ba 1-x Nb 1-z Pd 0.03 O 3 (where 0.5 ≦ x ≦ 0.9; 01 ≦ z ≦ 0.15), by applying a noble metal containing at least one of barium carbonate, platinum, palladium, and rhodium to a substrate made of ceria, zirconia, or alumina. Alternatively, the denitration rate is improved in a high temperature range where the exhaust gas temperature is about 310 ° C. or higher as compared with a conventional nitrogen oxide storage catalyst deposited and supported. Furthermore, as a result, even when the exhaust gas temperature is high, such as when the engine is operating at high speed and high load, it can have a higher NOx removal rate compared to conventional catalysts, and the exhaust pressure increases and the exhaust gas temperature increases. As a result, the catalyst substrate having a high specific surface area that increases the temperature can be used, and the denitration apparatus can be made compact. Furthermore, since palladium is used as a noble metal element, it can be manufactured at a significantly lower cost than a catalyst containing platinum and is excellent in heat resistance at high temperatures. Therefore, when performing the sulfur removal process (regeneration process) required at the time of catalyst performance deterioration, there is little catalyst deterioration.

[バインダー種による排ガス処理触媒の脱硝性能]
上記試験触媒(No.3)および比較触媒(No.2〜No.5)に対して、上記の表2に示す条件で排ガスを流通させて、脱硝性能をそれぞれ測定した。
[Denitration performance of exhaust gas treatment catalyst by binder type]
With respect to the test catalyst (No. 3) and the comparative catalysts (No. 2 to No. 5), exhaust gas was circulated under the conditions shown in Table 2 above, and the denitration performance was measured.

上記測定結果を図3に示す。
図3において、横軸に排ガス温度を示し、縦軸に脱硝率を示す。この脱硝率は、処理ガスがリーン状態である場合の脱硝率と、処理ガスがリッチ状態である場合の脱硝率との平均である。
The measurement results are shown in FIG.
In FIG. 3, the horizontal axis represents the exhaust gas temperature, and the vertical axis represents the denitration rate. This denitration rate is an average of the denitration rate when the processing gas is in a lean state and the denitration rate when the processing gas is in a rich state.

試験触媒(No.3)の脱硝率は、図3に示すように、排ガス温度が250℃において約32%となった。これに対して、比較触媒(No.2)では約28%となり、比較触媒(No.3)では約15%となり、比較触媒(No.4)では約18%となり、比較触媒(No.5)では約23%となった。排ガス温度が300℃においては、試験触媒(No.3)の脱硝率が約41%となった。これに対して、比較触媒(No.2)では約32%となり、比較触媒(No.3)では約28%となり、比較触媒(No.4)では約27%となり、比較触媒(No.5)では約33%となった。排ガス温度が350℃においては、試験触媒(No.3)の脱硝率が約43%となった。これに対して、比較触媒(No.2)では約33%となり、比較触媒(No.3)では約29%となり、比較触媒(No.4)では約31%となり、比較触媒(No.5)では約34%となった。排ガス温度が400℃においては、試験触媒(No.3)の脱硝率が約48%となった。これに対して、比較触媒(No.2)では約28%となり、比較触媒(No.3)では約24%となり、比較触媒(No.4)では約29%となり、比較触媒(No.5)では約32%となった。よって、排ガス温度が250℃以上400℃以下の範囲において、試験触媒(No.3)の脱硝率は、比較触媒(No.2〜No.5)の場合と比べて高くなることが分かった。   The denitration rate of the test catalyst (No. 3) was about 32% when the exhaust gas temperature was 250 ° C. as shown in FIG. On the other hand, the comparison catalyst (No. 2) is about 28%, the comparison catalyst (No. 3) is about 15%, the comparison catalyst (No. 4) is about 18%, and the comparison catalyst (No. 5). ) Was about 23%. When the exhaust gas temperature was 300 ° C., the denitration rate of the test catalyst (No. 3) was about 41%. On the other hand, the comparative catalyst (No. 2) is about 32%, the comparative catalyst (No. 3) is about 28%, the comparative catalyst (No. 4) is about 27%, and the comparative catalyst (No. 5). ) About 33%. When the exhaust gas temperature was 350 ° C., the denitration rate of the test catalyst (No. 3) was about 43%. On the other hand, the comparative catalyst (No. 2) is about 33%, the comparative catalyst (No. 3) is about 29%, the comparative catalyst (No. 4) is about 31%, and the comparative catalyst (No. 5). ) About 34%. When the exhaust gas temperature was 400 ° C., the denitration rate of the test catalyst (No. 3) was about 48%. On the other hand, the comparative catalyst (No. 2) is about 28%, the comparative catalyst (No. 3) is about 24%, the comparative catalyst (No. 4) is about 29%, and the comparative catalyst (No. 5). ) Was about 32%. Therefore, it was found that the denitration rate of the test catalyst (No. 3) is higher than that of the comparative catalyst (No. 2 to No. 5) in the exhaust gas temperature range of 250 ° C. or higher and 400 ° C. or lower.

したがって、本発明の第3の実施例に係る排ガス処理触媒によれば、セリウム酸化物を主成分とするバインダーを含むものであることにより、アルミニウム酸化物やケイ素酸化物やジルコニウム酸化物の従来のバインダーを含む場合と比較して、脱硝率の低下を抑制することができる。さらにハニカム構造のような高密度のセル構造とすることができ、触媒のコンパクト化を図ることができる。   Therefore, according to the exhaust gas treatment catalyst according to the third embodiment of the present invention, the conventional binder of aluminum oxide, silicon oxide, or zirconium oxide is obtained by including a binder mainly composed of cerium oxide. Compared with the case where it contains, the fall of a denitration rate can be suppressed. Furthermore, a high-density cell structure such as a honeycomb structure can be obtained, and the catalyst can be made compact.

[第三の脱硝性能評価試験]
上記試験触媒(No.1)および試験触媒(No.4)に対して、下記の表3に示す条件で排ガスを流通させて、脱硝性能をそれぞれ測定した。表3において、Lean/Richは、リーン/リッチの処理時間の比を示す。
[Third denitration performance evaluation test]
With respect to the test catalyst (No. 1) and the test catalyst (No. 4), exhaust gas was circulated under the conditions shown in Table 3 below, and the denitration performance was measured. In Table 3, Lean / Rich indicates the ratio of lean / rich processing time.

Figure 0004985351
Figure 0004985351

上記測定結果を図4に示す。
図4において、横軸に排ガス温度を示し、縦軸に脱硝率を示す。この脱硝率は、処理ガスがリーン状態である場合の脱硝率と、処理ガスがリッチ状態である場合の脱硝率との平均である。
The measurement results are shown in FIG.
In FIG. 4, the horizontal axis indicates the exhaust gas temperature, and the vertical axis indicates the denitration rate. This denitration rate is an average of the denitration rate when the processing gas is in a lean state and the denitration rate when the processing gas is in a rich state.

試験触媒(No.1)の脱硝率は、図4に示すように、排ガス温度が270℃、320℃、370℃、420℃、470℃にてそれぞれ約9%、約23%、約42%、約42%、約36%となった。これに対して、試験触媒(No.4)の脱硝率は、排ガス温度が270℃、320℃、370℃、420℃、470℃にてそれぞれ約22%、約64%、約62%、約50%、約35%となった。すなわち、排ガス温度が250〜450℃の範囲にて、試験触媒(No.1)よりも試験触媒(No.4)の方が脱硝率が高くなることが分かった。   As shown in FIG. 4, the NOx removal rate of the test catalyst (No. 1) is about 9%, about 23%, and about 42% at exhaust gas temperatures of 270 ° C., 320 ° C., 370 ° C., 420 ° C., and 470 ° C., respectively. About 42% and about 36%. On the other hand, the denitration rate of the test catalyst (No. 4) is about 22%, about 64%, about 62%, about 270 ° C, 320 ° C, 370 ° C, 420 ° C, 470 ° C, respectively. 50%, about 35%. That is, it was found that the denitration rate of the test catalyst (No. 4) was higher than that of the test catalyst (No. 1) in the exhaust gas temperature range of 250 to 450 ° C.

したがって、本発明の第4の実施例に係る排ガス処理触媒によれば、上述した複合酸化物にPtおよびRhの貴金属を含有させることで、排ガス温度が例えば350℃や400℃である高温側にて、上述した第1および第2の実施例に係る排ガス処理触媒と同程度の脱硝性能を維持し(性能低下することなく)、排ガス温度が例えば250℃である低温側にて、窒素酸化物の窒素への還元反応が促進され、これら排ガス処理触媒よりも脱硝性能が大幅に向上する。   Therefore, according to the exhaust gas treatment catalyst according to the fourth embodiment of the present invention, the Pt and Rh noble metals are contained in the composite oxide described above, so that the exhaust gas temperature is increased to 350 ° C or 400 ° C, for example. Thus, the NOx removal performance comparable to that of the exhaust gas treatment catalyst according to the first and second embodiments described above is maintained (without degrading the performance), and the exhaust gas temperature is, for example, 250 ° C. The reduction reaction to nitrogen is promoted, and the denitration performance is greatly improved as compared with these exhaust gas treatment catalysts.

[第1の実施形態に係る排ガス浄化装置]
以下に、上述した排ガス処理触媒を用いた排ガス浄化装置の第1の実施形態について説明する。
図5は、排ガス浄化装置の概略図である。
[Exhaust gas purifying apparatus according to the first embodiment]
Below, 1st Embodiment of the exhaust gas purification apparatus using the exhaust gas treatment catalyst mentioned above is described.
FIG. 5 is a schematic view of the exhaust gas purification apparatus.

本発明の第1の実施形態に係る排ガス浄化装置10は、図5に示すように、微粒子状物質を捕集する捕集手段であるディーゼルパティキュレートフィルタ(DPF)11と、排ガス処理触媒12とを有している。この排ガス浄化装置10では、排ガス21がDPF11に導入されて、DPF11で排ガス21中の微粒子状物質(PM)が捕集されて当該排ガス21からPMが除去される。PMが除去された排ガスが排ガス処理触媒12に導入され、排ガス処理触媒12にて排ガス中の窒素酸化物を浄化することができる。すなわち、排ガス浄化装置10では、排ガス流通方向上流側から、DPF11、排ガス処理触媒12の順序で配置される。   As shown in FIG. 5, the exhaust gas purification apparatus 10 according to the first embodiment of the present invention includes a diesel particulate filter (DPF) 11 that is a collecting means for collecting particulate matter, an exhaust gas treatment catalyst 12, have. In the exhaust gas purification device 10, the exhaust gas 21 is introduced into the DPF 11, and particulate matter (PM) in the exhaust gas 21 is collected by the DPF 11 and PM is removed from the exhaust gas 21. The exhaust gas from which PM has been removed is introduced into the exhaust gas treatment catalyst 12, and the exhaust gas treatment catalyst 12 can purify nitrogen oxides in the exhaust gas. That is, in the exhaust gas purification apparatus 10, the DPF 11 and the exhaust gas treatment catalyst 12 are arranged in this order from the upstream side in the exhaust gas distribution direction.

この排ガス処理触媒12として、上述した一般式:LaxBa(1-x)(CoyNb1-y(1-z)Pdz3にて表される触媒を用いることが可能である。ただし、前記xの範囲が0.5以上0.9以下であり、前記zの範囲が0.01以上0.15以下であり、前記yの範囲が0または0.60以上0.90以下である。 As the exhaust gas treatment catalyst 12, it is possible to use a catalyst represented by the general formula: La x Ba (1-x) (Co y Nb 1 -y ) (1-z) Pd z O 3 . . However, the range of x is 0.5 or more and 0.9 or less, the range of z is 0.01 or more and 0.15 or less, and the range of y is 0 or 0.60 or more and 0.90 or less. is there.

なお、上述した排ガス浄化装置10では、DPF11の排ガス流通方向上流側に燃料噴射ノズル(燃料噴射手段)(図示せず)が配置される。この燃料噴射ノズルから還元剤として燃料を定期的、例えば1分間で4秒間のみ噴射して排ガス処理触媒12に供給することで、排ガス21中の酸素濃度が低下し、排ガス処理触媒12に吸蔵された窒素酸化物を還元して窒素として排出できる。DPF11が排ガス中のPMを捕集し、所定量捕集した場合には、前記燃料噴射ノズルにより噴射もしくは内燃機関における筒内主噴射の後に副噴射を行うポスト噴射を行い、排ガス温度を高温にしてDPF11に捕集したPMが燃焼除去される。   In the exhaust gas purification apparatus 10 described above, a fuel injection nozzle (fuel injection means) (not shown) is disposed upstream of the DPF 11 in the exhaust gas flow direction. By supplying the fuel as a reducing agent from the fuel injection nozzle periodically, for example, only for 4 seconds in 1 minute and supplying the exhaust gas to the exhaust gas treatment catalyst 12, the oxygen concentration in the exhaust gas 21 is lowered and stored in the exhaust gas treatment catalyst 12. Nitrogen oxide can be reduced and discharged as nitrogen. When the DPF 11 collects PM in the exhaust gas and collects a predetermined amount, the fuel injection nozzle performs post-injection that performs sub-injection after injection or in-cylinder main injection in the internal combustion engine, and raises the exhaust gas temperature. Thus, the PM collected in the DPF 11 is burned and removed.

したがって、本発明の第1の実施形態に係る排ガス浄化装置10によれば、排ガス中の窒素酸化物を還元して浄化する排ガス浄化装置であって、排ガス中のPMを捕集するDPF11と、DPF11よりも排ガスの流通方向下流側に配置された排ガス処理触媒12とを有することにより、DPF11にて排ガス中のPMを捕集して除去するため、PMなどの付着による排ガス処理触媒12の経年劣化を抑制することができる上に、排ガス処理触媒12によりPMが除去された排ガス中の窒素酸化物を除去することができる。その結果、排ガス処理触媒12自体の寿命が長くなり、当該触媒12の定期交換などの保守による運用コストの増加を抑制することができる。   Therefore, according to the exhaust gas purification apparatus 10 according to the first embodiment of the present invention, the exhaust gas purification apparatus that reduces and purifies nitrogen oxides in the exhaust gas, the DPF 11 that collects PM in the exhaust gas, By having the exhaust gas treatment catalyst 12 disposed downstream of the DPF 11 in the exhaust gas distribution direction, the DPF 11 collects and removes PM in the exhaust gas. In addition to suppressing deterioration, nitrogen oxides in the exhaust gas from which PM has been removed by the exhaust gas treatment catalyst 12 can be removed. As a result, the life of the exhaust gas treatment catalyst 12 itself is extended, and an increase in operation cost due to maintenance such as periodic replacement of the catalyst 12 can be suppressed.

[第2の実施形態に係る排ガス浄化装置]
以下に、上述した排ガス処理触媒を用いた排ガス浄化装置の第2の実施形態について説明する。
図6は、排ガス浄化装置の概略図である。
[Exhaust gas purification apparatus according to the second embodiment]
Below, 2nd Embodiment of the exhaust gas purification apparatus using the exhaust gas treatment catalyst mentioned above is described.
FIG. 6 is a schematic view of the exhaust gas purifying apparatus.

本実施形態に係る排ガス浄化装置は、上述した第1の実施形態に係る排ガス浄化装置10おいて、DPF11の排ガス流通方向上流側に酸化触媒を配置したものであり、それ以外は同じ構成を有している。
本実施形態に係る排ガス浄化装置において、上述した第1の実施形態に係る排ガス浄化装置と同一機器には同一符号を付記しその説明を省略する。
The exhaust gas purifying apparatus according to the present embodiment is the exhaust gas purifying apparatus 10 according to the first embodiment described above, in which an oxidation catalyst is arranged on the upstream side of the DPF 11 in the exhaust gas distribution direction, and the other configurations are the same. is doing.
In the exhaust gas purifying apparatus according to the present embodiment, the same components as those in the exhaust gas purifying apparatus according to the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

本発明の第2の実施形態に係る排ガス浄化装置30では、図6に示すように、排ガス40の流通方向上流側から、酸化触媒31、DPF11、排ガス処理触媒12の順番で配置されている。酸化触媒31は排ガス40中の未燃炭化水素類、一酸化炭素、窒素酸化物や黒鉛炭素成分等を酸化している。   In the exhaust gas purification apparatus 30 according to the second embodiment of the present invention, as shown in FIG. 6, the oxidation catalyst 31, the DPF 11, and the exhaust gas treatment catalyst 12 are arranged in this order from the upstream side in the flow direction of the exhaust gas 40. The oxidation catalyst 31 oxidizes unburned hydrocarbons, carbon monoxide, nitrogen oxides, graphite carbon components and the like in the exhaust gas 40.

したがって、本実施形態に係る排ガス浄化装置30によれば、酸化触媒31により排ガス処理触媒12の排ガス流通方向上流側にて排ガス中の未燃炭化水素類、一酸化炭素、窒素酸化物や黒鉛炭素成分等を酸化しており、当該排ガス処理触媒12にて窒素酸化物を効率良く浄化することができる。   Therefore, according to the exhaust gas purifying apparatus 30 according to the present embodiment, the unburned hydrocarbons, carbon monoxide, nitrogen oxide, and graphite carbon in the exhaust gas are upstream of the exhaust gas treatment catalyst 12 in the exhaust gas flow direction by the oxidation catalyst 31. Components and the like are oxidized, and nitrogen oxides can be efficiently purified by the exhaust gas treatment catalyst 12.

排ガス処理触媒におけるニオブの添加量と脱硝率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of niobium in an exhaust gas treatment catalyst, and a denitration rate. 排ガス処理触媒の脱硝率と排ガス温度との関係を示すグラフである。It is a graph which shows the relationship between the denitration rate of an exhaust gas treatment catalyst, and exhaust gas temperature. バインダー種による脱硝率と排ガス温度との関係を示すグラフである。It is a graph which shows the relationship between the denitration rate by a binder seed | species, and exhaust gas temperature. 排ガス処理触媒の脱硝率と排ガス温度との関係を示すグラフである。It is a graph which shows the relationship between the denitration rate of an exhaust gas treatment catalyst, and exhaust gas temperature. 本発明の第1の実施形態に係る排ガス浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態に係る排ガス浄化装置の概略構成図である。It is a schematic block diagram of the exhaust gas purification apparatus which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10,30 排ガス浄化装置
11 DPF
12 排ガス処理触媒
31 酸化触媒
20,21,40,41 排ガス
10, 30 Exhaust gas purification device 11 DPF
12 Exhaust gas treatment catalyst 31 Oxidation catalyst 20, 21, 40, 41 Exhaust gas

Claims (6)

LaxBa(1-x)(CoyNb1-y(1-z)Pdz3(ただし、0.5≦x≦0.9であり、0.60≦y≦0.90であり、0.01≦z≦0.15であり、Nbのモル量が0.15から0.25の範囲である。)からなる複合酸化物を有し、セリウム酸化物を主成分とするバインダーを含む
ことを特徴とする排ガス処理触媒。
La x Ba (1-x) (Co y Nb 1-y ) (1-z) Pd z O 3 (where 0.5 ≦ x ≦ 0.9 and 0.60 ≦ y ≦ 0.90 There are 0.01 ≦ z ≦ 0.15, binders molar amount of Nb is in the range of 0.15 to 0.25.) the composite oxide possess consisting mainly of cerium oxide exhaust gas treatment catalyst according to claim <br/> contain.
LaxBa1-xNb1-zPdz3(ただし、0.5≦x≦0.9であり、0.01≦z≦0.15である。)からなる複合酸化物を有し、セリウム酸化物を主成分とするバインダーを含む
ことを特徴とする排ガス処理触媒。
It has a composite oxide composed of La x Ba 1-x Nb 1-z Pd z O 3 (where 0.5 ≦ x ≦ 0.9 and 0.01 ≦ z ≦ 0.15). An exhaust gas treatment catalyst comprising a binder mainly composed of cerium oxide.
請求項1または請求項2に記載された排ガス処理触媒であって、
Pt,Rh,Ir,Ruのうちの少なくとも一種の貴金属を含む
ことを特徴とする排ガス処理触媒。
An exhaust gas treatment catalyst according to claim 1 or claim 2,
An exhaust gas treatment catalyst comprising at least one precious metal of Pt, Rh, Ir and Ru.
請求項3に記載された排ガス処理触媒であって、
前記貴金属は、前記複合酸化物に対して0.01〜5wt%含まれている
ことを特徴とする排ガス処理触媒。
An exhaust gas treatment catalyst according to claim 3,
The exhaust gas treatment catalyst, wherein the precious metal is contained in an amount of 0.01 to 5 wt% with respect to the composite oxide.
排ガス中の窒素酸化物を還元して浄化する排ガス浄化装置であって、
前記排ガス中の微粒子状物質を捕集する捕集手段と、
前記捕集手段よりも前記排ガスの流通方向下流側に配置され、請求項1乃至請求項の何れか一項に記載された排ガス処理触媒を有する
ことを特徴とする排ガス浄化装置。
An exhaust gas purification device that reduces and purifies nitrogen oxides in exhaust gas,
A collecting means for collecting particulate matter in the exhaust gas;
An exhaust gas purification apparatus comprising the exhaust gas treatment catalyst according to any one of claims 1 to 4 , wherein the exhaust gas treatment catalyst is disposed downstream of the collection means in the flow direction of the exhaust gas.
請求項に記載された排ガス浄化装置であって、
前記捕集手段よりも前記排ガスの流通方向上流側に配置され、当該排ガス中の未燃炭化水素類、一酸化炭素、窒素酸化物や黒鉛炭素成分を酸化する酸化触媒をさらに有する
ことを特徴とする排ガス浄化装置。
An exhaust gas purification device according to claim 5 ,
It further comprises an oxidation catalyst that is disposed upstream of the collecting means in the flow direction of the exhaust gas and oxidizes unburned hydrocarbons, carbon monoxide, nitrogen oxides, and graphite carbon components in the exhaust gas. Exhaust gas purification device.
JP2007306932A 2007-11-28 2007-11-28 Exhaust gas treatment catalyst and exhaust gas purification device Active JP4985351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306932A JP4985351B2 (en) 2007-11-28 2007-11-28 Exhaust gas treatment catalyst and exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306932A JP4985351B2 (en) 2007-11-28 2007-11-28 Exhaust gas treatment catalyst and exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2009125736A JP2009125736A (en) 2009-06-11
JP4985351B2 true JP4985351B2 (en) 2012-07-25

Family

ID=40817190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306932A Active JP4985351B2 (en) 2007-11-28 2007-11-28 Exhaust gas treatment catalyst and exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4985351B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388052B2 (en) 2008-10-31 2014-01-15 独立行政法人産業技術総合研究所 Exhaust gas treatment catalyst
JP5376450B2 (en) * 2009-12-28 2013-12-25 三菱重工業株式会社 Exhaust gas purification method
JP2011136278A (en) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas cleaning method using the same, and exhaust gas cleaning apparatus
JP5769299B2 (en) * 2011-07-08 2015-08-26 ヤンマー株式会社 Engine equipment
JP5709184B2 (en) * 2013-08-19 2015-04-30 三菱重工業株式会社 Exhaust gas purification method and exhaust gas purification device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302950A (en) * 1987-06-03 1988-12-09 Nissan Motor Co Ltd Waste gas purifying catalyst
JPH03186346A (en) * 1989-12-15 1991-08-14 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas and catalyst structure
JP2558568B2 (en) * 1992-01-20 1996-11-27 財団法人石油産業活性化センター Catalyst for catalytic reduction of nitrogen oxides
JP2000015106A (en) * 1998-07-01 2000-01-18 Mitsubishi Heavy Ind Ltd Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus
JP5030343B2 (en) * 2001-08-31 2012-09-19 三菱重工業株式会社 Exhaust gas purification apparatus and exhaust gas treatment method
JP2004074055A (en) * 2002-08-20 2004-03-11 Toyota Motor Corp Method of forming catalyst carrying layer
JP4400030B2 (en) * 2002-09-11 2010-01-20 マツダ株式会社 Exhaust gas purification catalyst
JP2006205021A (en) * 2005-01-27 2006-08-10 Mitsubishi Heavy Ind Ltd Composite oxide catalyst
JP4969843B2 (en) * 2005-12-09 2012-07-04 新日鉄マテリアルズ株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst member
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP4755131B2 (en) * 2007-03-29 2011-08-24 三菱重工業株式会社 Composite oxide catalyst, production method thereof, and exhaust gas purification device

Also Published As

Publication number Publication date
JP2009125736A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4959129B2 (en) Exhaust gas purification catalyst
US7375054B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP5864443B2 (en) Exhaust gas purification catalyst
WO2007072690A1 (en) Catalyst for exhaust gas clean-up
KR20060093102A (en) A catalyzed diesel particulate matter filter with improved thermal stability
WO2006049042A1 (en) Exhaust gas purification catalyst
WO2006134787A1 (en) Exhaust gas purifying catalyst
JP4985351B2 (en) Exhaust gas treatment catalyst and exhaust gas purification device
JP5583967B2 (en) Exhaust gas purification catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
CN101111310A (en) Catalyst for exhaust gas purification
KR20110008083A (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP5376450B2 (en) Exhaust gas purification method
US9308498B2 (en) Exhaust gas treating catalyst and exhaust gas purification apparatus using the same
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4755131B2 (en) Composite oxide catalyst, production method thereof, and exhaust gas purification device
JP2011212626A (en) Catalyst for cleaning exhaust gas and method for manufacturing the same
JPH04215845A (en) Catalyst for purifying exhaust gas
JP2011136278A (en) Exhaust gas treatment catalyst, exhaust gas cleaning method using the same, and exhaust gas cleaning apparatus
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP5051009B2 (en) NOx storage reduction catalyst
JP2004008838A (en) Catalyst for cleaning exhaust gas of internal combustion engine, method of cleaning exhaust gas and apparatus for cleaning exhaust gas
JP5709184B2 (en) Exhaust gas purification method and exhaust gas purification device
JP4285122B2 (en) Method for producing exhaust gas purifying catalyst
JP2007229558A (en) Catalyst for treating nitrogen oxide
JP2010051862A (en) Catalyst, and exhaust gas cleaning device with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4985351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350