JP4970742B2 - Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP4970742B2
JP4970742B2 JP2005160280A JP2005160280A JP4970742B2 JP 4970742 B2 JP4970742 B2 JP 4970742B2 JP 2005160280 A JP2005160280 A JP 2005160280A JP 2005160280 A JP2005160280 A JP 2005160280A JP 4970742 B2 JP4970742 B2 JP 4970742B2
Authority
JP
Japan
Prior art keywords
mass
less
aluminum
electrolytic capacitor
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005160280A
Other languages
Japanese (ja)
Other versions
JP2006336058A (en
Inventor
智明 山ノ井
和久 宗宮
勝起 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005160280A priority Critical patent/JP4970742B2/en
Publication of JP2006336058A publication Critical patent/JP2006336058A/en
Application granted granted Critical
Publication of JP4970742B2 publication Critical patent/JP4970742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、静電容量が高く耐折強度に優れた電解コンデンサ電極用アルミニウム材、電解コンデンサ用アルミニウム材の製造方法、アルミニウム電解コンデンサ用陽極材及びアルミニウム電解コンデンサに関する。   The present invention relates to an aluminum material for an electrolytic capacitor electrode having a high capacitance and excellent bending strength, a method for producing an aluminum material for an electrolytic capacitor, an anode material for an aluminum electrolytic capacitor, and an aluminum electrolytic capacitor.

なお、この明細書において、「アルミニウム」の語はアルミニウム及びその合金の両者を含む意味で用い、またアルミニウム材には少なくともアルミニウム箔、アルミニウム板及びこれらの成形体が含まれる。   In this specification, the term “aluminum” is used to include both aluminum and its alloys, and the aluminum material includes at least an aluminum foil, an aluminum plate, and a molded body thereof.

アルミニウム電解コンデンサ用電極材として一般に用いられるアルミニウム箔には、その実効面積を拡大して単位面積当りの静電容量を増大するため、通常、電気化学的あるいは化学的エッチング処理が施される。しかし、近年、製品のダウンサイジングに伴う部品の小型化要求から高静電容量化のニーズがますます高まっている。   An aluminum foil generally used as an electrode material for an aluminum electrolytic capacitor is usually subjected to an electrochemical or chemical etching treatment in order to increase the capacitance per unit area by expanding its effective area. However, in recent years, there has been an increasing need for higher capacitance due to the demand for downsizing of parts due to product downsizing.

しかし、箔を単にエッチング処理するのみでは十分な静電容量が得られない。このため、一般的には箔圧延後の最終焼鈍工程において、500℃を超える高温加熱処理を施し、{100}<001>方位(以下、立方体方位と記す)の占有率を向上させる例(非特許文献1)や微量元素としてCuを添加する例(非特許文献2)が提案されている。立方体方位の向上は同時に圧延方向の伸びの極端な低下をもたらし耐折強度が低下する傾向にある。   However, sufficient electrostatic capacity cannot be obtained simply by etching the foil. For this reason, in general, in the final annealing step after foil rolling, high temperature heat treatment exceeding 500 ° C. is performed to improve the occupation ratio of {100} <001> orientation (hereinafter referred to as cube orientation) (non- Patent Document 1) and an example of adding Cu as a trace element (Non-Patent Document 2) have been proposed. The improvement of the cube orientation tends to cause an extreme decrease in the elongation in the rolling direction and the bending strength tends to decrease.

また、高容量のニーズの高まりとともに、エッチング層はますます厚くなる傾向にある。しかしながら、エッチピットの長さを長くしようとすると一本一本のエッチピットの長さを制御することが難しくなる。このことからも耐折強度の確保が難しくなっている。   In addition, as the need for high capacity increases, the etching layer tends to become thicker. However, if the length of the etch pit is increased, it becomes difficult to control the length of each etch pit. This also makes it difficult to ensure the bending strength.

そこで、エッチング特性に優れ高静電容量を実現できるとともに、耐折強度にも優れた電解コンデンサ電極用アルミニウム材が要求されている。   Therefore, there is a demand for an aluminum material for electrolytic capacitor electrodes that is excellent in etching characteristics and can realize a high capacitance and also has excellent bending strength.

この要求に対し、箔を多層構造とし、耐折強度を確保する方法が提案されている。例えば特許文献1においては、芯層を外層よりも多くのFeを含有するアルミニウムによって構成し、エッチング時に表面から成長するエッチピットの成長を、芯層に含まれるAl-Fe系の金属間化合物によって停止させ、芯層を確実に残すことで強度を確保する方法が、また特許文献2においては、芯層を外層よりも純度の低いアルミニウム合金を用いることによって上記と同様の効果を得ようとする方法が記載されている。   In response to this requirement, a method has been proposed in which the foil has a multi-layer structure to ensure the bending strength. For example, in Patent Document 1, the core layer is made of aluminum containing more Fe than the outer layer, and the growth of etch pits that grow from the surface during etching is caused by Al-Fe intermetallic compounds contained in the core layer. The method of securing the strength by stopping and reliably leaving the core layer, and in Patent Document 2, tries to obtain the same effect as described above by using an aluminum alloy whose purity is lower than that of the outer layer. A method is described.

一方、特許文献3においては、芯層に非(100)方位が40%以上のアルミニウム層とすることでエッチピットの成長を止めて、芯部の厚さを確保する方法が記載されている。   On the other hand, Patent Document 3 describes a method of securing the thickness of the core by stopping the growth of etch pits by making the core layer an aluminum layer having a non- (100) orientation of 40% or more.

また、特許文献4において、Scを芯材に含有させて強度を確保する方法が、特許文献5においては、ScおよびZrを芯層に含有させ強度を確保する方法が提案されている。
山口謙四郎:軽金属,35(1985),P365 川島浪夫,中村雄造,西坂基:軽金属,No.21(1956),P54 特開昭51−113154号公報 特開昭62−47110号公報 特開平4−120235号公報 特開2000−91164号公報 特開2000−345271号公報
Patent Document 4 proposes a method of ensuring strength by containing Sc in the core material, and Patent Document 5 proposes a method of securing strength by containing Sc and Zr in the core layer.
Kenshiro Yamaguchi: Light Metal, 35 (1985), P365 N. Kawashima, Y. Nakamura, Moto Nishizaka: Light Metal, No. 21 (1956), P. 54 Japanese Patent Laid-Open No. 51-113154 JP 62-47110 A Japanese Patent Laid-Open No. 4-120235 JP 2000-91164 A JP 2000-345271 A

しかし、特許文献1、特許文献2に記載の方法は、芯材に存在する粗大な金属間化合物が化成皮膜の欠陥となり、漏れ電流を著しく増大させるという問題点があった。   However, the methods described in Patent Document 1 and Patent Document 2 have a problem in that a coarse intermetallic compound present in the core material becomes a defect in the chemical conversion film, and leakage current is remarkably increased.

また、特許文献3の方法は、エッチピットの成長はある程度抑止できるものの、完全に成長を止められず、芯残し部が不均一になること、芯層の材料強度が外層とほぼ同等であるため、積層材として十分な耐折強度を確保することができないという問題点があった。   Further, although the method of Patent Document 3 can suppress the growth of etch pits to some extent, the growth cannot be completely stopped, the core remaining part becomes non-uniform, and the material strength of the core layer is almost equal to that of the outer layer. However, there is a problem that sufficient folding strength as a laminated material cannot be ensured.

また、特許文献4、特許文献5に記載の方法では、芯層の強度を向上させる効果は認められるものの、芯層材と外層材の境界が不純物拡散によって不鮮明となってしまうため、エッチピットの成長を止め、芯層の強度低下を抑止するには、必ずしも十分なものではなかった。   Further, in the methods described in Patent Document 4 and Patent Document 5, although the effect of improving the strength of the core layer is recognized, the boundary between the core layer material and the outer layer material becomes unclear due to impurity diffusion. It was not always sufficient to stop the growth and suppress the strength reduction of the core layer.

この発明は、このような技術的背景に鑑みてなされたものであって、漏れ電流を増大させることなく、エッチング特性に優れ高静電容量を実現できるとともに、耐折強度にも優れた電解コンデンサ電極用アルミニウム材を提供し、さらにはこのアルミニウム材の製造方法やアルミニウム電解コンデンサ用陽極材及びアルミニウム電解コンデンサを提供することを目的とする。   The present invention has been made in view of such a technical background, and is an electrolytic capacitor excellent in etching characteristics and excellent in bending resistance as well as having excellent etching characteristics without increasing leakage current. An object of the present invention is to provide an aluminum material for an electrode, and further to provide a method for producing the aluminum material, an anode material for an aluminum electrolytic capacitor, and an aluminum electrolytic capacitor.

前記目的は以下の手段によって達成される。
(1)総厚の5%以上40%以下を占める芯層の少なくとも片面に外層が積層されてなるとともに、前記芯層は、アルミニウムの純度が99.3質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下を含有し、かつ材料表面から見た結晶方位成分のうち、ずれ角が10度以下の結晶方位成分を有する結晶組織の面積占有率が、0.02≦[SCube+SGoss]/[SBrass+SC+SS]≦0.35 (ただし、SCubeは立方体方位{100}<001>、SGossはGoss方位{110}<001>、SBrassはBrass方位{110}<112>、SCはC方位{112}<111>、SSはS方位{123}<634> なる各結晶方位成分を示す)であり、前記外層は、アルミニウムの純度が99.6質量%以上で、かつ材料表面から見た立方体方位{100}<001>からのずれ角が10度以下の結晶方位成分を有する結晶組織の面積占有率SCubeが80%以上であることを特徴とする電解コンデンサ電極用アルミニウム材。
(2)前記外層は、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を含有する前項1に記載の電解コンデンサ電極用アルミニウム材。
(3)前記芯層は、Y;0.00003質量%以上0.03質量%以下、La;0.00003質量%以上0.03質量%以下、Ce;0.00003質量%以上0.03質量%以下の少なくとも1種をさらに含有する前項1に記載の電解コンデンサ電極用アルミニウム材。
(4)前記外層は、Pb;0.00003質量%以上0.0003質量%以下、Sn;0.0003質量%以上0.003質量%以下、Bi;0.00001質量%以上0.00015質量%以下、Sb;0.0002質量%以上0.002質量%以下を少なくとも一種含有する前項2に記載の電解コンデンサ電極用アルミニウム材。
(5)芯層のScとZr,Vの濃度の和Ccore(Sc+Zr+V)とエッチングに供される外層のScとZr,Vの濃度の和Cskin(Sc+Zr+V)とが、5≦Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)≦500なる関係を有する前項1〜4のいずれかに記載の電解コンデンサ電極用アルミニウム材。
(6)芯層の厚さ方向における平均結晶粒界の間隔が20μm以下である前項1〜5のいずれかに記載の電解コンデンサ電極用アルミニウム材。
(7)芯層の硬さHvcoreと外層の硬さHvskinの比(Hvskin/Hvcore)が0.2以上0.8以下である前項1〜6のいずれかに記載の電解コンデンサ電極用アルミニウム材。
(8)アルミニウムの純度が99.3質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下を有する芯層の少なくとも片面に、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を有する外層を積層した後、熱間圧延及び冷間圧延を実施し、ついで最終焼鈍を実施するに際し、前記熱間圧延から最終焼鈍までに、200℃以上300℃以下、30分以上6時間以下の条件で少なくとも1回の中間焼鈍を実施するとともに、前記最終焼鈍を430℃以上500℃未満、30分以上6時間以下の条件にて実施することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(9)前記芯層は、Y;0.00003質量%以上0.03質量%以下、La;0.00003質量%以上0.03質量%以下、Ce;0.00003質量%以上0.03質量%以下の少なくとも1種をさらに含有する前項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10)前記外層は、Pb;0.00003質量%以上0.0003質量%以下、Sn;0.0003質量%以上0.003質量%以下、Bi;0.00001質量%以上0.00015質量%以下、Sb;0.0002質量%以上0.002質量%以下なる元素を少なくとも一種含有する前項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(11)中間焼鈍と最終焼鈍の間に、圧下率8%以上30%以下の冷間圧延または中間焼鈍温度を超えない温間圧延による付加的歪付与を実施する前項1〜10のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(12)中間焼鈍と最終焼鈍の間に、加工率5%以上15%以下の冷間での引張変形または中間焼鈍温度を超えない温度での引張変形による付加的歪付与を実施する前項1〜10に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(13)前項1〜7のいずれかに記載の電解コンデンサ電極用アルミニウム材にエッチングが施されることにより、表面積がエッチング前の投影面積の10倍以上となされていることを特徴とするアルミニウム電解コンデンサ用陽極材。
(14)エッチピット形成部に、平均膜厚0.1μm以上の誘電体皮膜が形成されている前項13に記載のアルミニウム電解コンデンサ用陽極材。
(15)前項1〜7の電解コンデンサ電極用アルミニウム材にエッチング処理を施すに際し、少なくとも30%以上のエッチピットを、アルミニウム材の表面にあらかじめ付与された起点によって生じさせることを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(16)総厚の5%以上40%以下を占める芯層の少なくとも片面に外層が積層されてなるとともに、前記芯層は、アルミニウムの純度が99.3質量%以上であって、Si;0.0005質量%以上0.05質量%以下、Fe;0.0005質量%以上0.05質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下を含有し、前記外層は、アルミニウムの純度が99.6質量%以上で、Si;0.0005質量%以上0.05質量%以下、Fe;0.0005質量%以上0.05質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を含有し、かつ交流エッチング処理により、表面積がエッチング前の投影面積の50倍以上となされていることを特徴とするアルミニウム電解コンデンサ用陽極材。
(17)エッチピット形成部に、平均膜厚0.5μm以下の誘電体皮膜が形成されている前項16に記載のアルミニウム電解コンデンサ用陽極材。
(18)電極材として、前項13、14、16、17のいずれかに記載の陽極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
The object is achieved by the following means.
(1) An outer layer is laminated on at least one side of a core layer occupying 5% or more and 40% or less of the total thickness, and the core layer has an aluminum purity of 99.3% by mass or more, and Si; .0005 mass% or more and 0.03 mass% or less, Fe; 0.0005 mass% or more and 0.03 mass% or less, Cu; 0.0005 mass% or more and 0.015 mass% or less, Mn; 0.00003 mass% or more 0.001% by mass or less, Mg: 0.00003% by mass or more and 0.005% by mass or less, Zn: 0.00003% by mass or more and 0.005% by mass or less, Ti: 0.00003% by mass or more and 0.001% by mass Hereafter, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003% or less, Ga: 0.00003 mass% or more and 0.008 mass% or less, B; 0 00003 mass% to 0.002 mass%, V; 0.00003 mass% to 0.05 mass%, Sc; 0.005 mass% to 0.1 mass%, Zr; 0.005 mass% to 0 The area occupancy of the crystal structure having a crystal orientation component with a deviation angle of 10 degrees or less among the crystal orientation components seen from the material surface is 0.02 ≦ [S Cube + S Goss ] / [S Brass + S C + S S ] ≦ 0.35 (where S Cube is the cubic orientation {100} <001>, S Goss is the Goss orientation {110} <001>, and S Brass is the Brass orientation {110} <112>, S C are C orientation {112} <111>, S S is each orientation component of S orientation {123} <634>, and the outer layer has an aluminum purity of 99.6% by mass. The cubic orientation {100} <0 as seen from the material surface as described above An aluminum material for electrolytic capacitor electrodes, wherein the area occupancy S Cube of a crystal structure having a crystal orientation component whose deviation angle from 01> is 10 degrees or less is 80% or more.
(2) The outer layer is composed of Si; 0.0005 mass% to 0.03 mass%, Fe; 0.0005 mass% to 0.03 mass%, Cu; 0.0005 mass% to 0.015 mass% Hereafter, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg: 0.00003 mass% or more and 0.005 mass% or less, Zn: 0.00003 mass% or more and 0.005 mass% or less, Ti; 0 0.0003% by mass or more and 0.001% by mass or less, Cr: 0.00003% by mass or more and 0.003% by mass or less, Ni: 0.00003% by mass or more and 0.003% by mass or less, Ga: 0.00003% by mass or more 0.005 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.003 mass% or less, Sc; 0.00003 mass% or more and 0.00 Mass% or less, Zr; electrolytic capacitor electrodes for aluminum material according to item 1 containing 0.003% by mass or less 0.00003 mass% or more.
(3) The core layer is Y: 0.00003 mass% or more and 0.03 mass% or less, La: 0.00003 mass% or more and 0.03 mass% or less, Ce; 0.00003 mass% or more and 0.03 mass% 2. The aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, further containing at least one type of at least 1%.
(4) The outer layer is Pb; 0.00003 mass% or more and 0.0003 mass% or less, Sn; 0.0003 mass% or more and 0.003 mass% or less, Bi; 0.00001 mass% or more and 0.00015 mass% or less. 3. The aluminum material for electrolytic capacitor electrodes as described in 2 above, which contains at least one kind of Sb: 0.0002 mass% or more and 0.002 mass% or less.
(5) The sum Ccore (Sc + Zr + V) of the Sc and Zr, V concentrations of the core layer and the sum Cskin (Sc + Zr + V) of the Sc, Zr, and V concentrations of the outer layer subjected to etching 5. The aluminum material for electrolytic capacitor electrodes according to any one of 1 to 4 above, wherein 5 ≦ Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) ≦ 500.
(6) The aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 5 above, wherein an interval between average grain boundaries in the thickness direction of the core layer is 20 μm or less.
(7) The aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 6 above, wherein the ratio (Hvskin / Hvcore) of the hardness Hvcore of the core layer to the hardness Hvskin of the outer layer is 0.2 or more and 0.8 or less.
(8) The purity of aluminum is 99.3% by mass or more, and Si: 0.0005% by mass to 0.03% by mass, Fe: 0.0005% by mass to 0.03% by mass, Cu: 0 .0005 mass% or more and 0.015 mass% or less, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg: 0.00003 mass% or more and 0.005 mass% or less, Zn: 0.00003 mass% or more 0.005% by mass or less, Ti: 0.00003% by mass or more and 0.001% by mass or less, Cr: 0.00003% by mass or more and 0.003% by mass or less, Ni: 0.00003% by mass or more and 0.003% by mass Hereafter, Ga: 0.00003 mass% or more and 0.008 mass% or less, B: 0.00003 mass% or more and 0.002 mass% or less, V: 0.00003 mass% or more and 0.05 mass% or less, Sc 0.005% by mass or more and 0.1% by mass or less, Zr: 0.005% by mass or more and 0.2% by mass or less on at least one surface of the core layer, Si; 0.0005% by mass or more and 0.03% by mass or less Fe: 0.0005 mass% or more and 0.03 mass% or less, Cu: 0.0005 mass% or more and 0.015 mass% or less, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg; 00003 mass% to 0.005 mass%, Zn: 0.00003 mass% to 0.005 mass%, Ti; 0.00003 mass% to 0.001 mass%, Cr; 0.00003 mass% to 0 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% or less, Ga: 0.00003 mass% or more and 0.005 mass% or less, B; 0.00003 mass% or more and 0.002 mass% Hereinafter, an outer layer having V: 0.00003% by mass to 0.003% by mass, Sc: 0.00003% by mass to 0.003% by mass, Zr: 0.00003% by mass to 0.003% by mass After the lamination, hot rolling and cold rolling are performed, and then, when performing the final annealing, at least 200 ° C. to 300 ° C., 30 minutes to 6 hours from the hot rolling to the final annealing. A method for producing an aluminum material for electrolytic capacitor electrodes, wherein the intermediate annealing is performed once and the final annealing is performed under a condition of 430 ° C. or higher and lower than 500 ° C. for 30 minutes or longer and 6 hours or shorter.
(9) The core layer is Y: 0.00003% by mass or more and 0.03% by mass or less, La: 0.00003% by mass or more and 0.03% by mass or less, Ce: 0.00003% by mass or more and 0.03% by mass The manufacturing method of the aluminum material for electrolytic capacitor electrodes of the preceding clause 8 which further contains at least 1 type of% or less.
(10) The outer layer is composed of Pb; 0.00003 mass% or more and 0.0003 mass% or less, Sn: 0.0003 mass% or more and 0.003% or less, Bi; 0.00001 mass% or more and 0.00015 mass% or less. 9. The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 8, wherein at least one element comprising Sb: 0.0002 mass% or more and 0.002 mass% or less is contained.
(11) In any one of the preceding items 1 to 10, wherein additional strain is applied by cold rolling at a rolling reduction of 8% or more and 30% or less or warm rolling not exceeding the intermediate annealing temperature between the intermediate annealing and the final annealing. The manufacturing method of the aluminum material for electrolytic capacitor electrodes of description.
(12) Before the intermediate annealing and the final annealing, the additional strain is applied by applying the tensile deformation at a cold rate of 5% to 15% or the tensile deformation at a temperature not exceeding the intermediate annealing temperature. 10. The method for producing an aluminum material for electrolytic capacitor electrodes according to 10.
(13) The aluminum electrolysis characterized in that the aluminum material for electrolytic capacitor electrodes according to any one of the preceding items 1 to 7 is etched to have a surface area of 10 times or more of a projected area before etching. Anode material for capacitors.
(14) The anode material for an aluminum electrolytic capacitor as described in (13) above, wherein a dielectric film having an average film thickness of 0.1 μm or more is formed in the etch pit forming portion.
(15) An electrolytic capacitor characterized in that at least 30% or more of etch pits are generated from a starting point provided in advance on the surface of the aluminum material when the aluminum material for electrolytic capacitor electrodes according to items 1 to 7 is subjected to an etching treatment. Manufacturing method of aluminum material for electrodes.
(16) An outer layer is laminated on at least one side of a core layer occupying 5% to 40% of the total thickness, and the core layer has an aluminum purity of 99.3% by mass or more, and Si; .0005 mass% or more and 0.05 mass% or less, Fe; 0.0005 mass% or more and 0.05 mass% or less, Cu; 0.0005 mass% or more and 0.015 mass% or less, Mn: 0.00003 mass% or more 0.001% by mass or less, Mg: 0.00003% by mass or more and 0.005% by mass or less, Zn: 0.00003% by mass or more and 0.005% by mass or less, Ti: 0.00003% by mass or more and 0.001% by mass Hereafter, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% or less, Ga: 0.00003 mass% or more and 0.008 mass% or less, B; 0.00003 mass% to 0.002 mass%, V; 0.00003 mass% to 0.05 mass%, Sc; 0.005 mass% to 0.1 mass%, Zr; 0.005 mass% or more The outer layer has an aluminum purity of 99.6% by mass or more, Si; 0.0005% by mass to 0.05% by mass, Fe; 0.0005% by mass to 0%. 0.05% by mass or less, Cu: 0.0005% by mass or more and 0.015% by mass or less, Mn: 0.00003% by mass or more and 0.001% by mass or less, Mg: 0.00003% by mass or more and 0.005% by mass or less Zn: 0.00003 mass% or more and 0.005 mass% or less, Ti: 0.00003 mass% or more and 0.001 mass% or less, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni; 000 3 mass% or more and 0.003 mass% or less, Ga: 0.00003 mass% or more and 0.005 mass% or less, B: 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more 0 0.003 mass% or less, Sc; 0.00003 mass% or more and 0.003 mass% or less, Zr; 0.00003 mass% or more and 0.003 mass% or less, and by AC etching, the surface area is before etching An anode material for an aluminum electrolytic capacitor, wherein the anode material is 50 times or more the projected area.
(17) The anode material for an aluminum electrolytic capacitor as described in 16 above, wherein a dielectric film having an average film thickness of 0.5 μm or less is formed in the etch pit formation portion.
(18) An aluminum electrolytic capacitor, wherein the anode material according to any one of items 13, 14, 16, and 17 is used as an electrode material.

前項(1)に記載された発明によれば、エッチングされる外層に立方体方位占有率の高いアルミニウム層を有し、芯層は、化成時の皮膜特性に優れて漏れ電流が小さく、かつエッチピットの成長を抑止できる高強度な合金層となるから、この芯層により耐折強度を確保しながら、外層を充分にエッチングさせることができ、全体として静電容量が高く、しかも耐折強度に優れて、コイル等に巻き取ったときにも材料切れを生じることのない電解コンデンサ電極用アルミニウム材となし得る。   According to the invention described in the preceding item (1), the outer layer to be etched has an aluminum layer having a high cubic occupancy ratio, the core layer has excellent film characteristics at the time of chemical conversion, a small leakage current, and an etch pit. Since the core layer is a high-strength alloy layer that can suppress the growth of the outer layer, the outer layer can be etched sufficiently while ensuring the bending strength, the overall capacitance is high, and the folding strength is excellent. Thus, an aluminum material for an electrolytic capacitor electrode that does not cause material breakage when wound on a coil or the like can be obtained.

前項(2)に記載された発明によれば、外層の組成を限定することにより、さらに外層のエッチング特性を向上でき、より高い静電容量を実現できる。   According to the invention described in the preceding item (2), by limiting the composition of the outer layer, the etching characteristics of the outer layer can be further improved, and a higher capacitance can be realized.

前項(3)に記載された発明によれば、所定範囲のY、La、Ceの少なくとも1種をさらに含有するから、さらに耐折強度を増大できる。   According to the invention described in the preceding item (3), since it further contains at least one kind of Y, La, and Ce within a predetermined range, the bending strength can be further increased.

前項(4)に記載された発明によれば、外層が所定量のPb、Sn、Bi、Sbを少なくとも一種を含有するから、さらに外層のエッチング特性を向上できる。   According to the invention described in the preceding item (4), since the outer layer contains at least one kind of Pb, Sn, Bi, and Sb in a predetermined amount, the etching characteristics of the outer layer can be further improved.

前項(5)に記載された発明によれば、芯層のScとZr,Vの濃度の和Ccore(Sc+Zr+V)とエッチングに供される外層のScとZr,Vの濃度の和Cskin(Sc+Zr+V)とが、5≦Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)≦500なる関係を有するから、トンネル型エッチピットが芯層に進行するのを確実に阻止でき、優れた耐折強度を実現できる。   According to the invention described in the preceding item (5), the sum Ccore (Sc + Zr + V) of the concentration of Sc and Zr, V of the core layer and the sum of the concentrations of Sc, Zr, V of the outer layer subjected to etching. Since Cskin (Sc + Zr + V) has a relationship of 5 ≦ Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) ≦ 500, the tunnel type etch pits progress to the core layer. It can be reliably blocked and can achieve excellent bending strength.

前項(6)に記載された発明によれば、芯層の厚さ方向における平均結晶粒界の間隔が20μm以下であるから、エッチピットの芯層への進行をさらに阻止することができる。   According to the invention described in item (6) above, since the interval between the average grain boundaries in the thickness direction of the core layer is 20 μm or less, the progress of etch pits to the core layer can be further prevented.

前項(7)に記載された発明によれば、芯層の硬さHvcoreと外層の硬さHvskinの比(Hvskin/Hvcore)が0.2以上0.8以下であるから、芯層と外層との転位密度に差を生じた状態となり、これによりエッチピットの進行阻止効果を向上できる。   According to the invention described in the preceding item (7), the ratio of the hardness Hvcore of the core layer to the hardness Hvskin of the outer layer (Hvskin / Hvcore) is 0.2 or more and 0.8 or less. Thus, the difference in dislocation density is caused, thereby improving the etch pit progression prevention effect.

前項(8)に記載された発明によれば、静電容量が高く、耐折強度に優れてコイル等に巻き取ったときに材料切れを生じることのない電解コンデンサ電極用アルミニウム材を製造することができる。   According to the invention described in the preceding item (8), an aluminum material for electrolytic capacitor electrodes, which has a high electrostatic capacity and excellent folding resistance and does not cause material breakage when wound on a coil or the like, is produced. Can do.

前項(9)に記載された発明によれば、所定範囲のY、La、Ceの少なくとも1種をさらに含有するから、耐折強度にさらに優れた電解コンデンサ電極用アルミニウム材を製造することができる。   According to the invention described in the preceding item (9), since it further contains at least one of Y, La, and Ce within a predetermined range, an aluminum material for electrolytic capacitor electrodes that is further excellent in folding strength can be manufactured. .

前項(10)に記載された発明によれば、外層が所定量のPb、Sn、Bi、Sbを少なくとも一種含有するから、エッチング特性にさらに優れた電解コンデンサ電極用アルミニウム材を製造することができる。   According to the invention described in the preceding item (10), since the outer layer contains at least one kind of Pb, Sn, Bi, and Sb, it is possible to manufacture an aluminum material for electrolytic capacitor electrodes that is further excellent in etching characteristics. .

前項(11)に記載された発明によれば、中間焼鈍と最終焼鈍の間に、圧下率8%以上30%以下の冷間圧延または中間焼鈍温度を超えない温間圧延による付加的歪付与を実施するから、芯層と外層の組織状態が制御され、前項(1)に記載された芯層と外層の組織状態をより安定的に得ることができる。   According to the invention described in the preceding item (11), between the intermediate annealing and the final annealing, additional strain is imparted by cold rolling with a rolling reduction of 8% or more and 30% or less or warm rolling that does not exceed the intermediate annealing temperature. Since it implements, the structure | tissue state of a core layer and an outer layer is controlled, and the structure | tissue state of the core layer and outer layer described in previous clause (1) can be obtained more stably.

前項(12)に記載された発明によれば、加工率5%以上15%以下の冷間での引張変形または中間焼鈍温度を超えない温度での引張変形による付加的歪付与を実施するから、前項(1)に記載された芯層と外層の組織状態をより安定的に得ることができる。   According to the invention described in the preceding item (12), additional strain is imparted by tensile deformation at a cold rate of 5% or more and 15% or less or tensile deformation at a temperature not exceeding the intermediate annealing temperature. The tissue state of the core layer and the outer layer described in the preceding item (1) can be obtained more stably.

前項(13)に記載された発明によれば、エッチングにより表面積がエッチング前の投影面積の10倍以上となされているから、高い静電容量を有するアルミニウム電解コンデンサ用陽極材となしうる。   According to the invention described in the preceding item (13), since the surface area is 10 times or more of the projected area before etching by etching, the anode material for an aluminum electrolytic capacitor having a high capacitance can be obtained.

前項(14)に記載された発明によれば、平均膜厚0.1μm以上の誘電体皮膜が形成されているから、コンデンサとして必要な耐圧を有するアルミニウム電解コンデンサ用陽極材となしうる。   According to the invention described in the preceding item (14), since the dielectric film having an average film thickness of 0.1 μm or more is formed, it can be formed as an anode material for an aluminum electrolytic capacitor having a withstand voltage required as a capacitor.

前項(15)に記載された発明によれば、少なくとも30%以上のエッチピットを、アルミニウム材の表面にあらかじめ付与された起点によって生じさせるから、エッチピットを均一に分散させて発生させることが可能となり、外層によりピットの深さを十分に確保できることと相俟って、極めて高い静電容量を有する電解コンデンサ電極用アルミニウム材の製造が可能となる。   According to the invention described in the preceding item (15), at least 30% or more of the etch pits are generated by the starting points previously provided on the surface of the aluminum material, so that the etch pits can be uniformly dispersed. Thus, combined with the fact that a sufficient pit depth can be secured by the outer layer, it becomes possible to produce an aluminum material for electrolytic capacitor electrodes having an extremely high capacitance.

前項(16)に記載された発明によれば、強度、エッチング特性共に優れた、特に低圧用の電解コンデンサ電極用アルミニウム材となし得る。   According to the invention described in the preceding item (16), it can be made an aluminum material for electrolytic capacitor electrodes, particularly for low pressure, which is excellent in both strength and etching characteristics.

前項(17)に記載された発明によれば、エッチピット形成部に、平均膜厚0.5μm以下の誘電体皮膜が形成されているから、さらに高い静電容量を実現できる。   According to the invention described in the preceding item (17), since the dielectric film having an average film thickness of 0.5 μm or less is formed in the etch pit forming portion, a higher capacitance can be realized.

前項(18)に記載された発明によれば、高静電容量のアルミニウム電解コンデンサとなし得る。   According to the invention described in item (18), an aluminum electrolytic capacitor having a high capacitance can be obtained.

この実施形態に係る電解コンデンサ電極用アルミニウム材は、芯層の結晶粒組織と内在する歪により強度や伸びを確保している。   The aluminum material for electrolytic capacitor electrodes according to this embodiment ensures strength and elongation by the crystal grain structure of the core layer and the inherent strain.

一般に、電解コンデンサ用電極材に用いられる高純度アルミニウム材は、エッチング処理後の乾燥工程や化成処理工程において、300℃〜500℃の高温の雰囲気に晒される。この際、材料が硬質箔であっても、軟化あるいは再結晶が起こる。また、軟質箔の場合、Al純度が高いため結晶粒径が大きくなり、板厚方向に占める結晶粒の数が減少して、伸びや耐折強度が低下する。   Generally, a high-purity aluminum material used for an electrode material for electrolytic capacitors is exposed to a high-temperature atmosphere of 300 ° C. to 500 ° C. in a drying process or a chemical conversion treatment process after the etching process. At this time, even if the material is a hard foil, softening or recrystallization occurs. In the case of a soft foil, since the Al purity is high, the crystal grain size increases, the number of crystal grains occupying in the plate thickness direction decreases, and the elongation and the bending strength decrease.

このときアルミニウム純度が99.3質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下なる組成を含有するアルミニウム合金は再結晶温度が高く、軟化しにくい。   At this time, the aluminum purity is 99.3% by mass or more, Si: 0.0005% by mass to 0.03% by mass, Fe: 0.0005% by mass to 0.03% by mass, Cu; 0.0005 Mass% or more and 0.015 mass% or less, Mn; 0.00003 mass% or more and 0.001 mass% or less, Mg; 0.00003 mass% or more and 0.005 mass% or less, Zn; 005% by mass or less, Ti: 0.00003% by mass or more and 0.001% by mass or less, Cr: 0.00003% by mass or more and 0.003% by mass or less, Ni: 0.00003% by mass or more and 0.003% by mass or less, Ga; 0.00003 mass% to 0.008 mass%, B; 0.00003 mass% to 0.002 mass%, V; 0.00003 mass% to 0.05 mass%, Sc; An aluminum alloy containing a composition of 0.005 mass% or more and 0.1 mass% or less, Zr; 0.005 mass% or more and 0.2 mass% or less has a high recrystallization temperature and is difficult to soften.

そこで、この組成のアルミニウム材を芯層として用い、この芯層にエッチング特性に優れた外層を積層することにより、全体としてもエッチング特性、強度、伸びに優れたアルミニウム材料とすることができる。   Therefore, by using an aluminum material having this composition as a core layer and laminating an outer layer excellent in etching characteristics on the core layer, an aluminum material excellent in etching characteristics, strength and elongation can be obtained as a whole.

ただし、芯層の厚さはアルミニウム材の総厚の5%以上40%以下とする必要がある。芯層の厚さがアルミニウム材の総厚の5%未満では、芯層の厚さが不足するためアルミニウム材の全体強度が低下する。芯層の厚さがアルミニウム材の総厚の40%を超えると、外層が薄くなりすぎてエッチピットの長さが短くなり、充分に拡面率による高静電容量が得られない。好ましい芯層の厚さは、アルミニウム材の総厚の10%以上35%以下である。   However, the thickness of the core layer needs to be 5% to 40% of the total thickness of the aluminum material. If the thickness of the core layer is less than 5% of the total thickness of the aluminum material, the overall strength of the aluminum material is lowered because the thickness of the core layer is insufficient. When the thickness of the core layer exceeds 40% of the total thickness of the aluminum material, the outer layer becomes too thin and the length of the etch pit is shortened, so that a high capacitance due to a sufficiently large area cannot be obtained. A preferable thickness of the core layer is 10% or more and 35% or less of the total thickness of the aluminum material.

前記外層は、前記芯層の両面に積層されていても良いし、いずれか片面にのみ積層されていてもよい。   The outer layer may be laminated on both sides of the core layer, or may be laminated only on one side.

前記外層には、エッチング特性の優れたアルミニウム純度99.6%以上、好ましくは99.9%以上の高純度アルミニウムを用いる。前記芯層の存在により材料強度が確保されるため、エッチングにより外層の拡面率を増大させることが可能となり、高静電容量化が可能となる。   For the outer layer, high-purity aluminum having an aluminum purity with excellent etching characteristics of 99.6% or more, preferably 99.9% or more is used. Since the material strength is ensured by the presence of the core layer, the area expansion ratio of the outer layer can be increased by etching, and a high capacitance can be achieved.

また、トンネル型エッチピットの形成により拡面処理をする場合は、アルミニウム材の拡面率を確保するために、前記外層は、表面において立方体方位の占有率の高い結晶組織であることが好ましい。外層表面の結晶組織が立方体方位から大きくずれると、エッチング時に外層表面の溶解量が増し、エッチピットの長さが短くなるため、局部的な静電容量低下をもたらすからである。   Further, when the surface expansion treatment is performed by forming tunnel type etch pits, it is preferable that the outer layer has a crystal structure having a high occupancy ratio of the cubic orientation on the surface in order to ensure the surface expansion ratio of the aluminum material. This is because if the crystal structure of the outer layer surface is greatly deviated from the cubic orientation, the amount of dissolution of the outer layer surface increases during etching and the length of the etch pit is shortened, resulting in a local decrease in capacitance.

このような局部的な過溶解現象を抑止するためには、立方体方位からのずれ角(Tolerance)が10度以下の結晶組織の面積占有率SCubeが80%以上であることが必要であり、特に90%以上である時に顕著な効果が得られる。 In order to suppress such a local overmelting phenomenon, it is necessary that the area occupancy S Cube of the crystal structure whose deviation angle from the cube orientation (Tolerance) is 10 degrees or less is 80% or more, In particular, a remarkable effect is obtained when it is 90% or more.

また、前記外層は、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を含有する組成であることが、エッチング特性をさらに向上できる点で望ましい。   The outer layer is made of Si; 0.0005 mass% or more and 0.03 mass% or less, Fe; 0.0005 mass% or more and 0.03 mass% or less, Cu; 0.0005 mass% or more and 0.015 mass% or less. , Mn: 0.00003 mass% to 0.001 mass%, Mg: 0.00003 mass% to 0.005 mass%, Zn: 0.00003 mass% to 0.005 mass%, Ti; 00003 mass% or more and 0.001 mass% or less, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% or less, Ga: 0.00003 mass% or more 0 0.005 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.003 mass% or less, Sc; 0.00003 mass% or more and 0.00 Mass% or less, Zr; 0.00003 it is composition containing mass% or more 0.003 mass% or less is desirable in that it can further improve the etching characteristics.

また、芯層中に、Y、La、Ceの少なくとも1種をZr、Scと共存させることでアルミニウムの再結晶が著しく抑制されるため、芯層の強度向上に有効である。このため、望ましくは、芯層はY;0.00003質量%以上0.03質量%以下、最適範囲は、0.003以上0.025質量%以下、La;0.00003質量%以上0.03質量%以下、最適範囲は、0.002質量%以上0.02質量%以下、Ce;0.00003質量%以上0.03質量%以下、最適範囲は、0.003質量%以上0.03質量%以下、の少なくとも1種を含有するのが良い。   In addition, since at least one of Y, La, and Ce coexists with Zr and Sc in the core layer, recrystallization of aluminum is remarkably suppressed, which is effective in improving the strength of the core layer. Therefore, desirably, the core layer is Y; 0.00003 mass% or more and 0.03 mass% or less, and the optimum range is 0.003 or more and 0.025 mass% or less, La; 0.00003 mass% or more and 0.03 mass%. % By mass or less, the optimum range is 0.002% by mass or more and 0.02% by mass or less, Ce; 0.00003% by mass or more and 0.03% by mass or less, and the optimum range is 0.003% by mass or more and 0.03% by mass or less. It is good to contain at least 1 type of% or less.

また、係る芯層は、強度を確保しても、前述したトンネル型エッチピットの成長により芯層が減肉あるいは消滅してしまうとその効果が全く得られなくなる。   Further, even if the core layer has sufficient strength, if the core layer is thinned or disappears due to the growth of the tunnel-type etch pit described above, the effect cannot be obtained at all.

我々は、鋭意研究の結果、芯層における材料表面から見た結晶方位成分のうち、ある特定の結晶方位を制御し、前述の組成と組み合わせることで、エッチピットの成長を確実に止められることを見いだした。   As a result of diligent research, we have confirmed that the growth of etch pits can be reliably stopped by controlling a specific crystal orientation among the crystal orientation components seen from the surface of the material in the core layer and combining it with the aforementioned composition. I found it.

すなわち、芯層における
Cube…立方体方位{100}<001>
Goss…Goss方位{110}<001>
Brass…Brass方位{110}<112>
C…C方位{112}<111>
S…S方位{123}<634>)
の各方位成分を有する結晶組織の芯層全体に占める面積占有率が
0.02≦[SCube+SGoss]/[SBrass+SC+SS]≦0.35
なる関係を有し、かつ、前述したように、外層が、材料表面から見た立方体方位を有する結晶組織の面積占有率SCubeが80%以上を占めていることが有効であることを見いだした。この場合、各方位成分からのずれ角(Tolerance)はそれぞれ10度以内で許容される。
That is, S Cube in the core layer ... Cube orientation {100} <001>
S Goss ... Goss direction {110} <001>
S Brass … Brass orientation {110} <112>
S C ... C orientation {112} <111>
S S ... S direction {123} <634>)
The area occupying ratio of the crystal structure having each orientation component in the entire core layer is 0.02 ≦ [S Cube + S Goss ] / [S Brass + S C + S S ] ≦ 0.35
As described above, it has been found that it is effective that the outer layer occupies 80% or more of the area occupation ratio S Cube of the crystal structure having the cubic orientation as viewed from the material surface. . In this case, a deviation angle (Tolerance) from each azimuth component is allowed within 10 degrees.

[SCube+SGoss]/[SBrass+SC+SS]が0.35を越えるとトンネル型エッチピットの成長を有効に停止させることができない。また、0.02未満では、エッチング時に外層と芯層との界面において電気化学的な溶解によるエッチング層の剥離が生じやすくなる。芯層の[SCube+SGoss]/[SBrass+SC+SS]の最適値は、0.05以上0.25以下である。 If [S Cube + S Goss ] / [S Brass + S C + S S ] exceeds 0.35, the growth of tunnel-type etch pits cannot be effectively stopped. If it is less than 0.02, peeling of the etching layer due to electrochemical dissolution tends to occur at the interface between the outer layer and the core layer during etching. The optimum value of [S Cube + S Goss ] / [S Brass + S C + S S ] of the core layer is 0.05 to 0.25.

また、トンネル型エッチングを施す場合に外層の立方体方位の面積占有率SCubeが80%未満になると表面溶解が生じやすくなり、トンネル型エッチピットの長さが短くなるため、拡面率が低下するだけでなく、芯層との結晶方位学的な関係が変化するため、トンネル型エッチピットの成長を有効に停止させることができなくなる。外層における立方体方位を有する結晶組織の面積占有率SCubeの最適値は、90%以上である。 Further, when the area occupancy S Cube in the cube orientation of the outer layer is less than 80% when tunnel type etching is performed, surface dissolution is likely to occur, and the length of the tunnel type etch pit is shortened, so that the surface expansion ratio is reduced. In addition, since the crystal orientation relationship with the core layer changes, it becomes impossible to effectively stop the growth of the tunnel type etch pits. The optimum value of the area occupancy S Cube of the crystal structure having a cubic orientation in the outer layer is 90% or more.

また、外層には、初期エッチピット発生を均一にし、表面溶解の不均一領域をなくすとともに、エッチピット長さを均一にする目的で、Pb;0.00003質量%以上0.0003質量%以下、Sn;0.0003質量%以上0.003質量%以下、Bi;0.00001質量%以上0.00015質量%以下、Sb;0.0002質量%以上0.002質量%以下の1種以上を含有することが望ましい。最適な含有範囲は、Pb;0.00005質量%以上0.00015質量%以下、Sn;0.0005質量%以上0.0020質量%以下、Bi;0.00002質量%以上0.00005質量%以下、Sb;0.0005質量%以上0.00015質量%以下である。   Further, in the outer layer, Pb: 0.00003 mass% or more and 0.0003 mass% or less, in order to make the initial etch pit generation uniform, eliminate the surface dissolution non-uniform region, and make the etch pit length uniform. Sn: 0.0003% by mass or more and 0.003% by mass or less, Bi: 0.00001% by mass or more and 0.00015% by mass or less, Sb: One or more types of 0.0002% by mass or more and 0.002% by mass or less It is desirable to do. Optimum content ranges are Pb; 0.00005 mass% to 0.00015 mass%, Sn: 0.0005 mass% to 0.0020 mass%, Bi; 0.00002 mass% to 0.00005 mass% , Sb: 0.0005 mass% or more and 0.00015 mass% or less.

なお、外層に含有されるPb、Sn、Bi、Sb等は、製造工程中における熱履歴により芯層に拡散する可能性があるが、トンネル型エッチピットの進行抑止効果を妨げない範囲で、これらの元素を芯層に含有することは許容される。   In addition, Pb, Sn, Bi, Sb, etc. contained in the outer layer may diffuse into the core layer due to the thermal history during the manufacturing process. It is permissible to contain these elements in the core layer.

また、芯層へのトンネル型エッチピットの進行を確実に停止させ、かつ芯層の強度を確保する方法として、芯層と外層のSc、Zr、Vの濃度比をコントロールすることが有効であり、望ましい。この場合、芯層のSc、Zr、Vの濃度の和をCcore(Sc+Zr+V)とし、外層のSc、Zr、Vの濃度の和をCskin(Sc+Zr+V)とした場合、
5≦Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)≦500
なる関係を有する場合にこの効果が期待できる。Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)が5未満では、前記効果に乏しく、500を越えると芯層と外層の界面での化成特性が劣化する恐れがある。最適範囲は、50≦Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)≦380である。
In addition, it is effective to control the concentration ratio of Sc, Zr, and V between the core layer and the outer layer as a method for reliably stopping the progress of the tunnel-type etch pit to the core layer and ensuring the strength of the core layer. ,desirable. In this case, when the sum of the concentrations of Sc, Zr, and V in the core layer is Ccore (Sc + Zr + V) and the sum of the concentrations of Sc, Zr, and V in the outer layer is Cskin (Sc + Zr + V),
5 ≦ Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) ≦ 500
This effect can be expected when the following relationship is established. If Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) is less than 5, the above effect is poor, and if it exceeds 500, the chemical conversion characteristics at the interface between the core layer and the outer layer may be deteriorated. The optimum range is 50 ≦ Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) ≦ 380.

更に、上記に加え、芯層の厚さ方向における平均結晶粒界の間隔を小さくし、厚さ方向の結晶粒界を多くすることでトンネル型エッチピットの進行を停止させる効果が向上する。この場合、厚さ方向の結晶粒径(粒界面間隔)は20μm以下であることが望ましく、10μm以下が最適である。   Further, in addition to the above, the effect of stopping the progress of tunnel-type etch pits can be improved by reducing the average grain boundary interval in the thickness direction of the core layer and increasing the crystal grain boundary in the thickness direction. In this case, the crystal grain size (grain interface distance) in the thickness direction is desirably 20 μm or less, and optimally 10 μm or less.

また、芯層と外層の転位密度に差を設けることで、エッチピットの進行を停止させる効果が更に期待できる。この場合、芯層の硬さHvcoreと外層の硬さHvskinの比(Hvskin/Hvcore)が0.2以上0.8以下とすることが望ましい。Hvskin/Hvcoreが0.8を越えると芯層と外層の硬さの差が小さくなりすぎ、エッチピットの進行を十分に抑止できなくなる。また、0.2未満では芯層の延性が低下し、耐折強度はかえって低下する。Hvskin/Hvcoreの最適値は0.4以上0.6以下である。   Further, by providing a difference in the dislocation density between the core layer and the outer layer, the effect of stopping the progress of the etch pit can be further expected. In this case, it is desirable that the ratio (Hvskin / Hvcore) of the hardness Hvcore of the core layer and the hardness Hvskin of the outer layer be 0.2 or more and 0.8 or less. If Hvskin / Hvcore exceeds 0.8, the difference in hardness between the core layer and the outer layer becomes too small, and the progress of etch pits cannot be sufficiently suppressed. On the other hand, if it is less than 0.2, the ductility of the core layer is lowered, and the bending strength is lowered. The optimum value of Hvskin / Hvcore is 0.4 or more and 0.6 or less.

上述した組織の多層構造材を得る方法として、常法にて溶解鋳造〜面削し、熱間圧延された芯層対応組成を有するアルミニウム材を芯材とし、その両面に常法にて作製した外層対応組成を有するアルミニウム鋳塊を面削して重ね合わせた三層の材料を熱間圧延し、引き続き冷間圧延する過程で少なくとも1回中間焼鈍を施し、さらに付加的圧延と最終焼鈍を実施する工程を例示できる。この場合、中間焼鈍は200℃以上300℃以下、30分以上6時間以下(2回以上の中間焼鈍の場合はそれぞれが6時間以下)、とし、最終焼鈍を430℃以上500℃未満、30分以上6時間以下にて施すことが望ましい。更に望ましいのは、中間焼鈍を220℃以上260℃以下、1時間以上4時間以下とし、最終焼鈍を450℃以上480℃以下、1時間以上4時間以下とした場合である。   As a method for obtaining a multilayer structure material having the above-described structure, a conventional method was used in which an aluminum material having a composition corresponding to a core layer that was melt-cast and chamfered and hot-rolled was used as a core material. In the process of hot rolling, the three layers of the material that are made by chamfering the aluminum ingot having the composition corresponding to the outer layer are hot rolled, followed by intermediate annealing at least once in the course of cold rolling, followed by additional rolling and final annealing. The process of performing can be illustrated. In this case, the intermediate annealing is 200 ° C. or more and 300 ° C. or less, 30 minutes or more and 6 hours or less (in the case of two or more intermediate annealings, each is 6 hours or less), and the final annealing is 430 ° C. or more and less than 500 ° C., 30 minutes. It is desirable to apply in 6 hours or less. More desirably, the intermediate annealing is performed at 220 ° C. or higher and 260 ° C. or lower for 1 hour or longer and 4 hours or shorter, and the final annealing is performed at 450 ° C. or higher and 480 ° C. or lower for 1 hour or longer and 4 hours or shorter.

このような製造工程を経ることにより、芯層と外層の結晶方位を前述した範囲に制御しうるとともに、芯層のSc、Zr、Vの外層への拡散をできるだけ抑止し、芯層としての強度を十分に確保するとともに、トンネル型エッチピットの芯層への成長ないし進行を有効に停止しうる。   Through such a manufacturing process, the crystal orientations of the core layer and the outer layer can be controlled within the above-described range, and the diffusion of Sc, Zr, and V into the outer layer is suppressed as much as possible, and the strength as the core layer is assured. Can be sufficiently secured, and the growth or progress of the tunnel-type etch pit to the core layer can be effectively stopped.

また、前述した最終焼鈍後の芯層と外層の結晶組織をより確実に制御する観点から、中間焼鈍と最終焼鈍の間に付加的歪付与を行っても良い。付加的歪付与は、圧下率8%以上30%以下の冷間圧延または中間焼鈍温度を超えない温間圧延にて実施することが推奨される。圧下率8%未満では付加的歪付与の効果がなく、30%を超える場合は、前記組織が得られない恐れがある。圧下率の最適値は12%以上25%以下である。   Further, from the viewpoint of more reliably controlling the crystal structures of the core layer and the outer layer after the final annealing described above, additional strain may be imparted between the intermediate annealing and the final annealing. It is recommended that the additional strain be applied by cold rolling with a rolling reduction of 8% or more and 30% or less or warm rolling that does not exceed the intermediate annealing temperature. If the rolling reduction is less than 8%, there is no effect of imparting additional strain, and if it exceeds 30%, the structure may not be obtained. The optimum value of the rolling reduction is 12% or more and 25% or less.

また、この付加的な加工歪付与を、圧延に代えて引張変形にて行う場合は、加工率5%以上15%以下の冷間または中間焼鈍温度を超えない温度での引張変形にて実施することが望ましい。加工率5%未満では付加的歪付与の効果がなく、15%を超える場合は、前記組織が得られない恐れがある。加工率の最適値は6%以上10%以下である。   In addition, when this additional work strain is imparted by tensile deformation instead of rolling, it is performed by tensile deformation at a temperature not exceeding the cold or intermediate annealing temperature of a working rate of 5% to 15%. It is desirable. If the processing rate is less than 5%, there is no effect of imparting additional strain, and if it exceeds 15%, the structure may not be obtained. The optimum value of the processing rate is 6% or more and 10% or less.

本実施形態に係るアルミニウム材は、トンネル型エッチングを施される中高圧用途、スポンジエッチングされる低圧用途のいずれに適用した場合においても高強度・高耐折強度の特性は発揮されるが、450V以上の化成電圧にて化成される高圧用において特にその効果が大きい。この場合、トンネル型エッチングのピット分布を制御すると、高化成電圧で形成される平均厚さ0.1μm以上の厚い化成皮膜の生成過程で生じる無効エッチピットを減ずることが可能となる。   The aluminum material according to the present embodiment exhibits characteristics of high strength and high bending strength when applied to any of a medium-high pressure application subjected to tunnel-type etching and a low-pressure application subjected to sponge etching. The effect is particularly great in the case of a high voltage formed by the above formation voltage. In this case, by controlling the pit distribution of the tunnel type etching, it becomes possible to reduce invalid etch pits generated in the process of forming a thick conversion film having an average thickness of 0.1 μm or more formed at a high conversion voltage.

このようなエッチピット分布の制御は、アルミニウム材の表面にあらかじめエッチピットの起点(エッチピット核)を付与しておくことにより行いうる。エッチピット核を付与する方法としては、エッチピット核となる領域以外を樹脂等の印刷によりマスクする方法、エッチピット核となる金属あるいは金属イオン、金属化合物を網点状に印刷する方法、付着させた金属元素を熱処理により拡散させる方法等が例示できる。   Such control of the etch pit distribution can be performed by providing an etch pit starting point (etch pit nucleus) in advance on the surface of the aluminum material. Etch pit nuclei can be applied by masking areas other than etch pit nuclei by printing resin, etc., by printing metal or metal ions or metal compounds as etch pit nuclei in a dot pattern, or by attaching them. For example, a method of diffusing the metal element by heat treatment can be exemplified.

例えば、金属化合物等をアルミニウム材表面に印刷する方法は、作業が簡単であることから望ましい。前記印刷法において、インクは金属化合物を均一に含有させるとともにアルミニウム材に付着させることができれば良く、インクのベースとなる溶剤の水性、油性の別、粘性付与剤等の種類、その他添加剤の有無を問わず使用できる。また、前記金属化合物はインクに溶解した状態であっても、溶解することなく分散した状態であっても良い。印刷方法も、インクジェット印刷、電子製版、オフセット印刷、グラビア印刷、活版印刷、孔版印刷等の方法が適用可能であり、インクの付着量、印刷パターン等に応じて適宜選定する。   For example, a method of printing a metal compound or the like on the surface of an aluminum material is desirable because the operation is simple. In the printing method, the ink only needs to be able to uniformly contain the metal compound and be attached to the aluminum material. The ink is based on a solvent based on water, different in oiliness, kind of viscosity imparting agent, etc. Can be used regardless of The metal compound may be dissolved in the ink or may be dispersed without being dissolved. As the printing method, methods such as ink jet printing, electronic plate making, offset printing, gravure printing, letterpress printing, stencil printing, and the like can be applied, and the printing method is appropriately selected according to the ink adhesion amount, the printing pattern, and the like.

なお、従来では、このような方法によりエッチピット核を均一に付与したとしても、表面の状態によりそれぞれのエッチピットの長さが不均一になり、芯層がかえって不均一になる傾向があった。本実施形態の材料によれば、トンネル型エッチピットの成長は芯層で強制的に停止させられるため、表面に付与するエッチピットの起点制御は、起点分布にのみ注力すれば良く、エッチピットの三次元的な形態(エッチピットの間隔、径、長さ等)の制御効率が著しく高められる。   Conventionally, even if etch pit nuclei are uniformly provided by such a method, the length of each etch pit becomes non-uniform depending on the surface state, and the core layer tends to become non-uniform. . According to the material of this embodiment, since the growth of the tunnel-type etch pit is forcibly stopped at the core layer, the control of the start point of the etch pit applied to the surface only needs to be focused on the start point distribution. The control efficiency of three-dimensional forms (etch pit interval, diameter, length, etc.) is remarkably enhanced.

即ち、本実施形態のアルミニウム材に対して、エッチピットの起点分布を制御することにより、エッチピットが均一な間隔で分布し、かつピット径も大きく長さも長く揃った状態となり、大きな拡面率による高静電容量が得られることになる。   That is, for the aluminum material of this embodiment, by controlling the distribution of the starting points of the etch pits, the etch pits are distributed at a uniform interval, and the pit diameter is large and the length is uniform. Therefore, a high electrostatic capacity can be obtained.

このような効果を発揮するためには、全てのエッチピットが予め付与された起点に形成される必要はなく、少なくとも30%以上のエッチピットが予め付与された起点に形成されていればよい。また、静電容量の増大を図るためには、エッチング後の表面積はエッチング前の投影面積の10倍以上となされていることが好ましい。   In order to exert such an effect, it is not necessary that all the etch pits are formed at the starting point provided in advance, and it is sufficient that at least 30% or more of the etch pits are formed at the starting point provided in advance. Further, in order to increase the capacitance, it is preferable that the surface area after etching is at least 10 times the projected area before etching.

なお、スポンジエッチングされる低圧用途の場合には、芯層、外層の組織に関する要件は必ずしも必要ではない。また、静電容量の増大を図るためには、エッチング後の表面積はエッチング前の投影面積の50倍以上となされている必要があり、エッチピット形成部に被覆される誘電体皮膜の厚さは平均で0.5μm以下とするのがよい。0.5μmを超える平均厚さでは、化成皮膜により微細なスポンジエッチング層が埋められ、電解質の含侵の妨げとなったり、化成皮膜の成長の際に消費されるアルミニウムの量が多すぎてスポンジエッチング層が分断され、無効ピット(Deth Pit)となってしまう恐れがある。   In the case of a low-pressure application in which sponge etching is performed, requirements regarding the structure of the core layer and the outer layer are not necessarily required. Further, in order to increase the capacitance, the surface area after etching needs to be 50 times or more the projected area before etching, and the thickness of the dielectric film coated on the etch pit forming portion is The average value is preferably 0.5 μm or less. If the average thickness exceeds 0.5 μm, the fine sponge etching layer is buried by the chemical conversion film, which impedes the impregnation of the electrolyte, and the amount of aluminum consumed during the growth of the chemical conversion film is too large. There is a possibility that the etching layer is divided and becomes invalid pits (Deth Pits).

次に、この発明の具体的実施例について説明する。
[実施例1〜31(表4、表5)][比較例2〜4(表5)]
半連続鋳造法にて作製した表1〜3に示す各種組成(残部はAl)からなる厚さ200mm×幅750mm×長さ1200mmのアルミニウム鋳塊を590℃×20時間の条件にて均質化処理後、片面12.5mmの面削を施し、厚さ175mmとした。
Next, specific examples of the present invention will be described.
[Examples 1 to 31 (Tables 4 and 5)] [Comparative Examples 2 to 4 (Table 5)]
Homogenization treatment of aluminum ingots having a thickness of 200 mm, a width of 750 mm, and a length of 1200 mm made of various compositions shown in Tables 1 to 3 shown in Tables 1 to 3 produced by a semi-continuous casting method under conditions of 590 ° C. × 20 hours Thereafter, the surface was cut 12.5 mm on one side to a thickness of 175 mm.

次いで、芯層に用いるアルミニウム材については、開始温度550℃にて熱間圧延を実施し、厚さ50mmの熱間圧延板を作製し、長さが1250mmになるように切断した。   Next, the aluminum material used for the core layer was hot-rolled at a start temperature of 550 ° C. to produce a hot-rolled plate having a thickness of 50 mm, and was cut so as to have a length of 1250 mm.

さらに、表4及び表5の「組成/構成」の項目に示す組合せで、芯層用アルミニウム材の両面に外層用アルミニウム材を重ね合わせたのち(総厚で400mm)、開始温度550℃にて熱間圧延を開始し、厚さ10mmの熱間圧延板を得た。引き続き冷間圧延を施したのち、表4及び5に示す条件にて中間焼鈍、付加的圧延、最終焼鈍を実施して、厚さ0.12mmの電解コンデンサ電極用アルミニウム箔とした。   Further, in the combinations shown in the items of “Composition / Configuration” in Table 4 and Table 5, the aluminum material for the outer layer is superposed on both surfaces of the aluminum material for the core layer (total thickness is 400 mm), and the starting temperature is 550 ° C. Hot rolling was started to obtain a hot rolled sheet having a thickness of 10 mm. Subsequently, cold rolling was performed, and then intermediate annealing, additional rolling, and final annealing were performed under the conditions shown in Tables 4 and 5 to obtain an aluminum foil for electrolytic capacitor electrodes having a thickness of 0.12 mm.

なお、得られたアルミニウム箔において、芯層の厚さは0.015mmであり、総厚の12.5%であった。
[実施例32〜35(表5)]
半連続鋳造法にて作製した表1に示す丸数字3の組成からなる厚さ160mm×幅750mm×長さ1200mmのアルミニウム鋳塊を、590℃×20時間の条件にて均質化処理後、片面10.0mmの面削を施し、厚さ140mmとした。
In the obtained aluminum foil, the thickness of the core layer was 0.015 mm, which was 12.5% of the total thickness.
[Examples 32-35 (Table 5)]
An aluminum ingot having a composition of the circled number 3 shown in Table 1 produced by the semi-continuous casting method and having a thickness of 160 mm × width of 750 mm × length of 1200 mm is homogenized under conditions of 590 ° C. × 20 hours, one side 10.0 mm chamfering was performed to a thickness of 140 mm.

一方、芯層に用いる表1の丸数字7の組成からなるアルミニウム材については、半連続鋳造法にて作製した厚さ160mm×幅750mm×長さ1200mmのアルミニウム鋳塊を590℃×20時間の条件にて均質化処理後、片面20.0mmの面削を施し、厚さ120mmとした。   On the other hand, about the aluminum material which consists of the composition of the round number 7 of Table 1 used for a core layer, the aluminum ingot of thickness 160mm x width 750mm x length 1200mm produced by the semi-continuous casting method is 590 degreeC x 20 hours. After homogenization treatment under the conditions, chamfering of 20.0 mm on one side was performed to a thickness of 120 mm.

そして、表5の「組成/構成」の項目に示す組合せで、芯層用アルミニウム材の両面に外層用アルミニウム鋳塊を重ね合わせたのち(総厚で400mm)、開始温度550℃にて熱間圧延を開始し、厚さ10mmの熱間圧延板を得た。引き続き冷間圧延を施したのち、表5に示す条件にて中間焼鈍、引張歪付与、最終焼鈍を実施して、厚さ0.15mmの電解コンデンサ電極用アルミニウム箔とした。   And after combining the aluminum ingot for outer layer on both surfaces of the aluminum material for core layer with the combination shown in the item of “Composition / Configuration” in Table 5 (400 mm in total thickness), hot at a start temperature of 550 ° C. Rolling was started and a hot-rolled sheet having a thickness of 10 mm was obtained. Subsequently, after cold rolling, intermediate annealing, imparting tensile strain, and final annealing were performed under the conditions shown in Table 5 to obtain an aluminum foil for electrolytic capacitor electrodes having a thickness of 0.15 mm.

なお、得られたアルミニウム箔において、芯層の厚さは0.045mmであり、総厚の30%であった。
[比較例1(表5)]
半連続鋳造法にて作製した表1の丸数字1に示す組成からなる厚さ420mm×幅750mm×長さ1200mmのアルミニウム鋳塊を、590℃×20時間の条件にて均質化処理した後、片面10.0mmの面削を施し、厚さ400mmとした。
In the obtained aluminum foil, the thickness of the core layer was 0.045 mm, which was 30% of the total thickness.
[Comparative Example 1 (Table 5)]
After homogenizing the aluminum ingot having a thickness of 420 mm, a width of 750 mm, and a length of 1200 mm made of the composition shown in the circled number 1 of Table 1 produced by a semi-continuous casting method under conditions of 590 ° C. × 20 hours, A single side of 10.0 mm was chamfered to a thickness of 400 mm.

次いで、開始温度550℃にて熱間圧延を開始し、厚さ10mmの熱間圧延板を得た。   Subsequently, hot rolling was started at a starting temperature of 550 ° C., and a hot rolled plate having a thickness of 10 mm was obtained.

引き続き冷間圧延を施したのち、表5に示す条件にて最終焼鈍を実施して、厚さ0.12mmの電解コンデンサ電極用アルミニウム箔とした。
[実施例36(表6)]
半連続鋳造法にて作製した表1に示す丸数字1の組成からなる厚さ160mm×幅750mm×長さ1200mmのアルミニウム鋳塊を590℃×20時間の条件にて均質化処理後、片面10.0mmの面削を施し、厚さ140mmとした。
Subsequently, after cold rolling, final annealing was performed under the conditions shown in Table 5 to obtain an aluminum foil for electrolytic capacitor electrodes having a thickness of 0.12 mm.
[Example 36 (Table 6)]
After homogenizing an aluminum ingot having a thickness of 160 mm, a width of 750 mm, and a length of 1200 mm having the composition of the round numeral 1 shown in Table 1 prepared by a semi-continuous casting method at 590 ° C. for 20 hours, one side 10 0.0 mm chamfering was performed to a thickness of 140 mm.

一方、芯層に用いる表1の丸数字7の組成からなるアルミニウム材については、半連続鋳造法にて作製した厚さ160mm×幅750mm×長さ1200mmのアルミニウム鋳塊を590℃×20時間の条件にて均質化処理後、片面20.0mmの面削を施し、厚さ120mmとした。   On the other hand, about the aluminum material which consists of the composition of the round number 7 of Table 1 used for a core layer, the aluminum ingot of thickness 160mm x width 750mm x length 1200mm produced by the semi-continuous casting method is 590 degreeC x 20 hours. After homogenization treatment under the conditions, chamfering of 20.0 mm on one side was performed to a thickness of 120 mm.

そして、表6の「組成/構成」の項目に示す組合せで、芯層用アルミニウム材の両面に外層用アルミニウム鋳塊を重ね合わせたのち(総厚で400mm)、開始温度550℃にて熱間圧延を開始し、厚さ10mmの熱間圧延板を得た。引き続き冷間圧延を施したのち、表6に示す条件にて最終焼鈍を実施して、厚さ0.15mmの電解コンデンサ電極用アルミニウム箔とした。   And after superposing the aluminum ingot for outer layer on both surfaces of the aluminum material for core layer with the combination shown in the item of “composition / configuration” in Table 6 (total thickness is 400 mm), hot at a start temperature of 550 ° C. Rolling was started and a hot-rolled sheet having a thickness of 10 mm was obtained. Subsequently, after cold rolling, final annealing was performed under the conditions shown in Table 6 to obtain an aluminum foil for electrolytic capacitor electrodes having a thickness of 0.15 mm.

なお、得られたアルミニウム箔において、芯層の厚さは0.045mmであり、総厚の30%であった。
[比較例5(表6)]
半連続鋳造法にて作製した表1の丸数字1に示す組成からなる厚さ420mm×幅750mm×長さ1200mmのアルミニウム鋳塊を、590℃×20時間の条件にて均質化処理した後、片面10.0mmの面削を施し、厚さ400mmとした。
In the obtained aluminum foil, the thickness of the core layer was 0.045 mm, which was 30% of the total thickness.
[Comparative Example 5 (Table 6)]
After homogenizing the aluminum ingot having a thickness of 420 mm, a width of 750 mm, and a length of 1200 mm made of the composition shown in the circled number 1 of Table 1 produced by a semi-continuous casting method under conditions of 590 ° C. × 20 hours, A single side of 10.0 mm was chamfered to a thickness of 400 mm.

次いで、開始温度550℃にて熱間圧延を開始し、厚さ10mmの熱間圧延板を得た。   Subsequently, hot rolling was started at a starting temperature of 550 ° C., and a hot rolled plate having a thickness of 10 mm was obtained.

引き続き冷間圧延を施したのち、表6に示す条件にて最終焼鈍を実施して、厚さ0.15mmの電解コンデンサ電極用アルミニウム箔とした。

上記で得られた実施例1〜35、比較例1〜4の各アルミニウム箔について、下記の方法により、芯層、外層の各結晶方位占有率Score =[SCube+SGoss]/[SBrass+SC+SS]、Sskin =SCube、芯層と外層のSc、Zr、Vの濃度比、芯層の結晶粒界間隔、芯層と外層の硬さ比、静電容量(直流エッチング評価)、耐折強度、漏れ電流を調べた。
Subsequently, after cold rolling, final annealing was performed under the conditions shown in Table 6 to obtain an aluminum foil for electrolytic capacitor electrodes having a thickness of 0.15 mm.

About each aluminum foil of Examples 1-35 obtained above and Comparative Examples 1-4, each crystal orientation occupation rate Score = [S Cube + S Goss ] / [S Brass + S of a core layer and an outer layer by the following method. C + S S ], Sskin = S Cube , concentration ratio of Sc, Zr, V between core layer and outer layer, crystal grain boundary distance between core layer, hardness ratio between core layer and outer layer, electrostatic capacity (DC etching evaluation), The bending strength and leakage current were examined.

また、実施例36、比較例5については、静電容量(交流エッチング評価)、耐折強度、漏れ電流を調べた。
<結晶方位計測条件>
芯層、外層の各結晶方位占有率Score =[SCube+SGoss]/[SBrass+SC+SS]、Sskin =SCubeの計測は、ショットキー電界放出型走査電子顕微鏡とEBSP(Electron Backscattering Pattern)法を組み合わせて実施した。
Moreover, about Example 36 and the comparative example 5, the electrostatic capacitance (AC etching evaluation), bending strength, and leakage current were investigated.
<Crystal orientation measurement conditions>
Each crystal orientation occupancy ratio of the core layer and the outer layer Score = [S Cube + S Goss ] / [S Brass + S C + S S ], S skin = S Cube is measured by a Schottky field emission scanning electron microscope and an EBSP (Electron Backscattering Pattern). ) The methods were combined.

まず、図1に示すように、サンプルを圧延面(ND方向)と圧延方向(RD方向)に共に垂直な縦断面(TD方向)が試料表面となるように切り出し、この表面を研磨して観察用試料1とした。図1において、2は芯層、3は外層である。   First, as shown in FIG. 1, a sample is cut out so that a longitudinal section (TD direction) perpendicular to the rolling surface (ND direction) and the rolling direction (RD direction) is the sample surface, and this surface is polished and observed. Sample 1 was obtained. In FIG. 1, 2 is a core layer and 3 is an outer layer.

この観察用試料1について、測定範囲100μm×150μm、測定間隔1.0μmにてEBSP解析を実施した。解析データは、圧延面(ND方向)と圧延方向(RD方向)から見た方位成分にベクトル変換し、SCube、SGoss、SBrass、SC、SSの各々の方位成分に対して、方位差10度以内はその方位成分に含まれるものとして、測定面積に対する各方位成分の占有率を計算した。 For this observation sample 1, EBSP analysis was performed with a measurement range of 100 μm × 150 μm and a measurement interval of 1.0 μm. The analysis data is vector-converted into orientation components viewed from the rolling surface (ND direction) and rolling direction (RD direction), and for each orientation component of S Cube , S Goss , S Brass , S C , S S , The occupancy of each azimuth component with respect to the measurement area was calculated assuming that the azimuth difference is within 10 degrees and included in the azimuth component.

なお、芯層の結晶方位占有率Score =[SCube+SGoss]/[SBrass+SC+SS]と、外層の結晶方位占有率Sskin =SCubeはそれぞれ別々に計算した。
<芯層/外層の元素濃度比評価方法>
芯層については、液温が50℃の5%NaOHを用い、所定の時間浸漬することで芯層のみとしたサンプルを用い、ICP発光分光分析により、Sc、Zr、Vの各濃度を測定し、それぞれの濃度の和Ccore(Sc+Zr+V)を求めた。
The core layer crystal orientation occupation ratio Score = [S Cube + S Goss ] / [S Brass + S C + S S ] and the outer layer crystal orientation occupation ratio S skin = S Cube were calculated separately.
<Evaluation method of element concentration ratio of core layer / outer layer>
For the core layer, the concentration of Sc, Zr, and V was measured by ICP emission spectroscopic analysis using 5% NaOH with a liquid temperature of 50 ° C. and using a sample made only by the core layer by dipping for a predetermined time. The sum Ccore (Sc + Zr + V) of the respective concentrations was determined.

外層については、片面をマニキュアにてマスクした上で液温が50℃の5%NaOHを用い、所定の時間浸漬することで外層のみとしたサンプルを用い、芯層と同様にしてSc、Zr、Vの濃度の和Cskin(Sc+Zr+V)を求め、Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)を計算により求めた。なお、各層については、断面観察により各層厚さの約80%の領域となるように浸漬時間を決定し、ICP発光分光分析に供した。
<芯層の結晶粒界間隔>
結晶方位占有率測定用サンプルと同様の方法で、TD方向が試料表面となるように切り出し、研磨した観察用試料について、バーカー氏液(3±1%ホウフッ化水素酸水溶液)を用い、液温27〜30℃、印加電圧30Vで45秒間陽極酸化処理を施し、偏光顕微鏡により組織観察を実施した。結晶粒界間隔は、圧延面に直角な任意の直線を引き、芯層の任意の結晶粒に対し結晶粒界と交わる交点間の距離を測定して求めた。サンプリング数は20点としてその平均値を結晶粒界間隔とした。
<芯層/外層の硬さ比評価方法>
結晶方位占有率測定用サンプルと同様の方法で、TD方向が試料表面となるように切り出し、研磨した観察用試料について、マイクロビッカース硬度計を用いてJIS Z 2244に準じた方法で、芯層の硬さHvcoreと外層の硬さHvskinを別々に計測し、その比Hvskin/Hvcoreを計算により求めた。
<直流エッチング評価方法、漏れ電流>
1.0mol/LのHClと3.5mol/LのH2S04の混合液を用い、液温80℃で30secの浸漬処理を施した後、電流密度0.2A/cm2で120secの一次電解処理を施した。更に同組成の液にて、90℃で900secのケミカルエッチングを施し、水洗、乾燥してエッチングを完了した。次いで、10%硼酸浴500Vで化成処理を行い、続いて、室温にて8%ホウ酸アンモニウム溶液中でLCRメータを用いて周波数120Hzにて静電容量を測定した。
For the outer layer, one side was masked with nail polish, 5% NaOH having a liquid temperature of 50 ° C. was used, and a sample made only of the outer layer by immersion for a predetermined time was used. Similarly to the core layer, Sc, Zr, The sum Cskin (Sc + Zr + V) of the concentration of V was determined, and Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) was determined by calculation. In addition, about each layer, immersion time was determined so that it might become the area | region of about 80% of each layer thickness by cross-sectional observation, and it used for ICP emission-spectral-analysis.
<Grain boundary spacing of core layer>
For the observation sample that was cut and polished so that the TD direction was the sample surface in the same manner as the crystal orientation occupancy measurement sample, Barker's solution (3 ± 1% borohydrofluoric acid aqueous solution) was used, and the liquid temperature Anodization was performed for 45 seconds at 27 to 30 ° C. and an applied voltage of 30 V, and the structure was observed with a polarizing microscope. The crystal grain boundary interval was obtained by drawing an arbitrary straight line perpendicular to the rolling surface and measuring the distance between the intersections intersecting the crystal grain boundary with respect to the arbitrary crystal grains of the core layer. The sampling number was 20 points, and the average value was used as the grain boundary interval.
<Method for evaluating hardness ratio of core layer / outer layer>
In the same manner as the crystal orientation occupancy measurement sample, the observation layer was cut and polished so that the TD direction was the surface of the sample, and the sample for observation was polished using a micro Vickers hardness meter according to JIS Z 2244. The hardness Hvcore and the hardness Hvskin of the outer layer were measured separately, and the ratio Hvskin / Hvcore was calculated.
<DC etching evaluation method, leakage current>
Using a mixed solution of 1.0 mol / L HCl and 3.5 mol / L H 2 SO 4 , after 30 seconds of immersion at a liquid temperature of 80 ° C., primary electrolysis for 120 seconds at a current density of 0.2 A / cm 2 Treated. Furthermore, chemical etching was performed at 90 ° C. for 900 seconds with the liquid having the same composition, washed with water and dried to complete the etching. Next, chemical conversion treatment was performed in a 10% boric acid bath 500 V, and subsequently, the capacitance was measured at a frequency of 120 Hz using an LCR meter in an 8% ammonium borate solution at room temperature.

なお、漏れ電流については、化成処理終了後の電流値を測定して、漏れ電流とした。   In addition, about the leakage current, the electric current value after completion | finish of a chemical conversion treatment was measured, and it was set as the leakage current.

エッチングにより、実施例1〜35の各アルミニウム箔の表面積は、エッチング前の投影面積の25〜35倍となっていた。また、表面に形成された誘電体皮膜の平均膜厚は、0.6〜0.9μmであった。
<交流エッチング評価>
エッチング液として1.0mol/LのHClと0.02mol/LのH2S04の混合液を用い、液温55℃、正弦波交流30Hz、電流密度AC0.3A/cm2(片面)、時間300secの条件でエッチング処理を行った。
By etching, the surface areas of the aluminum foils of Examples 1 to 35 were 25 to 35 times the projected area before etching. The average film thickness of the dielectric film formed on the surface was 0.6 to 0.9 μm.
<AC etching evaluation>
An etching solution is a mixture of 1.0 mol / L HCl and 0.02 mol / L H 2 SO 4 , liquid temperature 55 ° C., sine wave AC 30 Hz, current density AC 0.3 A / cm 2 (single side), time 300 sec. Etching was performed under the conditions of

さらに、リン酸アンモニウム水溶液(1.5g/L)中にて、電流密度5mA/cm2、20V×10minの条件で化成処理し、500℃×5min大気中にて加熱処理を実施し、その後、同じ条件で5minの再化成を施して誘電体酸化皮膜を形成した。   Furthermore, in an aqueous ammonium phosphate solution (1.5 g / L), a chemical conversion treatment was performed under the conditions of a current density of 5 mA / cm 2 and 20 V × 10 min, and a heat treatment was performed in the atmosphere at 500 ° C. × 5 min. Under conditions, re-formation was performed for 5 minutes to form a dielectric oxide film.

続いて、室温にて8%ホウ酸アンモニウム溶液中でLCRメータを用いて周波数120Hzにて静電容量を測定した。   Subsequently, the capacitance was measured at a frequency of 120 Hz using an LCR meter in an 8% ammonium borate solution at room temperature.

なお、漏れ電流については、化成処理終了後の電流値を測定して、漏れ電流とした。   In addition, about the leakage current, the electric current value after completion | finish of a chemical conversion treatment was measured, and it was set as the leakage current.

交流エッチングにより、実施例36のアルミニウム箔の表面に形成された誘電体皮膜の平均膜厚は、0.03μmであった。
<耐折強度>
JIS P 8115に規定されたM.I.T形試験器を用い、折り曲げ面の曲率半径は1mmφ、荷重は2.5Nとした。また、折り曲げ角度を90度とし、90度曲げて1回目、元に戻して2回目、反対側に90度曲げて3回目、さらに元に戻して4回目とカウントした。折り曲げの繰り返し速度は、6回/秒とした。

以上により得られた結果を、表4〜表6に示す。なお、表4及び表5の実施例1〜35、比較例1〜4の静電容量、耐折強度、漏れ電流については、比較例4の静電容量、耐折強度、漏れ電流をそれぞれ100として、表6の実施例36、比較例5の静電容量、耐折強度、漏れ電流については、比較例5の静電容量、耐折強度、漏れ電流をそれぞれ100として、相対的に評価した。
The average film thickness of the dielectric film formed on the surface of the aluminum foil of Example 36 by AC etching was 0.03 μm.
<Folding strength>
According to M.S. I. A T-type tester was used, the radius of curvature of the bent surface was 1 mmφ, and the load was 2.5N. Further, the bending angle was 90 degrees, the first bending was performed by 90 degrees, the second returning to the original, the third bending by 90 degrees to the opposite side, and the fourth returning to the original. The repetition rate of bending was 6 times / second.

The results obtained as described above are shown in Tables 4 to 6. In addition, about Example 1-35 of Table 4 and Table 5, and the electrostatic capacitance, folding strength, and leakage current of Comparative Examples 1-4, the electrostatic capacitance, folding strength, and leakage current of Comparative Example 4 were each 100. As for the capacitance, folding strength, and leakage current of Example 36 of Table 6 and Comparative Example 5, the capacitance, folding strength, and leakage current of Comparative Example 5 were set as 100, and the relative evaluation was performed. .

上記各表から理解されるように、本発明の要件を満たす各実施例は、比較例よりも静電容量が大きく、耐折強度にも優れており、かつ漏れ電流が少ないことがわかる。   As can be understood from the above tables, it can be seen that each example satisfying the requirements of the present invention has a larger capacitance than the comparative example, is excellent in bending strength, and has a small leakage current.

Figure 0004970742
Figure 0004970742

Figure 0004970742
Figure 0004970742

Figure 0004970742
Figure 0004970742

Figure 0004970742
Figure 0004970742

Figure 0004970742
Figure 0004970742

Figure 0004970742
Figure 0004970742

実施例で行った結晶方位占有率のEBSP測定エリアと位置関係を示す図である。It is a figure which shows the EBSP measurement area and positional relationship of the crystal orientation occupation rate performed in the Example.

符号の説明Explanation of symbols

1 観察用試料1(アルミニウム材)
2 芯層
3 外層
1 Observation sample 1 (aluminum material)
2 core layer 3 outer layer

Claims (15)

総厚の5%以上40%以下を占める芯層の少なくとも片面に外層が積層されてなるとともに、
前記芯層は、アルミニウムの純度が99.3質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下を含有し、かつ材料表面から見た結晶方位成分のうち、ずれ角が10度以下の結晶方位成分を有する結晶組織の面積占有率が、
0.02≦[SCube+SGoss]/[SBrass+SC+SS]≦0.35
(ただし、SCubeは立方体方位{100}<001>、SGossはGoss方位{110}<001>、SBrassはBrass方位{110}<112>、SCはC方位{112}<111>、SSはS方位{123}<634> なる各結晶方位成分を示す)であり、
前記外層は、アルミニウムの純度が99.6質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を含有し、かつ材料表面から見た立方体方位{100}<001>からのずれ角が10度以下の結晶方位成分を有する結晶組織の面積占有率SCubeが80%以上であり、
芯層のScとZr,Vの濃度の和Ccore(Sc+Zr+V)とエッチングに供される外層のScとZr,Vの濃度の和Cskin(Sc+Zr+V)とが、
5≦Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)≦500
なる関係を有することを特徴とする電解コンデンサ電極用アルミニウム材。
The outer layer is laminated on at least one side of the core layer occupying 5% to 40% of the total thickness,
The core layer has an aluminum purity of 99.3% by mass or more, Si: 0.0005% by mass to 0.03% by mass, Fe; 0.0005% by mass to 0.03% by mass, Cu 0.0005 mass% or more and 0.015 mass% or less, Mn; 0.00003 mass% or more and 0.001 mass% or less, Mg; 0.00003 mass% or more and 0.005 mass% or less, Zn; 0.00003 mass % Or more and 0.005 mass% or less, Ti; 0.00003 mass% or more and 0.001 mass% or less, Cr; 0.00003 mass% or more and 0.003 mass% or less, Ni; 0.00003 mass% or more and 0.003 Mass% or less, Ga; 0.00003 mass% or more and 0.008 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.05 mass% or less Sc: 0.005 mass% or more and 0.1 mass% or less, Zr: 0.005 mass% or more and 0.2 mass% or less, and among the crystal orientation components viewed from the material surface, the deviation angle is 10 degrees The area occupation ratio of the crystal structure having the following crystal orientation component is
0.02 ≦ [S Cube + S Goss ] / [S Brass + S C + S S ] ≦ 0.35
(However, S Cube is a cubic orientation {100} <001>, S Goss is a Goss orientation {110} <001>, S Brass is a Brass orientation {110} <112>, and S C is a C orientation {112} <111>. , S S represents each crystal orientation component of S orientation {123} <634>),
The outer layer has an aluminum purity of 99.6% by mass or more , Si: 0.0005% by mass to 0.03% by mass, Fe; 0.0005% by mass to 0.03% by mass, Cu; 0.0005 mass% or more and 0.015 mass% or less, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg: 0.00003 mass% or more and 0.005 mass% or less, Zn: 0.00003 mass% 0.005 mass% or less, Ti: 0.00003 mass% or more and 0.001 mass% or less, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% %: Ga: 0.00003 mass% or more and 0.005 mass% or less, B: 0.00003 mass% or more and 0.002 mass% or less, V: 0.00003 mass% or more and 0.003 mass% or less , Sc; 0.00003 mass% or more 0.003 wt% or less, Zr; 0.00003 containing mass% or more 0.003 wt% or less, and cube orientation {100} viewed from the surface of the material from <001> deviation angle Ri der area occupancy S Cube 80% or more of the crystal structure having a 10 degrees or less in the crystal orientation components,
The sum Ccore (Sc + Zr + V) of the Sc and Zr, V concentrations of the core layer and the sum Cskin (Sc + Zr + V) of the Sc, Zr, V concentrations of the outer layer subjected to etching are as follows:
5 ≦ Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) ≦ 500
Electrolytic capacitor electrode aluminum material, characterized in Rukoto to have a following relationship.
前記芯層は、Y;0.00003質量%以上0.03質量%以下、La;0.00003質量%以上0.03質量%以下、Ce;0.00003質量%以上0.03質量%以下の少なくとも1種をさらに含有する請求項1に記載の電解コンデンサ電極用アルミニウム材。The core layer is Y: 0.00003% by mass or more and 0.03% by mass or less, La: 0.00003% by mass or more and 0.03% by mass or less, Ce: 0.00003% by mass or more and 0.03% by mass or less. The aluminum material for electrolytic capacitor electrodes according to claim 1, further comprising at least one kind. 前記外層は、Pb;0.00003質量%以上0.0003質量%以下、Sn;0.0003質量%以上0.003質量%以下、Bi;0.00001質量%以上0.00015質量%以下、Sb;0.0002質量%以上0.002質量%以下を少なくとも一種含有する請求項1に記載の電解コンデンサ電極用アルミニウム材。The outer layer is composed of Pb; 0.00003 mass% to 0.0003 mass%, Sn; 0.0003 mass% to 0.003 mass%, Bi; 0.00001 mass% to 0.00015 mass%, Sb The aluminum material for electrolytic capacitor electrodes according to claim 1, containing at least one kind of 0.0002 mass% or more and 0.002 mass% or less. 芯層の厚さ方向における平均結晶粒界の間隔が20μm以下である請求項1〜3のいずれかに記載の電解コンデンサ電極用アルミニウム材。The aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 3, wherein an interval between average crystal grain boundaries in the thickness direction of the core layer is 20 µm or less. 芯層の硬さHvcoreと外層の硬さHvskinの比(Hvskin/Hvcore)が0.2以上0.8以下である請求項1〜4のいずれかに記載の電解コンデンサ電極用アルミニウム材。The aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 4, wherein a ratio (Hvskin / Hvcore) of the hardness Hvcore of the core layer and the hardness Hvskin of the outer layer is 0.2 or more and 0.8 or less. アルミニウムの純度が99.3質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下を有する芯層の少なくとも片面に、The purity of aluminum is 99.3% by mass or more, and Si: 0.0005% by mass to 0.03% by mass, Fe: 0.0005% by mass to 0.03% by mass, Cu: 0.0005% by mass % Or more and 0.015 mass% or less, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg: 0.00003 mass% or more and 0.005 mass% or less, Zn: 0.00003 mass% or more and 0.005 Mass% or less, Ti: 0.00003 mass% or more and 0.001 mass% or less, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% or less, Ga 0.00003 mass% or more and 0.008 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.05 mass% or less, Sc; 05 wt% to 0.1 wt% or less, Zr; on at least one surface of the core layer having a 0.005 wt% to 0.2 wt% or less,
アルミニウムの純度が99.6質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を有する外層を積層した後、熱間圧延及び冷間圧延を実施し、ついで最終焼鈍を実施するに際し、The purity of aluminum is 99.6% by mass or more, and Si: 0.0005% by mass to 0.03% by mass, Fe: 0.0005% by mass to 0.03% by mass, Cu: 0.0005% by mass % Or more and 0.015 mass% or less, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg: 0.00003 mass% or more and 0.005 mass% or less, Zn: 0.00003 mass% or more and 0.005 Mass% or less, Ti: 0.00003 mass% or more and 0.001 mass% or less, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% or less, Ga 0.00003 mass% or more and 0.005 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.003 mass% or less, Sc; 0 After laminating an outer layer having 00003 mass% or more and 0.003 mass% or less, Zr; 0.00003 mass% or more and 0.003 mass% or less, hot rolling and cold rolling are performed, and then final annealing is performed. On the occasion
前記熱間圧延から最終焼鈍までに、200℃以上300℃以下、30分以上6時間以下の条件で少なくとも1回の中間焼鈍を実施するとともに、中間焼鈍と最終焼鈍の間に、圧下率8%以上30%以下の冷間圧延または中間焼鈍温度を超えない温間圧延による付加的歪付与を実施し、前記最終焼鈍を430℃以上500℃未満、30分以上6時間以下の条件にて実施することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。From the hot rolling to the final annealing, at least one intermediate annealing is performed under the conditions of 200 ° C. or more and 300 ° C. or less and 30 minutes or more and 6 hours or less, and the rolling reduction is 8% between the intermediate annealing and the final annealing. Addition of additional strain is performed by cold rolling of 30% or less or warm rolling that does not exceed the intermediate annealing temperature, and the final annealing is performed under the conditions of 430 ° C. or more and less than 500 ° C., 30 minutes or more and 6 hours or less. The manufacturing method of the aluminum material for electrolytic capacitor electrodes characterized by the above-mentioned.
アルミニウムの純度が99.3質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下を有する芯層の少なくとも片面に、The purity of aluminum is 99.3% by mass or more, and Si: 0.0005% by mass to 0.03% by mass, Fe: 0.0005% by mass to 0.03% by mass, Cu: 0.0005% by mass % Or more and 0.015 mass% or less, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg: 0.00003 mass% or more and 0.005 mass% or less, Zn: 0.00003 mass% or more and 0.005 Mass% or less, Ti: 0.00003 mass% or more and 0.001 mass% or less, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% or less, Ga 0.00003 mass% or more and 0.008 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.05 mass% or less, Sc; 05 wt% to 0.1 wt% or less, Zr; on at least one surface of the core layer having a 0.005 wt% to 0.2 wt% or less,
アルミニウムの純度が99.6質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を有する外層を積層した後、熱間圧延及び冷間圧延を実施し、ついで最終焼鈍を実施するに際し、The purity of aluminum is 99.6% by mass or more, and Si: 0.0005% by mass to 0.03% by mass, Fe: 0.0005% by mass to 0.03% by mass, Cu: 0.0005% by mass % Or more and 0.015 mass% or less, Mn: 0.00003 mass% or more and 0.001 mass% or less, Mg: 0.00003 mass% or more and 0.005 mass% or less, Zn: 0.00003 mass% or more and 0.005 Mass% or less, Ti: 0.00003 mass% or more and 0.001 mass% or less, Cr: 0.00003 mass% or more and 0.003 mass% or less, Ni: 0.00003 mass% or more and 0.003 mass% or less, Ga 0.00003 mass% or more and 0.005 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.003 mass% or less, Sc; 0 After laminating an outer layer having 00003 mass% or more and 0.003 mass% or less, Zr; 0.00003 mass% or more and 0.003 mass% or less, hot rolling and cold rolling are performed, and then final annealing is performed. On the occasion
前記熱間圧延から最終焼鈍までに、200℃以上300℃以下、30分以上6時間以下の条件で少なくとも1回の中間焼鈍を実施するとともに、中間焼鈍と最終焼鈍の間に、加工率5%以上15%以下の冷間での引張変形または中間焼鈍温度を超えない温度での引張変形による付加的歪付与を実施し、前記最終焼鈍を430℃以上500℃未満、30分以上6時間以下の条件にて実施することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。Between the hot rolling and the final annealing, at least one intermediate annealing is performed under the conditions of 200 ° C. or more and 300 ° C. or less and 30 minutes or more and 6 hours or less, and the processing rate is 5% between the intermediate annealing and the final annealing. More than 15% cold tensile deformation or additional strain is applied by tensile deformation at a temperature not exceeding the intermediate annealing temperature, and the final annealing is performed at 430 ° C. or more and less than 500 ° C. for 30 minutes or more and 6 hours or less. The manufacturing method of the aluminum material for electrolytic capacitor electrodes characterized by implementing on conditions.
前記芯層は、Y;0.00003質量%以上0.03質量%以下、La;0.00003質量%以上0.03質量%以下、Ce;0.00003質量%以上0.03質量%以下の少なくとも1種をさらに含有する請求項6または7に記載の電解コンデンサ電極用アルミニウム材の製造方法。
The core layer is Y: 0.00003% by mass or more and 0.03% by mass or less, La: 0.00003% by mass or more and 0.03% by mass or less, Ce: 0.00003% by mass or more and 0.03% by mass or less. The manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 6 or 7 which further contains at least 1 sort (s) .
前記外層は、Pb;0.00003質量%以上0.0003質量%以下、Sn;0.0003質量%以上0.003質量%以下、Bi;0.00001質量%以上0.00015質量%以下、Sb;0.0002質量%以上0.002質量%以下なる元素を少なくとも一種含有する請求項6または7に記載の電解コンデンサ電極用アルミニウム材の製造方法。 The outer layer is composed of Pb; 0.00003 mass% to 0.0003 mass%, Sn; 0.0003 mass% to 0.003 mass%, Bi; 0.00001 mass% to 0.00015 mass%, Sb The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 6 or 7 , comprising at least one element of 0.0002 mass% or more and 0.002 mass% or less. 請求項1〜5のいずれかに記載の電解コンデンサ電極用アルミニウム材にエッチングが施されることにより、表面積がエッチング前の投影面積の10倍以上となされていることを特徴とするアルミニウム電解コンデンサ用陽極材。An aluminum electrolytic capacitor electrode material according to any one of claims 1 to 5, wherein the aluminum material for an electrolytic capacitor electrode is etched to have a surface area of 10 times or more of a projected area before etching. Anode material. エッチピット形成部に、平均膜厚0.1μm以上の誘電体皮膜が形成されている請求項10に記載のアルミニウム電解コンデンサ用陽極材。The aluminum electrolytic capacitor anode material according to claim 10, wherein a dielectric film having an average film thickness of 0.1 μm or more is formed in the etch pit forming portion. 請求項1〜5の電解コンデンサ電極用アルミニウム材にエッチング処理を施すに際し、少なくとも30%以上のエッチピットを、アルミニウム材の表面にあらかじめ付与された起点によって生じさせることを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。When the aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 5 is subjected to an etching treatment, at least 30% or more of etch pits are generated by a starting point previously provided on the surface of the aluminum material. Manufacturing method of aluminum material. 総厚の5%以上40%以下を占める芯層の少なくとも片面に外層が積層されてなるとともに、
前記芯層は、アルミニウムの純度が99.3質量%以上であって、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.008質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.05質量%以下、Sc;0.005質量%以上0.1質量%以下、Zr;0.005質量%以上0.2質量%以下を含有し、かつ材料表面から見た結晶方位成分のうち、ずれ角が10度以下の結晶方位成分を有する結晶組織の面積占有率が、
0.02≦[S Cube +S Goss ]/[S Brass +S C +S S ]≦0.35
(ただし、S Cube は立方体方位{100}<001>、S Goss はGoss方位{110}<001>、S Brass はBrass方位{110}<112>、S C はC方位{112}<111>、S S はS方位{123}<634> なる各結晶方位成分を示す)であり、
前記外層は、アルミニウムの純度が99.6質量%以上で、Si;0.0005質量%以上0.03質量%以下、Fe;0.0005質量%以上0.03質量%以下、Cu;0.0005質量%以上0.015質量%以下、Mn;0.00003質量%以上0.001質量%以下、Mg;0.00003質量%以上0.005質量%以下、Zn;0.00003質量%以上0.005質量%以下、Ti;0.00003質量%以上0.001質量%以下、Cr;0.00003質量%以上0.003質量%以下、Ni;0.00003質量%以上0.003質量%以下、Ga;0.00003質量%以上0.005質量%以下、B;0.00003質量%以上0.002質量%以下、V;0.00003質量%以上0.003質量%以下、Sc;0.00003質量%以上0.003質量%以下、Zr;0.00003質量%以上0.003質量%以下を含有し、かつ材料表面から見た立方体方位{100}<001>からのずれ角が10度以下の結晶方位成分を有する結晶組織の面積占有率S Cube が80%以上であり、
芯層のScとZr,Vの濃度の和Ccore(Sc+Zr+V)とエッチングに供される外層のScとZr,Vの濃度の和Cskin(Sc+Zr+V)とが、
5≦Ccore(Sc+Zr+V)/Cskin(Sc+Zr+V)≦500
なる関係を有することを特徴とする交流エッチング用の電解コンデンサ電極用アルミニウム材
The outer layer is laminated on at least one side of the core layer occupying 5% to 40% of the total thickness,
The core layer has an aluminum purity of 99.3% by mass or more, Si: 0.0005% by mass to 0.03% by mass, Fe; 0.0005% by mass to 0.03% by mass, Cu 0.0005 mass% or more and 0.015 mass% or less, Mn; 0.00003 mass% or more and 0.001 mass% or less, Mg; 0.00003 mass% or more and 0.005 mass% or less, Zn; 0.00003 mass % Or more and 0.005 mass% or less, Ti; 0.00003 mass% or more and 0.001 mass% or less, Cr; 0.00003 mass% or more and 0.003 mass% or less, Ni; 0.00003 mass% or more and 0.003 Mass% or less, Ga; 0.00003 mass% or more and 0.008 mass% or less, B; 0.00003 mass% or more and 0.002 mass% or less, V; 0.00003 mass% or more and 0.05 mass% or less Sc: 0.005 mass% or more and 0.1 mass% or less, Zr: 0.005 mass% or more and 0.2 mass% or less, and among the crystal orientation components viewed from the material surface, the deviation angle is 10 degrees The area occupation ratio of the crystal structure having the following crystal orientation component is
0.02 ≦ [S Cube + S Goss ] / [S Brass + S C + S S ] ≦ 0.35
(However, S Cube is a cubic orientation {100} <001>, S Goss is a Goss orientation {110} <001>, S Brass is a Brass orientation {110} <112>, and S C is a C orientation {112} <111>. , S S represents each crystal orientation component of S orientation {123} <634>),
The outer layer has an aluminum purity of 99.6% by mass or more, Si; 0.0005% by mass to 0.03% by mass, Fe; 0.0005% by mass to 0.03% by mass, Cu; 0005 mass% to 0.015 mass%, Mn: 0.00003 mass% to 0.001 mass%, Mg: 0.00003 mass% to 0.005 mass%, Zn: 0.00003 mass% to 0 0.005% by mass or less, Ti: 0.00003% by mass or more and 0.001% by mass or less, Cr: 0.00003% by mass or more and 0.003% by mass or less, Ni: 0.00003% by mass or more and 0.003% by mass or less Ga; 0.00003 mass% to 0.005 mass%, B; 0.00003 mass% to 0.002 mass%, V; 0.00003 mass% to 0.003 mass%, S ; 0.00003% by mass or more and 0.003% by mass or less, Zr; 0.00003% by mass or more and 0.003% by mass or less, and a deviation angle from the cube orientation {100} <001> as viewed from the material surface The area occupancy S Cube of the crystal structure having a crystal orientation component of 10 degrees or less is 80% or more,
The sum Ccore (Sc + Zr + V) of the Sc and Zr, V concentrations of the core layer and the sum Cskin (Sc + Zr + V) of the Sc, Zr, V concentrations of the outer layer subjected to etching are as follows:
5 ≦ Ccore (Sc + Zr + V) / Cskin (Sc + Zr + V) ≦ 500
An aluminum material for electrolytic capacitor electrodes for AC etching, characterized in that:
請求項13に記載の交流エッチング用の電解コンデンサ電極用アルミニウム材に交流エッチングが施されるとともに、エッチピット形成部に、平均膜厚0.5μm以下の誘電体皮膜が形成されていることを特徴とするアルミニウム電解コンデンサ用陽極材。The aluminum material for electrolytic capacitor electrode for AC etching according to claim 13 is subjected to AC etching, and a dielectric film having an average film thickness of 0.5 μm or less is formed in the etch pit forming portion. Anode material for aluminum electrolytic capacitors. 電極材として、請求項10、11、14のいずれかに記載の陽極材が用いられていることを特徴とするアルミニウム電解コンデンサ。An aluminum electrolytic capacitor, wherein the anode material according to any one of claims 10, 11, and 14 is used as an electrode material.
JP2005160280A 2005-05-31 2005-05-31 Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Expired - Fee Related JP4970742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160280A JP4970742B2 (en) 2005-05-31 2005-05-31 Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160280A JP4970742B2 (en) 2005-05-31 2005-05-31 Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011239131A Division JP2012062576A (en) 2011-10-31 2011-10-31 Aluminum material for electrolytic capacitor electrode, method for production thereof, positive electrode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006336058A JP2006336058A (en) 2006-12-14
JP4970742B2 true JP4970742B2 (en) 2012-07-11

Family

ID=37556872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160280A Expired - Fee Related JP4970742B2 (en) 2005-05-31 2005-05-31 Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4970742B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062576A (en) * 2011-10-31 2012-03-29 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for production thereof, positive electrode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
CN109778029A (en) * 2019-03-07 2019-05-21 上海交通大学 Rare-earth containing aluminium alloy anode material and its preparation method and application

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182784B2 (en) * 2007-03-13 2013-04-17 住友軽金属工業株式会社 Aluminum alloy foil for electrolytic capacitor electrode
JP2009062594A (en) * 2007-09-07 2009-03-26 Sumitomo Light Metal Ind Ltd Aluminum foil material
JP5663184B2 (en) * 2010-03-30 2015-02-04 東洋アルミニウム株式会社 Aluminum through foil and method for producing the same
EP2738847B1 (en) * 2011-07-29 2017-03-22 UACJ Corporation Collector, electrode structure, non-aqueous electrolyte battery, and electricity storage component
CN103320655B (en) * 2013-06-07 2016-01-20 安徽家园铝业有限公司 Anticorrosion aluminium ally section and preparation method thereof
JP6444877B2 (en) * 2013-09-26 2018-12-26 東洋アルミニウム株式会社 Coated aluminum material and method for producing the same
CN104616897B (en) * 2013-11-05 2017-10-17 昭和电工株式会社 Electrolytic capacitor aluminium alloy material and its manufacture method
CN108798256A (en) * 2018-06-19 2018-11-13 苏州爱盟机械有限公司 Smart lock lock pin
JP7080135B2 (en) * 2018-08-17 2022-06-03 住友化学株式会社 Aluminum clad material
CN112481524A (en) * 2020-10-29 2021-03-12 上海华峰铝业股份有限公司 Aluminum alloy foil for high-strength positive current collector and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311360A (en) * 1992-05-11 1993-11-22 Nippon Foil Mfg Co Ltd Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JP2000091164A (en) * 1998-09-10 2000-03-31 Showa Alum Corp Aluminum-clad material and aluminum foil for electrolytic capacitor electrode
JP4098922B2 (en) * 1999-06-02 2008-06-11 昭和電工株式会社 Aluminum clad material and aluminum foil for electrolytic capacitor electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062576A (en) * 2011-10-31 2012-03-29 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for production thereof, positive electrode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
CN109778029A (en) * 2019-03-07 2019-05-21 上海交通大学 Rare-earth containing aluminium alloy anode material and its preparation method and application

Also Published As

Publication number Publication date
JP2006336058A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4970742B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
KR101736042B1 (en) Perforated aluminum foil, and process for production thereof
WO2013065760A1 (en) Aluminum alloy clad material for molding
BR112019016766A2 (en) HIGH-RESISTANCE STEEL SHEET
JP5326425B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5908194B1 (en) Steel foil for electrical storage device container, electrical storage device container and electrical storage device, and method for producing steel foil for electrical storage device container
EP2077949B1 (en) Manufacturing process to produce litho sheet
WO2008062901A1 (en) Steel plate having high gathering degree of {222} plane and process for production thereof
JP2018003049A (en) Electrical steel sheet excellent in space factor and manufacturing method therefor
WO2011004777A1 (en) Perforated aluminum foil
JP5026778B2 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof, manufacturing method of electrode material for electrolytic capacitor, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2012062576A (en) Aluminum material for electrolytic capacitor electrode, method for production thereof, positive electrode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
JP4816640B2 (en) Aluminum electrolytic capacitor and method for manufacturing aluminum electrolytic capacitor
CN101861633B (en) Aluminum etched plate for electrolytic capacitor
JP2023052743A (en) aluminum alloy foil
JP3178079B2 (en) Metal member provided with alumina crystal growth layer and method of manufacturing the same
JPH01290217A (en) Electrode material for electrolytic capacitor and its manufacture
JP4098922B2 (en) Aluminum clad material and aluminum foil for electrolytic capacitor electrode
JP4428902B2 (en) Aluminum alloy clad foil for high pressure anode in electrolytic capacitor
JP2004076059A (en) Aluminum alloy foil for cathode of electrolytic capacitor, and manufacturing method therefor
WO2019198820A1 (en) Ni DIFFUSION PLATED STEEL SHEET AND METHOD FOR PRODUCING Ni DIFFUSION PLATED STEEL SHEET
KR20090060407A (en) Aluminum electrode plate for electrolytic capacitor
JP3348340B2 (en) Aluminum hard foil for electrolytic capacitor and method for producing the same
JP2793964B2 (en) Aluminum foil for cathode of electrolytic capacitor
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4970742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees