JP5182784B2 - Aluminum alloy foil for electrolytic capacitor electrode - Google Patents

Aluminum alloy foil for electrolytic capacitor electrode Download PDF

Info

Publication number
JP5182784B2
JP5182784B2 JP2007063251A JP2007063251A JP5182784B2 JP 5182784 B2 JP5182784 B2 JP 5182784B2 JP 2007063251 A JP2007063251 A JP 2007063251A JP 2007063251 A JP2007063251 A JP 2007063251A JP 5182784 B2 JP5182784 B2 JP 5182784B2
Authority
JP
Japan
Prior art keywords
ppm
content
aluminum alloy
electrolytic capacitor
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007063251A
Other languages
Japanese (ja)
Other versions
JP2008223090A (en
Inventor
徹也 本居
共平 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2007063251A priority Critical patent/JP5182784B2/en
Publication of JP2008223090A publication Critical patent/JP2008223090A/en
Application granted granted Critical
Publication of JP5182784B2 publication Critical patent/JP5182784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

本発明は、電解コンデンサ電極用アルミニウム合金箔、特に、中高圧用電解コンデンサの陽極として好適に用いられるアルミニウム合金箔に関する。   TECHNICAL FIELD The present invention relates to an aluminum alloy foil for electrolytic capacitor electrodes, and more particularly to an aluminum alloy foil suitably used as an anode of a medium / high pressure electrolytic capacitor.

電解コンデンサ中高圧陽極用アルミニウム箔については、実効面積を拡大し、単位面積あたりの静電容量を増加させるために直流電解エッチング処理が行われるが、このエッチング処理によるトンネル状のエッチングピット形成で拡大される実効面積をいかに効率よく増大させるかについては、従来より数多くの研究がなされている。   For the aluminum foil for high-voltage anodes in electrolytic capacitors, DC electrolytic etching is performed to increase the effective area and increase the capacitance per unit area, but this is expanded by the formation of tunnel-like etching pits. Many studies have been conducted on how to effectively increase the effective area.

例えば、表面におけるピットの開始点を制御するとともに、箔表面の全面溶解を抑制して、エッチング処理により大きな拡面率を得るために、Ti、V、Zrのうちの少なくとも1種以上の元素を添加した電解コンデンサ用アルミニウム箔で、これらの元素を最終焼鈍時に表面へ濃化させ、濃化した表層部の濃度の内部の濃度に対する倍率を規定したものが提案されている(特許文献1参照)。   For example, in order to control the starting point of the pits on the surface and suppress the entire dissolution of the foil surface and obtain a large area expansion ratio by etching, at least one element of Ti, V, Zr is added. An aluminum foil for electrolytic capacitors that has been added has been proposed in which these elements are concentrated on the surface during final annealing, and the ratio of the concentration of the concentrated surface layer portion to the internal concentration is defined (see Patent Document 1). .

また、エッチング処理による表面積の増大によって、高い静電容量を得るためには、箔(110)面方位の高占有率化が重要な要件であり、箔(110)面方位の高占有率を安定して得るために、Fe、Si、Cu、Zn以外に、Ti、V、Cr、Mn、Zr、Na、Ga、Mgの含有量を規定した電解コンデンサ陽極用アルミニウム箔も提案されている(特許文献2参照)。   In addition, in order to obtain a high capacitance by increasing the surface area due to the etching process, it is important to increase the occupancy ratio of the foil (110) plane orientation, and to stabilize the high occupancy ratio of the foil (110) plane orientation. Therefore, in addition to Fe, Si, Cu, and Zn, an aluminum foil for an electrolytic capacitor anode in which the content of Ti, V, Cr, Mn, Zr, Na, Ga, and Mg is defined (patent) Reference 2).

上記提案の電解コンデンサ用アルミニウム箔においては、エッチング処理による拡面率の増大、静電容量の向上について、かなりの改善を得ることができるが、表面積拡大に寄与しない表面の無効溶解抑制とピット開始点となる溶解点制御の相反する挙動を同時且つ十分に満たす電解コンデンサ電極用アルミニウム合金箔は必ずしも得られていないのが現状である。
特開平4−62822号公報 特開平10−140276号公報
In the proposed aluminum foil for electrolytic capacitors, significant improvement can be obtained in terms of increase in the area expansion ratio and improvement in capacitance due to the etching process. At present, an aluminum alloy foil for an electrolytic capacitor electrode that simultaneously and sufficiently satisfies the conflicting behavior of melting point control as a point has not necessarily been obtained.
JP-A-4-62822 Japanese Patent Laid-Open No. 10-140276

本発明は、上記従来の問題点を解消するために、従来提案のアルミニウム箔をベースとして、成分組成についてさらに試験、検討を重ねた結果としてなされたものであり、その目的は、表面積拡大に寄与しない表面の無効溶解抑制とピット開始点となる溶解点制御の相反する挙動を同時に満たすことができ、エッチング処理での拡面率の増大により高い静電容量を得ることを可能とする電解コンデンサ電極用アルミニウム合金箔を提供することにある。   The present invention was made as a result of further testing and examination of the component composition based on the conventionally proposed aluminum foil in order to eliminate the above-mentioned conventional problems, and its purpose is to contribute to the expansion of the surface area. Electrolytic capacitor electrode that can simultaneously satisfy the contradictory behaviors of suppressing ineffective dissolution of the surface that does not melt and controlling the melting point as the pit start point, and can obtain a high capacitance by increasing the area expansion ratio in the etching process It is to provide an aluminum alloy foil for use.

上記の目的を達成するための請求項1による電解コンデンサ電極用アルミニウム合金箔は、アルミニウム純度が99.99%以上で、Si:10〜25ppm、Fe:10〜19ppm、Cu:23ppm以上50ppm未満、Zn:5〜15ppm、Ga:5〜20ppm、Pb:0.8〜1.5ppm、Cr:1〜10ppm、Zr:1〜10ppmを含有し、さらに、これらの元素の含有量(ppm)が下記の関係式(1)〜(3)を満たすことを特徴とする。
−40≦(Cu−5×Cr−3×Zr−15×Pb)≦−10.4 −(1)
Cu≧Zn+Ga −(2)、15≦Zn+Ga≦30 −(3)
The aluminum alloy foil for an electrolytic capacitor electrode according to claim 1 for achieving the above object has an aluminum purity of 99.99 % or more, Si: 10 to 25 ppm, Fe: 10 to 19 ppm, Cu: 23 ppm or more and less than 50 ppm, Zn: 5 to 15 ppm, Ga: 5 to 20 ppm, Pb: 0.8 to 1.5 ppm, Cr: 1 to 10 ppm, Zr: 1 to 10 ppm, and the content (ppm) of these elements is as follows: The following relational expressions (1) to (3) are satisfied.
−40 ≦ (Cu-5 × Cr-3 × Zr-15 × Pb) ≦ −10.4 − (1)
Cu ≧ Zn + Ga − (2), 15 ≦ Zn + Ga ≦ 30 − (3)

請求項2による電解コンデンサ電極用アルミニウム合金箔は、アルミニウム純度が99.99%以上で、Si:10〜25ppm、Fe:10〜19ppm、Cu:23ppm以上50ppm未満、Zn:5〜15ppm、Ga:5〜20ppm、Pb:0.8〜1.5ppm、Cr:1〜10ppm、Zr:1〜10ppmを含有し、Mm(La、Ce、Pr、Ndの総含有量で定義したミッシュメタル、以下同じ)の含有量を0.1ppm以下とし、さらに、これらの元素の含有量(ppm)が下記の関係式(1)〜(3)を満たすことを特徴とする。
−40≦(Cu−5×Cr−3×Zr−15×Pb)≦−10.4 −(1)
Cu≧Zn+Ga −(2)、15≦Zn+Ga≦30 −(3)
The aluminum alloy foil for electrolytic capacitor electrodes according to claim 2 has an aluminum purity of 99.99 % or more, Si: 10 to 25 ppm, Fe: 10 to 19 ppm, Cu: 23 ppm to less than 50 ppm, Zn: 5 to 15 ppm, Ga: 5 to 20 ppm, Pb: 0.8 to 1.5 ppm, Cr: 1 to 10 ppm, Zr: 1 to 10 ppm, Mm (Misch metal defined by the total content of La, Ce, Pr, and Nd, and so on. ) Content of 0.1 ppm or less, and the content (ppm) of these elements satisfies the following relational expressions (1) to (3).
−40 ≦ (Cu-5 × Cr-3 × Zr-15 × Pb) ≦ −10.4 − (1)
Cu ≧ Zn + Ga − (2), 15 ≦ Zn + Ga ≦ 30 − (3)

本発明によれば、表面積拡大に寄与しない表面の無効溶解抑制とピット開始点となる溶解点制御の相反する挙動を同時に満たすことができ、エッチング処理での拡面率の増大により高い静電容量を得ることを可能とする電解コンデンサ電極用アルミニウム合金箔が提供される。当該アルミニウム合金箔は、特に、中高圧用電解コンデンサの陽極として好適に使用することができる。   According to the present invention, it is possible to simultaneously satisfy the contradictory behaviors of the ineffective dissolution suppression of the surface that does not contribute to the surface area expansion and the dissolution point control as the pit start point, and the higher capacitance due to the increase of the surface expansion ratio in the etching process. An aluminum alloy foil for an electrolytic capacitor electrode that makes it possible to obtain the above is provided. In particular, the aluminum alloy foil can be suitably used as an anode for an electrolytic capacitor for medium to high voltage.

本発明における合金元素の意義および限定理由について説明する。
本発明においては、エッチング処理による効率的な表面積拡大に寄与する元素として、Cu、Cr、ZrおよびPbが選択され、表面の無効溶解抑制およびピット開始点増大を同時に満たす成分範囲を規定する。
The significance and reasons for limitation of the alloy elements in the present invention will be described.
In the present invention, Cu, Cr, Zr, and Pb are selected as elements that contribute to effective surface area expansion by the etching process, and a component range that simultaneously satisfies the surface ineffective dissolution suppression and pit start point increase is defined.

直流電解エッチングにおいてピット形成を支配する要因としては、大別するとメタル側の電気化学的特性とメタル表層部に形成している酸化皮膜中の欠陥量および分布が重要である。本発明は、メタル側の効果と酸化皮膜における効果をそれぞれ検討し、それらのバランスで最も有効的に表面積を拡大できる組合せを確認した結果としてなされたものである。   Factors governing the formation of pits in direct current electrolytic etching are roughly divided into the electrochemical characteristics on the metal side and the amount and distribution of defects in the oxide film formed on the metal surface layer. The present invention has been made as a result of examining the effect on the metal side and the effect on the oxide film, respectively, and confirming the combination capable of expanding the surface area most effectively by their balance.

まず、メタル側の因子として、純度99.98%以上のアルミニウムにCuを20ppm以上50ppm未満含有させることにより、材料の腐食電位が貴に変位し、電解エッチング時に孔食反応が起き易くなり、全面溶解し難くなる。Cuが50ppm以上では孔食反応が起き易く、ピットの発生が生じ易くなる。Cuが20ppm未満では、エッチング時に全面溶解が生じ易くなるため、表層領域の表面積拡大が効率的に行われない。またCu量が少ないと最終焼鈍時に結晶粒界の移動抑制効果が減少し、結晶粒が粗大化する。より好ましいCu含有量の下限は23ppm、上限は40ppm、さらに好ましい上限は36ppmである。また、アルミニウム純度は99.99%以上であることがより好ましい。   First, as a factor on the metal side, when Cu is contained in aluminum having a purity of 99.98% or more and Cu is contained in an amount of 20 ppm or more and less than 50 ppm, the corrosion potential of the material is displaced preciously, and a pitting corrosion reaction is likely to occur during electrolytic etching. It becomes difficult to dissolve. When Cu is 50 ppm or more, a pitting corrosion reaction is likely to occur, and pits are likely to be generated. If Cu is less than 20 ppm, the entire surface is easily dissolved during etching, so that the surface area of the surface region is not efficiently expanded. On the other hand, when the amount of Cu is small, the effect of suppressing the movement of the crystal grain boundaries is reduced during the final annealing, and the crystal grains become coarse. The lower limit of the Cu content is more preferably 23 ppm, the upper limit is 40 ppm, and the more preferable upper limit is 36 ppm. The aluminum purity is more preferably 99.99% or more.

同様にメタル側因子として、Crを1〜10ppm、Zrを1〜10ppm含有させると、圧延組織の粒界にCr、Zrが偏在し、最終焼鈍で結晶粒界が移動してもCr、Zrの存在位置はその拡散係数が低いため、元の圧延組織の粒界に沿った位置に残存する。そのため、エッチング時は表面において微小な剥離状の溶解形態を呈し、メタル側でのピット開始点を提供する。   Similarly, when 1 to 10 ppm of Cr and 1 to 10 ppm of Zr are contained as metal side factors, Cr and Zr are unevenly distributed in the grain boundaries of the rolled structure, and even if the grain boundaries move in the final annealing, Cr and Zr Since the diffusion position has a low diffusion coefficient, it remains at a position along the grain boundary of the original rolled structure. Therefore, during etching, the surface exhibits a fine peeling-like dissolution form, and provides a pit start point on the metal side.

Cr、Zrがそれぞれ1ppm未満では、上記の効果が十分でなく、エッチングピットの開始点が制限され、10ppmを超えると剥離状の溶解が多く発生するため、必要以上に表層領域が溶解して有効な表面積拡大領域が制限される。Cr含有量およびZr含有量のより好ましい上限は6ppmである。   If Cr and Zr are each less than 1 ppm, the above effects are not sufficient, and the starting point of the etching pit is limited. If it exceeds 10 ppm, peeling-like dissolution occurs frequently, so the surface layer region dissolves more than necessary and is effective. Limited surface area expansion area. The upper limit with more preferable Cr content and Zr content is 6 ppm.

表面の剥離状溶解は極めて狭い領域で発生するため、表層部の無効溶解を増大させずにピット開始を供給できるが、Cr、Zrの最適な含有量はCu含有量によって変化し、Cu含有量が多く、腐食電位が貴に変化し孔食反応が起きにくくなっている場合は、Cr、Zrの添加量を多くすることでメタル側の溶解点が最適に保たれる。   Since the exfoliation of the surface occurs in a very narrow region, the pit start can be supplied without increasing the ineffective dissolution of the surface layer, but the optimum content of Cr and Zr varies depending on the Cu content, and the Cu content When the corrosion potential changes so much that the pitting corrosion reaction is difficult to occur, the melting point on the metal side can be optimally maintained by increasing the amount of Cr and Zr.

上述したメタル側の因子を最適化しても、材料の表面にはその加工工程で形成されたバリヤー性のある酸化皮膜が形成されているため、ピット開始点を制御することは困難となる。そこで最終焼鈍時に表層へ濃縮し、酸化皮膜中あるいは最表面で酸化するPbを0.8〜1.5ppm含有させることにより、酸化皮膜中に適度の欠陥を形成させる。   Even if the above-mentioned factors on the metal side are optimized, it is difficult to control the pit start point because an oxide film having a barrier property formed in the processing process is formed on the surface of the material. Therefore, by concentrating to the surface layer at the time of final annealing and containing 0.8 to 1.5 ppm of Pb which is oxidized in the oxide film or on the outermost surface, moderate defects are formed in the oxide film.

Pbの含有量が0.8ppm未満では、皮膜中欠陥量が少なくなるためピットの分散性が小さくなり好ましくない。Pbの含有量が1.5ppmを超えると、酸化皮膜の欠陥量が過度になり全面溶解し、それに影響してメタル側表面の微小剥離状溶解も過度になるため、表面の無効溶解が増加する。   If the Pb content is less than 0.8 ppm, the amount of defects in the film decreases, so the dispersibility of the pits decreases, which is not preferable. When the content of Pb exceeds 1.5 ppm, the amount of defects in the oxide film becomes excessive and the entire surface is dissolved, and the fine peeling-like dissolution on the metal side surface is excessively affected thereby increasing the ineffective dissolution of the surface. .

ZnおよびGaは、Cuとは逆に電位を卑にする働きがあり、Cu添加の効果を維持するよう機能する。そのために、Znは5〜15ppm、Gaは5〜20ppmに規制するのが好ましい。   Zn and Ga have a function of lowering the potential, contrary to Cu, and function to maintain the effect of Cu addition. Therefore, it is preferable to restrict Zn to 5 to 15 ppm and Ga to 5 to 20 ppm.

Cu添加の効果を安定して維持するためには、Cu含有量(ppm)、Zn含有量(ppm)、Ga含有量(ppm)の関係(関係式(2))をCu≧Zn+Gaとするのが望ましい。また、Zn含有量(ppm)、Ga含有量(ppm)の関係(関係式(3))は、15≦Zn+Ga≦30とするのが望ましく、18≦Zn+Ga≦25とするのがさらに望ましい。   In order to stably maintain the effect of Cu addition, the relationship (relational expression (2)) of Cu content (ppm), Zn content (ppm), and Ga content (ppm) should be Cu ≧ Zn + Ga. Is desirable. Further, the relationship between Zn content (ppm) and Ga content (ppm) (relational expression (3)) is preferably 15 ≦ Zn + Ga ≦ 30, and more preferably 18 ≦ Zn + Ga ≦ 25.

上記の成分元素は、個々で相殺または助長するため、適正なバランスで含有させる必要がある。個々の成分元素の影響度を検討した結果、次式で与えられる関係式(1)を満たすことにより、表面積拡大に寄与しない表面の無効溶解抑制とピット開始点となる溶解点制御の相反する挙動を同時に満たすことができることを解明した。
−40ppm≦(Cu(ppm)−5×Cr(ppm)−3×Zr(ppm)−15×Pb(ppm))≦−10.4ppm −(1)
Since the above-mentioned component elements are offset or promoted individually, it is necessary to contain them in an appropriate balance. As a result of studying the degree of influence of each component element, by satisfying the relational expression (1) given by the following equation, the conflicting behaviors of the ineffective dissolution suppression of the surface that does not contribute to the surface area expansion and the dissolution point control that becomes the pit start point It has been clarified that can be satisfied simultaneously.
−40 ppm ≦ (Cu (ppm) −5 × Cr (ppm) −3 × Zr (ppm) −15 × Pb (ppm)) ≦ −10.4 ppm − (1)

−40ppmよりも小さいと表面溶解が過剰となり、表層近傍の表面積拡大が効率的に行われず静電容量が低下する。−10.4ppmよりも大きい場合には、材料の表面溶解抑制効果が過剰となり易くピット開始点が限定されるため、エッチングピットの合体等が生じて、表面積拡大による高い静電容量が得難くなる。 If it is less than −40 ppm, the surface dissolution becomes excessive, the surface area in the vicinity of the surface layer is not efficiently expanded, and the capacitance decreases. Is greater than -10.4ppm is liable to be excessive surface dissolution inhibiting effect of the material, for pit starting point is limited by coalescence like etching pits occur hardly achieve high capacitance due surface area enlargement Become.

また、本発明による上記の効果を満足させるためには、材料中に存在するMm (La,Ce,Pr,Ndの総量で定義したミッシュメタル)を0.1ppm以下に規制することが好ましい。Mmは、材料中に存在するFeと化合し易く、Al−Fe−Mm系の金属間化合物を形成する。Al−Fe−Mm系金属間化合物は、直流電解エッチングの際に水素の還元ポイントとして作用し、表面で無効溶解となるアノード溶解を促進させる。このため、Mmは0.1ppm以下に制限することが好ましい。   In order to satisfy the above-described effects of the present invention, it is preferable to limit Mm (Misch metal defined by the total amount of La, Ce, Pr, and Nd) present in the material to 0.1 ppm or less. Mm easily combines with Fe present in the material, and forms an Al—Fe—Mm intermetallic compound. The Al—Fe—Mm intermetallic compound acts as a hydrogen reduction point during direct current electrolytic etching, and promotes anodic dissolution that becomes ineffective dissolution on the surface. For this reason, it is preferable to limit Mm to 0.1 ppm or less.

FeおよびSiは不純物としてアルミニウム地金中に存在するが、エッチング性や結晶方位に影響する元素であるから、それらの含有量を制御する必要がある。Feは、多量に含有しているとAl−Fe系の析出物を形成し、エッチング時の溶解減量を増加させるとともに、エッチングピットの発生分布を不均一にするので30ppm以下とするのが好ましい。また、10ppm未満とすると精製コストの面で不利である。Fe含有量のさらに好ましい上限値は19ppmである。   Fe and Si are present in the aluminum ingot as impurities, but since they are elements that affect the etching property and crystal orientation, it is necessary to control their contents. When Fe is contained in a large amount, an Al—Fe-based precipitate is formed, the dissolution loss during etching is increased, and the generation distribution of etching pits is made uneven. Moreover, when it is less than 10 ppm, it is disadvantageous in terms of purification cost. A more preferable upper limit of the Fe content is 19 ppm.

Siは、再結晶時の結晶粒の粗大化を防止する効果がある。含有範囲が10ppm未満ではその効果が小さく、30ppmを超えるとエッチングピットの発生分布が不均一になる.Si含有量のさらに好ましい上限値は25ppm、最も好ましい上限値は20ppmである。   Si has an effect of preventing coarsening of crystal grains during recrystallization. When the content range is less than 10 ppm, the effect is small, and when it exceeds 30 ppm, the distribution of etching pits becomes uneven. The more preferable upper limit value of the Si content is 25 ppm, and the most preferable upper limit value is 20 ppm.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. These examples show one embodiment of the present invention, and the present invention is not limited thereto.

実施例1、比較例1
表1に示すアルミニウム合金をDC鋳造により造塊し、得られた鋳塊を常法に従って均質化処理後、熱間圧延、冷間圧延、箔圧延、中間焼鈍、箔圧延、最終焼鈍を順次実施し、厚さ0.11mmのアルミニウム箔を製造した。
Example 1 and Comparative Example 1
The aluminum alloy shown in Table 1 is ingoted by DC casting, and the resulting ingot is homogenized according to a conventional method, followed by hot rolling, cold rolling, foil rolling, intermediate annealing, foil rolling, and final annealing. An aluminum foil having a thickness of 0.11 mm was manufactured.

次いで、得られたアルミニウム箔に対して、塩酸(1mol)−硫酸(3mol)の水溶液(液温75℃)中で、電流密度0.2A/cmにて直流エッチング処理を行い、引き続き、硝酸(1mol)−リン酸(0.05mol)(液温80℃)中で、電流密度 0.25A/cmにて直流エッチングを行って試験材とし、このエッチング前後の重量差から単位面積当たりの溶解減量を測定した。その後、上記エッチド箔(試験材)に400Vの化成処理を行い、それぞれの静電容量を測定した。測定結果を表2に示す。 Next, the obtained aluminum foil was subjected to direct current etching treatment at a current density of 0.2 A / cm 2 in an aqueous solution of hydrochloric acid (1 mol) -sulfuric acid (3 mol) (liquid temperature: 75 ° C.). In (1 mol) -phosphoric acid (0.05 mol) (liquid temperature 80 ° C.), direct current etching was performed at a current density of 0.25 A / cm 2 to obtain a test material. Dissolution loss was measured. Thereafter, the etched foil (test material) was subjected to a chemical conversion treatment of 400 V, and each capacitance was measured. The measurement results are shown in Table 2.

Figure 0005182784
Figure 0005182784

Figure 0005182784
Figure 0005182784

表2に示すように、本発明に従う試験材1〜はいずれも、本発明の条件を満たさない試験材12〜19に対して、静電容量の増大が認められる。 As shown in Table 2, all of the test materials 1 to 8 according to the present invention have an increase in capacitance as compared with the test materials 12 to 19 that do not satisfy the conditions of the present invention.

Claims (2)

アルミニウム純度が99.99%以上で、Si:10〜25ppm、Fe:10〜19ppm、Cu:23ppm以上50ppm未満、Zn:5〜15ppm、Ga:5〜20ppm、Pb:0.8〜1.5ppm、Cr:1〜10ppm、Zr:1〜10ppmを含有し、さらに、これらの元素の含有量(ppm)が下記の関係式(1)〜(3)を満たすことを特徴とする電解コンデンサ電極用アルミニウム合金箔。
−40≦(Cu−5×Cr−3×Zr−15×Pb)≦−10.4 −(1)
Cu≧Zn+Ga −(2)、15≦Zn+Ga≦30 −(3)
Aluminum purity is 99.99 % or more, Si: 10-25 ppm, Fe: 10-19 ppm, Cu: 23 ppm or more and less than 50 ppm, Zn: 5-15 ppm, Ga: 5-20 ppm, Pb: 0.8-1.5 ppm Cr: 1 to 10 ppm, Zr: 1 to 10 ppm, and the content (ppm) of these elements satisfies the following relational expressions (1) to (3): Aluminum alloy foil.
−40 ≦ (Cu-5 × Cr-3 × Zr-15 × Pb) ≦ −10.4 − (1)
Cu ≧ Zn + Ga − (2), 15 ≦ Zn + Ga ≦ 30 − (3)
アルミニウム純度が99.99%以上で、Si:10〜25ppm、Fe:10〜19ppm、Cu:23ppm以上50ppm未満、Zn:5〜15ppm、Ga:5〜20ppm、Pb:0.8〜1.5ppm、Cr:1〜10ppm、Zr:1〜10ppmを含有し、Mm(La、Ce、Pr、Ndの総含有量で定義したミッシュメタル、以下同じ)の含有量を0.1ppm以下とし、さらに、これらの元素の含有量(ppm)が下記の関係式(1)〜(3)を満たすことを特徴とする電解コンデンサ電極用アルミニウム合金箔。
−40≦(Cu−5×Cr−3×Zr−15×Pb)≦−10.4 −(1)
Cu≧Zn+Ga −(2)、15≦Zn+Ga≦30 −(3)
Aluminum purity is 99.99 % or more, Si: 10-25 ppm, Fe: 10-19 ppm, Cu: 23 ppm or more and less than 50 ppm, Zn: 5-15 ppm, Ga: 5-20 ppm, Pb: 0.8-1.5 ppm Cr: 1 to 10 ppm, Zr: 1 to 10 ppm, Mm (Misch metal defined by the total content of La, Ce, Pr, and Nd, the same shall apply hereinafter) content of 0.1 ppm or less, An aluminum alloy foil for electrolytic capacitor electrodes, wherein the content (ppm) of these elements satisfies the following relational expressions (1) to (3).
−40 ≦ (Cu-5 × Cr-3 × Zr-15 × Pb) ≦ −10.4 − (1)
Cu ≧ Zn + Ga − (2), 15 ≦ Zn + Ga ≦ 30 − (3)
JP2007063251A 2007-03-13 2007-03-13 Aluminum alloy foil for electrolytic capacitor electrode Active JP5182784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063251A JP5182784B2 (en) 2007-03-13 2007-03-13 Aluminum alloy foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063251A JP5182784B2 (en) 2007-03-13 2007-03-13 Aluminum alloy foil for electrolytic capacitor electrode

Publications (2)

Publication Number Publication Date
JP2008223090A JP2008223090A (en) 2008-09-25
JP5182784B2 true JP5182784B2 (en) 2013-04-17

Family

ID=39842045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063251A Active JP5182784B2 (en) 2007-03-13 2007-03-13 Aluminum alloy foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP5182784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004329A (en) * 2019-04-09 2019-07-12 上海华峰铝业股份有限公司 A kind of high-strength high conductivity Al-Fe-La-xCu alloy foil

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124402A (en) * 2011-12-15 2013-06-24 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same
CN110016591A (en) * 2019-04-09 2019-07-16 上海华峰铝业股份有限公司 A kind of high conductivity collector alloy foil and its manufacturing method
CN114703405B (en) * 2022-04-12 2023-01-31 江苏中基复合材料有限公司 High-strength high-conductivity Al-Fe-La-Cu aluminum alloy foil and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4970742B2 (en) * 2005-05-31 2012-07-11 昭和電工株式会社 Aluminum material for electrolytic capacitor electrode, method for producing aluminum material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5063057B2 (en) * 2006-08-16 2012-10-31 昭和電工株式会社 Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004329A (en) * 2019-04-09 2019-07-12 上海华峰铝业股份有限公司 A kind of high-strength high conductivity Al-Fe-La-xCu alloy foil

Also Published As

Publication number Publication date
JP2008223090A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5182784B2 (en) Aluminum alloy foil for electrolytic capacitor electrode
JP4198584B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JPH10189396A (en) Aluminum alloy for electrolytic capacitor anode
JP4650887B2 (en) Aluminum foil for electrolytic capacitors
JP3983785B2 (en) Aluminum foil for electrolytic capacitors
JP4874039B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and alloy foil used therefor
JP6619173B2 (en) Aluminum foil for electrolytic capacitors
JP4071232B2 (en) Aluminum foil for electrolytic capacitors
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP6752110B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors, aluminum foil for electrolytic capacitors, and electrodes for electrolytic capacitors
JP2005206883A (en) Aluminum foil for electrolytic capacitor and manufacturing method therefor
JP2007238994A (en) Aluminum foil for electrolytic capacitor electrode
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP6686744B2 (en) Titanium alloy plate and its manufacturing method.
JP5117673B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JP2011006747A (en) Aluminum foil for electrolytic capacitor
JP4757247B2 (en) Aluminum foil for electrolytic capacitor electrode
JP5324805B2 (en) Aluminum foil for high-pressure anodes in electrolytic capacitors
JP2005336557A (en) Aluminum foil for electrolytic capacitor, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5182784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250