JP4970416B2 - Groundwater level measurement method - Google Patents

Groundwater level measurement method Download PDF

Info

Publication number
JP4970416B2
JP4970416B2 JP2008323346A JP2008323346A JP4970416B2 JP 4970416 B2 JP4970416 B2 JP 4970416B2 JP 2008323346 A JP2008323346 A JP 2008323346A JP 2008323346 A JP2008323346 A JP 2008323346A JP 4970416 B2 JP4970416 B2 JP 4970416B2
Authority
JP
Japan
Prior art keywords
hollow rod
rod
groundwater level
insulated cable
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008323346A
Other languages
Japanese (ja)
Other versions
JP2010145263A (en
Inventor
哲鎬 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKOKU ENGINEERING CO., LTD.
Original Assignee
HOKOKU ENGINEERING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKOKU ENGINEERING CO., LTD. filed Critical HOKOKU ENGINEERING CO., LTD.
Priority to JP2008323346A priority Critical patent/JP4970416B2/en
Publication of JP2010145263A publication Critical patent/JP2010145263A/en
Application granted granted Critical
Publication of JP4970416B2 publication Critical patent/JP4970416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Description

本発明は、地盤の事前調査等として地下水の状態を判定するのに利用する地下水位の測定方法に関する。   The present invention relates to a method for measuring a groundwater level used to determine the state of groundwater as a preliminary survey of the ground.

近年、地震による地盤液状化に対処するため、一般住宅の如き小規模建築物を対象とした地盤についても、地質構成と共に地下水位を調べることが要望されている。しかしながら、通常の地盤調査に採用されているボーリング調査は、大掛かりな作業になってコストが高く付くことに加え、戸建住宅用の宅地等では作業スペースの確保も難しいという問題があった。しかも、ボーリング調査の穿内水位は上方の傾向にあり、今までは安全側のために問題視されなかったが、本来は不要な液状化対策のために大きなコスト負担を強いられる懸念があった。   In recent years, in order to cope with ground liquefaction caused by earthquakes, it has been demanded to investigate the groundwater level as well as the geological configuration of ground for small buildings such as ordinary houses. However, the boring survey adopted for the normal ground survey has a problem that it is difficult to secure a working space in a residential land for a detached house, etc. in addition to being expensive and costly. In addition, the drilling water level in the borehole survey tends to be upward, so far it has not been regarded as a problem for safety reasons, but there was a concern that it would be forced to bear a large cost for measures to prevent liquefaction originally unnecessary .

一方、戸建住宅の地盤調査には、従来よりJIS規格に制定されたスウェーデン式サウンディング試験が行われている。このサウンディング試験は、図6に示すように、下端に掘進スクリュー部材(通称:スクリューポイント)21が装着された鉄製またはステンレス鋼製の中実ロッド2を地盤Gに垂直に突き立て、このロッド2の上部にクランプ22及びハンドル23を取り付け、まずクランプ22上に複数枚の円盤状の錘24(10kgが2枚と25kgが3枚で計95kg、載荷用クランプの重さ5kgとの合計で100 kg)を順次載せてロッド2の沈み込みを観察して記録する。そして、全部の錘24を載せた段階でロッド1の沈み込みがない場合、ハンドル23による回転で掘進させ、ロッド2表面の25cm刻みの目盛り2aにより、当該ロッド2が25cm沈み込むのに要した回転回数を記録してゆく。なお、ロッド2は最長1mであるため、継ぎ足しながら所定深度(通常は地下10m)まで掘進させる。また、掘進スクリュー部材21の基端側はロッド2よりも径大になっている。図中の25は掘進位置の地表に載置した底板である。   On the other hand, the Swedish sounding test established in the JIS standard has been conducted for the ground survey of detached houses. In this sounding test, as shown in FIG. 6, a solid rod 2 made of iron or stainless steel having a digging screw member (commonly referred to as a screw point) 21 attached to the lower end is vertically projected to the ground G. A clamp 22 and a handle 23 are attached to the upper part of the head. First, a plurality of disk-shaped weights 24 (95 kg for two 10 kg and three 25 kg for a total of 95 kg and a total weight of the loading clamp 5 kg) are mounted on the clamp 22. kg) is placed in sequence, and the sinking of the rod 2 is observed and recorded. When the rod 1 does not sink when all the weights 24 are placed, it is necessary to allow the rod 2 to sink by 25 cm by the scale 2a in increments of 25 cm on the surface of the rod 2 by digging by rotation by the handle 23. Record the number of rotations. Since the rod 2 has a maximum length of 1 m, the rod 2 is dug to a predetermined depth (usually 10 m underground) while adding. The proximal end side of the digging screw member 21 is larger in diameter than the rod 2. Reference numeral 25 in the figure denotes a bottom plate placed on the ground surface at the excavation position.

しかして、このサウンディング試験では、上記の記録データを解析して土質を粘性土や砂質土等に分類するが、その試験後の引き抜いたロッド2表面の濡れ度合を観察し、水濡れの位置から地下水位WLを判定することも行われている。しかるに、このような方法では、引き抜いたロッド2表面の時間経過に伴う乾きや、逆に孔壁に付いた水滴や泥等の付着により、本来の地下水による水濡れ位置が判別困難であったり、誤って判定されることも多く、地下水位の測定方法として信頼性に乏しかった。   In this sounding test, the above recorded data is analyzed to classify the soil into viscous or sandy soil, etc., but the wetness of the surface of the drawn rod 2 after the test is observed, and the position of water wetting The groundwater level WL is also determined from the above. However, in such a method, it is difficult to determine the wet position by the original ground water due to drying of the surface of the drawn rod 2 over time, and conversely, adhesion of water droplets or mud attached to the hole wall, In many cases, it was judged erroneously, and it was not reliable as a method for measuring the groundwater level.

そこで、このようなスウェーデン式サウンディング試験と同時に地下水位も測定できるようにした地下水位測定装置が提案されている(特許文献1,2)。この測定装置は、前記同様のロッドに長さ方向一定間隔置き(通常25cm間隔)に貫通孔(径方向の横穴)を設け、これら貫通孔にフェルトや脱脂綿の如き湿潤性部材を詰めたものであり、前記同様にスウェーデン式サウンディング試験を行ったのち、該ロッドを引き抜いて各貫通孔の湿潤性部材の水分吸収状態を調べて地下水位を判定するようにしている。
特開2000−180243 特開2000−221030
Then, the groundwater level measuring apparatus which enabled it to measure a groundwater level simultaneously with such a Swedish sounding test is proposed (patent documents 1 and 2). This measuring device is provided with through holes (radial lateral holes) at regular intervals in the length direction (usually 25 cm intervals) on the same rod as described above, and these through holes are filled with wettable members such as felt and absorbent cotton. Yes, after performing a Swedish sounding test in the same manner as described above, the rod is pulled out and the water absorption state of the wettable member of each through hole is examined to determine the groundwater level.
JP2000-180243 JP2000-2221030

しかしながら、上記のスウェーデン式サウンディング試験機を利用する今までの地下水位測定装置は、大まかにしか測定できず、正確な地下水位を知ることができない上、含水比の高い地盤の場合には地下水位より上方に測定される可能性があるため、判定結果に充分な信頼性が得られず、また手間及び時間を要して作業性が悪いという難点があった。   However, conventional groundwater level measuring devices that use the Swedish sounding tester described above can only measure roughly and cannot know the exact groundwater level, and in the case of ground with a high water content, Since there is a possibility of being measured further upward, there is a problem that sufficient reliability cannot be obtained in the determination result, and labor and time are required and workability is poor.

本発明は、上述の情況に鑑み、簡単な操作及び装置構成により、地盤の地下水位を正確に能率よく測定できる方法を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a method capable of accurately and efficiently measuring the groundwater level of the ground with a simple operation and device configuration.

上記目的を達成するための手段を添付図面の参照符号を付して示せば、請求項1の発明にかかる地下水位の測定方法は、下端に掘進スクリュー部材21が装着された中実ロッド2をスウェーデン式サウンディング試験機による荷重負荷及び回転によって地盤に垂直に掘進貫入させ、次いで該中実ロッド2を地上へ抜出したのち、その抜出孔Hにスウェーデン式サウンディング試験機を用いて長さ方向所定間隔置きに内外を透通する横穴11を設けた中空ロッド1を回転させて地盤Gの所定深さまで垂直に貫入させたのち、電気抵抗の変化を検出する機能を備えた計測器4Bに接続した2芯線からなる円柱状の計測用絶縁ケーブル3Bを該中空ロッド1内に挿入し、この円柱状の絶縁ケーブル3Bの端面側の電極部32aと周面側の電極部33aが中空ロッド1内に浸入した地下水の水面WFに達した際の両電極部32a,33a間の電気抵抗の変化を検出し、この検出時の該絶縁ケーブル3Bの挿入長さから地下水位WLを測定してなり、前記絶縁ケーブルの端面側の電極部32aと周面側の電極部33aは、前記中空ロッド1内へ当該絶縁ケーブル3Bを挿入する時に、前記両電極部32a,33a間が水滴等の付着で導通するのを防止するように軸方向に離間してなることを特徴としている。 If the means for achieving the above object is shown with reference numerals in the attached drawings, the groundwater level measuring method according to the invention of claim 1 is that the solid rod 2 having the excavating screw member 21 attached to the lower end is provided. After digging vertically into the ground by load loading and rotation by a Swedish sounding tester, the solid rod 2 is extracted to the ground, and then the length of the extraction hole H is determined in the longitudinal direction using a Swedish sounding tester. After rotating the hollow rod 1 provided with the lateral holes 11 passing through the inside and outside at intervals to vertically penetrate the ground G to a predetermined depth, the hollow rod 1 was connected to a measuring instrument 4B having a function of detecting a change in electric resistance. A cylindrical measurement insulated cable 3B composed of two core wires is inserted into the hollow rod 1, and an electrode portion 32a on the end face side and an electrode portion 33 on the peripheral face side of the cylindrical insulation cable 3B. Detects a change in electrical resistance between the electrode portions 32a and 33a when reaching the surface WF of the groundwater that has entered the hollow rod 1, and determines the groundwater level WL from the insertion length of the insulation cable 3B at the time of detection. The electrode portion 32a on the end face side and the electrode portion 33a on the peripheral surface side of the insulated cable are measured so that when the insulated cable 3B is inserted into the hollow rod 1, there is a water drop between the electrode portions 32a and 33a. It is characterized in that it is spaced apart in the axial direction so as to prevent conduction due to adhesion or the like.

請求項の発明は、前記請求項の地下水位の測定方法において、抜出孔Hに貫入させる中空ロッド1の下端に掘進スクリュー部材12が装着されてなる構成としている。 The invention of claim 2 is the method of measuring the groundwater level of the claim 1, excavation screw member 12 to the lower end of the hollow rod 1 to penetration is configured to become mounted on the extraction hole H.

次に、本発明の効果について、図面の参照符号を付して説明する。まず、請求項1の発明にかかる地下水位の測定方法では、スウェーデン式サウンディング試験機を用いて横穴11付きの中空ロッド1を回転させて地盤Gの帯水層WZまで垂直に貫入させると、地下水位WLより下位になる横穴11から地下水Wが該中空ロッド1の中空部10に浸入し、その水面WFが地下水位WLと同レベルに達して安定化する。従って、この状態で該中空ロッド1内に計測用絶縁ケーブル3Bを挿入してゆくことにより、その計測用絶縁ケーブル3Bの端面側の電極部32aと周面側の電極部33aが該中空ロッド1内の水面WFに達した際に水の導電性によって電極部32a,33a間の電気抵抗が変化(減少)し、この変化が計測器4Bにて検出されるため、この時の該絶縁ケーブル3Bの挿入長さから地下水位WLを測定できる。 Next, effects of the present invention will be described with reference numerals in the drawings. First, in the method for measuring the groundwater level according to the invention of claim 1, when the hollow rod 1 with the horizontal hole 11 is rotated using a Swedish sounding tester and vertically penetrated to the aquifer WZ of the ground G, The groundwater W enters the hollow portion 10 of the hollow rod 1 from the lateral hole 11 below the level WL, and the water surface WF reaches the same level as the groundwater level WL and stabilizes. Therefore, by inserting the measurement insulated cable 3B into the hollow rod 1 in this state, the electrode portion 32a on the end face side and the electrode portion 33a on the peripheral surface side of the measurement insulated cable 3B are connected to the hollow rod 1. since both electrode portions 32a upon reaching the water surface WF of a conductive water inside, the electrical resistance between 33a changes (decreases), this change is detected by instrument 4B, the insulating cable at this time The groundwater level WL can be measured from the insertion length of 3B .

しかして、この測定方法によれば、絶縁ケーブル3Bの電極部32a,33aが中空ロッド1内の水面WFに達したことが瞬間的に捉えられるから、地下水位WLを極めて正確に測定できると共に、中空ロッド1内は掘進した孔壁から隔絶しているため、含水比の高い地盤でも孔壁の水分による影響を受けず、もって測定結果に高い信頼性が得られる。また、測定に際し、中空ロッド1内に上方から絶縁ケーブル3Bを挿入してゆくだけでよいから、操作的に極めて簡単である上、掘進した孔壁が崩れても中空ロッド1内が土で詰まることはなく、絶縁ケーブル3Bの挿入に支障を生じる懸念がないから、能率よく短時間で測定作業が完了する。またさらには、絶縁ケーブル3Bの端面側の電極部32aと周面側の電極部33aは、中空ロッド1内へ当該絶縁ケーブル3Bを挿入する時に、両電極部32a,33aが水滴等の付着で導通するのを防止するように軸方向に離間してなるから、中空ロッド1内への挿入時に水滴等の付着で両電極部32a,33a間が導通するのを防止できる。またさらに言えば、本発明によれば、下端に掘進スクリュー部材21を有する中実ロッド2によって地盤Gに垂直に掘進貫入させたのち、この中実ロッド2を引き抜いた抜出孔Hに前記横穴11付きの中空ロッド1を貫入し、この中空ロッド1内に前記絶縁ケーブル3Bを挿入して地下水位WLを測定するという2段階の操作を行う。従って、中実ロッド2で無理なく掘進穿孔を行える一方、地下水位の測定に用いる中空ロッド1は穿孔済みの孔内に貫入するだけであるため、その中空構造の故に掘進穿孔には不充分な強度であっても支障がない。また、前段の中実ロッド2による掘進工程をスウェーデン式サウンディング試験に利用できる。 Therefore, according to this measurement method, since the electrode portions 32a and 33a of the insulated cable 3B can be instantaneously grasped to reach the water surface WF in the hollow rod 1, the groundwater level WL can be measured very accurately, Since the hollow rod 1 is isolated from the excavated hole wall, even the ground having a high water content ratio is not affected by the moisture of the hole wall, and thus the measurement result has high reliability. In addition, since it is only necessary to insert the insulated cable 3B from above into the hollow rod 1 for measurement, the operation is extremely simple and the hollow rod 1 is clogged with soil even if the drilled hole wall collapses. Since there is no fear that the insertion of the insulated cable 3B will be hindered, the measurement operation can be completed efficiently and in a short time. Still further, the electrode portion 32a on the end surface side of the insulated cable 3B and the electrode portion 33a on the circumferential surface side are such that when the insulated cable 3B is inserted into the hollow rod 1, both electrode portions 32a and 33a are attached by water droplets or the like. Since it is separated in the axial direction so as to prevent conduction, it is possible to prevent conduction between the electrode portions 32a and 33a due to adhesion of water droplets or the like when inserted into the hollow rod 1. Still further, according to the present invention, the solid rod 2 having the excavation screw member 21 at the lower end is penetrated perpendicularly to the ground G, and then the horizontal hole is inserted into the extraction hole H from which the solid rod 2 is extracted. The hollow rod 1 with 11 is inserted, and the insulation cable 3B is inserted into the hollow rod 1 to measure the groundwater level WL. Therefore, while it is possible to perform excavation drilling with the solid rod 2 without difficulty, the hollow rod 1 used for the measurement of the groundwater level only penetrates into the drilled hole, so that the hollow structure is insufficient for excavation drilling. There is no problem even if it is strong. Further, the excavation process by the solid rod 2 in the previous stage can be used for the Swedish sounding test.

請求項の発明によれば、前記2段階操作での後段の地下水位測定に用いる中空ロッド1が下端に掘進スクリュー部材12を備えるから、前段の中実ロッド2による穿孔後の抜出孔Hが孔壁の崩れ等で部分的に塞がるような状態であっても、後段の中空ロッド1は軽く回転を伴って沈み込ませるだけで該抜出孔Hに充分に深く貫入できる。
According to the invention of claim 2, since the hollow rod 1 used for the measurement of the groundwater level in the subsequent stage in the two-stage operation is provided with the digging screw member 12 at the lower end, the extraction hole H after drilling by the solid rod 2 in the previous stage Even when the hollow wall 1 is partially blocked by the collapse of the hole wall, the hollow rod 1 in the subsequent stage can be sufficiently deeply penetrated into the extraction hole H simply by being submerged with rotation.

以下、本発明に係る地下水位の測定方法の実施形態について、図面を参照して具体的に説明する。図1は本発明で用いる中空ロッド1の要部、図2は本発明の第一実施形態の測定方法、図3は同第二実施形態の測定方法、図4は本発明で用いる1芯線の計測用絶縁ケーブル3Aの先端側、図5は同2芯線の計測用絶縁ケーブル3Bの先端側、をそれぞれ示す。なお、図3及び図4においては、中空ロッド1及び中実ロッド2を模式的に簡略化して図示している。図6で示すスウェーデン式サウンディング試験用の中実ロッド2は、本発明の第二実施形態の測定方法でも用いるものである。   Hereinafter, an embodiment of a groundwater level measurement method according to the present invention will be specifically described with reference to the drawings. 1 shows the main part of the hollow rod 1 used in the present invention, FIG. 2 shows the measuring method of the first embodiment of the present invention, FIG. 3 shows the measuring method of the second embodiment, and FIG. 4 shows the one-core wire used in the present invention. FIG. 5 shows the distal end side of the measurement insulated cable 3A, and FIG. 5 shows the distal end side of the measurement insulated cable 3B of the two-core wire. 3 and 4, the hollow rod 1 and the solid rod 2 are schematically shown in a simplified manner. The solid rod 2 for Swedish sounding test shown in FIG. 6 is also used in the measurement method of the second embodiment of the present invention.

図1(A)に示すように、中空ロッド1は、その長さ方向に沿って一定間隔d置きに径方向に貫通する横穴11を備え、これら横穴11で中空部10内と外部とが透通すると共に、先端に掘進スクリュー部材12が装着されている。また、同図(B)でも示すように、横穴11は上下位置で順次交互に90°向きが変わるように穿設され、これによって中空ロッド1の周方向で強度の偏りを生じないように設定されている。なお、間隔dは通常25cmに設定されるが、掘進スクリュー部材12の先端から最下位の横穴11までの距離も間隔dと等しくなっている。   As shown in FIG. 1 (A), the hollow rod 1 is provided with lateral holes 11 penetrating in the radial direction at regular intervals d along the length direction, and the inside and outside of the hollow portion 10 are transparent through these lateral holes 11. The excavation screw member 12 is attached to the tip. Further, as shown in FIG. 5B, the horizontal holes 11 are formed so that the directions of the horizontal holes 11 are alternately changed by 90 ° at the upper and lower positions so that the strength is not biased in the circumferential direction of the hollow rod 1. Has been. In addition, although the space | interval d is normally set to 25 cm, the distance from the front-end | tip of the digging screw member 12 to the lowest horizontal hole 11 is also equal to the space | interval d.

しかして、中空ロッド1は既述のスウェーデン式サウンディング試験に用いる中実ロッド2(図6参照)と同様に継ぎ足して使用されるが、その継ぎ足し部分には図1(C)(D)で示すようにジョイント部材5が使用される。このジョイント部材5は、筒状で外周に雄ねじ51が形成されており、中心孔52の両端部52aが引っ掛かり防止のためにラッパ状に開いた形状になっている。一方、中空ロッド1の両端部の内周には雌ねじ13が形成されており、該雌ねじ13にジョイント部材5の雄ねじ51を螺合することにより、図1(C)の如く上下の中空ロッド1の端面同士が直接に接する形で連結される。   Thus, the hollow rod 1 is used in addition to the solid rod 2 (see FIG. 6) used in the Swedish sounding test described above, and the added portion is shown in FIGS. 1C and 1D. Thus, the joint member 5 is used. The joint member 5 has a cylindrical shape and is formed with a male screw 51 on the outer periphery, and both ends 52a of the center hole 52 are open in a trumpet shape to prevent catching. On the other hand, female threads 13 are formed on the inner periphery of both ends of the hollow rod 1, and the upper and lower hollow rods 1 as shown in FIG. Are connected so that their end faces are in direct contact with each other.

第一実施形態の測定方法では、まず図2(A)で示すように、鉄やステンレス鋼等の導電性材料からなる前記の中空ロッド1を地盤Gの所定深さまで垂直に掘進貫入させる。なお、図2(A)では図示を省略しているが、この掘進貫入に際しては、該中空ロッド1の上部に図6で示す中実ロッド2と同様にクランプ22及びハンドル23を取り付けると共に錘24を載せ、該錘24による荷重負荷とハンドル23による回転操作を行う。しかして、中空ロッド1が帯水層WZまで貫入すると、地下水位WLより下位になった横穴11から地下水Wが該中空ロッド1の中空部10に浸入し、貫入停止から数分程度で該中空ロッド1内の水面WFが地下水位WLと同レベルに達して安定化する。なお、掘進貫入は、地下の帯水層に届く深さまで行えばよいが、スウェーデン式サウンディング試験に合わせて地下10mまで行ってもよい。   In the measurement method of the first embodiment, first, as shown in FIG. 2A, the hollow rod 1 made of a conductive material such as iron or stainless steel is vertically penetrated to a predetermined depth of the ground G. Although not shown in FIG. 2 (A), the clamp 22 and the handle 23 are attached to the upper portion of the hollow rod 1 in the same manner as the solid rod 2 shown in FIG. The weight 24 is loaded and the handle 23 is rotated. Thus, when the hollow rod 1 penetrates to the aquifer WZ, the groundwater W enters the hollow portion 10 of the hollow rod 1 from the lateral hole 11 which is lower than the groundwater level WL, and the hollow water 1 is about several minutes after the penetration stops. The water surface WF in the rod 1 reaches the same level as the groundwater level WL and stabilizes. In addition, the penetration penetration may be performed up to a depth reaching the underground aquifer, but may be performed up to 10 m underground in accordance with the Swedish sounding test.

次に、図2(B)で示すように、電気抵抗の変化を検出する機能を備える計測器4Aに接続した各々1芯線からなる一対の計測用絶縁ケーブル3A,3A’の内、一方の絶縁ケーブル3A’の先端を中空ロッド1の地上部分に電気接続し、先端側に電極部31を有する他方の絶縁ケーブル3Aを該中空ロッド1の中空部10に上方から挿入してゆく。そして、この絶縁ケーブル3Aの電極部31が中空ロッド1内の水面WFに達すると、水Wの導電性によって該電極部31と電極を構成する中空ロッド1との間の電気抵抗が減少するから、この電気抵抗の変化が計測器4Aにて検出されて表示される。   Next, as shown in FIG. 2 (B), one of the insulation cables 3A and 3A ′ for measurement consisting of one core wire connected to the measuring instrument 4A having a function of detecting a change in electrical resistance is insulated. The tip of the cable 3A ′ is electrically connected to the ground portion of the hollow rod 1, and the other insulated cable 3A having the electrode portion 31 on the tip side is inserted into the hollow portion 10 of the hollow rod 1 from above. When the electrode portion 31 of the insulated cable 3A reaches the water surface WF in the hollow rod 1, the electrical resistance between the electrode portion 31 and the hollow rod 1 constituting the electrode decreases due to the conductivity of the water W. This change in electrical resistance is detected and displayed by the measuring instrument 4A.

従って、この電気抵抗の変化が検出されたときの絶縁ケーブル3Aの挿入長さから、地下水位WLを正確に判定できる。すなわち、地下水位WLは、前記挿入長さより、中空ロッド1の地表面GLからの突出高さを差し引いた値である。また、このような第一実施形態の測定方法における中空ロッド1の掘進工程は、一般的なスウェーデン式サウンディング試験に利用できる。   Therefore, the groundwater level WL can be accurately determined from the insertion length of the insulated cable 3A when this change in electrical resistance is detected. That is, the groundwater level WL is a value obtained by subtracting the protruding height of the hollow rod 1 from the ground surface GL from the insertion length. The hollow rod 1 digging process in the measurement method of the first embodiment can be used for a general Swedish sounding test.

なお、図2(B)では1芯線の絶縁ケーブル3Aを中空ロッド1内に挿入しているが、図2(C)の如く計測器4Bに接続する2芯線の絶縁ケーブル3Bを用いてもよい。この2芯線の絶縁ケーブル3Bは、先端側にその両芯線に対応する電極部32a,33aが離間して配置しており、図示のように地盤Gの帯水層WZまで貫入した中空ロッド1内に挿入してゆき、両電極部32a,33aが共に該中空ロッド1内の水Wに接触すると、これら電極部32a,33a間の電気抵抗が減少し、この電気抵抗の変化が計測器4Aにて検出されて表示されるから、前記同様にその検出時の挿入長さから地下水位WLを正確に測定できる。   In FIG. 2B, the one-core insulated cable 3A is inserted into the hollow rod 1, but a two-core insulated cable 3B connected to the measuring instrument 4B as shown in FIG. 2C may be used. . In this two-core insulated cable 3B, electrode portions 32a and 33a corresponding to both the core wires are arranged apart from each other on the tip side, and inside the hollow rod 1 that penetrates to the aquifer WZ of the ground G as shown in the figure. When both the electrode portions 32a and 33a come into contact with the water W in the hollow rod 1, the electrical resistance between the electrode portions 32a and 33a decreases, and this change in electrical resistance is applied to the measuring instrument 4A. Therefore, the groundwater level WL can be accurately measured from the insertion length at the time of detection as described above.

第二実施形態の測定方法では、まず図3(A)で示すように、先端に掘進スクリュー部材12が装着された中実ロッド2を地盤Gの所定深さまで垂直に掘進貫入させたのち、同図(B)で示すように該中実ロッド2を引き抜いて抜出孔Hを形成する。この中実ロッド2は、図6で示すスウェーデン式サウンディング試験に使用するものと同様構成であり、その掘進貫入に際して図6で示すクランプ22及びハンドル23を取り付け、錘24による荷重負荷とハンドル23による回転操作を行う。しかして、該中空ロッド1が帯水層WZまで貫入しておれば、その抜出孔Hには地下水Wが浸出して溜まることになる。   In the measurement method of the second embodiment, first, as shown in FIG. 3A, the solid rod 2 having the excavation screw member 12 attached to the tip is dug vertically to a predetermined depth of the ground G, The solid rod 2 is pulled out to form an extraction hole H as shown in FIG. The solid rod 2 has the same configuration as that used in the Swedish sounding test shown in FIG. 6 and is attached with a clamp 22 and a handle 23 shown in FIG. Rotate. Thus, if the hollow rod 1 penetrates to the aquifer WZ, the groundwater W will be leached and collected in the extraction hole H.

次に、図3(C)で示すように、抜出孔Hに前記第一実施形態で用いたものと同様の中空ロッド1を貫入させると、その地下水位WLより下位になった横穴11から地下水Wが中空部10に浸入し、該中空部10内の水面WFが地下水位WLと同レベルに達して安定化する。続いて同図(D)に示すように、前記第一実施形態の場合と同様に、計測器4Aに接続した一方の絶縁ケーブル3A’を中空ロッド1の地上部分に電気接続し、他方の絶縁ケーブル3Aを該中空ロッド1の中空部10に挿入してゆけば、その電極部31が中空ロッド1内の水面WFに達したとき、該電極部31と中空ロッド1との間の電気抵抗が減少し、この電気抵抗の変化が計測器4Aにて検出されて表示される。   Next, as shown in FIG. 3 (C), when the hollow rod 1 similar to that used in the first embodiment is inserted into the extraction hole H, from the horizontal hole 11 that is lower than the groundwater level WL. The groundwater W enters the hollow portion 10, and the water surface WF in the hollow portion 10 reaches the same level as the groundwater level WL and stabilizes. Subsequently, as shown in FIG. 4D, as in the case of the first embodiment, one insulation cable 3A ′ connected to the measuring instrument 4A is electrically connected to the ground portion of the hollow rod 1 and the other insulation is provided. If the cable 3A is inserted into the hollow portion 10 of the hollow rod 1, when the electrode portion 31 reaches the water surface WF in the hollow rod 1, the electrical resistance between the electrode portion 31 and the hollow rod 1 is increased. This change in electrical resistance is detected and displayed by the measuring instrument 4A.

従って、この第二実施形態の測定方法においても、前記第一実施形態の場合と同様に、電気抵抗の変化が検出されたときの絶縁ケーブル3Aの挿入長さから、地下水位WLを正確に判定できる。そして、この第二実施形態では、前段の地盤Gに対する掘進穿孔を高強度の中実ロッド2にて行うから、後段の地下水位測定に用いる中空ロッド1は、前段の中実ロッド2の抜出孔H内に貫入するだけでよく、その中空構造の故に掘進穿孔には不充分な強度であっても支障がない。また、前段の中実ロッド2による掘進工程をスウェーデン式サウンディング試験に利用できる。   Accordingly, also in the measurement method of the second embodiment, as in the case of the first embodiment, the groundwater level WL is accurately determined from the insertion length of the insulated cable 3A when a change in electrical resistance is detected. it can. And in this 2nd embodiment, since the excavation drilling with respect to the ground G of the front | former stage is performed with the solid rod 2 of high intensity | strength, the hollow rod 1 used for a ground water level measurement of a back | latter stage is the extraction | drawer of the solid rod 2 of a front | former stage. It is only necessary to penetrate into the hole H, and there is no problem even if the strength is insufficient for excavation due to the hollow structure. Further, the excavation process by the solid rod 2 in the previous stage can be used for the Swedish sounding test.

なお、この第二実施形態のように2段階の操作を行う場合、後段の地下水位測定に用いる中空ロッド1として、下端に掘進スクリュー部材12を装着していない単なる横穴11付きのパイプ材も使用可能である。しかるに、地盤Gが軟弱な地層を含む場合等で、前段の中実ロッド2を引き抜いた抜出孔Hが孔壁の崩れ等によって部分的に塞がるような状態であっても、後段の中空ロッド1が掘進スクリュー部材12を備えるものであれば、軽く回転を伴って沈み込ませるだけで該抜出孔Hに充分に深く貫入できるという利点がある。また、この後段の地下水位測定では、第一実施形態と同様に1芯線の絶縁ケーブル3Aの代わりに計測器4Bに接続する2芯線の絶縁ケーブル3B〔図2(C)参照〕を用いることができる。   In addition, when performing a two-stage operation as in the second embodiment, a pipe material with a simple horizontal hole 11 that does not have the digging screw member 12 attached to the lower end is also used as the hollow rod 1 used for the subsequent measurement of the groundwater level. Is possible. However, in the case where the ground G includes a soft stratum, even if the extraction hole H from which the solid rod 2 is pulled out is partially blocked by the collapse of the hole wall or the like, the latter hollow rod If 1 is provided with the digging screw member 12, there exists an advantage that it can penetrate deeply into this extraction hole H only by making it sink with light rotation. In the subsequent measurement of the groundwater level, a two-core insulated cable 3B [see FIG. 2C] connected to the measuring instrument 4B is used instead of the one-core insulated cable 3A as in the first embodiment. it can.

1芯線の絶縁ケーブル3Aの場合、太い芯線で腰の強いものを利用することで、その中空ロッド1内への挿入が容易になるから、それだけ作業能率を向上できるという利点がある。特に、芯線がワイヤーからなるものでは、腰が強いために中空ロッド1内への挿入が非常に容易であると共に、安価な樹脂チューブ入りワイヤー線を利用できるので資材コストが低減されるという利点がある。一方、2芯線の絶縁ケーブル3Bの場合、中空ロッド1は電極としての機能が不要になるから、該中空ロッド1としてプラスチック等の非導電性材料からなるものも使用できるという利点がある。   In the case of the single-core insulated cable 3A, the use of a thick core wire with a strong waist facilitates the insertion into the hollow rod 1 and thus has the advantage that the work efficiency can be improved accordingly. In particular, when the core wire is made of wire, it is very easy to insert into the hollow rod 1 because it is strong, and the cost of material can be reduced because an inexpensive wire wire with a resin tube can be used. is there. On the other hand, in the case of the two-core insulated cable 3B, since the hollow rod 1 does not need a function as an electrode, there is an advantage that a non-conductive material such as plastic can be used as the hollow rod 1.

図4は、樹脂チューブ入りワイヤー線からなる1芯線の絶縁ケーブル3Aの構成例を示す。この絶縁ケーブル3Aは、ワイヤーの芯線31が絶縁材料の樹脂チューブ34で被包されており、その先端側で樹脂チューブ34の一部を除去することにより、芯線31の一部を露呈させて電極部31aを形成すると共に、ケーブル端にゴムや軟質プラスチックからなる先細で先端が丸い突端部35を形成している。しかして、このような突端部35を有することにより、中空ロッド1内への挿入時に横穴11やジョイント部材5等との引っ掛かりが防止されるため、、挿入操作がより容易になる。なお、この絶縁ケーブル3Aの中空ロッド1に対する挿入長さLは、電極部31aが基準Oとなる。   FIG. 4 shows a configuration example of a one-core insulated cable 3 </ b> A made of a wire wire with a resin tube. In this insulated cable 3A, a core wire 31 of a wire is encapsulated by a resin tube 34 of an insulating material, and a part of the core wire 31 is exposed by removing a part of the resin tube 34 at the tip side thereof. In addition to forming the portion 31a, a tapered end 35 having a tapered tip and made of rubber or soft plastic is formed at the cable end. Thus, by having such a projecting end portion 35, it is possible to prevent the horizontal hole 11 and the joint member 5 from being caught when inserted into the hollow rod 1, so that the insertion operation becomes easier. Note that the insertion length L of the insulated cable 3A with respect to the hollow rod 1 is based on the electrode portion 31a.

図5は、2芯線の絶縁ケーブル3Bの構成例を示す。この絶縁ケーブル3Bでは、絶縁層36中に埋入した2本の芯線32,33のうち、一方の芯線32がケーブル先端面から突出して電極部32aを構成すると共に、ケーブル周面側での絶縁層36の切欠36aにより、芯線33の一部を露呈させて電極部33aを構成している。このように両電極部32a,33aがケーブルの端面側と周面側とに離間することにより、中空ロッド1内への挿入時に水滴等の付着で両電極部32a,33a間が導通するのを防止できる。この絶縁ケーブル3Bの中空ロッド1に対する挿入長さLは、周面側の電極部33aが基準Oとなる。 FIG. 5 shows a configuration example of a two-core insulated cable 3B. In this insulated cable 3B, of the two core wires 32 and 33 embedded in the insulating layer 36, one core wire 32 protrudes from the front end surface of the cable to form an electrode portion 32a, and insulation on the cable peripheral surface side. A part of the core wire 33 is exposed by the notch 36a of the layer 36 to constitute the electrode portion 33a. Thus both electrode portions 32a, by 33a is spaced and end surface side and peripheral surface side of the cable, the electrodes portion 32a in the deposition of water droplets during insertion into the hollow rod 1, that the inter-33a conducts Can be prevented. With respect to the insertion length L of the insulated cable 3B with respect to the hollow rod 1, the electrode portion 33a on the peripheral surface side becomes the reference O.

電気抵抗の変化を検出する機能を備える計測器4A,4Bには、電線式水位計やテスター(電流計)等としての種々の市販品を利用できる。しかして、電気抵抗の変化を検出した際、指針や画面による表示以外に、ブザーや発光ランプによって使用者に知らせる方式でもよい。   As the measuring instruments 4A and 4B having a function of detecting a change in electrical resistance, various commercially available products such as an electric wire type water level meter and a tester (ammeter) can be used. Thus, when a change in electrical resistance is detected, a method of notifying the user by a buzzer or a light-emitting lamp may be used in addition to the indication by a pointer or a screen.

また、中空ロッド1や中実ロッド2の掘進手段として、図6では錘24による荷重負荷とハンドル23による回転操作との手動方式を例示したが、本発明では、荷重負荷を油圧シリンダー等による機械的加圧で行ったり、回転操作をモーター等で機械的に行う方式も採用可能である。更に、本発明で用いる中空ロッド1及び中実ロッド2としては、JIS規格に制定されたスウェーデン式サウンディング試験機の規定寸法に合致するものに限らず、種々の内外径を有するものを採用できる。また、ロッド先端に装着する掘進スクリュー部材についても、該サウンディング試験機のスクリューポイントとは異なる形状・構造のものも使用可能である。   Further, as a means for digging the hollow rod 1 and the solid rod 2, FIG. 6 illustrates a manual method of loading with the weight 24 and rotating operation with the handle 23. However, in the present invention, the loading is performed by a machine using a hydraulic cylinder or the like. It is also possible to adopt a method of performing mechanical pressurization or mechanically performing a rotation operation with a motor or the like. Further, the hollow rod 1 and the solid rod 2 used in the present invention are not limited to those meeting the prescribed dimensions of the Swedish sounding tester established in the JIS standard, and those having various inner and outer diameters can be adopted. Also, as the excavation screw member attached to the tip of the rod, one having a shape and structure different from the screw point of the sounding tester can be used.

〔地下水位測定試験〕
図1で示す横穴付きの中空ロッド(外径19mm,内径7mm,横穴径4mm、横穴間隔250mm)の下端に、掘進スクリュー部材としてスウェーデン式サウンディング試験用のスクリューポイントを装着したものを使用し、次の表1に記載のカ所の戸建住宅建築予定地において、それぞれ前記サウンディング試験法に準じ、該中空ロッドを地盤に垂直に4mの深さまで掘進貫入させたのち、表1記載の各経過時間毎に該中空ロッド内に市販の電線式水位計の計測用絶縁ケーブル(外径5mm、2芯線)を挿入し、水位計のリレー音と赤ランプ点灯を伴う指針の振り切りにより、ロッド先端の一対の電極部が該中空ロッド内の地下水の水面に達したことを確認し、その時の絶縁ケーブルの挿入長さから地下水位を測定した。一方、この地下水位の測定点から水平距離で3m離れた位置において、つぼ掘りによって直径約径0.2m,深さ約1mの観測穴を形成し、この観測穴における地下水位をメジャーで直接に測定し、これを基準水位とした。そして、前記の各測定水位について基準水位との差を調べたところ、表1の結果が得られた。




































[Groundwater level measurement test]
Using a hollow rod with a horizontal hole shown in FIG. 1 (outer diameter 19 mm, inner diameter 7 mm, horizontal hole diameter 4 mm, horizontal hole interval 250 mm) with a screw point for Swedish sounding test as an excavation screw member. In each of the four planned detached house construction sites listed in Table 1, after passing the hollow rod to a depth of 4 m perpendicular to the ground according to the sounding test method, each elapsed time listed in Table 1 Insert a commercially available insulated cable (outer diameter: 5 mm, 2 cores) into the hollow rod for each pair of rod-type water gauges. It was confirmed that the electrode portion reached the surface of the groundwater in the hollow rod, and the groundwater level was measured from the insertion length of the insulated cable at that time. On the other hand, an observation hole with a diameter of about 0.2 m and a depth of about 1 m is formed by digging at a position 3 m away from the measurement point of the groundwater level, and the groundwater level in this observation hole is directly measured with a measure. Measured and used as the reference water level. And when the difference with a reference | standard water level was investigated about each said measurement water level, the result of Table 1 was obtained.




































Figure 0004970416
Figure 0004970416

上表の結果から、中空ロッド貫入後の短時間で該中空ロッド内の水位が安定し、しかも測定水位と実際の水位(基準水位)との差が極めて僅かであることが判る。従って、本発明の地下水位の測定方法は、簡単な装置構成により、地盤の地下水位を正確に能率よく短時間で測定できるものと言える。なお、この地下水位測定試験では地下4mまでの穿孔を行っているが、スウェーデン式サウンディング試験に合わせて地下10mまで穿孔することも可能である。 From the results in the above table, it can be seen that the water level in the hollow rod is stabilized in a short time after the hollow rod has penetrated , and that the difference between the measured water level and the actual water level (reference water level) is very small. Therefore, it can be said that the groundwater level measuring method of the present invention can measure the groundwater level of the ground accurately and efficiently in a short time with a simple apparatus configuration. In this groundwater level measurement test, drilling is performed up to 4 m underground, but it is also possible to drill up to 10 m underground in accordance with the Swedish sounding test.

本発明の地下水位の測定方法に用いる中空ロッドを示し、(A)は要部の側面図、(B)は(A)のX−X線の断面矢視図、(C)は連結部の縦断面図、(D)は(A)のY−Y線の断面矢視図である。The hollow rod used for the measuring method of the groundwater level of this invention is shown, (A) is a side view of the principal part, (B) is a sectional view taken along the line XX of (A), and (C) is a connection part. A longitudinal cross-sectional view, (D) is a cross-sectional view taken along line YY of (A). 本発明の第一実施形態に係る地下水位の測定方法を示し、(A)は中空ロッドの掘進貫入状態、(B)は1芯線の計測用絶縁ケーブルの挿入状態、(C)は2芯線の計測用絶縁ケーブルの挿入状態、のそれぞれ模式縦断面図である。1 shows a groundwater level measurement method according to a first embodiment of the present invention, wherein (A) is a state where a hollow rod is intruded, (B) is an inserted state of an insulation cable for measuring one core wire, and (C) is a two core wire. It is a model longitudinal cross-sectional view of the insertion state of the measurement insulated cable, respectively. 本発明の第二実施形態に係る地下水位の測定方法を工程順に示し、(A)は中実ロッドの掘進貫入状態、(B)は中実ロッドの引き抜き状態、(C)は抜出孔への中空ロッドの貫入状態、(D)は1芯線の計測用絶縁ケーブルの挿入状態、のそれぞれ模式縦断面図である。The measurement method of the groundwater level which concerns on 2nd embodiment of this invention is shown in order of a process, (A) is the digging penetration state of a solid rod, (B) is the extraction state of a solid rod, (C) is to an extraction hole. (D) is a schematic longitudinal cross-sectional view of the penetration state of the hollow rod, and the insertion state of the measurement insulated cable of one core wire. 本発明で用いる1芯線の計測用絶縁ケーブルの先端側の構成例を示す斜視図である。It is a perspective view which shows the structural example of the front end side of the measurement insulated cable of 1 core wire used by this invention. 本発明で用いる2芯線の計測用絶縁ケーブルの先端側の構成例を示す斜視図である。It is a perspective view which shows the structural example by the side of the front-end | tip of the measurement insulated cable of 2 core wires used by this invention. 本発明及びスウェーデン式サウンディング試験に用いる中実ロッドの掘進貫入状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the digging penetration state of the solid rod used for this invention and a Swedish sounding test.

符号の説明Explanation of symbols

1 中空ロッド
10 中空部
11 横穴
12 掘進スクリュー部材
2 中実ロッド
21 掘進スクリュー部材
3A 1芯線の計測用絶縁ケーブル
3B 2芯線の計測用絶縁ケーブル
31 芯線(ワイヤー)
31a 電極部
32 芯線
32a 電極部
33 芯線
33a 電極部
4A 計測器
4B 計測器
G 地盤
H 抜出孔
L 挿入長さ
W 地下水
WF 水面
WL 地下水位
DESCRIPTION OF SYMBOLS 1 Hollow rod 10 Hollow part 11 Horizontal hole 12 Digging screw member 2 Solid rod 21 Digging screw member 3A Insulation cable for measurement of 1 core wire 3B Insulation cable for measurement of 2 core wire 31 Core wire (wire)
31a Electrode part 32 Core wire 32a Electrode part 33 Core wire 33a Electrode part 4A Measuring instrument 4B Measuring instrument G Ground H Extraction hole L Insertion length W Groundwater WF Water surface WL Groundwater level

Claims (2)

下端に掘進スクリュー部材が装着された中実ロッドを、スウェーデン式サウンディング試験機による荷重負荷及び回転によって地盤に垂直に掘進貫入させ、次いで該中実ロッドを地上へ抜出したのち、その抜出孔にスウェーデン式サウンディング試験機を用いて長さ方向所定間隔置きに内外を透通する横穴を設けた中空ロッドを回転させて地盤の所定深さまで垂直に貫入させたのち、電気抵抗の変化を検出する機能を備える計測器に接続した2芯線からなる円柱状の計測用絶縁ケーブルを該中空ロッド内に挿入し、この円柱状の絶縁ケーブルの端面側の電極部と周面側の電極部が中空ロッド内に浸入した地下水の水面に達した際の両電極部間の電気抵抗の変化を検出し、この検出時の該絶縁ケーブルの挿入長さから地下水位を測定してなり、
前記絶縁ケーブルの端面側の電極部と周面側の電極部は、前記中空ロッド内へ当該絶縁ケーブルを挿入する時に、前記両電極部間が水滴等の付着で導通するのを防止するように軸方向に離間してなることを特徴とする地下水位の測定方法。
A solid rod with an excavating screw member attached to the lower end is penetrated vertically into the ground by the load and rotation by a Swedish sounding tester, and then the solid rod is extracted to the ground, and then into the extraction hole. A function that detects the change in electrical resistance after rotating a hollow rod with a horizontal hole that penetrates the inside and outside at predetermined intervals in the longitudinal direction using a Swedish sounding tester and vertically penetrating it to a predetermined depth in the ground. A cylindrical measurement insulated cable consisting of a two-core wire connected to a measuring instrument equipped with is inserted into the hollow rod, and the electrode part on the end face side and the electrode part on the peripheral face side of the cylindrical insulation cable are in the hollow rod. Detecting the change in electrical resistance between the two electrode parts when reaching the surface of the groundwater infiltrated into the groundwater, measuring the groundwater level from the insertion length of the insulated cable at the time of detection,
The electrode portion on the end surface side and the electrode portion on the peripheral surface side of the insulated cable are configured to prevent conduction between the electrode portions due to adhesion of water droplets or the like when the insulated cable is inserted into the hollow rod. A method for measuring a groundwater level, characterized by being spaced apart in the axial direction.
前記抜出孔に貫入させる中空ロッドの下端に掘進スクリュー部材が装着されてなる請求項に記載の地下水位の測定方法。 The groundwater level measuring method according to claim 1 , wherein an excavation screw member is attached to a lower end of a hollow rod that penetrates into the extraction hole.
JP2008323346A 2008-12-19 2008-12-19 Groundwater level measurement method Active JP4970416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323346A JP4970416B2 (en) 2008-12-19 2008-12-19 Groundwater level measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323346A JP4970416B2 (en) 2008-12-19 2008-12-19 Groundwater level measurement method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011273530A Division JP2012083361A (en) 2011-12-14 2011-12-14 Ground water level measuring method

Publications (2)

Publication Number Publication Date
JP2010145263A JP2010145263A (en) 2010-07-01
JP4970416B2 true JP4970416B2 (en) 2012-07-04

Family

ID=42565856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323346A Active JP4970416B2 (en) 2008-12-19 2008-12-19 Groundwater level measurement method

Country Status (1)

Country Link
JP (1) JP4970416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064619A (en) * 2009-09-18 2011-03-31 Hokoku Eng Kk Method for measuring groundwater level
CN105256786A (en) * 2015-11-02 2016-01-20 赵新宏 Cable-free static sounding equipment and using method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165048B2 (en) * 2010-11-19 2013-03-21 報国エンジニアリング株式会社 Ground probe
JP5398880B1 (en) * 2012-07-10 2014-01-29 報国エンジニアリング株式会社 Soil judgment method
JP5114815B1 (en) * 2012-07-31 2013-01-09 株式会社ランドクラフト Groundwater level gauge holder
CN103410135B (en) * 2013-08-20 2015-07-08 中铁二局股份有限公司 Riverbed level measurement method based on network drill rod detection
KR101575751B1 (en) * 2014-03-14 2015-12-09 윤성순 The Measurement Apparatus and Method Measuring the Depth of the Ground that has been Drilled Using a Mandrel Perforating Apparatus
JP6755469B2 (en) * 2016-04-28 2020-09-16 信也 馬場 Retaining tube joint disconnection prevention device
CN107328454B (en) * 2017-07-25 2019-08-06 重庆工程职业技术学院 Groundwater level observation device for hydrogeological hole
CN108332816B (en) * 2018-01-12 2020-08-11 河海大学 Device and method for measuring exchange water quantity of surface water and underground water of river channel
CN112433263B (en) * 2020-12-01 2021-09-28 中南大学 Rapid and efficient underground water enrichment area direct detection method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484569Y1 (en) * 1969-10-08 1973-02-05
JPS4912407Y1 (en) * 1969-12-06 1974-03-27
JPS585725B2 (en) * 1974-10-09 1983-02-01 株式会社日立製作所 Yuatsu Atsukashiki Tsuenki
JPS5820914B2 (en) * 1975-11-21 1983-04-26 ダイセル化学工業株式会社 Ikubiyouyoubaichiseikebutsu Oyobi Sonoseizouhouhou
JPS6049224A (en) * 1983-08-29 1985-03-18 Toshiba Corp Detector of liquid level and temperature of conductive liquid
JPS63132319A (en) * 1986-11-25 1988-06-04 Hitachi Ltd Reference voltage circuit
JPH0325256U (en) * 1989-07-24 1991-03-15
JP3388144B2 (en) * 1997-07-29 2003-03-17 ライト工業株式会社 Drilling member for permeability test and permeability test method using the same
JP2000074724A (en) * 1998-08-31 2000-03-14 Sekisui Chem Co Ltd Method and apparatus for measuring groundwater level
JP2000136955A (en) * 1998-10-30 2000-05-16 Sanyo Electric Co Ltd Liquid level detecting device
JP2000180243A (en) * 1998-12-14 2000-06-30 Nihei Seisakusho:Kk Groundwater level measuring apparatus using swedish sounding tester
JP2001289694A (en) * 2000-04-10 2001-10-19 Miura Co Ltd Method and apparatus for judgment of abnormality of water-level detection body
JP2002318150A (en) * 2001-04-20 2002-10-31 Yamayo Sokuteiki Kk Probe in water-level gauge using measuring tape
JP4602594B2 (en) * 2001-05-23 2010-12-22 大和ハウス工業株式会社 Groundwater level measuring machine and sounding tester
JP4413079B2 (en) * 2004-05-26 2010-02-10 新日鉄エンジニアリング株式会社 Observation well unit and well construction method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064619A (en) * 2009-09-18 2011-03-31 Hokoku Eng Kk Method for measuring groundwater level
CN105256786A (en) * 2015-11-02 2016-01-20 赵新宏 Cable-free static sounding equipment and using method thereof
CN105256786B (en) * 2015-11-02 2017-03-22 赵新宏 Cable-free static sounding equipment and using method thereof

Also Published As

Publication number Publication date
JP2010145263A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP4970416B2 (en) Groundwater level measurement method
JP7248241B2 (en) Confirmation method of ground improvement effect and measuring device used therefor
JP5078964B2 (en) Groundwater level measurement method
CN106192971B (en) A kind of artesian water water-level observation well construction and the method for multilayer water-level observation
CN104532886B (en) A kind of bored concrete pile pile bottom sediment and pile end groundwork checkout gear and method
CN202182830U (en) Sandy soil rotary embedding device
JP4458465B2 (en) Ground investigation method and device by measuring excess pore water pressure during impact penetration
JP2014122464A (en) Subsurface exploration method and subsurface exploration apparatus
CN206418477U (en) A kind of in-situ testing device of the soil moisture and resistivity
RU2248019C2 (en) Method of measuring column diameter
CN108570978B (en) Hollow side wall wiring type static cone penetration test equipment
JP2012083361A (en) Ground water level measuring method
CN212931948U (en) Environmental soil sample collection system
CN217758674U (en) Static pressure embedded type water and soil pressure testing device capable of being recycled
JP3169256U (en) Water level measuring device
JP2011064007A (en) Penetration rod for measuring underground water content
JP6029528B2 (en) Ground evaluation method
JP2013019235A (en) Soil measuring method and soil measuring apparatus for use in the same
JP3183846U (en) Sampler for sampling
JP2006322175A (en) Sampler for soil sample
JP3155815U (en) Groundwater level measuring device
CN115125929A (en) Recyclable static pressure embedded type water and soil pressure testing device and using method thereof
JP2011112506A (en) Penetration rod
CN219671299U (en) TDR buries instrument
JP3025256U (en) Groundwater level measuring device using Swedish sounding tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110720

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4970416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250