JP4413079B2 - Observation well unit and well construction method using the same - Google Patents

Observation well unit and well construction method using the same Download PDF

Info

Publication number
JP4413079B2
JP4413079B2 JP2004156359A JP2004156359A JP4413079B2 JP 4413079 B2 JP4413079 B2 JP 4413079B2 JP 2004156359 A JP2004156359 A JP 2004156359A JP 2004156359 A JP2004156359 A JP 2004156359A JP 4413079 B2 JP4413079 B2 JP 4413079B2
Authority
JP
Japan
Prior art keywords
hollow tube
tube body
strainer member
groundwater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004156359A
Other languages
Japanese (ja)
Other versions
JP2005336822A (en
Inventor
靖 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2004156359A priority Critical patent/JP4413079B2/en
Publication of JP2005336822A publication Critical patent/JP2005336822A/en
Application granted granted Critical
Publication of JP4413079B2 publication Critical patent/JP4413079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Earth Drilling (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、観測井ユニットおよびこれを用いた井戸の構築方法に関する。 The present invention relates to a watch Hakai units and the well construction method of using the same.

地下水脈の観測井は種々の目的で掘削される。例えば、従来多く行われる地下水を利用対象としてとらえ調査するのは、飲料水や雑用水、工業用水として地下水、いわゆる井戸水を利用する場合で、供給能力や周囲環境への影響等を把握するために行なう。飲料水の採水等において、地下水を悪影響因子としてとらえ調査する場合は、最も一般的な方法として、採水地をボーリングによって井戸を掘削し、井戸に測定装置を挿入して被圧帯水層から井戸内に流入する地下水の水質を測定している。   The observation well for groundwater veins is excavated for various purposes. For example, groundwater that is often used in the past is surveyed for use in drinking water, miscellaneous water, and industrial water, when using groundwater, so-called well water, in order to grasp the impact on supply capacity and surrounding environment, etc. Do. When sampling groundwater as an adverse factor in drinking water sampling, etc., the most common method is to drill a well by drilling a well and insert a measuring device into the well. The quality of groundwater flowing into the well is measured.

また、新たな目的としては、最近自然エネルギーの有効利用の一環として地中熱利用システムが研究されていることがあり、このための地下水脈の調査である。地中熱利用システムとは、大地の安定した温度を熱源として利用するため高効率であり、さらに、大地の大きな熱容量を利用する省エネルギー性に優れたシステムである。このような地中熱利用システムにおいては、地盤を冷熱利用時には放熱源として、温熱利用時には採熱源として利用するが、その採放熱量は地下水動の大小・方向により大きく影響を受ける。このように地中熱利用システムの規模を決め設計するうえで、地下水の流向・流速を測定することは重要条件である。   As a new purpose, the geothermal heat utilization system has recently been researched as part of the effective use of natural energy, and this is the investigation of groundwater veins for this purpose. A geothermal heat utilization system is a system that is highly efficient because it uses the stable temperature of the earth as a heat source, and that is excellent in energy saving that uses a large heat capacity of the earth. In such a geothermal heat utilization system, the ground is used as a heat radiation source when using cold heat, and as a heat collection source when using heat, but the amount of heat radiation is greatly affected by the magnitude and direction of groundwater movement. It is an important condition to measure the flow direction and flow velocity of groundwater in determining and designing the scale of geothermal heat utilization system.

前述の目的で地下水の流向・流速等の地下水脈を調査する際の観測井設置例について、図5に概要図を示し、この第1従来例を説明する   FIG. 5 shows a schematic diagram of an observation well installation example when investigating groundwater veins such as the flow direction and flow velocity of groundwater for the above-mentioned purpose, and this first conventional example will be described.

同図に示すように、No.1の地点の結果より、主に、GL−11.1m付近以深に分布する砂礫層(測定対象となる層)における地下水流向流測定用と、長期地下水位観測用の井戸として、地下水位減少観測井をNo.1の地点から1.8m程度離し位置に設置し、その構築は次の工程で行う。(1)GL−14mまで削孔径Φ136mmで掘進して掘削孔1を構築する。(2)掘削孔1内に先端ストレーナ2の加工を施した塩ビパイプ(外径Φ76mm、内径Φ67mm)3を挿入する。また、ストレーナ2の深度は、GL−10m〜GL−13mの3mの間とし、ストレーナ2の加工は開口率が約7%で防虫網♯20メッシュ巻きとする。(3)ストレーナ2の部分にフィルター材4として砂礫(2号)を充填し、その以浅は止水材(ペルクラブ)5や発生土6を用いて止水し、下端は砂だまり(底蓋付き)7とした。(4)塩ビパイプ3内を清水にて洗浄した。(5)塩ビパイプ3の上端には塩ビパイプ上蓋11を被せ、地表部8はコンクリート雨水枡12を用いて養生する。前記のようにして観測井を構築の後、塩ビパイプ3内に流入した地下水を測定器で測定する。   As shown in FIG. From the result of point 1, groundwater level decrease observation is mainly used as a well for groundwater flow countercurrent measurement and long-term groundwater level observation in the gravel layer (layer to be measured) distributed deeper than GL-11. Well No. It is installed at a position about 1.8m away from point 1 and its construction is performed in the following steps. (1) The excavation hole 1 is constructed by digging up to GL-14 m with a drilling diameter of Φ136 mm. (2) A vinyl chloride pipe (outer diameter Φ76 mm, inner diameter Φ67 mm) 3 having the tip strainer 2 processed therein is inserted into the excavation hole 1. The depth of the strainer 2 is between 3 m from GL-10 m to GL-13 m, and the strainer 2 is processed with an insect net # 20 mesh winding with an aperture ratio of about 7%. (3) The strainer 2 is filled with gravel (No. 2) as the filter material 4, and the shallower part is stopped with a water-stopping material (pel club) 5 and the generated soil 6, and the bottom end is a puddle (with a bottom lid) ) 7. (4) The inside of the PVC pipe 3 was washed with fresh water. (5) The upper end of the PVC pipe 3 is covered with an upper lid 11 of the PVC pipe, and the ground surface portion 8 is cured using a concrete rainwater trough 12. After constructing the observation well as described above, the groundwater flowing into the PVC pipe 3 is measured with a measuring instrument.

図5による観測井の構築方法によると、削孔、管挿入、遮水、埋め戻しと多工程を含むため、高コストである。このため、さく井工事や建築工事、地中熱利用設備工事の計画・設計段階では、実施することが容易ではなく、計画・設計段階では、地質調査やそれに伴う地下水位の観測といった簡易調査や計画地周辺の既存データ収集に留め、これらの情報を基に設計をする場合が多い。しかし、実際の施工段階で調査予算を確保した上での許容値に納まっていないことも少なくない。また、観測井は1地点の1深度測定のために1本設置しなければならない。1地点で2深度測定が必要な場合には2本の井戸が必要となる。   The observation well construction method according to FIG. 5 is costly because it includes drilling, pipe insertion, water shielding, backfilling, and multiple processes. For this reason, it is not easy to carry out at the planning / designing stage of drilling, building, and geothermal facility construction. At the planning / designing stage, simple surveys and planning such as geological surveys and observation of the groundwater level associated therewith are not possible. In many cases, the design is based on this information, collecting existing data around the ground. However, it is often the case that the survey budget is secured at the actual construction stage and is not within the allowable value. One observation well must be installed to measure one depth at one point. If two depth measurements are required at one point, two wells are required.

図6(a)、(b)には、第2従来例として、自然水位測定や現場透水試験を行なう場合に用いる一般的な遮水方法である、簡易な測定孔を掘削する2例を示す。各図において、掘削孔13内に測定用パイプ14を直接挿入し、または、該測定用パイプ14を孔壁保護用に用いる上位帯水層との遮水用パイプ15の内側に挿入したうえ、この測定用パイプ15を孔底16まで降ろし、砂地盤(地下水脈層)17に埋設して遮水し、遮水区間18の下側にある測定区間19で測定する。   FIGS. 6 (a) and 6 (b) show two examples of excavating a simple measurement hole, which is a general water shielding method used when performing a natural water level measurement or an in-situ permeability test as a second conventional example. . In each figure, the measurement pipe 14 is inserted directly into the excavation hole 13, or the measurement pipe 14 is inserted inside the water shielding pipe 15 with the upper aquifer used for hole wall protection, The measurement pipe 15 is lowered to the hole bottom 16, buried in the sand ground (groundwater vein layer) 17 and impermeable, and measured in a measurement section 19 below the impermeable section 18.

前記の簡易な測定孔では、自然水位測定や透水係数を得る現場透水試験は可能であるが、測定精度を要する流向や流速の測定は行えないという問題がある。   With the simple measurement hole, natural water level measurement and in-situ water permeability test to obtain the water permeability coefficient are possible, but there is a problem that it is impossible to measure the flow direction and flow velocity that require measurement accuracy.

その他の従来技術として、特開2003−129527号公報に開示の地下水探索方法と井戸管に関するものがあるが、この従来技術は、本発明とは構造が異なり、かつ地下水調査に関しては本発明における調査内容までは至っておらず、地下水の有無を確認するまでの方法に関するものである。
特開2003−129527号公報
As another conventional technique, there is a groundwater search method and a well pipe disclosed in Japanese Patent Application Laid-Open No. 2003-129527. However, this conventional technique has a structure different from that of the present invention, and the groundwater survey in the present invention The content has not been reached, but relates to a method for confirming the presence or absence of groundwater.
JP 2003-129527 A

前記の通り各種の目的などで地下水脈の観測井が掘削されるが、従来技術は、ボーリングと井戸掘りの別の工事が行なわれており工期が長期化すると共に工事費も嵩むなどの問題があった。また、従来の観測井は、1地点での1深度測定のために1本設置しなければならず、1地点で2深度測定が必要な場合には2本の井戸が必要となり、さらに、複数地点での深度測定が必要な場合には複数本の井戸が必要で手間やコストがかった。また、従来は測定精度を要する流向や流速の測定は行えないなどの問題があった。また、特開2003−129527に開示の技術は、地下水調査に関しては本発明における調査内容までは至っておらず、地下水の有無を確認するに止まっていた。   As mentioned above, the observation wells for groundwater veins are excavated for various purposes. However, the conventional technique has problems such as separate construction for boring and well drilling, which requires a longer construction period and higher construction costs. there were. In addition, one conventional observation well must be installed for one depth measurement at one point, and two wells are required when two depth measurements are required at one point. When depth measurement at a point is required, multiple wells were required, which was troublesome and costly. Further, there has been a problem that the flow direction and the flow velocity that require measurement accuracy cannot be measured conventionally. Further, the technique disclosed in Japanese Patent Application Laid-Open No. 2003-129527 has not reached the contents of the investigation in the present invention with respect to the groundwater survey, and has only been to confirm the presence or absence of the groundwater.

本発明は、従来技術の問題点を解決した観測井ユニットおよびこれを用いた井戸の構築方法を提供すること目的とする。 The present invention aims to provide a well construction method of using a saw Hakai units and which has solved the problems of the prior art.

前記の目的を達成するのため本発明は次のように構成する。   In order to achieve the above object, the present invention is configured as follows.

第1の発明は、下端部に螺旋状羽根からなる回転羽根を設けられた中空管体にストレーナ部材を内挿し、前記ストレーナ部材は、中空管体の貫入または回転圧入時に該ストレーナ部材によって前記中空管体の先端開口部を閉塞しており、前記中空管体の貫入または回転圧入によって地下水取水・還元または調査・観測等を行なう地層まで埋設した後、前記中空管体の逆回転により前記先端開口部を開放することで、前記ストレーナ部材に地層水が流出入可能であることを特徴とする。 According to a first aspect of the present invention , a strainer member is inserted into a hollow tube body provided with a rotating blade made of a spiral blade at the lower end , and the strainer member is inserted by the strainer member when the hollow tube body is inserted or rotated. The hollow tube body is closed at the front end, and after being buried up to the ground layer where groundwater intake / reduction or investigation / observation is performed by penetration or rotary press-fitting of the hollow tube body, It is characterized in that formation water can flow into and out of the strainer member by opening the tip opening by rotation .

第2の発明は、下端部に回転羽根を設けられた中空管体にストレーナ部材を内挿し、前記ストレーナ部材は、中空管体の貫入または回転圧入時に該ストレーナ部材によって前記中空管体の先端開口部を閉塞しており、前記中空管体の貫入または回転圧入によって地下水取水・還元または調査・観測等を行なう地層まで埋設した後、前記中空管体の逆回転により前記先端開口部を開放することで、前記ストレーナ部材に地下水が流出入可能であることを特徴とする。 According to a second aspect of the present invention , a strainer member is inserted into a hollow tube body provided with a rotary blade at a lower end portion, and the strainer member is inserted into the hollow tube body or rotated by press-fitting the hollow tube body by the strainer member. The tip opening is closed by the reverse rotation of the hollow tube after being embedded up to the ground for water intake, reduction or investigation / observation, etc. By opening the section, groundwater can flow into and out of the strainer member .

の発明は、第1または第2の発明において、前記ストレーナ部材は、有孔パイプ、網、フィルター材等から構成されていることを特徴とする。 A third invention is characterized in that, in the first or second invention, the strainer member is composed of a perforated pipe, a net, a filter material and the like.

の発明は、第1〜第3の発明において、前記ストレーナ部材は、前記中空管体の先端から出入可能に設け、中空管体の貫入または回転圧入時に前記ストレーナ部材は、上限まで移動して中空管体に内蔵されることで先端開口部を閉塞しており、地下水取水・還元または調査・観測等を行う地層まで埋設した後、ストレーナ部材を前記地層に残置して中空管体が逆回転により所定長さ上動することで、該ストレーナ部材に地層水が流出入可能であることを特徴とする。 According to a fourth aspect of the present invention, in the first to third aspects, the strainer member is provided so as to be able to enter and exit from a tip of the hollow tube body, and the strainer member is allowed to reach an upper limit when the hollow tube body is penetrated or rotationally pressed. The tip opening is closed by moving and being embedded in the hollow tube body, and after burying the groundwater intake, reduction or investigation / observation, the strainer member is left in the formation by pipe by a predetermined length upward by the reverse rotation, characterized in that formation water is possible inflow and outflow to the strainer member.

の発明は、第〜第の発明において、前記中空管体に内挿のストレーナ部材は、通水部を有する筒状部と筒状部の上端係止部が止水リングを介して中空管体内を移動可能に設けられ、筒状部の下端が中空管体の開口部の閉塞体を構成していることを特徴とする。 According to a fifth invention, in the first to fourth inventions, the strainer member inserted in the hollow tube body includes a tubular portion having a water passage portion and an upper end locking portion of the tubular portion provided with a water stop ring. And the lower end of the cylindrical portion constitutes a closed body of the opening of the hollow tube.

の発明は、第〜第5の発明において、前記中空管体に内挿管が挿入されており、該内挿管の下端に前記ストレーナ部材が構成されていることを特徴とする。 A sixth invention is characterized in that, in the first to fifth inventions, an inner intubation tube is inserted into the hollow tube body, and the strainer member is formed at a lower end of the inner intubation tube.

の発明は、第〜第の発明において、前記中空管体に内挿のストレーナ部材には、地下水の流向、流速、流量、水温又は水質を測定できる計測装置が設置されていることを特徴とする。 According to a seventh invention, in the first to sixth inventions, the strainer member inserted in the hollow tube body is provided with a measuring device capable of measuring the flow direction, flow velocity, flow rate, water temperature or water quality of groundwater . It is characterized by that.

の発明は、第1〜第の発明に記載の中空管体は観測井のみならず地下水使用のための揚水井戸を構築するものとして使用されることを特徴とする。 An eighth invention is characterized in that it is used as a hollow tube body according to the first to seventh aspect of the present invention is to construct a pumping wells for groundwater used not monitoring wells only.

の発明は、第〜第の発明に記載の中空管体を地中に回転圧入して1地点において1深度での地下水の流向、流速、流量、水温又は水質の測定をした後、再度、ストレーナ部分を収納しながら中空管体を正回転して貫入を続け、複数の深度での測定を可能としたことを特徴とする。 In the ninth invention, the hollow tube described in the first to seventh inventions is rotationally pressed into the ground, and the flow direction, flow velocity, flow rate, water temperature or water quality at one depth is measured at one point. Thereafter, the hollow tube body is rotated forward while the strainer portion is housed again, and the penetration is continued, thereby enabling measurement at a plurality of depths.

10の発明は、第〜第の発明に記載の中空管体を地中に回転圧入して1地点において1深度での地下水の流向、流速、流量、水温又は水質の測定をした後、地中から引き抜き他の場所に移動し前記中空管体を再度地中に打設して前記の測定を繰り返すことを特徴とする。 In a tenth aspect of the invention, the hollow tube described in the first to seventh aspects of the invention is rotationally pressed into the ground, and the flow direction, flow velocity, flow rate, water temperature, or water quality at one depth is measured at one point. after moving from the ground to the pull-out elsewhere in Da設underground said hollow tube body again and repeating the measurement of the.

本発明によると次の効果がある。   The present invention has the following effects.

本発明によると、観測井や地下水使用のための揚水井戸を構築するとき、削孔、管挿入、埋め戻しを1工程で行うことができる。また、中空管体の貫入または回転圧入位置からの引上げによるストレーナ部材の地下水脈層への残置という付加的な工程にて遮水を含む井戸設置の全工程が完了するため、従来方法より短時間で安価に井戸の設置が可能であり、かつ計画・設計段階での調査実施が可能となる。   According to the present invention, when constructing an observation well or a pumping well for groundwater use, drilling, pipe insertion, and backfilling can be performed in one step. In addition, the entire process of installing wells including water shielding is completed by an additional process of leaving the strainer member in the groundwater vein layer by penetrating the hollow tube body or pulling it up from the rotary press-fitting position. Wells can be installed inexpensively in time, and surveys can be conducted at the planning and design stages.

また、本発明によると、1地点に1深度を測定した後、再度、ストレーナ部材を中空管体に収納しながら該中空管体の正回転により貫入または回転圧入を続け、1地点での複数の深度の測定が可能となる。   Further, according to the present invention, after measuring one depth at one point, the penetration or rotation press-fitting is continued by positive rotation of the hollow tube body while the strainer member is housed in the hollow tube again. Multiple depth measurements are possible.

また、本発明によると、ストレーナ部材付きの中空管体(観測井ユニット)の逆回転により、一度地中に埋設した前記観測井ユニットを地上に引上げ、再度、別の地点にて埋設設置することが可能であり、これにより1本の観測井ユニットで複数の地点の地下水調査が可能となる。   In addition, according to the present invention, the observation well unit once buried in the ground is pulled up to the ground by reverse rotation of the hollow tube body (observation well unit) with the strainer member, and is buried again at another point. This makes it possible to investigate groundwater at multiple points with one observation well unit.

また、本発明によると、観測井ユニットと同等のストレーナ部分を構築可能なので、測定精度を要する流向や流速の測定が可能である。   In addition, according to the present invention, since a strainer portion equivalent to the observation well unit can be constructed, it is possible to measure the flow direction and the flow velocity that require measurement accuracy.

また、本発明によると、観測井のみならず地下水使用のための揚水井戸を構築することも可能である。   In addition, according to the present invention, it is possible to construct a pumping well for use of groundwater as well as an observation well.

[第1実施形態]
本発明の第1実施形態の観測井ユニットについて、図1を参照して説明する。同図に示すように、第1実施形態の観測井ユニット20は、下端部に回転羽根21を有するとともに下端に開口部22を有する中空管体23と、前記中空管体23の内部に納められ、かつ下端開口部22から突出可能なストレーナ部材24とから構成される。すなわち、中空管体23は、回転羽根21により地中に回転圧入できるとともに、圧入時にはストレーナ部材24は図1(a)のように上動して中空管体23の内部に納まっており、このとき中空管体23の先端開口部22を閉塞している。また、所定深度まで中空管体23を回転圧入したのち、該中空管体23を逆回転させて所定高さまで上動させることで、図1(b)のようにストレーナ部材24を貫入位置に残して、該ストレーナ部材24を中空管体23の先端から突出させることができる。なお、前記回転羽根21に代えて螺旋状羽根からなる回転羽根を設けてもよく、この場合、該螺旋状の回転羽根の推進力により中空管体23の回転貫入または回転圧入施工することも可能である。
[First Embodiment]
The observation well unit according to the first embodiment of the present invention will be described with reference to FIG. As shown in the figure, the observation well unit 20 of the first embodiment includes a hollow tube 23 having a rotary blade 21 at the lower end and an opening 22 at the lower end, and an inside of the hollow tube 23. The strainer member 24 is accommodated and can protrude from the lower end opening 22. That is, the hollow tube body 23 can be rotationally press-fitted into the ground by the rotary blades 21, and at the time of press-fitting, the strainer member 24 moves up as shown in FIG. At this time, the distal end opening 22 of the hollow tube body 23 is closed. Further, after the hollow tube body 23 is rotationally press-fitted to a predetermined depth, the hollow tube body 23 is reversely rotated and moved up to a predetermined height, so that the strainer member 24 is inserted into the penetration position as shown in FIG. In addition, the strainer member 24 can protrude from the tip of the hollow tube body 23. In addition, you may provide the rotary blade which consists of a spiral blade instead of the said rotary blade 21, and in this case, the hollow tube body 23 may be rotationally penetrated or rotationally press-fitted by the propulsive force of the spiral rotary blade. Is possible.

中空管体23の材質は一般に鋼管で構成されるが、鋼管に限定されることなく、プラスチック等の樹脂系材料で構成されていてもよい。回転羽根21は中空管体23に対して同心状に固定されて中空管体23の下端部25から離れながら螺旋状に上昇し、終端切断面26までほぼ1周程度周回するように形成されている。回転羽根2の周回数や開き角度等は中空管体23の地中への回転圧入に適した設計とするのがよい。   The material of the hollow tube body 23 is generally composed of a steel pipe, but is not limited to a steel pipe, and may be composed of a resin-based material such as plastic. The rotary blade 21 is concentrically fixed with respect to the hollow tube body 23, rises spirally while being separated from the lower end portion 25 of the hollow tube body 23, and is formed so as to circulate about one turn to the terminal cut surface 26. Has been. The number of rotations, the opening angle, and the like of the rotary blade 2 are preferably designed to be suitable for rotary press-fitting of the hollow tube body 23 into the ground.

また中空管体23の先端に形成された開口部22の内周部には係合段部27が形成されている。開口部22に挿入されるストレーナ部材24は、前記係合段部27と中空管体23内の上部のストッパー28に制限される範囲で上下移動可能に設けられている。ストレーナ部材24は図示例では金属等の有孔パイプで構成されていて、多数の通水孔29を有する筒状部30の上端にフランジ部31を有すると共に、下端には下部が尖った先端閉塞部32を有している。筒状部30の外径は先端開口部22に摺動可能に嵌合できる大きさ設けられており、また、先端閉塞部22は中空管体23の先端閉塞板を兼用しており図1(a)のようにストレーナ部材24が上限まで移動している回転圧入時には、先端閉塞部32が中空管体23の開口部22を閉塞した状態にある。   An engagement step portion 27 is formed on the inner peripheral portion of the opening portion 22 formed at the tip of the hollow tube body 23. The strainer member 24 inserted into the opening 22 is provided so as to be movable up and down within a range limited by the engagement step portion 27 and the upper stopper 28 in the hollow tube body 23. In the illustrated example, the strainer member 24 is formed of a perforated pipe made of metal or the like. The strainer member 24 has a flange portion 31 at the upper end of a cylindrical portion 30 having a large number of water passage holes 29 and has a lower end pointed at the lower end. A portion 32 is provided. The outer diameter of the cylindrical portion 30 is provided so as to be slidably fitted into the distal end opening 22, and the distal end closing portion 22 also serves as the distal end closing plate of the hollow tube body 23. At the time of rotational press-fitting when the strainer member 24 is moved to the upper limit as in (a), the tip closing portion 32 is in a state of closing the opening portion 22 of the hollow tube body 23.

図示の例ではストレーナ部材24は、有孔金属パイプで構成しているが、この他にも金属網、フィルター材等で構成してもよいし、さらに、前記の材料を組み合わせてストレーナ部材を構成してよい。例えば、図のように通水孔29を有する筒状部30の外周に金属網33やフィルター材を巻いてもよい。   In the illustrated example, the strainer member 24 is composed of a perforated metal pipe. However, in addition to this, the strainer member 24 may be composed of a metal net, a filter material, or the like, and further, the strainer member is configured by combining the above materials. You can do it. For example, a metal net 33 or a filter material may be wound around the outer periphery of the cylindrical portion 30 having the water passage holes 29 as shown in the figure.

ストレーナ部材24は、中空管体23の圧入時には、図1(a)の上限位置まで上動している。この上限位置において、フランジ部31が中空管体23の内面に設けたストッパー28に係合して上動が制限されており、この上限位置で先端閉塞部32は中空管体23の開口部22に位置して該開口部22を閉塞しており、これにより中空管体23の円滑な回転圧入を可能としており、管体内に土砂が入ることなく、ストレーナ部材24も保護される。この図1(a)は、中空管体23の下端を所期深度、つまり地下水脈層である砂礫層34の下端35近くまで圧入した状態を図示している。   The strainer member 24 moves up to the upper limit position in FIG. 1A when the hollow tube body 23 is press-fitted. At this upper limit position, the flange portion 31 engages with a stopper 28 provided on the inner surface of the hollow tube body 23 to restrict upward movement. At this upper limit position, the distal end closing portion 32 opens the hollow tube body 23. The opening portion 22 is closed at the portion 22, thereby enabling the hollow tube body 23 to be smoothly rotated and pressed, and the strainer member 24 is also protected without entering earth and sand. FIG. 1A illustrates a state in which the lower end of the hollow tube body 23 is press-fitted to a predetermined depth, that is, close to the lower end 35 of the gravel layer 34 that is a groundwater vein layer.

図1(b)は、中空管体23を地下水脈層である砂礫層34の下端35近くまで圧入した後、ストレーナ部材24を砂礫層34に残して中空管体23を逆回転させ、管体の下端部25が砂礫層34のほぼ上端36の高さ位置になるまで引き上げた状態を示している。中空管体23を引き上げる際は、ストレーナ部材24が中空管体23につれて上動しないように、該ストレーナ部材24には、適宜の押し下げ手段(図示省略)を用いて矢印イで示す下向きの力を付与しておくものである。   In FIG. 1B, after the hollow tube body 23 is press-fitted to near the lower end 35 of the gravel layer 34 that is a groundwater vein layer, the strainer member 24 is left in the gravel layer 34 and the hollow tube body 23 is rotated in reverse. A state in which the lower end portion 25 of the tubular body is pulled up to the height position of the upper end 36 of the gravel layer 34 is shown. When the hollow tube body 23 is pulled up, the strainer member 24 is provided with an appropriate downward push-down means (not shown) so that the strainer member 24 does not move up with the hollow tube body 23. It gives power.

図1(b)の状態において、砂礫層34を流れる地下水は通水孔29を通してストレーナ部材24内に流入でき、このストレーナ部材24内に設置した測定器で地下水の調査ができる。また、地下水はストレーナ部材24の内部を通って中空管体23の内部にも流入できるので、地下水脈の持つ水圧に対応して一定の水位まで中空管体23内を上昇する地下水を該中空管体23内でも測定できる。   In the state of FIG. 1B, the groundwater flowing through the gravel layer 34 can flow into the strainer member 24 through the water passage hole 29, and the groundwater can be investigated with a measuring instrument installed in the strainer member 24. Further, since the groundwater can flow into the hollow tube body 23 through the inside of the strainer member 24, the groundwater rising in the hollow tube body 23 to a certain water level corresponding to the water pressure of the groundwater veins It can also be measured in the hollow tube body 23.

第1実施形態の観測井ユニット20の地中埋設施工は、以下の工程で行なわれる。   Underground construction of the observation well unit 20 of the first embodiment is performed in the following steps.

(1)中空管体23の地中への回転圧入には、まず図2の左端に示すように、井戸堀りする地点に中空管体23を立て、図示省略の回転圧入駆動装置により、該中空管体23を軸線の周囲に回転させる。それにより中空管体23は、回転羽根21により図2の右側に順に示すように次第に地中に回転圧入されていく。このときストレーナ部材24は、土砂により押し上げ力を受けて上動しフランジ部31が中空管体23内に設けたストッパー28に係合し、上動が阻止されている。このとき、ストレーナ部材24の先端の閉塞部32が中空管体23の先端開口を閉じた閉塞先端の機能を果たしているので、中空管体23内には土砂が浸入せず、所定の地盤層まで円滑に回転圧入できる。 (1) For rotational press-fitting of the hollow tube body 23 into the ground, first, as shown at the left end of FIG. The hollow tube body 23 is rotated around the axis. Thereby, the hollow tube body 23 is gradually press-fitted into the ground by the rotary blades 21 as shown in order on the right side of FIG. At this time, the strainer member 24 is moved upward by receiving the pushing force by the earth and sand, and the flange portion 31 is engaged with the stopper 28 provided in the hollow tube body 23 to prevent the upward movement. At this time, the closed portion 32 at the distal end of the strainer member 24 functions as a closed distal end that closes the distal end opening of the hollow tube body 23. Therefore, the earth and sand do not enter the hollow tube body 23, and a predetermined ground. Smooth press-fitting up to the layer.

(2)中空管体1を所望の長さまで回転圧入した後、そして、図2の右端に示すように砂礫層(地下水脈層)34に達すれば、中空管体23を逆回転させることにより、ストレーナ部材24のみを地下水脈層34に残して所定の高さ位置まで引き上げる。このとき、ストレーナ部材24のフランジ部31の下側に嵌着した止水用リング37が中空管体23の先端内周の係合段部27に係止し、この係合部での止水が確保され、かつ、ストレーナ部材24は中空管体23の下端から下限まで突出している。 (2) After the hollow tube 1 is rotationally press-fitted to a desired length and then reaches the gravel layer (groundwater vein layer) 34 as shown at the right end of FIG. 2, the hollow tube 23 is rotated in reverse. Thus, only the strainer member 24 is left in the groundwater vein layer 34 and pulled up to a predetermined height position. At this time, the water stop ring 37 fitted to the lower side of the flange portion 31 of the strainer member 24 is engaged with the engagement step portion 27 on the inner periphery of the distal end of the hollow tube body 23, and the stop at the engagement portion is stopped. Water is secured, and the strainer member 24 protrudes from the lower end of the hollow tube body 23 to the lower limit.

前記の操作により、ストレーナ部材24には砂礫層(地下水脈層)34を流れる水が通水孔29を通って流出入するので、該ストレーナ部材24の内部に設置した各種の計測器(図示せず)で地下水の流向、流速、流量、水温、水質などを測定できる。水位などは中空管体23内に流入する水位で測定するとともに、この中空管体23内を上昇した地下水を汲んで測定する場合もあり、このため中空管体23内は清浄に保たれていることが必要であるが、本発明では、中空管体23の圧入時には下端開口部22がストレーナ部材24によって閉塞されているので、中空管体23の内部に回転圧入時に土砂が浸入せず、回転圧入の後も、ストレーナ部材24でろ過された地下水が中空管体23内に入るので、手間がかかる洗浄の必要がなく効率的な各種の測定ができる。   As a result of the above operation, the water flowing through the gravel layer (groundwater vein layer) 34 flows into and out of the strainer member 24 through the water passage hole 29, so that various measuring instruments (not shown) installed inside the strainer member 24 are shown. The flow direction, flow velocity, flow rate, water temperature, water quality, etc. can be measured. The water level and the like are measured at the level of water flowing into the hollow tube body 23 and may be measured by pumping ground water that has risen through the hollow tube body 23. For this reason, the hollow tube body 23 is kept clean. In the present invention, the lower end opening 22 is closed by the strainer member 24 when the hollow tube body 23 is press-fitted. Even after the rotary press-fitting without entering, the ground water filtered by the strainer member 24 enters the hollow tube body 23, so that various kinds of efficient measurements can be performed without the need for troublesome washing.

また、測定する1つの地点において、地下水脈層34が地中深い場合などの関係でさらに、複数の深度の測定が必要な場合は、1つの深度を測定した後、再度、ストレーナ部分24を管体内に収納しながら中空管体23を正回転して回転圧入を続け、1地点で別の深度の測定を連続的に行なうことが可能である。また測定深度により中空管体23の長さが不足するときは、複数の中空管体23を継ぎ足しながら所定深度の地下水脈層34の調査ができる。   Further, in the case where a plurality of depths need to be measured at a single point to be measured, such as when the groundwater vein layer 34 is deep underground, after measuring one depth, the strainer portion 24 is again connected to the tube. While the hollow tube body 23 is housed in the body, it is possible to continuously rotate and press-fit the hollow tube body 23 and continuously measure different depths at one point. Further, when the length of the hollow tube body 23 is insufficient due to the measurement depth, the underground water vein layer 34 at a predetermined depth can be investigated while adding the plurality of hollow tube bodies 23.

さらに、本発明の観測井ユニット20を用いて複数地点の地下水脈層34の測定を行なうときは、1地点での測定を終わった観測井ユニット20の中空管体23を逆回転させて、一度地中に埋設した前記ユニット20を地上に引上げ、再度、別の地点にて中空管体23を貫入設置することで1本の観測井ユニット20で複数の地点の円滑な可能地下水調査が可能となる。   Furthermore, when measuring the groundwater vein layer 34 at a plurality of points using the observation well unit 20 of the present invention, the hollow tube body 23 of the observation well unit 20 that has finished the measurement at one point is reversely rotated, The unit 20 once buried in the ground is pulled up to the ground, and the hollow tube body 23 is penetrated and installed again at another point, so that one observation well unit 20 can smoothly investigate groundwater at a plurality of points. It becomes possible.

[第2実施形態]
図3、図4は第2実施形態を示す。この第2実施形態では、中空管体23の内部に内挿管38を挿入して、該内挿管38の下部にストレーナ部材24を一体構成して2重管構造とした。この2重管構造が第1実施形態と相異し、他の構成は第1実施形態と同じであり、施工態様も同じである。第2実施形態では、ストレーナ部材24と一体に内挿管38が中空管体23内を上部まで伸長しているので、この内挿管38の上端操作でストレーナ部材24に押し下げ力を加えることができる。それにより中空管体23を地下水脈層である砂礫層34の下端35近くまで圧入した後、ストレーナ部材24を砂礫層34に残して中空管体23を逆回転させ砂礫層34の上端36近くまで引き上げるとき、ストレーナ部材24が中空管体23につれて上動しないように、内挿管38の上部を押し下げて該ストレーナ部材24に容易に下向きの力を加えることができる。その他の作用効果は第1実施形態と同じである。
[Second Embodiment]
3 and 4 show a second embodiment. In the second embodiment, the inner tube 38 is inserted into the hollow tube body 23, and the strainer member 24 is integrally formed in the lower portion of the tube 38 to form a double tube structure. This double-pipe structure is different from the first embodiment, the other configurations are the same as those of the first embodiment, and the construction mode is also the same. In the second embodiment, since the inner tube 38 extends integrally with the strainer member 24 to the upper part in the hollow tube body 23, a push-down force can be applied to the strainer member 24 by the upper end operation of the inner tube 38. . As a result, the hollow tube body 23 is press-fitted to the vicinity of the lower end 35 of the gravel layer 34 that is a groundwater vein layer, and then the strainer member 24 is left on the gravel layer 34 to rotate the hollow tube 23 in the reverse direction and the upper end 36 of the gravel layer 34. When the strainer member 24 is pulled up to the vicinity, it is possible to easily apply a downward force to the strainer member 24 by pushing down the upper portion of the inner tube 38 so that the strainer member 24 does not move up with the hollow tube body 23. Other functions and effects are the same as those of the first embodiment.

本発明の観測井ユニット20は地中に残置して地下水使用のための揚水井戸として構築することもできる。この場合、中空管体23に外面防食が必要な場合には、防食塗装を施したり、あるいはポリエチレンやウレタン等で外面被覆を施してもよく、内面防食が必要な場合には硬質塩化ビニルやエポキシ等で内面被覆を施してもよい。なお、中空管体1の材質は鋼管に限定されることなく、プラスチック等の樹脂系材料で中空管体1が形成されていてもよい。   The observation well unit 20 of the present invention can be left in the ground and constructed as a pumping well for use of groundwater. In this case, when the outer surface of the hollow tube 23 needs to be anticorrosive, it may be coated with anticorrosion, or may be coated with polyethylene, urethane, or the like. The inner surface may be coated with epoxy or the like. The material of the hollow tube 1 is not limited to a steel pipe, and the hollow tube 1 may be formed of a resin-based material such as plastic.

なお、本発明の観測井により地下水の測定方法を行う場合は、従来公知の測定方法を利用してよく、その数例について、図7(a)、(b)、(c)に示す従来の測定例を準用して説明する。   In addition, when performing the measuring method of groundwater with the observation well of this invention, you may utilize a conventionally well-known measuring method, About the example, the conventional method shown to Fig.7 (a), (b), (c) A measurement example will be applied mutatis mutandis.

図7(a)は、現場透水試験を示す模式図、(b)は、流向流速測定を示す模式図、(c)は、電気伝導度による流速測定を示す模式図である。   FIG. 7A is a schematic diagram showing an in-situ permeability test, FIG. 7B is a schematic diagram showing flow direction flow velocity measurement, and FIG. 7C is a schematic diagram showing flow velocity measurement by electric conductivity.

図7(a)の現場透水試験(定常法・非定常法)では、掘削孔39に挿入した測定用パイプ40内に小口径揚水ポンプ41をおろし、このポンプ41で任意量を揚水して水位低下量と揚水量の関係を求め透水係数を算出する。   In the in-situ permeability test (steady method / unsteady method) of FIG. 7A, a small-diameter lift pump 41 is lowered into the measurement pipe 40 inserted into the excavation hole 39, and an arbitrary amount is pumped by this pump 41 to obtain the water level. Obtain the relationship between the amount of decrease and the amount of pumped water, and calculate the hydraulic conductivity.

図7(b)の加熱型・CCD撮像法よる単孔式の流向流速測定法は、観測井内の浮遊物をトレースすることで流向と流速を求める方法であり、単孔式加熱型の流向流速計センサー42を用いて、次の手順で測定する。(1)目的の深度(あるいは流動層の深度)で方位を合せて流向流速計センサー42を測定用パイプ40内に設置する。(2)計器挿入による地下水の乱れが治まってから、自然状態の地下水温を200秒ほど測定し、温度センサーの安定性を見る。(3)温度が安定していることを確認してから、ヒーターに一定電圧を加えて800秒ほど測定する。(4)電圧を切ってか200秒ほど測定して計測を終了する。   The single-hole flow direction flow velocity measurement method based on the heating / CCD imaging method in FIG. 7B is a method for obtaining the flow direction and flow velocity by tracing the suspended matter in the observation well. Measurement is performed by the following procedure using the meter sensor 42. (1) The flow direction anemometer sensor 42 is installed in the measurement pipe 40 with the orientation adjusted at the target depth (or the depth of the fluidized bed). (2) After the disturbance of groundwater due to the instrument insertion has subsided, measure the natural groundwater temperature for about 200 seconds and check the stability of the temperature sensor. (3) After confirming that the temperature is stable, apply a constant voltage to the heater and measure for about 800 seconds. (4) The measurement is completed after measuring the voltage for about 200 seconds.

図7(c)の電気伝導度による流速測定は、電気伝導計を用いて、以下の手順で行う。(1)電気伝導計を用いて電気伝導度を測定し、その値より1000〜3000μS/cm程度高い食塩水を作成する。(2)測定深度付近に食塩水をホースを用いて注入する。(3)食塩水注入後、測定深度の上方1m程度のところで水温・ECセンサー43により撹拌する。(4)撹拌後の伝導度が1000μS/cm以上であることを確認した後、測定深度のセンサーを固定し、電気伝導度の自己計測を実施するものである。
The flow rate measurement based on the electric conductivity shown in FIG. 7C is performed by the following procedure using an electric conductivity meter. (1) The electric conductivity is measured using an electric conductivity meter, and a saline solution having a value higher by about 1000 to 3000 μS / cm than that value is prepared. (2) Inject saline with a hose near the measurement depth. (3) After injecting the saline solution, the water temperature / EC sensor 43 is used to stir the solution at a depth of about 1 m above the measurement depth. (4) After confirming that the conductivity after stirring is 1000 μS / cm or more, the sensor at the measurement depth is fixed, and the electrical conductivity is self-measured.

(a)は、第1実施形態に係る観測井ユニットの中空管体が地下水脈層まで到達した状態の断面図、(b)は、ストレーナ部材を地下水脈層に残し、中空管体のみを逆回転で所定高さまで引き上げた状態を示す断面図である。(A) is sectional drawing of the state which the hollow tube body of the observation well unit which concerns on 1st Embodiment reached | attained the groundwater vein layer, (b) leaves a strainer member in a groundwater vein layer, and is only a hollow tube body It is sectional drawing which shows the state which pulled up to predetermined height by reverse rotation. 第1実施形態の観測井を構築する工程の説明図である。It is explanatory drawing of the process of constructing the observation well of 1st Embodiment. (a)は、第2実施形態に係る観測井ユニットの中空管体が地下水脈層まで到達した状態の断面図、(b)は、ストレーナ部材を地下水脈層に残し、中空管体のみを逆回転で所定高さまで引き上げた状態を示す断面図である。(A) is sectional drawing of the state which the hollow tube body of the observation well unit which concerns on 2nd Embodiment reached | attained the groundwater vein layer, (b) leaves a strainer member in a groundwater vein layer, and is only a hollow tube body It is sectional drawing which shows the state which pulled up to predetermined height by reverse rotation. 第2実施形態の観測井を構築する工程の説明図である。It is explanatory drawing of the process of constructing the observation well of 2nd Embodiment. (a)、(b)は、第1従来例として観測井設置例について示す概要図である。(A), (b) is a schematic diagram shown about the example of observation well installation as a 1st prior art example. (a)、(b)は、第2従来例として、自然水位測定や現場透水試験を行なう場合に用いる簡易な測定孔を掘削する2例を示す説明図である。(A), (b) is explanatory drawing which shows 2 examples which excavate a simple measurement hole used when performing a natural water level measurement and an in-situ permeability test as a 2nd prior art example. (a)は、現場透水試験を示す模式図、(b)は、流向流速測定を示す模式図、(c)は、電気伝導度による流速測定を示す模式図である。(A) is a schematic diagram which shows an in-situ permeability test, (b) is a schematic diagram which shows a flow direction flow velocity measurement, (c) is a schematic diagram which shows the flow velocity measurement by electrical conductivity.

符号の説明Explanation of symbols

1 掘削孔
2 ストレーナ
3 塩ビパイプ
4 フィルター材
5 止水材
6 発生土
7 砂だまり
8 地表部
11 塩ビパイプ上蓋
12 雨水枡
13 掘削孔
14 測定用パイプ
15 遮水用パイプ
16 孔底
17 砂地盤
18 遮水区間
19 測定区間
20 観測井ユニット
21 回転羽根
22 下端の開口部
23 中空管体
24 ストレーナ部材
25 下端部
26 終端切断面
27 係合段部
28 ストッパー
29 通水孔
30 筒状部
31 フランジ部
32 先端閉塞部
33 金属網
34 砂礫層(地下水脈層)
35 下端
36 上端
37 止水用リング
38 内挿管
39 掘削孔
40 測定用パイプ
41 小口径揚水パイプ
42 流向流速計センサー
43 水温・ECセンサー
1 Drilling hole
2 Strainer 3 PVC pipe
4 Filter material 5 Water-stopping material 6 Generated soil 7 Sand pool 8 Ground surface 11 PVC pipe top lid 12 Rain gutter 13 Drilling hole 14 Pipe for measurement 15 Water-impervious pipe 16 Hole bottom 17 Sand ground 18 Water-impervious section 19 Measurement section 20 Observation Well unit 21 Rotating blade 22 Lower end opening 23 Hollow tube body 24 Strainer member 25 Lower end part 26 End cut surface 27 Engagement step part 28 Stopper 29 Water passage hole 30 Cylindrical part 31 Flange part 32 Tip closing part 33 Metal network 34 Gravel layer (groundwater vein layer)
35 Lower end 36 Upper end 37 Water stop ring 38 Inner tube 39 Drilling hole 40 Pipe for measurement 41 Small-diameter pumping pipe 42 Flow direction anemometer sensor 43 Water temperature / EC sensor

Claims (10)

下端部に螺旋状羽根からなる回転羽根を設けられた中空管体にストレーナ部材を内挿し、前記ストレーナ部材は、中空管体の貫入または回転圧入時に該ストレーナ部材によって前記中空管体の先端開口部を閉塞しており、前記中空管体の貫入または回転圧入によって地下水取水・還元または調査・観測等を行なう地層まで埋設した後、前記中空管体の逆回転により前記先端開口部を開放することで、前記ストレーナ部材に地層水が流出入可能であることを特徴とする観測井ユニット。 A strainer member is inserted into a hollow tube body provided with a rotating blade composed of a spiral blade at the lower end , and the strainer member is inserted into the hollow tube body or rotated and pressed by the strainer member. The front end opening is closed, and after burying up to the formation for groundwater intake / reduction or investigation / observation by penetration or rotational press-fitting of the hollow tube, the front end opening is reversely rotated by the hollow tube An observation well unit characterized in that formation water can flow into and out of the strainer member by opening the . 下端部に回転羽根を設けられた中空管体にストレーナ部材を内挿し、前記ストレーナ部材は、中空管体の貫入または回転圧入時に該ストレーナ部材によって前記中空管体の先端開口部を閉塞しており、前記中空管体の貫入または回転圧入によって地下水取水・還元または調査・観測等を行なう地層まで埋設した後、前記中空管体の逆回転により前記先端開口部を開放することで、前記ストレーナ部材に地下水が流出入可能であることを特徴とする観測井ユニット。 A strainer member is inserted into a hollow tube body provided with a rotating blade at the lower end , and the strainer member closes the distal end opening of the hollow tube body by the strainer member when the hollow tube body penetrates or rotates. And by burying the groundwater intake / reduction or formation / inspection / observation, etc. by penetration or rotational press-fitting of the hollow tube, and then opening the tip opening by reverse rotation of the hollow tube An observation well unit characterized in that groundwater can flow into and out of the strainer member . 前記ストレーナ部材は、有孔パイプ、網、フィルター材等から構成されていることを特徴とする請求項1又は2記載の観測井ユニットThe strainer member, perforated pipes, nets, observation wells unit according to claim 1 or 2, characterized in that it is composed of filter material or the like. 前記ストレーナ部材は、前記中空管体の先端から出入可能に設け、中空管体の貫入または回転圧入時に前記ストレーナ部材は、上限まで移動して中空管体に内蔵されることで先端開口部を閉塞しており、地下水取水・還元または調査・観測等を行う地層まで埋設した後、ストレーナ部材を前記地層に残置して中空管体が逆回転により所定長さ上動することで、該ストレーナ部材に地層水が流出入可能であることを特徴とする請求項1〜3何れか1項記載の観測井ユニットThe strainer member is provided so as to be able to enter and exit from the tip of the hollow tube body, and the strainer member moves to the upper limit when the hollow tube penetrates or rotates and is inserted into the hollow tube body, thereby opening the tip. After burying up to the formation where the water is taken up, reduced or surveyed, observed, etc., the strainer member is left in the formation and the hollow tube is moved upward by a predetermined length by reverse rotation. observation well unit according to claim 1 to 3, wherein any one, wherein the formation water can be inflow and outflow to the strainer member. 前記中空管体に内挿のストレーナ部材は、通水部を有する筒状部と筒状部の上端係止部が止水リングを介して中空管体内を移動可能に設けられ、筒状部の下端が中空管体の開口部の閉塞体を構成していることを特徴とする請求項1〜4の何れか1項記載の観測井ユニットThe strainer member inserted in the hollow tube is provided with a cylindrical portion having a water passage portion and an upper end locking portion of the cylindrical portion so as to be movable through the hollow tube through a water stop ring. The observation well unit according to any one of claims 1 to 4 , wherein a lower end of the portion constitutes a closed body of an opening portion of the hollow tube body. 前記中空管体に内挿管が挿入されており、該内挿管の下端に前記ストレーナ部材が構成されていることを特徴とする請求項1〜5の何れか1項記載の観測井ユニットThe observation well unit according to any one of claims 1 to 5 , wherein an inner tube is inserted into the hollow tube body, and the strainer member is formed at a lower end of the inner tube. 前記中空管体に内挿のストレーナ部材には、地下水の流向、流速、流量、水温又は水質を測定できる計測装置が設置されていることを特徴とする請求項1〜6の何れか1項記載の観測井ユニットA strainer member of interpolation in the hollow tube body, the groundwater flow direction, flow velocity, flow rate, any one of claims 1 to 6, characterized in that the water temperature or water quality can be measured the measuring device is installed The observation well unit described. 前記中空管体は観測井のみならず地下水使用のための揚水井戸を構築するものとして使用されることを特徴とする請求項1〜の何れか1項記載の観測井ユニット Observation well unit according to any one of claims 1-7 wherein the hollow tube body, characterized in that it is used as to build pumping wells for groundwater used not monitoring wells only. 請求項1〜7の何れか1項記載の中空管体を地中に回転圧入して1地点において1深度での地下水の流向、流速、流量、水温又は水質の測定をした後、再度、ストレーナ部分を収納しながら中空管体を正回転して貫入を続け、複数の深度での測定を可能とした井戸の構築方法。 After rotating and injecting the hollow tube body according to any one of claims 1 to 7 into the ground and measuring the flow direction, flow velocity, flow rate, water temperature or water quality at one depth at one point, again, A well construction method that allows measurements at multiple depths by rotating the hollow tube forward while keeping the strainer part and continuing penetration. 請求項1〜7の何れか1項記載の中空管体を地中に回転圧入して1地点において1深度での地下水の流向、流速、流量、水温又は水質の測定をした後、地中から引き抜き他の場所に移動し前記中空管体を再度地中に打設して前記の測定を繰り返すことを特徴とする井戸の構築方法。 After rotating and pressing the hollow tube body according to any one of claims 1 to 7 into the ground and measuring the flow direction, flow velocity, flow rate, water temperature or water quality at one depth at one point, A method for constructing a well , wherein the hollow tube body is pulled out from the ground and moved to another place, and the hollow tube body is again placed in the ground to repeat the measurement.
JP2004156359A 2004-05-26 2004-05-26 Observation well unit and well construction method using the same Expired - Fee Related JP4413079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156359A JP4413079B2 (en) 2004-05-26 2004-05-26 Observation well unit and well construction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156359A JP4413079B2 (en) 2004-05-26 2004-05-26 Observation well unit and well construction method using the same

Publications (2)

Publication Number Publication Date
JP2005336822A JP2005336822A (en) 2005-12-08
JP4413079B2 true JP4413079B2 (en) 2010-02-10

Family

ID=35490690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156359A Expired - Fee Related JP4413079B2 (en) 2004-05-26 2004-05-26 Observation well unit and well construction method using the same

Country Status (1)

Country Link
JP (1) JP4413079B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270527A (en) * 2006-03-31 2007-10-18 Asahi Kasei Construction Materials Co Ltd Pumping well embedding method
KR100690396B1 (en) 2006-11-06 2007-03-12 주식회사 도화종합기술공사 An installation method of the drain pipe filter for collector wells using flexible hose
JP4970416B2 (en) * 2008-12-19 2012-07-04 報国エンジニアリング株式会社 Groundwater level measurement method
KR101197648B1 (en) 2010-12-21 2012-11-09 세종대학교산학협력단 Development of sequential polymer injection system for conformance control
CN109458128B (en) * 2018-11-30 2024-05-14 中国电建集团成都勘测设计研究院有限公司 Drilling hole for layered water level observation and observation structure thereof

Also Published As

Publication number Publication date
JP2005336822A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
CN102758430B (en) Large-diameter rotary digging pile construction process for ultra-deep throwing and filling unconsolidated soil body
CN109060073B (en) Device and method for observing double-layer underground water level in karst mountain area through single hole
CN106192971A (en) A kind of artesian water water-level observation well construction and the method for multilamellar water-level observation
CN109736338A (en) A kind of hydraulic engineering foundation pit pipe well combination light well point Yield rainfall relation method
US20200292365A1 (en) Flowmeter profiling system for use in groundwater production wells and boreholes
CN105369812B (en) The pressure water head of foundation ditch pumping with constant rate determines method under suspension type water-stop curtain
CN106761674B (en) It is a kind of integrate draw water and the ground of unrestrained water test lead directly to down-hole drilling device
CN108956211A (en) Ground water fixed depth sampling probe, sampling system and the method for sampling using the probe
JP2003516219A (en) Advanced containment system
Woessner Hyporheic zones
JP4413079B2 (en) Observation well unit and well construction method using the same
Rushton et al. Significance of hydraulic head gradients within horizontal wells in unconfined aquifers of limited saturated thickness
Rushton et al. Hydraulic behaviour and regional impact of a horizontal well in a shallow aquifer: example from the Sefton Coast, northwest England (UK)
JP2008045352A (en) Landslide prevention construction method of valley-filling banking
Williams Slant well intake systems: design and construction
JP5218004B2 (en) Well and construction method of well
CN105386430A (en) Method for confirming water head of two sides of waterproof curtain under waterproof curtain effect
JP3268159B2 (en) Saline recharge wells, drilling methods, and deep seawater intake methods
CN212506201U (en) Underground water observation well pipe structure
CN107449711A (en) A kind of measurement apparatus and its method of aquifer with low permeability infiltration coefficient parameter
CN110500036A (en) A kind of tilting groundwater sampling method
CN208201842U (en) A kind of artesian water water stage measurement instrument
Wuebbolt Profiling of hydraulic conductivity using a Permeafor
CN109470622A (en) A kind of measurement method of formation permeability
CN215114636U (en) Hydrological test device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees