JP4458465B2 - Ground investigation method and device by measuring excess pore water pressure during impact penetration - Google Patents
Ground investigation method and device by measuring excess pore water pressure during impact penetration Download PDFInfo
- Publication number
- JP4458465B2 JP4458465B2 JP2004040623A JP2004040623A JP4458465B2 JP 4458465 B2 JP4458465 B2 JP 4458465B2 JP 2004040623 A JP2004040623 A JP 2004040623A JP 2004040623 A JP2004040623 A JP 2004040623A JP 4458465 B2 JP4458465 B2 JP 4458465B2
- Authority
- JP
- Japan
- Prior art keywords
- penetration
- water pressure
- pore water
- ground
- excess pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000035515 penetration Effects 0.000 title claims description 93
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 84
- 239000011148 porous material Substances 0.000 title claims description 76
- 238000000034 method Methods 0.000 title claims description 31
- 238000011835 investigation Methods 0.000 title claims description 6
- 239000002689 soil Substances 0.000 claims description 42
- 230000000149 penetrating effect Effects 0.000 claims description 37
- 239000003673 groundwater Substances 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 17
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 24
- 239000004576 sand Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 9
- 238000010998 test method Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000004927 clay Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000004856 soil analysis Methods 0.000 description 1
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
本発明は、打撃貫入により地盤の動的強度(貫入抵抗値)を求める他、打撃貫入時に発生する過剰間隙水圧の挙動(発生及び消散)から液状化強度(液状化ポテンシャル)を推定し、また土質解析することにより、地盤の力学特性及び物理特性を評価する地盤調査方法及びそれに用いる地盤調査装置に関するものである。この技術は、土木・建築構造物などを建設する際の設計に必要となる地盤の物理・力学特性を簡易に且つ効率よく経済的に求めるのに有用である。 In addition to determining the dynamic strength (penetration resistance value) of the ground by impact penetration, the present invention estimates the liquefaction strength (liquefaction potential) from the behavior (generation and dissipation) of excess pore water pressure generated during impact penetration. The present invention relates to a ground survey method for evaluating mechanical characteristics and physical characteristics of a ground by soil analysis and a ground survey device used therefor. This technology is useful for easily and efficiently economically determining the physical and mechanical properties of the ground necessary for designing when constructing civil engineering and building structures.
自然物あるいは人工物からなる地盤に土木・建築構造物などを建設する際には、予め当該地盤の物理・力学特性を把握し、それに基づいて適切な構造物設計を実施する必要がある。そのために、従来から種々の地盤調査方法及び装置が提案され実用に供されている。 When constructing civil engineering / architectural structures, etc. on the ground made of natural or artificial objects, it is necessary to grasp the physical / mechanical characteristics of the ground in advance and to design an appropriate structure based on it. Therefore, various ground investigation methods and devices have been proposed and put into practical use.
地盤の力学特性を調査する動的貫入試験の代表的な方法として、日本工業規格で定められている標準貫入試験法(JIS A 1219)がある。これは、原位置における土の硬軟、締まり具合の相対値を知るためのN値を求める試験法である。具体的には、ロッドの先端に標準貫入試験用サンプラを取り付け、削孔したボーリング孔底に降ろし、地上においてロッドをハンマ(63.5kg)の自由落下(落下高さ76cm)により打撃し、孔底より15〜45cmの間(30cm)を貫入させるのに必要な打撃回数(N値)を求める。この標準貫入試験法によって求めたN値は、複雑な地盤構成の我が国において、構造物の設計指標として長年用いられてきた。 As a typical method of the dynamic penetration test for investigating the mechanical properties of the ground, there is a standard penetration test method (JIS A 1219) defined by Japanese Industrial Standards. This is a test method for obtaining an N value for knowing the relative values of the hardness and firmness of the soil at the original position. Specifically, a standard penetration test sampler is attached to the tip of the rod, lowered to the bottom of the drilled borehole, and the rod is hit on the ground by a free fall (fall height 76 cm) of a hammer (63.5 kg). The number of hits (N value) required to penetrate 15 to 45 cm (30 cm) from the bottom is determined. The N value obtained by this standard penetration test method has been used for many years as a design index for structures in Japan with a complex ground configuration.
しかし、標準貫入試験法では、試験孔の掘進のためにボーリングマシン及びボーリングポンプ等を必要とし、また掘削に伴う孔壁の安定のために泥水(建設汚泥)の使用を余儀なくされ、更に試験に際して孔底のスライムの除去作業や15cmの予備打ち作業など、調査作業が煩雑で、経験を要し、しかも調査に時間がかかる等の欠点があった。 However, in the standard penetration test method, a boring machine and a boring pump are required to drill the test hole, and mud water (construction sludge) is forced to be used to stabilize the hole wall during the drilling. Investigation work such as removal of slime from the bottom of the hole and pre-working work of 15 cm is complicated, requires experience, and takes time to investigate.
標準貫入試験法に代わる方法として動的貫入試験法に区分される各種サウンディング法(例えばオートマチックラムサウンディングなど)がある。これは、先端に円錐状の貫入体を取り付けたロッドを、ハンマの自由落下などにより地盤に連続的に打撃貫入して、一定貫入長毎の打撃回数を求める方法である(例えば非特許文献1参照)。しかし、このようなサウンディング法では、試験深度の地盤の動的強度(貫入抵抗値)は打撃回数から評価できるものの、深度毎に土質標本が標準で採取できないため、土質判別等の物理特性の評価ができない。 There are various sounding methods (for example, automatic ram sounding) classified as dynamic penetration testing methods as alternatives to the standard penetration testing method. This is a method in which a rod having a conical penetrating body attached to the tip is continuously struck into the ground by a free fall of a hammer and the like, and the number of hits per fixed penetration length is obtained (for example, Non-Patent Document 1) reference). However, with such a sounding method, although the dynamic strength (penetration resistance value) of the ground at the test depth can be evaluated from the number of hits, a soil sample cannot be collected as a standard at each depth, so physical properties such as soil discrimination are evaluated. I can't.
ところで、我が国の海岸近くの柔軟な土地では、過去の地震による土壌の液状化によって大きな損害が生じたことが報告されている。液状化強度(液状化ポテンシャル)の評価には、原位置で採取された乱されない試料を用いて土の繰り返し非排水三軸試験のような室内土質試験データを要求するので、現在、詳細な液状化強度は限られた地点でしか評価されていない。そのため、あるエリアの液状化強度は、乏しいデータに基づいて評価せざるをえない。他方、地震の被害についての過去の調査によれば、僅かな距離しか離れていなくても損害の程度が著しく変わる例も示されている。従って、土地の液状化に対して信頼性の高い設計を行うためには、より正確な評価が必要になる。しかし、そのために多くの地点について従来通りの試験を行おうとすると、調査費用が非常に増大するので、実施は極めて困難である。そこで、工学的観点から、より安価で簡便に、しかも精度よく行える調査方法が求められている。
本発明が解決しようとする課題は、従来の動的貫入試験法では、試験深度の地盤の動的強度(貫入抵抗値)は打撃回数から評価できるものの、深度毎に土質判別等の物理特性の評価ができない点、任意の地点での液状化強度(液状化ポテンシャル)を簡便に測定できない点、などである。 The problem to be solved by the present invention is that, in the conventional dynamic penetration test method, although the dynamic strength (penetration resistance value) of the ground at the test depth can be evaluated from the number of impacts, physical characteristics such as soil discrimination at each depth are obtained. The point which cannot be evaluated, the point which cannot measure easily the liquefaction strength (liquefaction potential) in arbitrary points, etc.
本発明は、ロッド先端の貫入体に間隙水圧センサを組み込み、ロッドを打撃して貫入体を地盤に貫入させ、その貫入量から貫入体深度での地盤の動的強度を求めると共に、打撃貫入直後における貫入量の時間経過と貫入体に接する地盤で発生する過剰間隙水圧の時間経過を検出し、得られた貫入量の応答及び過剰間隙水圧の応答から貫入体深度の土の細粒分含有率を評価し、土質判別を行うことを特徴とする打撃貫入時の過剰間隙水圧測定による地盤調査方法である。ここで、深度方向に連続的に打撃貫入を行い、打撃貫入直後における過剰間隙水圧の発生応答から貫入体深度での最大過剰間隙水圧値を検出し、(最大過剰間隙水圧値)/(全上載圧)の値を求めて当該貫入体深度での地下水位指標とし、その地下水位指標の深度方向の分布を求めると、該地下水位指標が地表側から深度方向に向かって減少して1.0未満のほぼ一定の値に収束する深度を地下水位と推定することができる。 The present invention incorporates a pore water pressure sensor into the penetrating body at the tip of the rod, strikes the rod, penetrates the penetrating body into the ground, determines the dynamic strength of the ground at the depth of the penetrating body from the amount of penetration, and immediately after hitting the batting Of the amount of penetration in the soil and the time of excess pore water pressure generated in the ground in contact with the intruder, and the fine particle content of the soil at the depth of the intruder from the response of the obtained penetration amount and the excess pore water pressure. This is a ground survey method based on the measurement of excess pore water pressure at the time of intrusion, characterized by evaluating soil and determining soil quality . Here, continuous penetration in the depth direction is performed , and the maximum excess pore water pressure value at the penetration depth is detected from the generation response of excess pore water pressure immediately after the impact penetration. Pressure) is used as a groundwater level index at the depth of the intrusion, and when the distribution of the groundwater level index in the depth direction is determined, the groundwater level index decreases from the surface side toward the depth direction to 1.0. It is possible to estimate the depth that converges to an almost constant value less than the groundwater level.
また本発明は、上記のような地盤調査方法を実施するための装置であって、ロッド先端に装着される貫入体と、該貫入体に組み込まれて貫入体に接する地盤で発生する過剰間隙水圧を検出する間隙水圧センサと、ロッドの貫入量を検出する変位センサと、ロッドへの打撃を検出する加速度センサと、加速度信号をデータ収録のトリガとして打撃貫入時における過剰間隙水圧検出信号及び貫入変位検出信号の時間経過を記録するデータ収録部と、前記ロッドを打撃貫入する動的貫入装置を具備し、ロッドを打撃して貫入体を地盤に貫入させ、その打撃貫入時における貫入量と打撃貫入に伴って貫入体に接する地盤で発生する過剰間隙水圧の発生及び消散の応答をデータ収録するようにしたことを特徴とする打撃貫入時の過剰間隙水圧測定を行う地盤調査装置である。 The present invention provides an apparatus for carrying out the ground survey method as described above, the penetrating member to be attached to the rod end, excess pore said penetrating body embedded or which are generated in the ground in contact with the penetrating body A gap water pressure sensor that detects water pressure, a displacement sensor that detects the amount of penetration of the rod, an acceleration sensor that detects impact on the rod, and an excess pore water pressure detection signal and penetration during impact penetration using the acceleration signal as a data recording trigger a data recording unit for recording the time course of the displacement detection signal, comprises a dynamic penetration apparatus for striking penetrating the rod, and strike the rod to penetrate the penetrating body to ground, penetration amount and blow during the striking penetration performing excess pore water pressure measured at the time of hitting penetration, characterized in that the response of the generation and dissipation of excess pore water pressure occurring in the soil in contact with the penetrating body such that the data recording with the intrusion It is a panel survey device.
例えば貫入体は、円錐状の先端部を有する変換器ハウジングと、該変換器ハウジングとロッドとの円筒状連結部を具備し、変換器ハウジングには円錐面の複数箇所で開口し中心孔に至る連絡孔を設けて、前記開口は多孔性硬質部材で塞がれて受圧面となり、中心孔に圧力変換器が設置され、孔内に圧力伝達媒体が充填されている構造とする。打撃時の貫入量および間隙水圧センサの検出信号をA/D変換によりデジタル化してデータ収録部でデジタル記録し、ロッドを深度方向に連続的に打撃貫入したときに、深度方向に連続的に貫入量と過剰間隙水圧の応答を記録する構成が好ましい。
For example, the penetrating body includes a transducer housing having a conical tip, and a cylindrical coupling portion between the transducer housing and the rod, and the transducer housing opens at a plurality of positions on a conical surface to reach a central hole. A communication hole is provided, and the opening is closed with a porous hard member to become a pressure receiving surface, a pressure transducer is installed in the center hole, and a pressure transmission medium is filled in the hole. The amount of penetration at the time of impact and the detection signal of the pore water pressure sensor are digitized by A / D conversion and digitally recorded by the data recording unit. When the rod is continuously impacted in the depth direction, it penetrates continuously in the depth direction. A configuration that records the volume and excess pore water pressure response is preferred.
本発明は、連続的な動的貫入試験法を採用した単純な測定装置を使用しているにもかかわらず、地盤の力学特性としての動的強度(貫入抵抗値)のみならず土質判別や地盤透水性等の物理特性を同時に評価する事によって、地盤の液状化強度(液状化ポテンシャル)までを容易に、経済的に評価できる。 Although the present invention uses a simple measuring device that employs a continuous dynamic penetration test method, it can determine not only the dynamic strength (penetration resistance value) as the mechanical characteristics of the ground but also soil judgment and ground By simultaneously evaluating physical characteristics such as water permeability, the liquefaction strength (liquefaction potential) of the ground can be easily and economically evaluated.
また本発明によれば、打撃貫入一打毎に自動的に評価が行えることから、作業能率の大幅な向上のみならず、連続的な測定が可能となる利点もある。 In addition, according to the present invention, since the evaluation can be automatically performed for each impact penetration, not only a significant improvement in work efficiency but also continuous measurement is possible.
本発明者は、動的貫入試験法(例えばオートマチックラムサウンド等)におけるロッド先端の貫入体内部に間隙水圧センサを組み込み、打撃貫入時の貫入体周辺地盤での過剰間隙水圧および貫入量を検出して解析した。その結果、打撃貫入時の貫入量と過剰間隙水圧の挙動(発生及び消散)から地盤の土質判別や液状化強度(液状化ポテンシャル)を評価できることを見出した。例えば、均一な緩い砂質土の場合には貫入体周辺で発生する正の過剰間隙水圧は大きくなり、密な場合には発生する正の過剰間隙水圧は相対的に小さくなる。また、発生する過剰間隙水圧の大きさは地盤の動的強度(貫入抵抗値)や液状化強度(液状化ポテンシャル)との間に良好な相関がある。他方、均一な砂質土から細粒分含有率が混入し、粘性土に近い土質判別になるに従い、動的貫入時に発生する過剰間隙水圧の消散応答は鈍くなり、細粒分の割合に応じて消散応答が変化する。これらのことから、打撃貫入時に生じる過剰間隙水圧の挙動(発生及び消散)と打撃貫入量を測定することで、当該深度での地盤の動的強度(貫入抵抗)のみならず、物理特性(土質判別や透水性)及び液状化強度(液状化ポテンシャル)を評価できる。本発明は、かかる評価技術の知得に基づき完成されたものである。 The present inventor has incorporated a pore water pressure sensor inside the penetrating body at the tip of the rod in a dynamic penetrating test method (for example, automatic ram sound etc.), and detects the excess pore water pressure and the amount of penetration in the ground around the penetrating body at the time of impact. And analyzed. As a result, it was found that the soil classification and liquefaction strength (liquefaction potential) of the ground can be evaluated from the penetration amount and the behavior of excess pore water pressure (generation and dissipation) at the time of impact penetration. For example, in the case of uniform loose sandy soil, the positive excess pore water pressure generated around the intruder increases, and in the dense case, the positive excess pore water pressure generated becomes relatively small. Moreover, the magnitude | size of the excess pore water pressure to generate | occur | produce has a favorable correlation with the dynamic strength (penetration resistance value) and liquefaction strength (liquefaction potential) of a ground. On the other hand, as the fine grain content is mixed from uniform sandy soil and the soil classification is close to that of cohesive soil, the extinction response of excess pore water pressure that occurs during dynamic intrusion becomes dull, depending on the proportion of fine grain The dissipation response changes. From these, by measuring the behavior of excess pore water pressure (occurrence and dissipation) and the amount of impact penetration that occurs during impact penetration, not only the dynamic strength (penetration resistance) of the ground at that depth, but also physical characteristics (soil properties) Discrimination and water permeability) and liquefaction strength (liquefaction potential) can be evaluated. The present invention has been completed based on the knowledge of the evaluation technique.
本発明では、間隙水圧センサを組み込んだ貫入体を先端に取り付けたロッドを、ハンマの自然落下あるいは強制落下による一定の打撃エネルギーで地盤に打撃貫入する。それに伴い貫入体周辺地盤で発生する過剰間隙水圧の挙動(発生及び消散)を間隙水圧センサで検出する。そして打撃貫入量と過剰間隙水圧の挙動(発生及び消散)をA/D変換によりデジタル化してデータ収録部でデジタル記録し、数値化した応答値から、当該深度での地盤の力学特性(動的強度(貫入抵抗)や液状化強度(液状化ポテンシャル))および物理特性(土質判別や透水性)を評価するものである。 In the present invention, a rod having a penetrating body incorporating a pore water pressure sensor attached to the tip is struck into the ground with a constant striking energy due to a natural drop or forced drop of a hammer. Along with this, the behavior (generation and dissipation) of excess pore water pressure generated in the ground around the intruder is detected by a pore water pressure sensor. And the behavior (generation and dissipation) of the impact penetration and excess pore water pressure is digitized by A / D conversion and digitally recorded by the data recording unit, and the dynamic characteristics of the ground at the relevant depth (dynamic Strength (penetration resistance), liquefaction strength (liquefaction potential)) and physical characteristics (soil discrimination and water permeability) are evaluated.
図1は、本発明方法の実施に用いる測定装置の全体構成を示す説明図である。打撃貫入装置本体は、動的貫入試験装置(例えばオートマチックラムサウンドなど)がそのまま使用できる。但し、先端の貫入体に組み込んだ間隙水圧計からの信号を伝達するケーブルを地上まで接続する必要があるためロッド10は中空構造とする。ここでは、ロッド10の先端部(下端)に間隙水圧センサを組み込んだ貫入体12を取り付け、上端部のアンビル14にハンマ16を所定位置から自然落下させることにより打撃貫入する形式の装置となっている。ハンマ16によるアンビル14への打撃によって、先端の貫入体12は地盤に貫入する。
FIG. 1 is an explanatory diagram showing the overall configuration of a measuring apparatus used for carrying out the method of the present invention. As the impact penetrating device main body, a dynamic penetrating test device (for example, automatic ram sound) can be used as it is. However, the
この実施例では、スウェーディッシュラムサウンディング試験装置を改良した軽量の動的貫入装置を使用した。ロッド10は直径28mmで、先端が円錐状で円筒構造の貫入体12は、直径36.6mm、長さ69mm、頂点角度90度である。ロッド10は、35cmの高さから自由落下する30kgのハンマ16によって機械的に駆動される。貫入抵抗は、貫入体12を20cm下方へ駆動するのに必要な、打撃回数(Nm )として得られる。標準貫入試験のN値(Nspt )は、この打撃回数(Nm)の半分に等しい。
Nspt =1/2Nm …(1)
In this example, a lightweight dynamic penetrating device with an improved Swedish ram sounding test device was used. The
N spt = 1 / 2N m (1)
このような動的な貫入システムは、軽量であるため、トラックなしでも容易に現場へ持ち込むことができ、5分程度で設置できる。動的な貫入(ハンマ16の上昇)は、油圧モータによって自動的に駆動できる。貫入体12先端の深さは、地表面の固定点に対するロッド10の変位量を変位センサ18で計測することで得られる。変位センサ18は、ここでは非接触の磁歪を利用した変換器である。
Since such a dynamic penetration system is lightweight, it can be easily brought into the field without a truck and can be installed in about 5 minutes. Dynamic penetration (raising the hammer 16) can be driven automatically by a hydraulic motor. The depth of the tip of the penetrating
打撃貫入に伴い貫入体周辺地盤で発生する過剰間隙水圧値は、間隙水圧センサで検出され、その信号は中空のロッド10中を挿通した電気的ケーブル20によって地上に送られる。またアンビル14に加速度センサ22を設け、検出したアンビル加速度信号はデータ収録を開始するトリガとして使用する。これら3種の信号(過剰間隙水圧、貫入変位、及びアンビルの加速度)は、計測装置24に送られ、直ちにA/D変換器によりデジタル化されてデータ収録部でデジタル記録する。収録されたデータは、パーソナルコンピュータ(PC)26で処理され、当該深度での地盤の力学特性(動的強度(貫入抵抗)や液状化強度(液状化ポテンシャル))及び物理特性(土質判別)を評価し表示する。これによって、ロッド10を深度方向に連続的に打撃貫入したときに、深度方向で連続的に貫入量と過剰間隙水圧挙動が記録され、試験結果のリアルタイム観測が可能となる。
The excess pore water pressure value generated in the ground around the penetrating body with the impact penetration is detected by the pore water pressure sensor, and the signal is sent to the ground by the
動的間隙水圧測定を行う貫入体の詳細構造を図2に示す。Aは縦断面を表し、Bは底面を表している。貫入体12は、円錐状(例えば頂点角度90度)の先端部を有する変換器ハウジング30と、該変換器ハウジング30とロッド10との間の円筒状連結部32を具備している。変換器ハウジング30には円錐面の複数箇所(この実施例では3箇所)で開口し共通の中心孔34に至る連絡孔36を設けて、前記開口は多孔性硬質部材(例えば多孔性セラミックス)38で塞いで受圧面とし、中心孔34に圧力変換器(例えば半導体圧力センサ)40を設置し、孔内に圧力伝達媒体を充填した構造とし、これらが間隙水圧センサを構成している。圧力変換器40の検出信号は、電気的ケーブル20によって地上に送られる。なお、符号42で示す円筒状部材は防水シール材であり、中空のロッド10から浸入する泥水を止める機能を果たす。また、この実施例では、円筒状連結部32の下方部及び変換器ハウジング30の外周を取り囲むように保護管44を装着している。保護管44は、先端(下端)が変換器ハウジング30の円錐面と連続するような切頭円錐面で内面段差部が変換器ハウジング30の外面段差部と係合する構造である。従って、ロッド貫入時は変換器ハウジング30に同伴して保護管44も貫入するが、ロッド引き抜き時には保護管44は地盤中に取り残される使い捨て方式となっている。
FIG. 2 shows the detailed structure of the penetrating body that performs dynamic pore water pressure measurement. A represents a longitudinal section, and B represents a bottom surface. The penetrating
図3のAに打撃貫入時の過剰間隙水圧、Bに貫入量の計測例を示す。Aの計測値aは打撃貫入時直後の正の過剰間隙水圧値(最大過剰間隙水圧値)を示し、計測値cは計測値aに対してある一定の割合まで消散した過剰間隙水圧値である。計測値bは計測値cまで過剰間隙水圧が消散した時間を測定するものである。計測値dは打撃貫入初期に生じる正の過剰間隙水圧値(最大過剰間隙水圧値)とその後に生じる負の過剰間隙水圧値(最小過剰間隙水圧値)の差を示している。このように、土質によって動的貫入時の過剰間隙水圧と貫入量の応答に差異が現れる。従って、逆に、これら動的貫入時の過剰間隙水圧と貫入量の応答から、当該深度での土質などを推定することが可能となる。 FIG. 3A shows an excess pore water pressure at the time of impact penetration, and B shows an example of measurement of the penetration amount. The measured value a of A indicates a positive excess pore water pressure value (maximum excess pore water pressure value) immediately after the impact penetration, and the measured value c is an excess pore water pressure value dissipated to a certain ratio with respect to the measured value a. . The measurement value b measures the time when the excess pore water pressure has dissipated to the measurement value c. The measured value d indicates the difference between the positive excess pore water pressure value (maximum excess pore water pressure value) generated at the beginning of the impact penetration and the negative excess pore water pressure value (minimum excess pore water pressure value) generated thereafter. Thus, depending on the soil quality, a difference appears in the response of the excess pore water pressure and the penetration amount during dynamic penetration. Therefore, on the contrary, it is possible to estimate the soil quality at the depth from the response of the excess pore water pressure and the penetration amount during dynamic penetration.
以下、本発明装置を用いて東京湾に沿った沿岸地区のある地点で現場試験を実施した結果について説明する。試験実施地点での土壌断面、土壌の標準貫入試験N値、及び単位体積重量を図4に示す。表面の土層は不飽和の埋積物であり、それは主として砂を含むローム、厚さ5〜10cmのいくつかの礫層を含む混合層からなる。埋積物内で観測された標準貫入試験のN値は9で、比較的緩く不均一の土壌を示している。埋積物層は、貝殻を有する通常の海岸粘土の下にある自然のシルト層の上に深さ2.2mまで存在する。地下水位は地表下1.9mである。砂土は深さ2.9mから約6mまでである。砂層の上部は少量の細かい成分を含んだ粗い砂である。他方、砂層のより低い部分は、いくらかの細かい成分を含んだ細かな砂からなる。砂土の標準貫入試験のN値および粒度分布の両方から判断して、上部の層は、地震による液状化ポテンシャルは小さい。また、より低い層は、液状化ポテンシャルは中ぐらいか、あるいは小さい。 Hereinafter, the result of performing a field test at a point in the coastal area along the Tokyo Bay using the apparatus of the present invention will be described. FIG. 4 shows the soil cross-section at the test site, the standard soil penetration test N value, and the unit volume weight. The surface soil layer is an unsaturated deposit, which consists mainly of a loam containing sand and a mixed layer containing several gravel layers with a thickness of 5-10 cm. The N value of the standard penetration test observed in the deposit is 9, indicating relatively loose and uneven soil. The buried layer exists up to a depth of 2.2 m above a natural silt layer under normal coastal clay with shells. The groundwater level is 1.9m below the surface. Sand soil is 2.9m to about 6m deep. The upper part of the sand layer is coarse sand containing a small amount of fine components. On the other hand, the lower part of the sand layer consists of fine sand containing some fine components. Judging from both the N value and the particle size distribution of the standard sand penetration test, the upper layer has a small earthquake liquefaction potential. Also, the lower layer has a medium or small liquefaction potential.
過剰間隙水圧比率(Δu/σ’ν)および貫入変位の典型的な時間経過を図5に示す。図5のAは緩く細かい砂の応答、Bは密で細かい砂の応答である。これらから、最大過剰間隙水圧の大きさに著しい違いがあることが分かる。また、貫入変位量の時間経過も著しく異なる。時間経過は、貫入過程と後続過程の2つの過程に分割できる。後続過程は、貫入直後に始まるはね返り過程と再貫入から構成される。密な砂の場合には、貫入過程が急激に終了し、後続過程に入る。緩い砂の場合には、貫入過程がある遅れを示す。このように、過剰間隙水圧比率の時間経過(打撃の瞬間から間隙水圧の顕著な生成までの一般的なパターンおよび持続)は、土質によって大きく異なる。また、時間経過の持続にも著しい相違がある。 The excess pore water pressure ratio (Δu / σ′ν) and the typical time course of the penetration displacement are shown in FIG. 5A shows the response of loose and fine sand, and B shows the response of dense and fine sand. From these, it can be seen that there is a significant difference in the magnitude of the maximum excess pore water pressure. Moreover, the time course of the penetration displacement amount is also significantly different. The time course can be divided into two processes: an intrusion process and a subsequent process. Subsequent processes consist of a rebound process and re-penetration that begin immediately after penetration. In the case of dense sand, the intrusion process ends abruptly and enters the subsequent process. In the case of loose sand, there is a delay in the intrusion process. Thus, the time course of the excess pore water pressure ratio (the general pattern and duration from the moment of impact to the significant generation of pore water pressure) varies greatly depending on the soil quality. There are also significant differences in the duration of time.
深度に対して、単一の打撃によって変換されるN値の分布を図6に示す。変換されたN値の不連続が4.0mと5.0mの間で見られる。この不連続は相対密度の顕著な変化を示し、混合層の存在を示している。 FIG. 6 shows the distribution of N values converted by a single strike against the depth. A discontinuity of the converted N value is seen between 4.0 m and 5.0 m. This discontinuity shows a significant change in relative density, indicating the presence of a mixed layer.
本発明方法によって液状化強度(ポテンシャル)を評価するデータ処理のフローチャートを図7に示す。単位体積重量を除く全てのデータは、本発明装置により得られる測定値である。詳細は後述するが、図7に示す処理フローに従って解析処理が行われる。なお、単位体積重量は、特殊土でなければ17〜18kN/m3 程度としてもさほど誤差は生じない(粘性土系であれば17kN/m3 程度、砂質土系であれば18kN/m3 程度であり、材料判別ができれば想定できる値である)ため、実測できなくても特に問題はない。
FIG. 7 shows a flowchart of data processing for evaluating the liquefaction strength (potential) by the method of the present invention. All the data excluding the unit volume weight are measured values obtained by the device of the present invention. Although details will be described later, the analysis processing is performed according to the processing flow shown in FIG. Incidentally, unit weight is not less error occurs even about 17~18kN / m 3 unless a special soil (if Clay system 17 kN / m 3 approximately, if
深度に対する最大過剰間隙水圧Δumax の分布を図8に示す。それらは、地下水位下の有効上載圧(σ’ν)とおおよそ一致する。他方、地下水位上のものは、全上載圧(σν)より大きい。 The distribution of the maximum excess pore water pressure Δu max with respect to the depth is shown in FIG. They roughly agree with the effective upper pressure (σ'ν) under the groundwater level. On the other hand, those above the groundwater level are greater than the total top pressure (σν).
本発明方法は動的な貫入試験法であるので、事前ボーリングを実施しなければ、地下水位の深さは不明である。しかしながら、液状化問題において、地下水位を知ることは重要である。この視点から、新しい指標パラメータ(IWL)を導入した。それは、
IWL=Δumax /σν …(2)
によって定義される。
Δumax が最大過剰間隙水圧で、σνが全上載圧である。深度に対する新しい指標IWLの分布を図9に示す。指標IWLは、1.0mまで急速に減少し、1.9mの深さで1.0未満になるように見える。この指標IWLによって、地下水位を推定することができる。
Since the method of the present invention is a dynamic penetration test method, the depth of the groundwater level is unknown unless pre-boring is performed. However, it is important to know the groundwater level in the liquefaction problem. From this perspective, a new index parameter (I WL ) was introduced. that is,
I WL = Δu max / σν (2)
Defined by
Δu max is the maximum excess pore water pressure, and σν is the total loading pressure. The distribution of the new index I WL with respect to the depth is shown in FIG. The index I WL decreases rapidly to 1.0 m and appears to be less than 1.0 at a depth of 1.9 m. The groundwater level can be estimated by this index IWL .
上記のように推定した地下水位を与えると、有効上載圧(σ’ν)を計算することができる。有効上載圧は、水の浮力を差し引いた有効的な上載圧のことである。図10は、地下水位下の最大過剰間隙水圧比率(Δumax /σ’ν)を深度に対してプロットしたものである。1.9mと2.9mの間にある表面埋積物およびシルト層が大きな値を示している。 When the groundwater level estimated as described above is given, the effective upper pressure (σ′ν) can be calculated. The effective upper pressure is an effective upper pressure obtained by subtracting the buoyancy of water. FIG. 10 is a plot of the maximum excess pore water pressure ratio (Δu max / σ′ν) under the groundwater level against the depth. Surface deposits and silt layers between 1.9 m and 2.9 m show large values.
液状化ポテンシャルに関する土質の影響を調べるために、新しい指標ITIを、次式で定義する。これは、ハンマ衝撃から貫入過程の終了(t1 )まで、過剰間隙水圧比率(Δu/σ’ν)を時間積分したものである。
深度に対するITIの分布を図12に示す。シルト層中の指標ITIの大きさは、砂層中のものより大きいことが見出された。この傾向は、浸透性とダイラタンシーのような土壌特性の変化を通じて説明することができる。 The distribution of I TI with respect to depth is shown in FIG. The magnitude of the index I TI in the silt layer was found to be greater than that in the sand layer. This trend can be explained through changes in soil properties such as permeability and dilatancy.
動的貫入の各ステップで液状化強度(ポテンシャル)を評価するために新しい指標ILPを導入する。新しい指標ILPは、時間積分指標ITIで除算した最大過剰間隙水圧比率(Δu/σ’ν)として定義した。
深度に対する指標ILPの分布を図13に示す。ILPの不連続は、地表面下4.0mから5.0mの間の層に見られる。この層が混合層であることが分かる。従って、液状化ポテンシャル指標ILPは、直接、液状化率の程度を示している。土層が液状化可能か否かを示すこの指標の閾値は、この実験では1.0であった。この指標が1.0を超えている深さは、4.0mと4.2mの間に位置し、それは細かな砂の上部に相当する。 The distribution of the index I LP with respect to the depth is shown in FIG. ILP discontinuities are found in layers between 4.0 and 5.0 m below the ground surface. It can be seen that this layer is a mixed layer. Therefore, the liquefaction potential index I LP directly indicates the degree of liquefaction rate. The threshold for this indicator, which indicates whether the soil layer can be liquefied, was 1.0 in this experiment. The depth at which this index exceeds 1.0 is located between 4.0 m and 4.2 m, which corresponds to the top of fine sand.
一連の動的な貫入検査結果をまとめると、次の結論が得られる。
(a)単一の打撃により変換されたN値の分布は、層の等質性を識別し、かつ混合層を見つけるために使用できる。
(b)動的な貫入時の過剰間隙水圧の時間経過は、N値および土質によって著しく影響される。
(c)液状化率を評価するために導入した新しい3つの指標は、下記のような事項の判定・評価に使用できる。
IWL: 地下水位の推定
ITI: 土質の判別
ILP: 土壌の液状化強度(液状化ポテンシャル)
The following conclusions can be drawn from a series of dynamic penetration test results.
(A) The distribution of N values transformed by a single blow can be used to identify the homogeneity of the layers and find the mixed layer.
(B) The time course of excess pore water pressure during dynamic intrusion is significantly affected by N value and soil quality.
(C) The three new indicators introduced for evaluating the liquefaction rate can be used for the determination and evaluation of the following items.
I WL : Estimation of groundwater level I TI : Soil discrimination I LP : Soil liquefaction strength (liquefaction potential)
このように本発明方法によれば、ロッド先端の貫入体に間隙水圧センサを組み込み、ロッドを打撃して貫入体を地盤に貫入させ、その貫入量と打撃貫入に伴って貫入体に接する地盤で発生する過剰間隙水圧を測定することにより、得られた貫入量と過剰間隙水圧挙動から、当該深度での地盤の動的強度のみならず液状化強度を求め、土質を解析することができる。 As described above, according to the method of the present invention, the interstitial water pressure sensor is incorporated into the penetrating body at the tip of the rod, the rod is hit to cause the penetrating body to penetrate into the ground, and the ground touching the penetrating body in accordance with the amount of penetration and the penetrating penetration. By measuring the generated excess pore water pressure, it is possible to obtain not only the dynamic strength of the ground at the depth but also the liquefaction strength from the obtained penetration amount and the excess pore water pressure behavior, and analyze the soil quality.
10 ロッド
12 貫入体
14 アンビル
16 ハンマ
18 変位センサ
20 電気的ケーブル
22 加速度センサ
24 計測装置
30 変換器ハウジング
38 多孔性硬質部材
40 圧力変換器
44 保護管
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004040623A JP4458465B2 (en) | 2004-02-17 | 2004-02-17 | Ground investigation method and device by measuring excess pore water pressure during impact penetration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004040623A JP4458465B2 (en) | 2004-02-17 | 2004-02-17 | Ground investigation method and device by measuring excess pore water pressure during impact penetration |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005232715A JP2005232715A (en) | 2005-09-02 |
JP4458465B2 true JP4458465B2 (en) | 2010-04-28 |
Family
ID=35015957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004040623A Expired - Lifetime JP4458465B2 (en) | 2004-02-17 | 2004-02-17 | Ground investigation method and device by measuring excess pore water pressure during impact penetration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4458465B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103343530A (en) * | 2013-06-21 | 2013-10-09 | 东南大学 | Micro-scale pore pressure static sounding probe for effectively identifying extra-thin soil layer |
CN105178278A (en) * | 2015-10-15 | 2015-12-23 | 广西玉柴机器股份有限公司 | Drill rod detection tool |
KR101809125B1 (en) * | 2016-11-23 | 2017-12-14 | 주식회사 아이자랩 | Underground water level measurement apparatus without wells |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4642070B2 (en) * | 2004-03-23 | 2011-03-02 | ベンシック・ジオテック・プロプライエタリー・リミテッド | An improved ball penetration tester for soft soil investigations. |
JP4652212B2 (en) * | 2005-11-11 | 2011-03-16 | 佐藤工業株式会社 | Prediction method of improvement effect by blast compaction |
CN102252952A (en) * | 2011-07-20 | 2011-11-23 | 东南大学 | Device for determining soil layer in-situ permeability coefficient |
JP2014005612A (en) * | 2012-06-22 | 2014-01-16 | Maeda Corp | Quality confirmation method and quality confirmation device for improved ground |
JP2014122464A (en) * | 2012-12-20 | 2014-07-03 | Oyo Corp | Subsurface exploration method and subsurface exploration apparatus |
CN103308386B (en) * | 2013-05-28 | 2016-05-04 | 山西省交通科学研究院 | A kind of method of testing the moving constitutive relation of soil and fatigue resistance parameter |
CN103397625A (en) * | 2013-08-13 | 2013-11-20 | 鞍钢集团工程技术有限公司 | Test technology for filling original position of giant grained mixed soil |
CN105973689A (en) * | 2016-04-27 | 2016-09-28 | 中国科学院地质与地球物理研究所 | Portable rock-soil body surface strength nondestructive tester |
JP6832211B2 (en) * | 2016-07-19 | 2021-02-24 | 積水化学工業株式会社 | Ground survey equipment and ground survey method |
JP6841704B2 (en) * | 2017-03-30 | 2021-03-10 | 積水化学工業株式会社 | Ground improvement method |
CN107340220B (en) * | 2017-07-19 | 2023-07-18 | 中国地震局工程力学研究所 | Dynamic pore pressure signal generation method and device |
CN209879031U (en) * | 2019-06-24 | 2019-12-31 | 太仓华淏信息科技有限公司 | Dynamic sounding device for underground pipeline detection |
CN115014999B (en) * | 2022-01-19 | 2024-07-30 | 昆明理工大学 | Testing device and testing method for liquefaction degree of saturated sand under explosive load |
CN115063949B (en) * | 2022-06-25 | 2024-03-22 | 深圳市自然资源和不动产评估发展研究中心(深圳市地质环境监测中心) | Karst collapse monitoring and early warning method, system and storage medium based on rainfall data |
CN115078695A (en) * | 2022-06-28 | 2022-09-20 | 大连理工大学 | Vertical continuous penetration type interface mechanical property test device and method thereof |
CN115655246B (en) * | 2022-12-09 | 2023-04-18 | 国网甘肃省电力公司兰州供电公司 | Digital three-dimensional electric power survey mark pile and installation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233897Y2 (en) * | 1971-12-14 | 1977-08-02 | ||
JPH0663218B2 (en) * | 1986-05-09 | 1994-08-22 | 東京瓦斯株式会社 | Method of estimating liquefaction strength of ground during earthquake |
JP2886373B2 (en) * | 1991-08-31 | 1999-04-26 | 前田建設工業株式会社 | The management method in the vibration compaction method of the saturated sand ground |
JP2000180561A (en) * | 1998-12-17 | 2000-06-30 | Ohbayashi Corp | Ground investigation method |
-
2004
- 2004-02-17 JP JP2004040623A patent/JP4458465B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103343530A (en) * | 2013-06-21 | 2013-10-09 | 东南大学 | Micro-scale pore pressure static sounding probe for effectively identifying extra-thin soil layer |
CN103343530B (en) * | 2013-06-21 | 2015-08-26 | 东南大学 | The micro-scale pores pressure static sounding probe of the very thin soil layer of a kind of effective identification |
CN105178278A (en) * | 2015-10-15 | 2015-12-23 | 广西玉柴机器股份有限公司 | Drill rod detection tool |
KR101809125B1 (en) * | 2016-11-23 | 2017-12-14 | 주식회사 아이자랩 | Underground water level measurement apparatus without wells |
Also Published As
Publication number | Publication date |
---|---|
JP2005232715A (en) | 2005-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4458465B2 (en) | Ground investigation method and device by measuring excess pore water pressure during impact penetration | |
Sivrikaya et al. | Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey | |
Yue et al. | Automatic monitoring of rotary-percussive drilling for ground characterization—illustrated by a case example in Hong Kong | |
KR100847096B1 (en) | The foundation strength characteristic and the pile support power calculation method using driving penetration cone and this | |
WO2014097552A1 (en) | Subsurface exploration method and subsurface exploration apparatus | |
JP2017090101A (en) | Non-destructive inspection method and non-destructive inspection system of prefabricated concrete pile installed underground | |
Robertson | In-situ testing of soil with emphasis on its application to liquefaction assessment | |
Cox et al. | An in situ test method for evaluating the coupled pore pressure generation and nonlinear shear modulus behavior of liquefiable soils | |
JP4071988B2 (en) | Ground survey method using S-wave amplitude associated with impact penetration | |
Di Buò | Evaluation of the Preconsolidation Stress and Deformation Characteristics of Finnish Clays based on Piezocone Testing | |
JP6256880B2 (en) | Ground survey method and ground survey device | |
Lo et al. | MEASUREMENT OF UNKNOWN BRIDGE FOUNDATION DEPTH BY PARALLEL SEISMIC METHOD. | |
Sack et al. | Combined measurement of unknown foundation depths and soil properties with nondestructive evaluation methods | |
US7152467B2 (en) | Parallel seismic depth testing using a cone penetrometer | |
Abu-Farsakh et al. | Reliability of piezocone penetration test methods for estimating the coefficient of consolidation of cohesive soils | |
Harris et al. | Sensing shallow seafloor and sediment properties, recent history | |
Malek et al. | Horizontal Dynamic Cone Penetrometer: A New Device for Estimating Engineering Properties of Vertical Soil Wall in SP Soils | |
Ghafghazi et al. | Instrumented Becker penetration test for improved characterization of gravelly deposits | |
Chang et al. | An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity | |
Yu et al. | Unknown foundation testing: a case comparison of different geophysical methods | |
CN112798452B (en) | Method for determining surrounding rock grade | |
KR102283609B1 (en) | Method for evaluating the embedment depth and ground bearing capacity of unknown bridge foundation | |
Yu et al. | Seismic CPTu to assist the design on existing foundations | |
Landon et al. | Comparison of shear wave velocity measured in situ and on block samples of a marine clay | |
Spriggs | Quantification of acoustic emission from soils for predicting landslide failure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100204 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4458465 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160219 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |