JP2886373B2 - The management method in the vibration compaction method of the saturated sand ground - Google Patents

The management method in the vibration compaction method of the saturated sand ground

Info

Publication number
JP2886373B2
JP2886373B2 JP24676991A JP24676991A JP2886373B2 JP 2886373 B2 JP2886373 B2 JP 2886373B2 JP 24676991 A JP24676991 A JP 24676991A JP 24676991 A JP24676991 A JP 24676991A JP 2886373 B2 JP2886373 B2 JP 2886373B2
Authority
JP
Japan
Prior art keywords
vibration
ground
compaction
vibrating rod
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24676991A
Other languages
Japanese (ja)
Other versions
JPH0559715A (en
Inventor
健 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP24676991A priority Critical patent/JP2886373B2/en
Publication of JPH0559715A publication Critical patent/JPH0559715A/en
Application granted granted Critical
Publication of JP2886373B2 publication Critical patent/JP2886373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、飽和した緩い砂地盤
等、振動によって液状化し易い飽和砂地盤を振動締固め
するための地盤の振動締固め工法において、締固め地盤
の品質(締固め度)を管理する方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a method of compacting a saturated sandy ground such as a saturated loose sandy ground which is liable to liquefaction due to vibrations by vibrating the ground. ).

【0002】[0002]

【従来の技術】従来、飽和砂地盤等の振動締固め工法に
おいては、その施工時に振動ロッドの施工深度や振動源
の負荷電流などを計測し、施工範囲や振動ロッドの負荷
状況の管理を行い、また全施工終了後に所要箇所で標準
貫入試験を行い、地盤のN値を求めることにより強度管
理を行っている。
2. Description of the Related Art Conventionally, in the vibration compaction method for a saturated sandy ground, a construction depth of a vibrating rod and a load current of a vibration source are measured at the time of construction, and a construction range and a load condition of the vibrating rod are managed. In addition, a standard penetration test is performed at required places after the completion of all construction, and strength management is performed by obtaining the N value of the ground.

【0003】[0003]

【発明が解決しようとする課題】上記従来の施工管理方
法では、施工時における管理は各施工毎における品質要
求(振動締固め度)とは直接関与するものではなく、各
施工毎の品質管理が全くなされておらず、また全施工終
了後に行う標準貫入試験も事後的なものであるため、各
施工毎のリアルタイムな品質要求に答えられず、その貫
入試験の実施に多大の労力と費用を要する等の問題があ
った。
In the above-mentioned conventional construction management method, the management at the time of construction does not directly relate to the quality requirement (vibration compaction degree) of each construction, and the quality control of each construction is not performed. It is not done at all, and the standard penetration test performed after the completion of all construction is ex post factual, so it is not possible to respond to real-time quality requirements for each construction, and it takes a lot of labor and cost to perform the penetration test And so on.

【0004】[0004]

【課題を解決するための手段】この発明は前記従来の課
題を解決するために、振動ロッド7の圧入部周辺の地盤
中に間隙水圧計14を内蔵した検査管(給排水管9を代
用)を併設し、振動締固め工法により締固めを行った
後、振動ロッド7を再振動させ、発生した過剰間隙水圧
を計測してその計測値に基づいて締固め度を施工の都度
リアルタイムで適正に管理するようにした飽和砂地盤の
振動締固め工法における管理方法を提案するものであ
る。
According to the present invention, in order to solve the above-mentioned conventional problems, an inspection pipe having a built-in pore water pressure gauge 14 (instead of the water supply / drain pipe 9) is provided in the ground around the press-fitting portion of the vibrating rod 7. The vibrating rod 7 is re-vibrated after the compaction is performed by the vibratory compaction method, and the generated excess pore water pressure is measured. Based on the measured value, the compaction degree is properly managed in real time each time construction is performed. It is intended to propose a management method in a vibration compaction method for a saturated sandy ground.

【0005】[0005]

【作用】移動車輛1を締固め位置に移動することによ
り、給排水管9および振動ロッド7をそれらの上端の振
動体6,8と共に一体に移動し、直ちに施工することが
可能で、リーダー2に沿って給排水管9および振動ロッ
ド7を円滑に沈設することができる。
By moving the moving vehicle 1 to the compaction position, the water supply / drain pipe 9 and the vibrating rod 7 can be moved together with the vibrating bodies 6 and 8 at their upper ends, and can be constructed immediately. The water supply / drain pipe 9 and the vibrating rod 7 can be laid down smoothly.

【0006】地盤改良予定の軟弱地盤において、振動締
固め時に振動ロッド7の振動によって発生する過剰間隙
水は、給排水管9を介して地表面へ排出されて振動ロッ
ド7の周辺の液状化が防止され、振動ロッド7の振動エ
ネルギーが有効に伝達されて確実に振動締固めが行われ
る。
In soft ground to be improved, excess pore water generated by vibration of the vibrating rod 7 during compaction by vibration is discharged to the ground surface through a water supply / drain pipe 9 to prevent liquefaction around the vibrating rod 7. Then, the vibration energy of the vibration rod 7 is effectively transmitted, and the vibration compaction is performed reliably.

【0007】[0007]

【実施例】図1〜図5はこの発明によって管理すべき振
動締固め工法及びこれに用いる施工装置を示したもの
で、先ずこの施工装置について説明するとクローラー等
の移動車輛1の先端に設けたリーダー2に昇降装置3が
昇降自在に取付けられ、この昇降装置3に吊索4を介し
て架台5が昇降自在に懸吊されている。
1 to 5 show a vibration compaction method to be controlled by the present invention and a construction apparatus used for the method. First, the construction apparatus will be described. The construction apparatus is provided at the tip of a moving vehicle 1 such as a crawler. An elevating device 3 is attached to the leader 2 so as to be able to move up and down, and a gantry 5 is suspended from the elevating device 3 via a hanging cable 4 so as to be able to move up and down.

【0008】架台5の下方には、上端に振動体6を取付
けたH型鋼等からなる振動ロッド7が懸吊され、またこ
の振動ロッド7の周囲に上端に振動体8を一連に取付け
た複数の給排水管9が吊索10を介して懸吊され、移動
時等において振動ロッド7および給排水管9の下端はブ
レ止めアーム11によって下端を揺動不能に把持されて
いる。
A vibrating rod 7 made of H-shaped steel or the like having a vibrating body 6 attached to the upper end thereof is suspended below the gantry 5. A plurality of vibrating bodies 8 are attached to the vibrating rod 7 at the upper end in series around the vibrating rod 7. The water supply / drain pipe 9 is suspended via a suspension cable 10, and the lower ends of the vibrating rod 7 and the water supply / drain pipe 9 are gripped by a shake preventing arm 11 so as not to swing when moving.

【0009】振動体8は、振動ロッド7を挿嵌可能な空
洞を中央に有する環状に形成され、その下面に給排水管
9が所定間隔で複数本配置されている。
The vibrating body 8 is formed in an annular shape having a cavity in the center of which the vibrating rod 7 can be inserted, and a plurality of water supply / drainage pipes 9 are arranged on a lower surface thereof at predetermined intervals.

【0010】給排水管9には、少なくともその先端部に
給排水孔12が設けられ、その内部
The water supply / drain pipe 9 is provided with a water supply / drainage hole 12 at least at the end thereof.

【0011】に水を圧送することにより給排水孔12か
ら周辺に水ジェットを噴射し、また真空ポンプ13によ
り内部を真空吸引することにより、周辺の水を真空吸引
して地表部に排出するように構成されており、その所要
位置には間隙水圧計14が装備されている。
Water is jetted from the water supply / drain hole 12 to the periphery by pumping water, and the inside of the water is sucked by a vacuum pump 13 so that the surrounding water is sucked and discharged to the surface. A pore pressure gauge 14 is provided at a required position.

【0012】なお、間隙水圧計14は給排水管9に装備
して検査管として兼用したが、別個に専用の検査管に装
備して給排水管9と同時に圧入してもよい。
Although the pore water pressure gauge 14 is provided in the water supply / drainage pipe 9 and also serves as an inspection pipe, it may be separately provided in a dedicated inspection pipe and press-fitted simultaneously with the water supply / drainage pipe 9.

【0013】振動締固め施工に際しては、先ず図2に示
すように各給排水管9に送水して給排水孔12から水ジ
ェットを噴射しながら、振動体8の振動により地盤に所
要深度まで時に圧入し、次いで図3に示すように振動
ロッド7を振動体6により鉛直または剪断振動を与えな
がら圧入し、地盤を締固めると同時に、その振動によっ
て地盤内に発生した過剰間隙水圧を、周囲の各給排水管
9の給排水孔12から真空吸引して地表部に排除する。
[0013] In the vibration compaction construction, first while injecting water jets from plumbing holes 12 and water in the plumbing line 9 as shown in FIG. 2, pressed simultaneously to a required depth ground by the vibration of the vibrating body 8 Then, as shown in FIG. 3, the vibrating rod 7 is pressed into the vibrating body 6 while applying vertical or shear vibration to compact the ground, and at the same time, the excess pore water pressure generated in the ground due to the vibration is reduced to the surrounding pressure. Vacuum suction is performed from the water supply / drain hole 12 of the water supply / drain pipe 9 to remove it to the surface.

【0014】このように振動ロッド7による振動締固め
時にその振動によって過剰間隙水が発生するが、この過
剰間隙水圧は給排水管9を介して地表部へ排出されるた
め、振動ロッド7の周辺の液状化防止され、振動ロッ
ド7の振動エネルギーが有効に伝達されて確実に振動締
固めが行われる。
As described above, when the vibration is compacted by the vibrating rod 7, the excessive pore water is generated due to the vibration. However, since the excessive pore water pressure is discharged to the surface through the water supply / drain pipe 9, the excess pore water around the vibrating rod 7 is removed. Liquefaction is prevented, vibration energy of the vibration rod 7 is effectively transmitted, and vibration compaction is reliably performed.

【0015】以上のような締固め施工は順次移動車輛1
を移動しながら施工予定地盤の全体に渡って多点的に連
続して実施し、各地点毎における締固め施工の終了の都
度、給排水管9の真空吸引を停止した非吸水状態で振動
ロッド7による検査振動を行い、これによって発生する
地盤内の過剰間隙水圧を間隙水圧計14により測定し、
この計測値に基づいて締固め度(砂の液状化強度)を算
定する。
[0015] The above-described compaction work is carried out for the moving vehicle 1 sequentially.
The vibrating rod 7 is continuously moved in multiple points over the entire ground to be constructed while moving, and the vacuum suction of the water supply / drain pipe 9 is stopped every time the compaction work is completed at each point. Inspection vibration is performed, and the excess pore water pressure in the ground generated by this is measured by the pore water pressure gauge 14,
The degree of compaction (liquefaction strength of sand) is calculated based on the measured values.

【0016】「比較実験例」"Comparative Experimental Example"

【0017】青森県上北郡六ヶ所村鷹架沼埋立地盤にお
いて、ダイレクトパワーコンパクション工法を用い、そ
の振動ロッド7(H型鋼を用い深さ5mまで圧入)の周
辺地盤に給排水管9を設置し、振動ロッド7初期の振動
数で振動させながら深さ5mの地点からその上下各1m
程度昇降させ、これによって生じた過剰間隙水圧を給排
水管9で吸水排除する振動締固め工程を1サイクルとし
て、この工程を4サイクル及び8サイクルそれぞれ行っ
た締固め地盤と、締固め前の初期状態の地盤との3種類
の試験地盤を作成し、図6に示すよう振動ロッド7か
ら1m及び2mの地点にそれぞれ間隙水圧計14及び加
速度計15を設置して実験を行った。
A water supply / drainage pipe 9 is installed on the ground around the vibrating rod 7 (press-fitted to a depth of 5 m using H-shaped steel) by using the direct power compaction method in the reclaimed land at Takakake-numa, Rokkasho-mura, Kamikita-gun, Aomori Prefecture. The vibrating rod 7 is vibrated at the initial frequency and 1 m above and below the point at a depth of 5 m.
The vibratory compaction process of raising and lowering the water to a certain extent and absorbing and removing excess pore water pressure generated by the water supply / drain pipe 9 is defined as one cycle, and the compacted ground obtained by performing this process for 4 cycles and 8 cycles respectively, and the initial state before compaction of creating three test soil with soil, experiments were conducted by installing a respective pore pressure gauge 14 and the accelerometer 15 at a point 1m and 2m from the vibrating rod 7, as shown in FIG.

【0018】先ず、上記各地盤において振動ロッド7か
ら2m離れた地点における標準貫入試験を行った結果、
図7に示すようなNd値の変化が見られ、初期状態と、
4サイクルの締固め、8サイクルの締固めの順に地盤が
締固められていることが分かった。
First, a standard penetration test was conducted at a point 2 m away from the vibrating rod 7 in each of the above-mentioned panels, and as a result,
A change in the Nd value as shown in FIG.
It was found that the ground was compacted in the order of compaction for 4 cycles and compaction for 8 cycles.

【0019】また、振動ロッド7による検査振動時にお
ける過剰間隙水圧△uの挙動を調べたところ、図8に示
すようによく締まった地盤ほど検査振動時の間隙水圧の
発生が少ないことが分かった。
Further, when the behavior of the excess pore water pressure Δu during the inspection vibration by the vibrating rod 7 was examined, it was found that, as shown in FIG. 8, the tighter the ground, the less the pore water pressure was generated during the inspection vibration. .

【0020】さらに、地盤内の振動加速度振幅(gal)
と過剰間隙水圧比(△u/σV')の関係を調べたとこ
ろ、図9に示す結果が得られ、よく締まった地盤ほど同
じ加速度に対する発生間隙水圧量が減ることが分かっ
た。なお、ここでσV'は有効土かぶり圧、即ち深さ5m
の地点における水圧を除いた土圧を意味し、ここではσ
V'=0.4Kgf/cm2であった。
Further, the vibration acceleration amplitude (gal) in the ground
When the relationship between the excess pore water pressure ratio (△ u / σV ′) and the excess pore water pressure ratio (△ u / σV ′) was obtained, the results shown in FIG. 9 were obtained, and it was found that the more firmly the ground, the smaller the generated pore water pressure amount for the same acceleration. Here, σV 'is the effective earth covering pressure, that is, 5 m depth
Means the earth pressure excluding the water pressure at the point
V '= 0.4 kgf / cm2.

【0021】そして、地盤の振動加速度ηに対する過剰
間隙水圧比(△u/σV')の比(△u/σV'/η)をξ
値として、これとNd値との関係をグラフに表すと図1
0に示すような一定の関係、即ちξ値が減少するほど地
盤の液状化強度が高くなることが得られ、これらの関係
を多数の各種締固地盤に求めてそのデーターを得るこ
とにより、過剰間隙水圧を測定してξ値を指標として締
め固め管理を適正に行うことが可能となる。なお、この
ξ値における地盤の振動加速度ηは予め多数の実験によ
る実測値もしくは解析値を応用することで、その都度加
速度計により測定することを省略し、過剰間隙水圧の測
定結果に基づいて管理することができる。
The ratio (△ u / σV '/ η) of the excess pore water pressure ratio (△ u / σV') to the ground acceleration η is expressed as
FIG. 1 is a graph showing the relationship between this value and the Nd value.
0 constant relationship as shown in, i.e. ξ value that is obtained liquefaction strength of the ground as to decrease is increased by obtaining the data in search of these relationships in a number of various fastening solid Me ground, It is possible to measure the excess pore water pressure and properly perform compaction management using the ξ value as an index. The ground vibration acceleration η at this に お け る value is managed based on the measurement result of the excess pore water pressure by omitting the measurement by the accelerometer each time by applying measured values or analysis values obtained from many experiments in advance. can do.

【0022】[0022]

【発明の効果】以上の通りこの発明によれば、各地点毎
における締固め施工の終了の都度、振動ロッドによる検
査振動を行い、これによって発生する地盤内の過剰間隙
水圧を間隙水圧計により測定し、この計測値に基づいて
締固め度(砂の液状化強度)に密接的に関係する指標を
算定することができ、この指標を下に砂地盤における締
め固め効果をリアルタイムで、しかも事後的に管理装置
を設置することなく簡便かつ経済的に管理することがで
き、これらの管理の下に適正な締固施工を遂行すること
が可能となる。
As described above, according to the present invention, each time compaction work is completed at each point, an inspection vibration is performed by the vibrating rod, and the excess pore water pressure in the ground generated by this is measured by the pore water pressure gauge. Then, based on this measurement value, an index closely related to the compaction degree (liquefaction strength of sand) can be calculated, and the compaction effect on the sand ground can be calculated in real time and based on this index. It is possible to manage easily and economically without installing a management device in the factory, and it is possible to perform appropriate compaction work under such management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る振動締固め施工前の状態を示す
縦断側面図。
FIG. 1 is a longitudinal sectional side view showing a state before vibration compaction according to the present invention.

【図2】この発明に係る振動締固め施工の状態を示す縦
断側面図。
FIG. 2 is a vertical sectional side view showing a state of the vibration compaction work according to the present invention.

【図3】この発明に係る振動締固め施工の状態を示す縦
断側面図。
FIG. 3 is a longitudinal sectional side view showing a state of vibration compaction work according to the present invention.

【図4】この発明に係る振動締固め施工の状態を示す縦
断側面図。
FIG. 4 is a longitudinal sectional side view showing a state of vibration compaction work according to the present invention.

【図5】この発明に係る振動締固め施工の状態を示す縦
断側面図。
FIG. 5 is a longitudinal sectional side view showing a state of vibration compaction work according to the present invention.

【図6】この発明に係る実験条件の概要を示す線図。FIG. 6 is a diagram showing an outline of experimental conditions according to the present invention.

【図7】この発明に係る振動締固めによるNd値の変化
を示す線図。
FIG. 7 is a diagram showing a change in Nd value due to vibration compaction according to the present invention.

【図8】この発明に係る実験により得られた検査振動時
の過剰間隙水圧の挙動を示す線図。
FIG. 8 is a diagram showing the behavior of excess pore water pressure during inspection vibration obtained by an experiment according to the present invention.

【図9】この発明に係る実験により得られた砂の振動加
速度と過剰間隙水圧の関係を示す線図。
FIG. 9 is a diagram showing a relationship between vibration acceleration of sand and excess pore water pressure obtained by an experiment according to the present invention.

【図10】この発明に係る実験により得られたξ値とN
d値の関係を示す線図。
FIG. 10 shows the ξ value and N obtained by the experiment according to the present invention.
FIG. 3 is a diagram illustrating a relationship between d values.

【符号の説明】[Explanation of symbols]

1 移動車輛 2 リーダー 3 昇降装置 4 吊索 5 架台 6 振動体 7 振動ロッド 8 振動体 9 給排水管 10 吊索 11 ブレ止めアーム 12 給排水孔 13 真空ポンプ 14 間隙水圧計 15 加速度計 DESCRIPTION OF SYMBOLS 1 Moving vehicle 2 Leader 3 Elevating device 4 Hanging line 5 Stand 6 Vibrating body 7 Vibrating rod 8 Vibrating body 9 Water supply / drainage pipe 10 Hanging line 11 Anti-shake arm 12 Water supply / drainage hole 13 Vacuum pump 14 Pore water pressure gauge 15 Accelerometer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 振動ロッドをその上部に取付けた振動体
の振動により鉛直または剪断振動を与えながら地盤に圧
入し、地盤を締固めると同時に、その振動によって地盤
内に発生した過剰間隙水圧を前記振動ロッドの周囲にお
ける地盤に貫入した排水管により排除するようにした飽
和砂地盤の振動締固め工法において、前記振動ロッドの
圧入部周辺の地盤中に間隙水圧計を内蔵した検査管を併
設し、前記振動締固め工法により締固めを行った後、前
記振動ロッドを再振動させ、発生した過剰間隙水圧を計
測してその計測値に基づいて締固め度を管理することを
特徴とする飽和砂地盤の振動締固め工法における管理方
法。
1. A vibration rod having a vibrating rod mounted thereon is pressed into the ground while applying vertical or shearing vibration by vibrating the vibrating body, compacting the ground, and simultaneously reducing excess pore water pressure generated in the ground by the vibration. In the vibration compaction method of the saturated sand ground so as to be eliminated by a drain pipe penetrating into the ground around the vibrating rod, an inspection pipe with a built-in pore water pressure gauge is provided in the ground around the press-fitting part of the vibrating rod, After the compaction is performed by the vibration compaction method, the vibrating rod is re-vibrated, the generated excess pore water pressure is measured, and the compaction degree is controlled based on the measured value. Management method of vibration compaction method.
JP24676991A 1991-08-31 1991-08-31 The management method in the vibration compaction method of the saturated sand ground Expired - Fee Related JP2886373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24676991A JP2886373B2 (en) 1991-08-31 1991-08-31 The management method in the vibration compaction method of the saturated sand ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24676991A JP2886373B2 (en) 1991-08-31 1991-08-31 The management method in the vibration compaction method of the saturated sand ground

Publications (2)

Publication Number Publication Date
JPH0559715A JPH0559715A (en) 1993-03-09
JP2886373B2 true JP2886373B2 (en) 1999-04-26

Family

ID=17153396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24676991A Expired - Fee Related JP2886373B2 (en) 1991-08-31 1991-08-31 The management method in the vibration compaction method of the saturated sand ground

Country Status (1)

Country Link
JP (1) JP2886373B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE298082T1 (en) * 1996-02-01 2005-07-15 Bbnt Solutions Llc SHEAR MODULE MEASUREMENT OF SOILS
JP4458465B2 (en) * 2004-02-17 2010-04-28 応用地質株式会社 Ground investigation method and device by measuring excess pore water pressure during impact penetration
CN100582377C (en) * 2006-12-01 2010-01-20 上海港湾软地基处理工程有限公司 Method for treating soft foundation by fast 'informationized high vacuum densification'
JP2014005612A (en) * 2012-06-22 2014-01-16 Maeda Corp Quality confirmation method and quality confirmation device for improved ground
JP6841704B2 (en) * 2017-03-30 2021-03-10 積水化学工業株式会社 Ground improvement method

Also Published As

Publication number Publication date
JPH0559715A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
EP3927899B1 (en) Vibratory driving of foundations
JP2886373B2 (en) The management method in the vibration compaction method of the saturated sand ground
US4080792A (en) Soil compaction system
JP2873764B2 (en) How to improve super soft ground
JP3663591B2 (en) Pollution-free pile driving method and pollution-free pile driving equipment
DE102010022802A1 (en) Soil bulk density improving method for e.g. subsoil sink redevelopment areas, involves directly utilizing ground water near ground sinks or water logging surfaces as working level of carrier unit for soil improvement
JP2886374B2 (en) Vibration compaction method
CN106192980B (en) A kind of method of the closely knit sandstone ground of dither
JPH05156624A (en) Method and apparatus for improving sandy poor ground
CN217267390U (en) Vibroflotation gravel pile encryption quality control device
JP2575032B2 (en) Sandy ground vibration consolidation method
JP2997130B2 (en) Vibration compaction method
JP2632912B2 (en) Vibration compaction equipment for sandy ground
JP2762158B2 (en) Synchronization method and equipment for ground structure and land subsidence
DE19740800A1 (en) Plank introduction device into ground using pile-driver
JPH08284163A (en) Pile-driving method
JP3843167B2 (en) Sand pile driving method and apparatus
CN114411685A (en) Device and method for controlling compaction quality of vibroflotation gravel pile
CN111058439A (en) Construction method of immersed tube rock-socketed cast-in-place pile
JPS62137317A (en) Method and apparatus for compaction of ground
JPS6116811B2 (en)
JPH03281815A (en) Vibration tamping method and device thereof
JPS60215926A (en) Laying method of pipe
CN114779713A (en) Intelligent control method and device for vibroflotation pile encryption quality
JPS63251516A (en) Ground improving work

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees