JP7248241B2 - Confirmation method of ground improvement effect and measuring device used therefor - Google Patents

Confirmation method of ground improvement effect and measuring device used therefor Download PDF

Info

Publication number
JP7248241B2
JP7248241B2 JP2019118064A JP2019118064A JP7248241B2 JP 7248241 B2 JP7248241 B2 JP 7248241B2 JP 2019118064 A JP2019118064 A JP 2019118064A JP 2019118064 A JP2019118064 A JP 2019118064A JP 7248241 B2 JP7248241 B2 JP 7248241B2
Authority
JP
Japan
Prior art keywords
ground improvement
electrode
measurement probe
outer sleeve
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019118064A
Other languages
Japanese (ja)
Other versions
JP2021004473A (en
Inventor
光洋 赤塚
賢二 下坂
芳信 村田
康年 大野
孝芳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2019118064A priority Critical patent/JP7248241B2/en
Publication of JP2021004473A publication Critical patent/JP2021004473A/en
Application granted granted Critical
Publication of JP7248241B2 publication Critical patent/JP7248241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、液状化対策を主目的とした薬液注入工法による地盤改良効果の確認方法及びそれに用いる測定装置に関する。 TECHNICAL FIELD The present invention relates to a method for confirming the effect of ground improvement by a chemical injection method mainly aimed at countermeasures against liquefaction, and a measuring device used therefor.

従来より、埋立地等の軟弱地盤の地盤強化のため、水ガラス(珪酸ナトリウム)などからなる薬液を地盤に注入する薬液注入工法による地盤改良工事が行われている。薬液注入工法による地盤改良工事では、施工後、薬液が対象地盤に満遍なく行き渡っているかを確認する施工確認調査が行われる。 2. Description of the Related Art Conventionally, in order to reinforce soft ground such as landfill sites, ground improvement work has been carried out using a chemical injection method in which a chemical solution such as water glass (sodium silicate) is injected into the ground. In ground improvement work using the chemical injection method, a construction confirmation survey is conducted after construction to confirm whether the chemical solution has spread evenly over the target ground.

薬液注入工法の施工確認調査として最も一般的な方法は、改良土を一軸圧縮強さquにより評価する方法である。しかし、薬液注入工法による改良土の一軸圧縮強さは、qu=50~100kPa程度と小さく、対象地盤によっては強度のバラツキが生じ適正に評価されない場合があった。すなわち、前記一軸圧縮強さquによる評価において、quが50~100kPa程度の小さな地盤の場合、事後調査における試料採取時や供試体作成時に、強度低下に繋がる乱れが生じやすい。また、対象地盤によっては供試体内に貝殻、木片、シルト、有機質土等が混入することにより、強度のバラツキが生じ、適正に評価できない場合があった。 The most common method for confirming the construction of the chemical grouting method is to evaluate the improved soil by the unconfined compressive strength qu. However, the unconfined compressive strength of soil improved by the chemical injection method is as small as qu=50 to 100kPa. That is, in the evaluation based on the unconfined compressive strength qu, in the case of the ground with a small qu of about 50 to 100 kPa, turbulence that leads to a decrease in strength is likely to occur during sample collection in the post-survey and during preparation of the test specimen. In addition, depending on the target ground, the mixture of shells, wood chips, silt, organic soil, etc. in the test body may cause variations in strength and may not be evaluated properly.

このような一軸圧縮試験以外の方法により改良地盤の品質を直接的に評価する方法として、国土交通省の埋立地等における薬液注入工法による地盤改良工事に関する検討委員会等において、ピエゾドライブコーン(PDC)などのように間隙水圧が測定できる動的コーン貫入試験が提唱されている。前記ピエゾドライブコーンは、圧力センサを内蔵したコーンをハンマーの打撃で地盤に貫入し、1打撃毎の貫入量と貫入時の間隙水圧の応答値を計測するものである。貫入量からは、標準貫入試験のN値に相当する地盤の動的な貫入抵抗値(Nd値)が1打撃毎に算出される。また、打撃貫入で生ずる地盤内の間隙水圧から、細粒分含有率Fcが推定されるとともに、この間隙水圧を用いて得られる累積過剰間隙水圧比が薬液の地盤への浸透を評価する指標となり得ることなどが上記の検討委員会等で提案されている。 As a method for directly evaluating the quality of improved ground by methods other than the uniaxial compression test, the Piezo Drive Cone (PDC ), a dynamic cone penetration test that can measure pore water pressure has been proposed. The piezo drive cone penetrates into the ground by hammering a cone with a built-in pressure sensor, and measures the amount of penetration for each hammering and the response value of the pore water pressure at the time of penetration. From the penetration amount, the dynamic penetration resistance value (Nd value) of the ground corresponding to the N value of the standard penetration test is calculated for each impact. In addition, the fine particle content Fc can be estimated from the pore water pressure in the ground generated by impact intrusion, and the cumulative excess pore water pressure ratio obtained using this pore water pressure can be used as an index to evaluate the penetration of the chemical solution into the ground. It is proposed by the above-mentioned review committee, etc.

また、薬液注入工法の施工確認調査の他の方法として、電気検層が挙げられる。電気検層は、薬液注入工法では地盤の間隙水が薬液に置き換えられ地盤の圧縮率が変化するとともに、薬液が固化することで地盤の強度が増加することから、改良後の地盤は電気伝導度の特性が変化することを利用したものである。この電気検層では、施工前後における比抵抗値の低下によって、改良効果の定性的判断が可能になる。前記電気検層の測定手順は、ボーリング孔内に、上下方向に所定の間隔で複数の電極が備えられた測定プローブを挿入した後、電流電極に通電し、電極間の電位差から比抵抗を求める。 In addition, electrical logging is another method for confirming the construction of the chemical injection method. In the chemical injection method, the pore water in the ground is replaced with a chemical solution, which changes the compressibility of the ground and the solidification of the chemical solution increases the strength of the ground. It utilizes the fact that the characteristics of With this electrical logging, it is possible to qualitatively judge the improvement effect by the decrease in the resistivity value before and after construction. In the measurement procedure of the electrical logging, after inserting a measuring probe equipped with a plurality of electrodes at predetermined intervals in the vertical direction into the borehole, current is applied to the electrodes, and the specific resistance is obtained from the potential difference between the electrodes. .

このような電気検層による地盤改良工事の品質確認方法として、下記特許文献1においては、外面に環状の電極が取り付けられた電極取付体を改良体内に挿入し、電極取付体の周囲に造成された改良体に通電し、かかる状態で計測された電流電極間の電流及び電位電極間の電位差を用いて比抵抗を求める方法が開示されている。また、下記非特許文献1においては、薬液注入前後の電気比抵抗の変化から、薬液充填率を求める方法が開示されている。 As a method for confirming the quality of ground improvement work by such electric logging, in the following Patent Document 1, an electrode mounting body having an annular electrode attached to the outer surface is inserted into the improved body, and an electrode mounting body is created around the electrode mounting body. A method is disclosed in which a current is applied to the modified body and the resistivity is obtained using the current between the current electrodes and the potential difference between the potential electrodes measured in such a state. In addition, Non-Patent Document 1 below discloses a method of obtaining a chemical solution filling rate from changes in electrical resistivity before and after chemical solution injection.

特開2000-46510号公報JP-A-2000-46510

小峯秀雄、「電気比抵抗による薬液注入改良部の充填率の評価方法」、土木学会論文集、No.463/III-22、p.153-162、1993年3月Hideo Komine, ``Evaluation method of filling rate of chemical solution injection improvement part by electrical resistivity'', JSCE Journal, No.463/III-22, p.153-162, March 1993

上述の動的コーン貫入試験について、地盤工学会のJGS基準(JGS 1437-2014)では、大型試験機(SRS)の単位面積・単位貫入量あたりのエネルギーを基準とし、周面摩擦とエネルギーにより補正することで、大型(SRS)と中型(MRS)の各試験装置の結果を相互に比較できることが規定されている。すなわち、大型か中型のいずれかの試験機を用いることが推奨されている。しかしながら、大型試験機(SRS)ではハンマー質量63.5kg、落下高500mm、中型試験機(MRS)ではハンマー質量30kg、落下高350mmと、いずれの試験機においても打撃エネルギーが高く、データのバラツキが生じやすいと考えられる。また、上記の検討委員会の報告では、上述の動的コーン貫入試験において、一軸圧縮強さquは、土の種類毎に、Nd値の増分(ΔNd値)と高い相関があるとされているが、qu=100kPaにおけるNd値の増分量(ΔNd値)は5以下と非常に小さく、バラツキの大きな中・大型試験機を用いた動的コーン貫入試験では、Nd値の増分量が地盤改良による結果なのか、試験機の誤差範囲なのかを判断するのが難しく、明確に評価できる判定手法が望まれていた。 Regarding the above-mentioned dynamic cone penetration test, according to the JGS standard (JGS 1437-2014) of the Japan Geotechnical Society, the energy per unit area and unit penetration amount of a large testing machine (SRS) is used as the standard, and it is corrected by peripheral friction and energy. It is stipulated that the results of large (SRS) and medium (MRS) test rigs can be compared with each other. That is, it is recommended to use either a large or medium sized testing machine. However, the large testing machine (SRS) has a hammer mass of 63.5 kg and a drop height of 500 mm, while the medium-sized testing machine (MRS) has a hammer mass of 30 kg and a drop height of 350 mm. considered to be easy. In addition, according to the report of the above-mentioned review committee, in the above-mentioned dynamic cone penetration test, the unconfined compressive strength qu is said to have a high correlation with the increment of the Nd value (ΔNd value) for each type of soil. However, the increment of the Nd value (ΔNd value) at qu = 100 kPa is very small at 5 or less, and in the dynamic cone penetration test using medium- and large-sized testing machines with large variations, the increment of the Nd value is due to ground improvement. It is difficult to judge whether it is the result or the error range of the testing machine, and a judgment method that can be clearly evaluated has been desired.

一方、上記特許文献1に記載される電気検層による地盤改良の品質確認では、計測の際に、測定プローブの周面に設けられた環状の電極を貫入孔の壁面に接触させる必要があるため、貫入孔と測定プローブの直径をほぼ同程度の寸法にしなければならず、これにより、測定プローブの引抜時の抵抗が大きくなり、測定プローブが回収不能となったり、電極を損傷するなどの問題が生じやすかった。また、電極が貫入孔の壁面に接触しにくく、接触不良による測定精度の低下が生じやすかった。上記非特許文献1では、室内実験のみが行われ、現場での試験における上記の問題を解決するものではない。 On the other hand, in the quality confirmation of ground improvement by electrical logging described in Patent Document 1, it is necessary to bring the annular electrode provided on the peripheral surface of the measurement probe into contact with the wall surface of the penetration hole during measurement. , the diameter of the penetration hole and the measurement probe must be about the same size, which increases the resistance of the measurement probe when it is pulled out, making it impossible to retrieve the measurement probe or damaging the electrode. was likely to occur. In addition, the electrodes are less likely to come into contact with the walls of the through-holes, and poor contact tends to cause deterioration in measurement accuracy. The non-patent document 1 only conducts laboratory experiments and does not solve the above problems in field tests.

そこで本発明の第1の課題は、バラツキが少なく、改良地盤の品質が直接的に確認できる地盤改良効果の確認方法を提供することにある。また、第2の課題は、電気検層における測定プローブの回収不能リスクを無くすとともに、電極が孔壁に確実に接触できるようにすることにある。 Therefore, the first object of the present invention is to provide a method for confirming the effect of ground improvement that has little variation and can directly confirm the quality of the improved ground. The second problem is to eliminate the risk of the measurement probe being unrecoverable in electrical logging and to ensure that the electrode can contact the hole wall.

上記第1の課題を解決するために請求項1に係る本発明として、薬液注入工法による地盤改良効果の確認方法であって、
地盤改良後において、小型動的コーン貫入試験により深度とNd値との関係を示したNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行い、
前記1次的効果確認によって地盤改良効果が認められない場合に、前記小型動的コーン貫入試験の貫入孔に電極を備えた測定プローブを挿入して比抵抗を測定する電気検層を行い、深度と比抵抗との関係を示した比抵抗の深度分布図を得て、地盤改良前後における前記比抵抗の減分量から地盤改良効果を確認する2次的効果確認を行うことを特徴とする地盤改良効果の確認方法が提供される。
In order to solve the first problem, the present invention according to claim 1 is a method for confirming the effect of ground improvement by a chemical injection method,
After ground improvement, a small dynamic cone penetration test is performed to obtain a depth distribution map of the Nd value that shows the relationship between depth and Nd value, and the effect of ground improvement is confirmed from the amount of increase in the Nd value before and after the ground improvement. Confirm the following effects,
If the ground improvement effect is not recognized by the confirmation of the primary effect, an electrical logging is performed to measure the resistivity by inserting a measurement probe equipped with an electrode into the penetration hole of the small dynamic cone penetration test, and the depth A ground improvement characterized by obtaining a depth distribution map of specific resistance showing the relationship between and specific resistance, and confirming the secondary effect of confirming the ground improvement effect from the decrement amount of the specific resistance before and after the ground improvement. A method for checking effectiveness is provided.

上記請求項1記載の発明では、地盤改良後において、先ず、小型動的コーン貫入試験によりNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行う。そして、この1次的効果確認によって地盤改良効果が認められない場合に、前記小型動的コーン貫入試験の貫入孔を利用して電気検層を行い比抵抗の深度分布図を得て、地盤改良前後における前記比抵抗の減分量から地盤改良効果を確認する2次的効果確認を行う。 In the invention according to claim 1, after ground improvement, first, a depth distribution map of the Nd value is obtained by a small dynamic cone penetration test, and the ground improvement effect is confirmed from the amount of increase in the Nd value before and after the ground improvement. Confirm the primary effect. Then, if the ground improvement effect is not recognized by this primary effect confirmation, electrical logging is performed using the penetration hole of the small dynamic cone penetration test to obtain a depth distribution map of resistivity and ground improvement. Secondary effect confirmation is performed to confirm the soil improvement effect from the amount of decrement in the resistivity before and after.

このように、いわゆるPENNYと呼ばれる小型動的コーン貫入試験によって、Nd値の深度分布図を得ているため、標準貫入試験や上述の中・大型試験機を用いたピエゾドライブコーンに比べて、打撃エネルギーのバラツキが少なく、バラツキの生じやすい不均一な埋立て地盤でも地盤強度が適正に評価できるようになる。 In this way, a small dynamic cone penetration test called PENNY is used to obtain a depth distribution map of the Nd value. With little variation in energy, it becomes possible to properly evaluate the ground strength even in uneven reclaimed ground where variation is likely to occur.

また、地盤改良効果を確認するに当たって、先ず、前記小型動的コーン貫入試験で得られたNd値の深度分布図によって1次的な効果確認を行い、これでも地盤改良効果が認められない場合に、電気検層による比抵抗の深度分布図から2次的な効果確認を行うというように、2段階で効果確認を行っているため、Nd値の増分量だけでは地盤改良効果が判断できない場合でも、前記比抵抗の減分量から地盤改良効果が明確に把握でき、改良地盤の品質が直接的に確認できるようになる。 In addition, in confirming the ground improvement effect, first of all, the primary effect is confirmed by the depth distribution map of the Nd value obtained in the small dynamic cone penetration test. Since the effect is confirmed in two stages, such as confirming the secondary effect from the depth distribution map of resistivity by electrical logging, even if the ground improvement effect cannot be judged only by the amount of increase in the Nd value , the ground improvement effect can be clearly grasped from the decrement amount of the resistivity, and the quality of the improved ground can be directly confirmed.

請求項2に係る本発明として、前記電気検層は、2極法の電極配置により行う請求項1記載の地盤改良効果の確認方法が提供される。 As the present invention according to claim 2, there is provided the method for confirming the ground improvement effect according to claim 1, wherein the electrical logging is performed by the electrode arrangement of the bipolar method.

上記請求項2記載の発明では、2極法の電極配置により電気検層を行い比抵抗を求めている。2極法の電極配置は、地表付近に設置した電流遠電極に電流のリターンをとり、同じく地表付近に設置した電位遠電極を基準として、電流電極から一定電流を流しながら電位電極で電位を測定するものであり、他の電極配置に比べて、地盤の改良効果がより明確に把握できるようになる。 In the second aspect of the invention, electrical logging is performed by the electrode arrangement of the two-pole method to obtain the specific resistance. In the electrode arrangement of the two-pole method, current is returned to the current far electrode installed near the ground surface, and the potential is measured with the potential electrode while a constant current is flowing from the current electrode with the potential far electrode installed near the ground surface as the reference. This makes it possible to more clearly grasp the ground improvement effect compared to other electrode arrangements.

上記第2の課題を解決するために請求項3に係る本発明として、上記請求項1、2いずれかに記載の地盤改良効果の確認方法に用いる測定装置であって、
前記測定装置は、前記測定プローブが着脱可能に挿嵌される中空状の外装スリーブを含み、
前記外装スリーブは、前記測定プローブが前記貫入孔への挿入先端側から前記電極の取付位置を含む範囲に亘って挿嵌される中空部と、前記測定プローブの前記電極に対応する位置に、前記中空部から外面まで貫通するとともに、前記測定プローブを前記中空部に挿嵌した状態で内側の先端が前記電極に接触して設けられた外側電極とが備えられ、
前記貫入孔から前記測定プローブを引き抜くことが困難になった場合に、前記測定プローブが前記外装スリーブから抜けて、前記測定プローブが回収できるようになっていることを特徴とする地盤改良効果の確認方法に用いる測定装置が提供される。
In order to solve the second problem, the present invention according to claim 3 is a measuring device used in the method for confirming the ground improvement effect according to any one of claims 1 and 2,
The measuring device includes a hollow outer sleeve into which the measuring probe is detachably inserted,
The outer sleeve has a hollow portion into which the measurement probe is inserted over a range including a mounting position of the electrode from a distal end side of insertion into the penetration hole, and a position corresponding to the electrode of the measurement probe. an outer electrode penetrating from the hollow portion to the outer surface and having an inner tip in contact with the electrode when the measurement probe is inserted into the hollow portion;
Confirmation of ground improvement effect characterized in that when it becomes difficult to pull out the measurement probe from the penetration hole, the measurement probe is pulled out of the exterior sleeve and the measurement probe can be recovered. A measuring device for use in the method is provided.

上記請求項3記載の発明は、電気検層の際、測定プローブに着脱可能に外嵌される中空状の外装スリーブに関して規定しており、前記外装スリーブは、前記測定プローブが前記貫入孔への挿入先端側から前記電極の取付位置を含む範囲に亘って挿嵌される中空部と、前記測定プローブの前記電極に対応する位置に、前記中空部から外面まで貫通するとともに、前記測定プローブを前記中空部に挿嵌した状態で内側の先端が前記電極に接触して設けられた外側電極とが備えられている。そして、前記測定プローブは、前記貫入孔から前記測定プローブを引き抜くことが困難になった場合に、引抜き抵抗により前記外装スリーブから抜けて、回収できるようになっている。このように、測定プローブを引き抜く際の引抜き抵抗により、外装スリーブが抜けて地中に残置されるとともに、測定プローブが確実に回収できるため、電気検層における高価な測定プローブの回収不能リスクが無くなる。また、測定プローブより大径の外装スリーブが測定プローブに外嵌されているため、外装スリーブに備えられた外側電極が貫入孔の孔壁に確実に接触できるようになる。 The invention according to claim 3 defines a hollow outer sleeve that is detachably fitted to the measurement probe during electrical logging, and the outer sleeve allows the measurement probe to pass through the penetration hole. A hollow portion inserted from the insertion tip side over a range including the mounting position of the electrode, and a position corresponding to the electrode of the measurement probe are penetrated from the hollow portion to the outer surface, and the measurement probe is inserted into the An outer electrode is provided in which the tip of the inner side is in contact with the electrode while being inserted into the hollow portion. Further, when it becomes difficult to pull out the measurement probe from the penetration hole, the measurement probe can be pulled out of the exterior sleeve by pull-out resistance and can be recovered. In this way, due to the pull-out resistance when the measurement probe is pulled out, the outer sleeve is pulled out and left in the ground, and the measurement probe can be reliably recovered, eliminating the risk of not being able to recover the expensive measurement probe in electrical logging. . Further, since the outer sleeve having a diameter larger than that of the measurement probe is fitted around the measurement probe, the outer electrode provided on the outer sleeve can reliably come into contact with the hole wall of the penetration hole.

請求項4に係る本発明として、前記外装スリーブは、前記貫入孔に挿入した際、前記外側電極を孔壁に接触させるため、前記外側電極の反対側に、外方に突出した接触促進用凸部が設けられている請求項3記載の地盤改良効果の確認方法に用いる測定装置が提供される。 According to a fourth aspect of the present invention, the outer sleeve has a contact promoting projection projecting outward on the opposite side of the outer electrode so as to bring the outer electrode into contact with the hole wall when the outer sleeve is inserted into the through hole. A measuring device for use in the method for confirming a ground improvement effect according to claim 3 is provided.

上記請求項4記載の発明では、測定プローブが挿嵌された外装スリーブを貫入孔に挿入した際、前記外装スリーブに備えられた外側電極を孔壁に接触させるため、外側電極の反対側に、外方に突出した接触促進用凸部が設けられている。これによって、外装スリーブに備えられた外側電極が貫入孔の孔壁により確実に接触できるようになる。 In the invention according to claim 4, when the outer sleeve in which the measurement probe is inserted is inserted into the through hole, the outer electrode provided in the outer sleeve is brought into contact with the hole wall. A contact promoting protrusion projecting outward is provided. This ensures that the outer electrode provided on the outer sleeve is in better contact with the hole wall of the through hole.

請求項5に係る本発明として、前記測定プローブの周面に設けられた周方向固定用凸部が、前記外装スリーブに設けられた嵌合部に嵌合することにより、前記外装スリーブと前記測定プローブとの周方向への回転が固定されている請求項3、4いずれかに記載の地盤改良効果の確認方法に用いる測定装置が提供される。 According to a fifth aspect of the present invention, the outer sleeve and the measurement probe are connected to each other by fitting a circumferential fixing convex portion provided on the peripheral surface of the measurement probe into a fitting portion provided on the outer sleeve. There is provided a measuring device used for the confirmation method of ground improvement effect according to any one of claims 3 and 4, wherein rotation in the circumferential direction with the probe is fixed.

上記請求項5記載の発明では、前記測定プローブに外装スリーブを取り付ける際の測定プローブの電極と前記外装スリーブの外側電極との位置合わせのためと、外装スリーブが外嵌された測定プローブを貫入孔に挿入する際の外装スリーブと測定プローブとの相対的な周方向の回転を防止するため、測定プローブの周面に設けられた周方向固定用凸部が、外装スリーブに設けられた嵌合部に嵌合するようになっている。 In the invention according to claim 5, when the outer sleeve is attached to the measuring probe, the electrode of the measuring probe and the outer electrode of the outer sleeve are aligned, and the measuring probe to which the outer sleeve is fitted is inserted into the through hole. In order to prevent relative circumferential rotation between the outer sleeve and the measurement probe when the outer sleeve is inserted into the It is designed to mate with

以上詳説のとおり本発明によれば、バラツキが少なく、改良地盤の品質が直接的に確認できるようになる。また、電気検層における測定プローブの回収不能リスクが無くなるとともに、電極が確実に孔壁に接触できるようになる。 As described in detail above, according to the present invention, it is possible to directly check the quality of the improved ground with little variation. It also eliminates the risk of irrecoverable measurement probes in electrical logging and ensures that the electrodes can contact the borehole walls.

電気検層に用いる測定装置の概略を示す縦断面図である。It is a longitudinal section showing an outline of a measuring device used for electrical logging. 外装スリーブ8が取り付けられた測定プローブ2の正面図である。1 is a front view of a measuring probe 2 with an outer sleeve 8 attached; FIG. 測定プローブ2の正面図である。2 is a front view of the measurement probe 2; FIG. 外装スリーブ本体12を示す、(A)は正面図、(B)は(A)のB-B断面図、(C)は裏面図、(D)は(A)のD-D断面図である。Fig. 3 shows an exterior sleeve body 12, (A) is a front view, (B) is a cross-sectional view along B-B of (A), (C) is a rear view, and (D) is a cross-sectional view along D-D of (A). 外装スリーブ先端13を示す、(A)は正面図、(B)は上面図である。(A) is a front view and (B) is a top view showing the tip 13 of the outer sleeve. 地盤改良の範囲と測定位置を示す平面図である。It is a top view which shows the range of ground improvement and a measurement position. その断面図(図6のVII-VII線矢視図)である。It is the sectional view (VII-VII line arrow line view of FIG. 6). 土質柱状図である。It is a soil histogram. 改良Aにおける、(A)はNd値の深度分布図、(B)は比抵抗の深度分布図、(C)は一軸圧縮強さの深度分布図である。(A) is a depth distribution map of Nd value, (B) is a depth distribution map of resistivity, and (C) is a depth distribution map of uniaxial compressive strength in improvement A. FIG. 改良Bにおける、(A)はNd値の深度分布図、(B)は比抵抗の深度分布図、(C)は一軸圧縮強さの深度分布図である。(A) is a depth distribution map of Nd value, (B) is a depth distribution map of resistivity, and (C) is a depth distribution map of uniaxial compressive strength in improvement B. FIG. 改良DPにおける、(A)はNd値の深度分布図、(B)は比抵抗の深度分布図、(C)は一軸圧縮強さの深度分布図である。In the improved DP, (A) is a depth distribution map of Nd value, (B) is a depth distribution map of resistivity, and (C) is a depth distribution map of uniaxial compressive strength.

以下、本発明の実施の形態について図面を参照しながら詳述する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明は、埋立地等の軟弱地盤の地盤強化のため、水ガラス(珪酸ナトリウム)などからなる薬液を地盤に注入する薬液注入工法による地盤改良効果の確認方法であり、具体的には以下の手順による。 The present invention is a method for confirming the effect of ground improvement by a chemical injection method in which a chemical solution made of water glass (sodium silicate) is injected into the ground for strengthening the ground of soft ground such as a landfill. Depends on procedure.

地盤改良後において、小型動的コーン貫入試験により深度とNd値との関係を示したNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行い、
前記1次的効果確認によって地盤改良効果が認められない場合に、図1及び図2に示されるように、前記小型動的コーン貫入試験の貫入孔1に電極3、4を備えた測定プローブを挿入して比抵抗Rを測定する電気検層を行い、深度と比抵抗Rとの関係を示した比抵抗Rの深度分布図を得て、地盤改良前後における前記比抵抗Rの減分量から地盤改良効果を確認する2次的効果確認を行う。
After ground improvement, a small dynamic cone penetration test is performed to obtain a depth distribution map of the Nd value that shows the relationship between depth and Nd value, and the effect of ground improvement is confirmed from the amount of increase in the Nd value before and after the ground improvement. Confirm the following effects,
When the ground improvement effect is not recognized by the confirmation of the primary effect, as shown in FIGS. Electrical logging is performed to measure the specific resistance R by inserting it, obtaining a depth distribution map of the specific resistance R that shows the relationship between the depth and the specific resistance R, and using the decrement amount of the specific resistance R before and after the ground improvement Perform secondary effect confirmation to confirm the improvement effect.

すなわち、本発明では、小型動的コーン貫入試験で得られたNd値の深度分布図により1次的効果確認を行った後、電気検層で得られた比抵抗の深度分布により2次的効果確認を行っている。以下、この手順に従って具体的に説明する。 That is, in the present invention, after confirming the primary effect by the depth distribution map of the Nd value obtained by the small dynamic cone penetration test, the secondary effect by the depth distribution of the resistivity obtained by electrical logging I am checking. This procedure will be described in detail below.

(1次的効果確認)
前記小型動的コーン貫入試験は、いわゆるPENNYと呼ばれるイタリアのTecnotest社製の小型動的コーン貫入試験機を用いて行う貫入試験である。試験方法は、質量294N(30kgf)のハンマーを油圧モータを利用して自動で高さ20cmの位置から自由落下させて、断面積10cm2、先端角60°の先端コーンを10cm貫入するのに必要な打撃回数(Nd値)を連続的に測定する。1mごとにロッドの回転トルクを測定し、ロッドに作用する摩擦力の影響を補正することで、標準貫入試験のN値と等価なNd値に換算できるようになっている。標準貫入試験と対比した場合の小型動的コーン貫入試験の利点としては、以下の点が挙げられる。
(Primary effect confirmation)
The small dynamic cone penetration test is a penetration test performed using a small dynamic cone penetration tester called PENNY manufactured by Tecnotest of Italy. The test method is to let a hammer with a mass of 294 N (30 kgf) fall automatically from a height of 20 cm using a hydraulic motor, and to penetrate a tip cone with a cross-sectional area of 10 cm 2 and a tip angle of 60° for 10 cm. Continuously measure the number of impacts (Nd value). By measuring the rotational torque of the rod every 1m and correcting the influence of the frictional force acting on the rod, it can be converted to the Nd value equivalent to the N value of the standard penetration test. Advantages of the compact dynamic cone penetration test compared to the standard penetration test include:

(1)標準貫入試験では測定点が1mピッチであるため、薬液注入の層厚が1~2m程度だと計測点を確保できないのに対して、小型動的コーン貫入試験は10cm毎に計測できる。
(2)改良土の一軸圧縮強さquは50~100kPa程度であるため、標準貫入試験だと打撃エネルギーが大きすぎて精度が出ないのに対して、小型動的コーン貫入試験は打撃エネルギーが小さく(対象の強度レンジに対して丁度良く)、測定精度が確保できる。標準貫入試験の場合ハンマー質量63.5kg、落下高さ76cmの自由落下エネルギーは473Jであるのに対し、小型動的コーン貫入試験ではハンマー質量30kg、落下高さ20cmの自由落下エネルギーが58.8Jと、およそ12%の打撃エネルギーとなっている。
(3)落下作業が全自動のため、打撃エネルギーにバラツキが少ない。
(4)試験機が軽く、ハンドリング性が良い。
(1) In the standard penetration test, the measurement points are arranged at a pitch of 1m, so if the layer thickness of the chemical solution is about 1 to 2m, the measurement points cannot be secured. .
(2) The unconfined compressive strength qu of the improved soil is about 50 to 100 kPa, so the standard penetration test requires too much impact energy for accuracy, whereas the small dynamic cone penetration test requires too much impact energy. It is small (just right for the target intensity range) and ensures measurement accuracy. In the case of the standard penetration test, the free fall energy with a hammer mass of 63.5 kg and a drop height of 76 cm was 473 J. Approximately 12% impact energy.
(3) Since the drop operation is fully automatic, there is little variation in impact energy.
(4) The tester is light and easy to handle.

このように、小型動的コーン貫入試験を用いてNd値を測定することにより、標準貫入試験に比べて、狭小な設置スペースで、可搬性に優れ、全自動のため打撃エネルギーのバラツキが少なく、そのためバラツキの生じやすい不均一な埋立て地盤等でも地盤改良効果が確実に確認できる。 In this way, by measuring the Nd value using the small dynamic cone penetration test, compared to the standard penetration test, the installation space is narrow and excellent in portability. Therefore, it is possible to reliably confirm the effect of ground improvement even on uneven landfill ground, etc., which tends to cause variations.

前記小型動的コーン貫入試験によって、深度とNd値との関係を示したNd値の深度分布図が得られる(図9~図11の(A)参照。)。 A depth distribution diagram of the Nd value showing the relationship between the depth and the Nd value is obtained by the small dynamic cone penetration test (see FIGS. 9 to 11 (A)).

上記小型動的コーン貫入試験によって得られたNd値の深度分布図を用いて、地盤改良効果を確認する1次的効果確認を行う。この1次的効果確認における地盤改良効果の確認方法は、図9(A)、図10(A)及び図11(A)に示されるように、地盤改良前後におけるNd値の増分量により行う。Nd値の増分量は、地盤改良前のNd値が目標改良強度に近い地盤などでは、あまり大きくなく、このNd値による地盤の改良効果が認められない場合がある。その場合には、次述の電気検層による2次的効果確認が行われる。 Using the Nd value depth distribution map obtained by the small dynamic cone penetration test, the primary effect confirmation of the ground improvement effect is performed. The confirmation method of the ground improvement effect in this primary effect confirmation is performed by the amount of increase in the Nd value before and after the ground improvement, as shown in FIGS. 9(A), 10(A) and 11(A). The increment of the Nd value is not so large in the ground where the Nd value before ground improvement is close to the target improvement strength, and the ground improvement effect by this Nd value may not be recognized. In that case, a secondary effect confirmation is carried out by electrical logging as described below.

(2次的効果確認)
2次的効果確認では、先ず、前記小型動的コーン貫入試験の後、その貫入孔1を利用して電気検層を行う。前記電気検層は、図1に示される圧入装置によって、前記小型動的コーン貫入試験の貫入孔1に、図2及び図3に示されるように、1つの電流電極3及び2つの電位電極4、4を備えた測定プローブ2を挿入し、孔壁にこれらの電極3、4を接触させながら、電流電極3に電流を流したときの電位を電位電極4によって検出し、孔壁近傍の地盤の比抵抗Rを深度方向に連続的に測定する物理探査手法である。
(Secondary effect confirmation)
In the secondary effect confirmation, first, after the small dynamic cone penetration test, electrical logging is performed using the penetration hole 1 . The electrical logging was performed by an indentation device shown in FIG. 1 into the penetration hole 1 of the miniature dynamic cone penetration test, one current electrode 3 and two potential electrodes 4, as shown in FIGS. , 4 is inserted, and while these electrodes 3 and 4 are in contact with the hole wall, the potential when a current is applied to the current electrode 3 is detected by the potential electrode 4, and the ground near the hole wall is detected. It is a geophysical exploration method that continuously measures the specific resistance R of the depth direction.

前記圧入装置は、図1に示されるように、貫入孔1の直上の地表面に、貫入孔1の両側にそれぞれ上下方向に沿って伸縮自在とされたピストン20、20が配置され、これらピストン20、20の上端同士に跨設された架台21の中央部に、下端に測定プローブ2が連結された貫入ロッド5を挟持するチャック22が備えられるとともに、前記ピストン20、20の動作を制御するコントロールユニット23が備えられたものである。また、前記コントロールユニット23には、エンジン及び油圧ポンプからなる油圧ユニット24が接続されている。 As shown in FIG. 1, the press-fitting device has pistons 20, 20 which are vertically extendable on both sides of the through-hole 1 on the ground surface directly above the through-hole 1. These pistons A chuck 22 for clamping the penetration rod 5 having the measurement probe 2 connected to the lower end thereof is provided in the center of the frame 21 straddling the upper ends of the pistons 20 and 20, and controls the operation of the pistons 20 and 20. A control unit 23 is provided. A hydraulic unit 24 including an engine and a hydraulic pump is connected to the control unit 23 .

前記圧入装置では、両側のピストン20、20が同調して伸縮し、前記架台21が上下方向に移動することにより、前記チャック22によって挟持された貫入ロッド5が上下方向に移動し、測定プローブ2の貫入孔1への押し込み及び引き抜きが行われるようになっている。 In the press-fitting device, the pistons 20, 20 on both sides expand and contract in synchronism, and the pedestal 21 moves vertically, thereby moving the penetration rod 5 clamped by the chuck 22 vertically. is pushed into and pulled out of the penetration hole 1.

電気検層に用いる測定装置は、図2に示されるように、前記電極3、4…が備えられた測定プローブ2と、この測定プローブ2の上端から延び、前記測定プローブ2の内部において先端が前記電極3、4…に接続された電気ケーブル7と、前記測定プローブ2が着脱可能に挿嵌される中空状の外装スリーブ8とを含んでいる。前記電気ケーブル7は、中空円筒状に形成された貫入ロッド5の中空部を通って地上まで延出され、地上において、先端が測定装置に接続されるようになっている。 As shown in FIG. 2, the measuring device used for electrical logging includes a measuring probe 2 provided with the electrodes 3, 4, . It includes an electric cable 7 connected to the electrodes 3, 4, . . . The electric cable 7 extends to the ground through the hollow portion of the penetrating rod 5 formed in a hollow cylindrical shape, and the tip thereof is connected to the measuring device on the ground.

前記測定プローブ2は、断面略円形の棒状の外観を成し、上端部には、貫入ロッド5を連結するための雄ねじ部6が形成され、貫入ロッド5の下端部に設けられた雌ねじ部が螺合できるようになっている。また、前記雄ねじ部6の下端に連続して、中間部9を介して、複数の電極が軸方向(上下方向)に所定の間隔を空けて配列された本体部10が設けられるとともに、この本体部10の下端に連続して、前記本体部10より小径の先端部11が設けられている。 The measurement probe 2 has a rod-like appearance with a substantially circular cross section, and has an upper end formed with a male threaded portion 6 for connecting the penetration rod 5, and a female threaded portion provided at the lower end of the penetration rod 5. It can be screwed together. Further, a body portion 10 having a plurality of electrodes arranged at predetermined intervals in the axial direction (vertical direction) is provided continuously from the lower end of the male screw portion 6 via an intermediate portion 9 . A distal end portion 11 having a diameter smaller than that of the main body portion 10 is provided continuously from the lower end of the portion 10 .

前記電気検層の電極配置は、4極法や3極法でもよいが、2極法とするのが好ましい。2極法の電極配置は、図2及び図3に示されるように、上下方向に所定の間隔を空けて1つの電流電極3及び2つの電位電極4、4を配置し、地表付近に設置した電流遠電極(図示せず)に電流のリターンをとり、同じく地表付近に設置した電位遠電極(図示せず)を基準として、電流電極3から一定電流を流しながら電位電極4、4で電位を測定するものである。4極法や3極法の電極配置に比べて、地盤の改良効果がより明確に把握できるようになる。 The electrode arrangement for the electrical logging may be a 4-pole method or a 3-pole method, but is preferably a 2-pole method. As shown in FIGS. 2 and 3, in the electrode arrangement of the two-pole method, one current electrode 3 and two potential electrodes 4, 4 are arranged at predetermined intervals in the vertical direction and installed near the ground surface. A current is returned to a current far electrode (not shown), and with a potential far electrode (not shown) installed near the ground surface as a reference, a constant current is passed from the current electrode 3 while the potential is applied to the potential electrodes 4 and 4. It is what you measure. Compared to the electrode arrangement of the 4-pole method and the 3-pole method, the ground improvement effect can be grasped more clearly.

図2に示されるように、測定プローブ2の本体部10に設けられた3つの電極のうち、最上部に配置された電極が電流電極3であり、その下側に配置された2つの電極がそれぞれ電位電極4である。前記電流電極3と上側の電位電極4との電極間隔aは2.5cm、電流電極3と下側の電位電極4との電極間隔bは5cmとするのが好ましい。このように、電流電極3との電極間隔が異なる2つの電位電極4、4を配置することにより、電極間隔が異なる2つの電位差を同時に測定することができるため、測定精度が向上するとともに、測定時間が短縮化できる。 As shown in FIG. 2, of the three electrodes provided on the main body 10 of the measurement probe 2, the uppermost electrode is the current electrode 3, and the two electrodes below it are the current electrodes 3. Each is a potential electrode 4 . It is preferable that the electrode spacing a between the current electrode 3 and the upper potential electrode 4 is 2.5 cm, and the electrode spacing b between the current electrode 3 and the lower potential electrode 4 is 5 cm. By arranging the two potential electrodes 4, 4 with different electrode spacings from the current electrode 3 in this way, two potential differences with different electrode spacings can be measured at the same time. Time can be shortened.

前記電極3、4…は導電性の金属材からなり、測定プローブ2の内部から外面まで貫通して設けられ、測定プローブ2の内部でそれぞれ電気ケーブル7の先端が接続している。 The electrodes 3, 4, .

次いで、前記測定プローブ2を貫入孔1に貫入する際、前記測定プローブ2の先端側に取り付けられる外装スリーブ8について説明する。前記外装スリーブ8は、製作を容易化するため、図2に示されるように、測定プローブ2の本体部10に外嵌される外装スリーブ本体12と、測定プローブ2の先端部11に外嵌される外装スリーブ先端13とに分割して構成するのが好ましい。 Next, the exterior sleeve 8 attached to the distal end side of the measurement probe 2 when the measurement probe 2 is inserted into the penetration hole 1 will be described. In order to facilitate manufacturing, the outer sleeve 8 is fitted to an outer sleeve main body 12 fitted to the main body portion 10 of the measurement probe 2 and to the distal end portion 11 of the measurement probe 2, as shown in FIG. It is preferable to divide into an outer sleeve tip 13 that

前記外装スリーブ本体12は、図4に示されるように、軸方向の両端に開放した略円筒状に形成され、図2に示されるように、測定プローブ2に挿嵌した状態で、外径が測定プローブ2の外径より大きくなるように形成されている。外装スリーブ8の外径を測定プローブ2の外径より大きくすることにより、貫入孔1に貫入した際、外装スリーブ8が孔壁に接触しやすくなり、測定精度が向上するとともに、測定プローブ2の損傷が抑制できる。前記外装スリーブ8の外径は、小型動的コーン貫入試験に使用される先端コーンの外径とほぼ同等とするのが好ましい。 As shown in FIG. 4, the outer sleeve body 12 is formed in a substantially cylindrical shape open at both ends in the axial direction, and as shown in FIG. It is formed so as to be larger than the outer diameter of the measurement probe 2 . By making the outer diameter of the outer sleeve 8 larger than the outer diameter of the measurement probe 2 , when the outer sleeve 8 penetrates into the penetration hole 1 , the outer sleeve 8 easily comes into contact with the hole wall. Damage can be suppressed. The outer diameter of the outer sleeve 8 is preferably approximately the same as the outer diameter of the tip cone used in the small dynamic cone penetration test.

前記外装スリーブ先端13は、図5に示されるように、上側部分が上方に開放した有底円筒形に形成され、下側部分の外形が下方に向けて尖った円錐形(コーン形)に形成されている。上側の有底円筒形部分の外径は、前記外装スリーブ本体12の外径とほぼ同等に形成されている。コーン先端角は45°~90°程度が好ましく、60°がより好ましい。 As shown in FIG. 5, the front end 13 of the outer sleeve is formed into a bottomed cylindrical shape with an upper part open upward and a conical (cone-shaped) outer shape of the lower part that points downward. It is The outer diameter of the upper bottomed cylindrical portion is formed substantially equal to the outer diameter of the outer sleeve main body 12 . The tip angle of the cone is preferably about 45° to 90°, more preferably 60°.

前記外装スリーブ8は、図4及び図5に示されるように、前記測定プローブ2が貫入孔1への挿入先端側から電極3、4…の取付位置を含む範囲に亘って挿嵌される中空部14と、前記測定プローブ2の電極3、4…に対応する位置に、前記中空部14内から外面まで連続して貫通するとともに、前記測定プローブ2を前記中空部14に挿嵌した状態で内側の先端がそれぞれ前記電極3、4…に接触する外側電極15、16、16とが備えられている。測定プローブ2に備えられた電極3、4…と、外装スリーブ8に備えられた外側電極15、16…とは対応しており、最も上側に配置された外側電極15が電流電極であり、その下側に配置された2つの外側電極16、16が電位電極である。 As shown in FIGS. 4 and 5, the outer sleeve 8 is a hollow body into which the measuring probe 2 is inserted over a range from the distal end of the insertion hole 1 to the attachment positions of the electrodes 3, 4, . and the electrodes 3, 4, . . . Outer electrodes 15, 16, 16 are provided whose inner tips are in contact with the electrodes 3, 4, . . . , respectively. The electrodes 3, 4, . . . provided on the measuring probe 2 correspond to the outer electrodes 15, 16, . The two lower outer electrodes 16, 16 are potential electrodes.

前記外装スリーブ8が取り付けられた測定プローブ2を前記圧入装置によって貫入孔1に貫入して電気検層を行った後、貫入孔1から測定プローブ2を引き抜くことが困難になった場合に、引抜き抵抗により前記測定プローブ2が外装スリーブ8から抜けて、測定プローブ2が回収できるようになっている。このように、測定プローブ2を引き抜く際の引抜き抵抗により、外装スリーブ8が抜けて地中に残置されるとともに、外装スリーブ8から抜けた測定プローブ2が確実に回収できるため、電気検層における高価な測定プローブ2の回収不能リスクが無くなる。前述の通り、前記測定プローブ2は、前記外装スリーブ8より外径が小さく形成されているため、外装スリーブ8を取り付けた状態で圧入された貫入孔1から比較的スムーズに引き抜くことができるようになる。 When it becomes difficult to pull out the measurement probe 2 from the penetration hole 1 after the measurement probe 2 with the outer sleeve 8 attached is inserted into the penetration hole 1 by the press-fitting device to perform electrical logging, Due to the resistance, the measuring probe 2 is pulled out of the outer sleeve 8 so that the measuring probe 2 can be recovered. In this way, due to the pull-out resistance when the measuring probe 2 is pulled out, the outer sleeve 8 is pulled out and remains in the ground, and the measuring probe 2 pulled out of the outer sleeve 8 can be reliably recovered. The risk of unrecoverable measurement probe 2 is eliminated. As described above, the measurement probe 2 is formed to have an outer diameter smaller than that of the outer sleeve 8, so that it can be pulled out relatively smoothly from the insertion hole 1 into which the outer sleeve 8 is attached. Become.

前記外装スリーブ8は、貫入孔1に挿入した際、外側電極15、16…を孔壁に接触させるため、外側電極15、16…の反対側の外面に、外方に突出した接触促進用凸部17が設けられるようにするのが好ましい。前記接触促進用凸部17は、外装スリーブ8の軸方向に対して外側電極15、16…の配置区間の全長を含む範囲に形成された縦長の凸部である。高さは1~8mmが好ましく、3~5mmがより好ましい。前記接触促進用凸部17を設けることによって、外装スリーブ8に備えられた外側電極15、16…が貫入孔1の孔壁により確実に接触でき、電気検層の測定精度が更に向上できる。 In order to bring the outer electrodes 15, 16 into contact with the hole wall when the outer sleeve 8 is inserted into the through-hole 1, the outer surface of the outer surface opposite to the outer electrodes 15, 16, . Preferably, a portion 17 is provided. The contact promoting projection 17 is a vertically elongated projection formed in a range including the entire length of the arrangement section of the outer electrodes 15 , 16 . . . The height is preferably 1-8 mm, more preferably 3-5 mm. By providing the contact promoting projections 17, the outer electrodes 15, 16, .

図3に示されるように、測定プローブ2の周面に周方向固定用凸部18が設けられ、この周方向固定用凸部18が外装スリーブ8に設けられた嵌合部19に嵌合することにより、外装スリーブ8と測定プローブ2との周方向への回転が固定されるようにするのが好ましい。前記周方向固定用凸部18は、測定プローブ2の本体部10の上端部に形成され、前記嵌合部19は、外装スリーブ8の外装スリーブ本体12の上端部に形成されている。前記周方向固定用凸部18を嵌合部19に嵌合することにより、測定プローブ2と、外装スリーブ8のうち外装スリーブ本体12との周方向の回転が防止され、測定プローブ2を貫入孔1に貫入する際などにおいて、測定プローブ2の電極3、4…と外装スリーブ8の外側電極15、16…との位置ずれが生じなくなる。 As shown in FIG. 3 , a circumferential fixing protrusion 18 is provided on the peripheral surface of the measurement probe 2 , and this circumferential fixing protrusion 18 is fitted into a fitting portion 19 provided on the outer sleeve 8 . Thereby, the circumferential rotation of the outer sleeve 8 and the measuring probe 2 is preferably fixed. The circumferential fixing convex portion 18 is formed at the upper end portion of the main body portion 10 of the measurement probe 2 , and the fitting portion 19 is formed at the upper end portion of the outer sleeve main body 12 of the outer sleeve 8 . By fitting the circumferential fixing projection 18 into the fitting portion 19, the measurement probe 2 and the outer sleeve main body 12 of the outer sleeve 8 are prevented from rotating in the circumferential direction. 1 of the measuring probe 2 and the outer electrodes 15, 16 of the outer sleeve 8 are not misaligned.

前記電気検層の手順は、前記小型動的コーン貫入試験を行った後、その貫入孔1の直上の地表面に、図1に示される圧入装置を設置し、前記外装スリーブ8が取り付けられた測定プローブ2を貫入孔1に挿入し、測定プローブ2を徐々に圧入しながら深度方向に連続的に比抵抗Rの測定を行う。比抵抗Rの測定間隔は任意であるが、10cm以下、好ましくは5cm以下、より好ましくは1cmとするのがよい。所定の深度まで測定が終了したら、測定プローブ2を貫入孔1から引き抜いて回収する。 In the electrical logging procedure, after performing the small dynamic cone penetration test, the press-fitting device shown in FIG. The measurement probe 2 is inserted into the penetration hole 1, and the specific resistance R is continuously measured in the depth direction while the measurement probe 2 is gradually press-fitted. The measurement interval of the specific resistance R is arbitrary, but it is preferably 10 cm or less, preferably 5 cm or less, more preferably 1 cm. After the measurement is completed up to a predetermined depth, the measurement probe 2 is pulled out from the penetration hole 1 and recovered.

前記電気検層によって、深度と比抵抗Rとの関係を示した比抵抗Rの深度分布図が得られる(図9~図11の(B)参照。)。 By the electrical logging, a depth distribution map of the resistivity R showing the relationship between the depth and the resistivity R can be obtained (see FIGS. 9 to 11 (B)).

上記電気検層によって得られた比抵抗Rの深度分布図を用いて、地盤改良効果を確認する。地盤改良効果の確認方法は、地盤改良前後における比抵抗Rの減分量を比較することにより行う。図10(A)、(B)及び図11(A)、(B)に示されるように、上記1次的効果確認のNd値の深度分布図だけでは改良効果が明確に認められない場合でも、2次的効果確認の比抵抗の深度分布図により明確に地盤改良効果が確認できる。電気検層による効果確認(2次的効果確認)は、上記の1次的効果確認によって効果が認められないときにのみ行うのが、作業の効率性及びコスト削減の観点から望ましいが、1次的効果確認によって明確に地盤の改良効果が認められる場合でも、更なる信頼性の向上のため、2次的効果確認を行ってもよい。 Using the depth distribution map of resistivity R obtained by the above electric logging, the ground improvement effect is confirmed. The confirmation method of the ground improvement effect is performed by comparing the decrement amount of the specific resistance R before and after the ground improvement. As shown in FIGS. 10 (A), (B) and FIGS. 11 (A), (B), even if the improvement effect is not clearly recognized only by the depth distribution map of the Nd value for confirming the primary effect , The ground improvement effect can be clearly confirmed from the depth distribution map of resistivity, which is a secondary effect confirmation. From the viewpoint of work efficiency and cost reduction, it is desirable to confirm the effect by electrical logging (secondary effect confirmation) only when no effect is recognized by the above-mentioned primary effect confirmation. Even if the ground improvement effect is clearly recognized by the confirmation of the effect, a secondary effect confirmation may be performed to further improve reliability.

以下、詳細な地盤改良効果の確認方法について、現場で行った具体的な実施例を用いて説明する。図6及び図7に示されるように、対象地盤について、それぞれ仕様の異なる地盤改良を、改良A、改良B、改良DPの3箇所に施工し、その効果を確認した。改良箇所近傍の対象地盤(事前Bor)について標準貫入試験を行い、図8に示される土質柱状図を得た。この結果、シルト混り細砂は、GL-2m~-4mに有機質土を含み、GL-5m以深ではシルトを層状に含んでいる。また、各地盤改良の施工仕様は、表1に示される通りである。測定時の改良体材令は約11ヶ月である。 Hereinafter, the method for confirming the ground improvement effect in detail will be described using specific examples carried out on site. As shown in FIGS. 6 and 7, ground improvement with different specifications was constructed at three locations, improvement A, improvement B, and improvement DP, for the target ground, and the effect was confirmed. A standard penetration test was performed on the target ground (preliminary Bor) near the improvement area, and the soil log shown in Fig. 8 was obtained. As a result, silt-mixed fine sand contains organic soil at GL-2m to -4m, and silt layered at depths below GL-5m. The construction specifications for each ground improvement are shown in Table 1. The improvement body age at the time of measurement is about 11 months.

Figure 0007248241000001
Figure 0007248241000001

図6において、▲印は小型動的コーン貫入試験及び電気検層の実施箇所、■印は一軸圧縮強さquを測定するためのブロックサンプリングの実施箇所、●印は一軸圧縮強さquを測定するためのロータリー式三重管サンプリングの実施箇所である。▲印で示される小型動的コーン貫入試験及び電気検層は、改良Aでは改良中心から10cm、40cm離れた2箇所(A1、A2)について行い、改良Bでは改良中心から40cm、70cm、100cm離れた3箇所(B1~B3)について行い、改良DPでは改良中心から30cm離れた1箇所(DP1)について行った。 In Fig. 6, the ▲ marks are the small dynamic cone penetration test and electrical logging sites, the ■ marks are the block sampling sites for measuring the unconfined compressive strength qu, and the ● mark indicates the measured unconfined compressive strength qu. This is the site where the rotary type triple tube sampling is carried out. The small dynamic cone penetration test and electrical logging indicated by the ▲ mark were conducted at two locations (A1 and A2) 10 cm and 40 cm away from the improvement center for Improvement A, and at 40 cm, 70 cm and 100 cm away from the improvement center for Improvement B. In the case of improved DP, this was performed at one point (DP1) 30 cm away from the center of improvement.

図9は改良Aの深度分布図、図10は改良Bの深度分布図、図11は改良DPの深度分布図である。(B)の比抵抗Rの深度分布図は、電極間隔2.5cmの比抵抗Rである。(C)の一軸圧縮強さquの深度分布図は、材令28日の試験結果である。 9 is a depth distribution map of improvement A, FIG. 10 is a depth distribution map of improvement B, and FIG. 11 is a depth distribution map of improvement DP. The depth distribution map of the specific resistance R in (B) is the specific resistance R at an electrode interval of 2.5 cm. (C) The depth distribution map of the unconfined compressive strength qu is the test result of 28 days old.

改良前の地盤は、図9~図11の(A)、(B)に○印で示されるように、Nd値=0~20(平均Nd値=9)、R=40~120Ω・m(平均R=65Ω・m)を示し、比抵抗Rは有機質土を含むGL-2m~GL-4m及びシルトを層状に含むGL-5m以深にて30~40Ω・mを示す深度が確認され、改良範囲に細粒分の多い箇所が存在することが想定される。 The ground before improvement has Nd value = 0 to 20 (average Nd value = 9), R = 40 to 120Ω・m ( Average R = 65 Ω・m), and specific resistance R is 30 to 40 Ω・m at GL-2 m to GL-4 m, which includes organic soil, and GL-5 m, which includes layers of silt. It is assumed that there are places with many fine grains in the range.

改良Aでは、改良による平均Nd値の増分量は、図9(A)に示されるように、改良中心+10cm位置(●)にて4程度、改良中心+40cm位置(▲)にて12程度となっており、改良によるNd値の増加が認められ、改良効果が確認できる。比抵抗Rの平均値は、図9(B)に示されるように、改良中心+10cm位置(●)にて4Ω・m、改良中心+40cm位置(▲)にて2Ω・mを示し、改良前と比較して1/10~1/100程度に低下している。また、改良範囲全体においてほぼ均一な値を示している。一方、一軸圧縮強さquは、図9(C)に示されるように、有機質土、シルトが混入した供試体では、強度が小さく、バラツキの大きい結果となっている。 In Improvement A, as shown in Fig. 9(A), the increment of the average Nd value due to improvement is about 4 at the improvement center + 10 cm position (●) and about 12 at the improvement center + 40 cm position (▲). An increase in the Nd value due to the improvement is recognized, and the improvement effect can be confirmed. As shown in FIG. 9(B), the average value of the specific resistance R is 4 Ω・m at the improvement center +10 cm position (●) and 2 Ω・m at the improvement center +40 cm position (▲). In comparison, it has decreased to about 1/10 to 1/100. In addition, almost uniform values are shown over the entire improvement range. On the other hand, as shown in FIG. 9(C), the unconfined compressive strength qu of the specimens mixed with organic soil and silt is small and varies greatly.

改良Bでは、図10(A)に示されるように、改良中心+40cm、+70cm、+100cmのいずれの測定点においても、改良による平均Nd値の増分は認められなかった。比抵抗Rの平均値は、図10(B)に示されるように、GL-2.0m~-3.5mでは5~7Ω・mを示すが、GL-3.5m~-4.0mでは35~80Ω・mと未改良地盤に近い値を示している。比抵抗Rの低いGL-2.0m~-2.5mでは、図10(C)に示されるように、一軸圧縮強さquも目標改良強度であるqu=50kPa程度(平均値)を示している。 In improvement B, as shown in FIG. 10(A), no increase in the average Nd value due to the improvement was observed at any of the measurement points of improvement center +40 cm, +70 cm, and +100 cm. As shown in Fig. 10(B), the average value of the specific resistance R is 5 to 7Ω·m at GL-2.0m to -3.5m, but 35 to 80Ω·m at GL-3.5m to -4.0m. It shows a value close to m and unimproved ground. At GL-2.0 m to -2.5 m, where the specific resistance R is low, as shown in FIG. 10(C), the unconfined compressive strength qu also exhibits the target improved strength qu=50 kPa (average value).

改良DPでは、図11(A)に示されるように、改良中心+30cm位置(●)にて改良による平均Nd値の増分は認められなかった。比抵抗Rの平均値は、図11(B)に示されるように、GL-3.0m~-5.0mでは5Ω・m程度を示すが、他の改良範囲では20~40Ω・mを示している。 In the modified DP, as shown in FIG. 11(A), no increase in the average Nd value due to the modification was observed at the modification center +30 cm position (●). As shown in FIG. 11(B), the average value of the specific resistance R is about 5 Ω·m in the GL-3.0 m to -5.0 m range, but 20 to 40 Ω·m in the other improved ranges. .

以上の検討結果より、改良AではNd値の深度分布図を用いた1次的効果確認によって明確に地盤改良効果が確認できる。一方、改良B、改良DPでは、目標改良強度が改良Aに比べて低いため1次的効果確認では判断できなかったが、比抵抗Rの深度分布図を用いた2次的効果確認によって明確に地盤改良効果が確認できる。 From the above examination results, it is possible to clearly confirm the ground improvement effect in Improvement A by confirming the primary effect using the Nd value depth distribution map. On the other hand, in the improvement B and the improvement DP, the target improvement strength was lower than that of the improvement A, so it could not be judged by the primary effect confirmation, but the secondary effect confirmation using the depth distribution map of the specific resistance R clearly showed The ground improvement effect can be confirmed.

〔他の形態例〕
上記形態例では、外装スリーブ8が外装スリーブ本体12と外装スリーブ先端13とからなる2つの部材で構成していたが、これらが一体化された1つの部材で構成してもよい。
[Other form examples]
In the above embodiment, the outer sleeve 8 is composed of two members consisting of the outer sleeve main body 12 and the outer sleeve tip 13, but it may be composed of one integrated member.

1…貫通孔、2…測定プローブ、3…電流電極、4…電位電極、5…貫入ロッド、6…雄ねじ部、7…電気ケーブル、8…外装スリーブ、9…中間部、10…本体部、11…先端部、12…外装スリーブ本体、13…外装スリーブ先端、14…中空部、15…外側電極(電流電極)、16…外側電極(電位電極)、17…接触促進用凸部、18…周方向固定用凸部、19…嵌合部、20…ピストン、21…架台、22…チャック、23…コントロールユニット、24…油圧ユニット DESCRIPTION OF SYMBOLS 1... Through-hole 2... Measurement probe 3... Current electrode 4... Potential electrode 5... Penetration rod 6... Male screw part 7... Electric cable 8... Exterior sleeve 9... Intermediate part 10... Body part, DESCRIPTION OF SYMBOLS 11... Tip part 12... Exterior sleeve main body 13... Exterior sleeve tip 14... Hollow part 15... Outer electrode (current electrode) 16... Outer electrode (potential electrode) 17... Contact promotion convex part 18... Circumferential fixing convex portion 19 Fitting portion 20 Piston 21 Base 22 Chuck 23 Control unit 24 Hydraulic unit

Claims (5)

薬液注入工法による地盤改良効果の確認方法であって、
地盤改良後において、小型動的コーン貫入試験により深度とNd値との関係を示したNd値の深度分布図を得て、地盤改良前後における前記Nd値の増分量から地盤改良効果を確認する1次的効果確認を行い、
前記1次的効果確認によって地盤改良効果が認められない場合に、前記小型動的コーン貫入試験の貫入孔に電極を備えた測定プローブを挿入して比抵抗を測定する電気検層を行い、深度と比抵抗との関係を示した比抵抗の深度分布図を得て、地盤改良前後における前記比抵抗の減分量から地盤改良効果を確認する2次的効果確認を行うことを特徴とする地盤改良効果の確認方法。
A method for confirming the ground improvement effect by the chemical injection method,
After ground improvement, a small dynamic cone penetration test is performed to obtain a depth distribution map of the Nd value that shows the relationship between depth and Nd value, and the effect of ground improvement is confirmed from the amount of increase in the Nd value before and after the ground improvement. Confirm the following effects,
If the ground improvement effect is not recognized by the confirmation of the primary effect, an electrical logging is performed to measure the resistivity by inserting a measurement probe equipped with an electrode into the penetration hole of the small dynamic cone penetration test, and the depth A ground improvement characterized by obtaining a depth distribution map of specific resistance showing the relationship between and specific resistance, and confirming the secondary effect of confirming the ground improvement effect from the decrement amount of the specific resistance before and after the ground improvement. How to confirm the effect.
前記電気検層は、2極法の電極配置により行う請求項1記載の地盤改良効果の確認方法。 2. The method for confirming a ground improvement effect according to claim 1, wherein said electrical logging is performed by a bipolar electrode arrangement. 上記請求項1、2いずれかに記載の地盤改良効果の確認方法に用いる測定装置であって、
前記測定装置は、前記測定プローブが着脱可能に挿嵌される中空状の外装スリーブを含み、
前記外装スリーブは、前記測定プローブが前記貫入孔への挿入先端側から前記電極の取付位置を含む範囲に亘って挿嵌される中空部と、前記測定プローブの前記電極に対応する位置に、前記中空部から外面まで貫通するとともに、前記測定プローブを前記中空部に挿嵌した状態で内側の先端が前記電極に接触して設けられた外側電極とが備えられ、
前記貫入孔から前記測定プローブを引き抜くことが困難になった場合に、前記測定プローブが前記外装スリーブから抜けて、前記測定プローブが回収できるようになっていることを特徴とする地盤改良効果の確認方法に用いる測定装置。
A measuring device used in the method for confirming the ground improvement effect according to any one of claims 1 and 2,
The measuring device includes a hollow outer sleeve into which the measuring probe is detachably inserted,
The outer sleeve has a hollow portion into which the measurement probe is inserted over a range including a mounting position of the electrode from a distal end side of insertion into the penetration hole, and a position corresponding to the electrode of the measurement probe. an outer electrode penetrating from the hollow portion to the outer surface and having an inner tip in contact with the electrode when the measurement probe is inserted into the hollow portion;
Confirmation of ground improvement effect characterized in that when it becomes difficult to pull out the measurement probe from the penetration hole, the measurement probe is pulled out of the exterior sleeve and the measurement probe can be recovered. Measuring device used in the method.
前記外装スリーブは、前記貫入孔に挿入した際、前記外側電極を孔壁に接触させるため、前記外側電極の反対側に、外方に突出した接触促進用凸部が設けられている請求項3記載の地盤改良効果の確認方法に用いる測定装置。 3. The outer sleeve is provided with a contact-promoting protrusion protruding outward on the opposite side of the outer electrode so as to bring the outer electrode into contact with the hole wall when the outer sleeve is inserted into the through hole. A measuring device used for the confirmation method of the described ground improvement effect. 前記測定プローブの周面に設けられた周方向固定用凸部が、前記外装スリーブに設けられた嵌合部に嵌合することにより、前記外装スリーブと前記測定プローブとの周方向への回転が固定されている請求項3、4いずれかに記載の地盤改良効果の確認方法に用いる測定装置。 A circumferential fixing convex portion provided on the peripheral surface of the measurement probe is fitted into a fitting portion provided on the outer sleeve, so that the outer sleeve and the measurement probe are rotated in the circumferential direction. 5. A measuring device used in the method for confirming a ground improvement effect according to claim 3 or 4, wherein the measuring device is fixed.
JP2019118064A 2019-06-26 2019-06-26 Confirmation method of ground improvement effect and measuring device used therefor Active JP7248241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019118064A JP7248241B2 (en) 2019-06-26 2019-06-26 Confirmation method of ground improvement effect and measuring device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019118064A JP7248241B2 (en) 2019-06-26 2019-06-26 Confirmation method of ground improvement effect and measuring device used therefor

Publications (2)

Publication Number Publication Date
JP2021004473A JP2021004473A (en) 2021-01-14
JP7248241B2 true JP7248241B2 (en) 2023-03-29

Family

ID=74099419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019118064A Active JP7248241B2 (en) 2019-06-26 2019-06-26 Confirmation method of ground improvement effect and measuring device used therefor

Country Status (1)

Country Link
JP (1) JP7248241B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7394400B2 (en) * 2021-01-14 2023-12-08 株式会社大一商会 gaming machine
JP7426665B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7426667B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7426664B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7426666B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7426662B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7426671B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7394399B2 (en) * 2021-01-14 2023-12-08 株式会社大一商会 gaming machine
JP7426669B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7394397B2 (en) * 2021-01-14 2023-12-08 株式会社大一商会 gaming machine
JP7426670B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7394398B2 (en) * 2021-01-14 2023-12-08 株式会社大一商会 gaming machine
JP7426668B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine
JP7426663B2 (en) * 2021-01-14 2024-02-02 株式会社大一商会 gaming machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241031A (en) 2000-02-29 2001-09-04 Okumura Corp Sediment and ground improvement method, and grouting chemicals and its control method
JP2009024493A (en) 2008-09-26 2009-02-05 Okumura Corp Earth-and-sand soil improving method, injection chemical, and construction management method therefor
JP2019077992A (en) 2017-10-20 2019-05-23 日本電信電話株式会社 Guy anchor driving system, guy anchor driving method, geological data measuring device, guy anchor driving tool and computer program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315978A (en) * 1987-06-19 1988-12-23 Nippon Koei Kk Ground survey instrument
JPH0841860A (en) * 1994-08-01 1996-02-13 Sano Takeshi Improvement examining method of soil improvement work and device used therefor
JPH08145926A (en) * 1994-11-22 1996-06-07 East Japan Railway Co Monitoring method of chemical grouting by pole-pole array specific resistance method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241031A (en) 2000-02-29 2001-09-04 Okumura Corp Sediment and ground improvement method, and grouting chemicals and its control method
JP2009024493A (en) 2008-09-26 2009-02-05 Okumura Corp Earth-and-sand soil improving method, injection chemical, and construction management method therefor
JP2019077992A (en) 2017-10-20 2019-05-23 日本電信電話株式会社 Guy anchor driving system, guy anchor driving method, geological data measuring device, guy anchor driving tool and computer program

Also Published As

Publication number Publication date
JP2021004473A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP7248241B2 (en) Confirmation method of ground improvement effect and measuring device used therefor
JP4970416B2 (en) Groundwater level measurement method
JP4607977B2 (en) Soil sampling device
CN109667257B (en) Portable dynamic sounding tester and testing method
CN206418477U (en) A kind of in-situ testing device of the soil moisture and resistivity
CN109778824B (en) Weak soil sampling drilling tool with end clamping piece
CN102788870B (en) In-situ test method used in soft soil wall rock tunnel
CN108867605A (en) A kind of vehicle-mounted feeler inspection device
JPH0841860A (en) Improvement examining method of soil improvement work and device used therefor
JP2011064007A (en) Penetration rod for measuring underground water content
KR101471791B1 (en) Soil testing device and method
CN106049567A (en) Detecting device for determining length of foundation pile by parallel earthquake method and detecting method thereof
JP2013019235A (en) Soil measuring method and soil measuring apparatus for use in the same
JP5695554B2 (en) Estimation method of uniaxial compressive strength of rock
US20040207382A1 (en) Soil penetrating electrode with conical taper
JPH0621446B2 (en) Ground survey method
JP4376411B2 (en) Earth and sand improvement method, injection chemical and its construction management method.
JP2009024493A (en) Earth-and-sand soil improving method, injection chemical, and construction management method therefor
CN114910351A (en) Device and method for testing uniaxial compressive strength of undisturbed soft rock
JP2011112506A (en) Penetration rod
JP3169256U (en) Water level measuring device
KR20070037245A (en) Cone penetrometer installed electrical cone probe and the subsurface investigation method
CN208870019U (en) A kind of building lot bankets compactness on-site detecting device
JP2607522B2 (en) Combined penetration test and vane test equipment
KR101789966B1 (en) Estimating method of the end bearing capacity of SDA augered piles on weathered rock mass and bed rock mass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7248241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150