JP2009024493A - Earth-and-sand soil improving method, injection chemical, and construction management method therefor - Google Patents

Earth-and-sand soil improving method, injection chemical, and construction management method therefor Download PDF

Info

Publication number
JP2009024493A
JP2009024493A JP2008247967A JP2008247967A JP2009024493A JP 2009024493 A JP2009024493 A JP 2009024493A JP 2008247967 A JP2008247967 A JP 2008247967A JP 2008247967 A JP2008247967 A JP 2008247967A JP 2009024493 A JP2009024493 A JP 2009024493A
Authority
JP
Japan
Prior art keywords
sand
earth
ground improvement
electrical resistivity
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008247967A
Other languages
Japanese (ja)
Inventor
Akira Koga
明 古賀
Shin Kusakabe
伸 日下部
Kazunari Takahashi
一成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2008247967A priority Critical patent/JP2009024493A/en
Publication of JP2009024493A publication Critical patent/JP2009024493A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection chemical enabling injection of a large volume of chemicals in a wide area, an earth-and-sand soil improving method using the injection chemical, and a construction management method of simply confirming an improvement effect by measuring an electric specific resistance after chemical injection. <P>SOLUTION: According to the earth-and-sand soil improving method of injecting the injection chemical prepared by blending a principle material of a colloidal solution containing silica particles with a gelatinizer into an earth-and-sand soil, the injection chemical showing pH 1.5-2 is prepared by setting the silica particle concentration of the principle material, a gelatinizing time for bring about a sand gel state, and an electric specific resistance in the sand gel state. This injection chemical is injected into the earth-and-sand soil to improve the earth-and-sand soil into a soil having prescribed liquefaction strength. In improvement work, the electric specific resistance in a soil improvement area is measured to confirm an improvement effect in implementation of the construction management method in a simple manner. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、土砂地盤改良工法と注入薬液及びその施工管理方法に関し、特に、大量の薬液を広範囲に注入することを可能にする土砂地盤改良工法と、シリカ粒子濃度、サンドゲル状態に到るゲル化時間と電気比抵抗値を設定した注入薬液及びこの注入薬液を注入し、薬液注入後の電気比抵抗値を測定することで地盤改良域における改良効果を簡潔に確認できる施工管理方法に関する。   The present invention relates to an earth and sand improvement method, an infusion chemical solution, and a construction management method thereof, in particular, an earth and sand ground improvement method that enables a large amount of chemical solution to be injected over a wide range, a silica particle concentration, and a gelation that reaches a sand gel state. The present invention relates to an infusion chemical solution in which time and electrical specific resistance value are set, and a construction management method capable of simply confirming the improvement effect in the ground improvement area by injecting this infusion chemical solution and measuring the electrical specific resistance value after the chemical injection.

埋立地等の軟弱地盤に建っている構造物の周辺や直下の液状化対策工法には、せん断変形抑制工法、注入固化工法、間隙水圧消散工法、地下水位低下工法等があるが、各種工法の中でも、注入固化工法が施工性に優れており、適用範囲が広い等の特徴があることで多くの施工実績が重ねられてきた。又、既設構造物直下の砂質土地盤等を対象にした地盤改良には、超微粒子シリカを分散させたコロイド溶液を主材にした薬液を用いて好成績を挙げている。しかして、注入固化工法は、注入薬液の主材であるセメント、特に高価なシリカ粒子を多量に必要とするためにコスト高を招いて経済性に劣るという欠点が指摘されている。   The liquefaction countermeasure methods around and under structures on soft ground such as landfill sites include shear deformation control method, injection solidification method, pore water pressure dissipation method, groundwater level lowering method, etc. Among them, the injection solidification method is excellent in workability, and many construction results have been repeated due to the features such as wide application range. In addition, for improving the ground for sandy ground directly under existing structures, a chemical solution mainly composed of a colloidal solution in which ultrafine silica is dispersed has been used well. Therefore, the injection solidification method has been pointed out to be disadvantageous in that it is expensive and inferior in cost because it requires a large amount of cement, particularly expensive silica particles, which is the main material of the injected chemical solution.

このことは、従来の薬液注入工法では、「液状化強度」を確認する地盤改良の品質評価に、一軸圧縮強度を採用していたことから、一軸圧縮強度を大きくすることが液状化抵抗性の増大を促進して「液状化強度」も高められると考えて来たことに大きな影響を受けている。即ち、この考えに従うと、1.9〜9.8N/cm2以上の値が必要とされる所要強度を得るためには、一軸圧縮強度を大きくするために注入薬液の濃度を増大させることが必要になり、結果として、セメントや高価なシリカ粒子を多量に使用することになるからである。 This is because, in the conventional chemical injection method, uniaxial compressive strength was used for quality evaluation of ground improvement to confirm “liquefaction strength”. It is greatly influenced by the fact that it has been thought that the “liquefaction strength” can be increased by promoting the increase. That is, according to this idea, in order to obtain the required strength that requires a value of 1.9 to 9.8 N / cm 2 or more, it is necessary to increase the concentration of the injected drug solution in order to increase the uniaxial compressive strength. This is because, as a result, a large amount of cement and expensive silica particles are used.

そこで、シリカ粒子の使用量を低減することでコスト低減を図る提案がなされている。例えば、特願平10−140973号に記載された工法では、コロイド溶液に分散させるシリカ粒子の平均径を15ナノメータとし、シリカコロイド溶液に分散させたシリカ粒子の濃度を1.9重量%〜6.0重量%に配合して主材とし、これに硬化剤を調合することによって、従来のシリカコロイド溶液のシリカ粒子濃度であった10重量%よりもシリカ粒子の使用量を低下させたことでコスト低減を果たしている。   Thus, proposals have been made to reduce the cost by reducing the amount of silica particles used. For example, in the method described in Japanese Patent Application No. 10-140973, the average diameter of the silica particles dispersed in the colloidal solution is 15 nanometers, and the concentration of the silica particles dispersed in the silica colloidal solution is 1.9 wt% to 6%. The amount of silica particles used was reduced from 10% by weight, which was the silica particle concentration of the conventional silica colloidal solution, by blending it with 0.0% by weight as a main material and preparing a curing agent. Cost reduction has been achieved.

同様に、市販の注入薬剤パーマロック・ASF(旭電化工業(株)製、商品名)は、活性シリカ微粒子のコロイド溶液の主材ASFシリカー4(旭電化工業(株)製、商品名)に酸性塩の硬化剤ASFアクターM(旭電化工業(株)製、商品名)を配合して、シリカ濃度を3.7重量%〜7.0重量%に抑えており、シリカ粒子の平均径を小さくすることで活性シリカ微粒子の使用量を上記例よりもさらに少なくしている。しかし、いずれの場合も一軸圧縮強度を品質評価の基準にしている点で同等である。   Similarly, the commercially available injection drug Permalock ASF (Asahi Denka Kogyo Co., Ltd., trade name) is the main material of active silica fine particle colloidal solution ASF Silica 4 (Asahi Denka Kogyo Co., Ltd., trade name). An acidic salt hardener ASF Actor M (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) is blended, and the silica concentration is suppressed to 3.7% by weight to 7.0% by weight. By making it smaller, the amount of active silica fine particles used is further reduced than in the above example. However, both cases are equivalent in that the uniaxial compressive strength is used as a standard for quality evaluation.

又、所要強度を得るために、従来の考え方に従って一軸圧縮強度の増強を図るべく注入薬液の濃度を増大させることは、施工面においても多くの問題点を生じている。即ち、注入孔から離れるに従って、薬液は地下水の影響を受けて濃度が低下し、圧縮強度が急激に低下してしまう。従って、シリカ濃度が一定の薬液を注入して所要強度を得ようとすると小口径の改良体に止まって大口径改良体の造成を不可能にしていることで、注入のための削孔数を増大させざるを得なくなっている。このために、地盤改良工事は、施工効率が悪くなって施工コストの嵩高と工期の遅延化を招来する問題点を抱えながら、これの解消がなされてないのが現状である。   Further, in order to obtain the required strength, increasing the concentration of the injected drug solution in order to increase the uniaxial compressive strength in accordance with the conventional way of thinking causes many problems in terms of construction. That is, as the distance from the injection hole increases, the concentration of the chemical solution is affected by the groundwater, and the compressive strength decreases rapidly. Therefore, when trying to obtain the required strength by injecting a chemical solution with a constant silica concentration, it stops at the small-diameter improved body, making it impossible to create a large-diameter improved body. It must be increased. For this reason, the ground improvement work has the problem that the construction efficiency is deteriorated and the construction cost is high and the construction period is delayed, but this is not solved.

地盤改良工事における注入効果の確認は、注入固化工法の施工において最も重要な管理項目の1つである。そして、従来における地盤改良域の効果確認には、標準貫入試験が最も多く採用されている。標準貫入試験が多く採用されるのは、液状化抵抗性の増大は一軸圧縮強度の増大によるとの認識の下に、地盤改良の効果確認に一軸圧縮強度を採用しているからであり、地盤改良域の効果確認においてもこれらの認識を反映して、改良土の硬軟と締まり具合をN値の変化で判定する標準貫入試験を採用して地盤改良効果を判定している。しかるに、標準貫入試験は、改良によって地盤の強度が大きく増加することを前提にしているために、改良土における強度の増加が小さい改良域においてはN値の差が僅少になることから、地盤改良の注入効果を明確に確認するのは困難であった。   Confirmation of the injection effect in the ground improvement work is one of the most important management items in the construction of the injection solidification method. The standard penetration test is most often used to confirm the effect of conventional ground improvement areas. The standard penetration test is often adopted because uniaxial compressive strength is used to confirm the effect of ground improvement with the recognition that the increase in liquefaction resistance is due to the increase in uniaxial compressive strength. Reflecting these recognitions in the confirmation of the effect of the improved area, the ground improvement effect is determined by adopting a standard penetration test that determines the hardness and tightness of the improved soil by changing the N value. However, since the standard penetration test is based on the premise that the strength of the ground will increase greatly due to the improvement, the difference in N value will be small in the improved area where the increase in strength in the improved soil is small. It was difficult to clearly confirm the injection effect.

地盤改良域の効果確認は、標準貫入試験の他に、透水係数試験等の間接的なものから、三成分コーン試験、ダイラトメータ試験等、深度方向の液状化強度を簡易に測定する方法によっても行われている。   In addition to the standard penetration test, the effect of the ground improvement zone can be confirmed by methods such as indirect measurements such as hydraulic conductivity tests, simple three-component cone tests, dilatometer tests, etc. that measure the liquefaction strength in the depth direction. It has been broken.

そして、現位置試験における上記の透水係数試験等の間接的手法もしくは三成分コーン試験、ダイラトメータ試験等の「液状化強度」を確認する手法と、「液状化強度」を詳細に確認するために室内で試験が行なわれる繰り返し振動三軸試験や繰り返し単純せん断試験等の手法では、標準貫入試験、三成分コーン試験、ダイラトメータ試験では明確に特定できない範囲についても、「液状化強度」の変化を明確に示すことが確認されている。従って、上記のような改良域においては、一軸圧縮強度を評価基準に採用してN値の変化で地盤改良域の判定をする手法と、「液状化強度」を上記試験によって直接的に確認する手法とでは、その判定において一致を見ることができないことになる。   Then, indirect methods such as the above-mentioned hydraulic conductivity test in the in-situ test or methods for confirming “liquefaction strength” such as three-component cone test and dilatometer test, and in order to confirm “liquefaction strength” in detail With the methods such as the repeated vibration triaxial test and repeated simple shear test, the change in “liquefaction strength” is clarified even in areas that cannot be clearly identified by the standard penetration test, three-component cone test, and dilatometer test. It has been confirmed that Therefore, in the improved area as described above, the uniaxial compressive strength is adopted as the evaluation criterion, and the method of determining the ground improved area by the change of the N value and the “liquefaction strength” are directly confirmed by the above test. With the technique, no coincidence can be seen in the determination.

しかも、このような傾向は、地盤改良施工のコスト低減を図るために高価なシリカ粒子の使用量を少なくして、注入薬液の主材濃度を低下させた場合に顕著に現れてくる。即ち、注入薬液における主材濃度の低下は、当然に改良土における強度の増加が小さい改良域を形成することになってN値の差を益々僅少にするからである。   Moreover, such a tendency becomes prominent when the amount of expensive silica particles is reduced to reduce the concentration of the main material of the injected chemical solution in order to reduce the cost of ground improvement work. That is, the decrease in the concentration of the main material in the injected chemical solution naturally forms an improved region in which the increase in strength in the improved soil is small, and the difference in the N value becomes even smaller.

以上の状況から、注入薬液の主材濃度を低下させた場合には、N値の変化で判定する標準貫入試験では、改良土における真の「液状化強度」を確認して、改良域の品質を判定することは困難であり、他の手法についても計測精度の点で問題点が残っている。しかるに、現状は地盤改良における施工コストの低減を図るために、注入薬液における主材濃度を低下させることが急務になっている。このような状況の中で、施工された改良土の「液状化強度」を簡便、かつ迅速に確認することで地盤改良された品質の判定を簡潔に実施できる管理方法の提案が期待されている。   Based on the above situation, when the concentration of the main material of the injected chemical solution is lowered, the standard penetration test, which is judged by the change in N value, confirms the true “liquefaction strength” of the improved soil, and improves the quality of the improved area. Is difficult to determine, and other methods still have problems in terms of measurement accuracy. However, at present, in order to reduce the construction cost for ground improvement, it is an urgent task to reduce the concentration of the main material in the injected chemical solution. Under such circumstances, it is expected to propose a management method that enables simple and quick confirmation of the “liquefaction strength” of the improved soil that has been constructed, so that the quality of the ground improved can be determined concisely. .

さらに、注入効果の確認における注入範囲の測定には、RIによる方法、弾性波による方法、トレーサーによる方法、磁性による方法及び電気比抵抗による方法が用いられてきた。しかるに、RI工法は、放射線を用いるために取り扱いが困難であり、弾性波工法は、剛性が大きくならない場合には適用できない。トレーサー方法は、トレーサーが土粒子に吸着して適用範囲が限定され、磁性方法は、周辺構造物の影響を受け易い等の問題があるために、電気比抵抗方法が比較的多く用いられている。   Furthermore, for measuring the injection range in confirming the injection effect, a method using RI, a method using elastic waves, a method using a tracer, a method using magnetism, and a method using electrical resistivity have been used. However, the RI method is difficult to handle because it uses radiation, and the elastic wave method is not applicable when the rigidity does not increase. The tracer method has a problem that the tracer is adsorbed to the soil particles and the application range is limited, and the magnetic method has a problem that it is easily affected by surrounding structures. .

電気比抵抗による方法は、注入前後の土中抵抗の変化からその注入範囲を特定しようとする方法であるが、電気比抵抗が時間の経過で変化したり、抵抗値の差異もあまり大きくならないことから、測定時期の設定と注入範囲の特定が困難になり、結果的に土砂地盤改良工法の施工管理が正確にできないという問題があった。   The method using electrical resistivity is a method that tries to identify the injection range from the change in soil resistance before and after injection, but the electrical resistivity does not change over time and the difference in resistance value does not become too large. Therefore, it was difficult to set the measurement time and specify the injection range, and as a result, there was a problem that the construction management of the earth and sand improvement method could not be performed accurately.

本発明は、以上の状況に鑑みて土砂地盤改良工法における問題の解消を図るものであり、注入薬液のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値、並びにpHを設定することで真の液状化強度を確保して、地盤改良域において大量の薬液を広範囲に注入することを可能にし、併せて注入後の電気比抵抗値を計測して注入効果確認の視点とすることで、地盤改良域の液状化強度とその範囲を簡潔に確認できるようにした土砂地盤改良工法と注入薬液及びその施工管理方法の提供を課題にしている。   In view of the above situation, the present invention is intended to solve the problems in the earth and sand ground improvement method, the silica particle concentration of the injected chemical solution, the gelation time to reach the sand gel state, the electrical resistivity value in the sand gel state, and the pH This ensures the true liquefaction strength, enables a large amount of chemicals to be injected over a wide area in the ground improvement area, and measures the electrical resistivity after injection to confirm the injection effect. Therefore, it is an object of the present invention to provide an earth and sand ground improvement method, an infusion chemical solution, and a construction management method thereof that can easily confirm the liquefaction strength and the range of the ground improvement region.

請求項1、2に記載の発明である土砂地盤改良工法は、基本的に、シリカ粒子のコロイド溶液を主材とし主材にゲル化剤を配合した注入薬液を土砂地盤に注入する土砂地盤改良工法において、主材のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を設定した、pH1.5〜2の注入薬液を土砂地盤中に注入して土砂地盤を所定の液状化強度の地盤に改良するものであり、注入薬液を改良する土砂地盤の土砂を用いて試験測定し、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を予め確認することを特徴としており、各数値を所定値に設定することで、低濃度の薬液を低圧、高速で注入することによって大口径の改良体を造成することができる。また、注入薬液のpHを2〜1.5の範囲に納めることにより、注入薬液の浸透距離を増加させると同時に、浸透量を増大させることに貢献する、サンドゲル状態に到るゲル化時間を10(h)以上にできるとともに、土砂中に含まれている貝殻に起因されると推定されるガスの発生を防止することができる。   The earth and sand ground improvement method according to the first and second aspects of the invention is basically an earth and sand ground improvement in which an injection chemical solution in which a colloidal solution of silica particles is a main material and a gelling agent is mixed into the main material is injected into the earth and sand ground In the construction method, set the silica particle concentration of the main material, the gelation time to reach the sand gel state, and the electrical resistivity value in the sand gel state, and inject a pH 1.5-2 injection chemical solution into the earth and sand ground to prescribe the earth and sand ground It is intended to improve the ground of liquefaction strength, and test and measure using the earth and sand of the earth and sand to improve the injected chemical solution, and confirm the gelation time to reach the sand gel state and the electrical resistivity value in the sand gel state in advance. By setting each numerical value to a predetermined value, a large-diameter improved body can be created by injecting a low-concentration chemical at low pressure and high speed. In addition, by keeping the pH of the injected drug solution in the range of 2 to 1.5, the penetration time of the injected drug solution is increased, and at the same time, the gelation time to the sand gel state that contributes to increasing the penetration amount is 10 (H) While being able to do it above, generation | occurrence | production of the gas estimated to be originated from the shell contained in the earth and sand can be prevented.

請求項3に記載の発明である土砂地盤改良工法は、請求項1又は2に記載の土砂地盤改良工法において、注入薬液を、主材を構成するコロイド溶液に対する粒子濃度を4.5(%)以下にし、サンドゲル状態に到るゲル化時間を10(h)以上としてサンドゲルの状態における電気比抵抗値を5(Ω・m)以下に設定することを特徴としており、上記機能を確実に達成している。   The earth-and-soil ground improvement method according to claim 3 is the earth-and-sand ground improvement method according to claim 1 or 2, wherein the injection chemical solution is a particle concentration of 4.5 (%) with respect to the colloidal solution constituting the main material. In the following, the gelation time to reach the sand gel state is set to 10 (h) or more, and the electrical specific resistance value in the sand gel state is set to 5 (Ω · m) or less. ing.

請求項4、5に記載の発明である土砂地盤改良工法に用いる注入薬液は、主材を構成するコロイド溶液のシリカ粒子もしくは活性シリカ粒子の濃度を4.5(%)以下にし、サンドゲル状態に到るゲル化時間を10(h)以上としてサンドゲルの状態における電気比抵抗値を5(Ω・m)以下、並びにpH1.5〜2に設定しており、改良域の地盤に低圧、高速で注入することを可能にして大口径の改良体を造成することができると共に、電気比抵抗値の測定で注入後の液状化強度を確認できる。   The injection chemical solution used in the earth and sand ground improvement method according to claims 4 and 5 is such that the concentration of silica particles or active silica particles in the colloidal solution constituting the main material is 4.5 (%) or less, and is in a sand gel state. The gelation time to reach is 10 (h) or more, and the electrical resistivity value in the sand gel state is set to 5 (Ω · m) or less, and the pH is 1.5 to 2. An improved body having a large diameter can be formed by allowing injection, and the liquefaction strength after injection can be confirmed by measuring the electrical resistivity.

請求項6に記載の発明である土砂地盤改良工法に用いる注入薬液は、請求項5に記載の注入薬液を配合するのに、平均粒子径3〜6ナノメートルの活性シリカ粒子を0.28〜2.25重量%分散させてコロイド溶液にした主材と0.1〜10.0重量%の中性塩及び0.1〜5重量%の酸性塩を混合して成るゲル化剤とを配合することで、活性シリカ粒子の濃度を4.5(%)以下にし、サンドゲル状態に到るゲル化時間を10(h)以上としてサンドゲルの状態における電気比抵抗値を5(Ω・m)以下に設定している。   The injecting chemical solution used in the earth and sand ground improvement method according to the invention described in claim 6 contains 0.28 to active silica particles having an average particle diameter of 3 to 6 nanometers in order to blend the injecting chemical solution according to claim 5. 2. Mixing a main material dispersed in 25% by weight into a colloidal solution and a gelling agent formed by mixing 0.1 to 10.0% by weight of neutral salt and 0.1 to 5% by weight of acid salt. Thus, the concentration of the active silica particles is set to 4.5 (%) or less, the gelation time to reach the sand gel state is set to 10 (h) or more, and the electric specific resistance value in the sand gel state is 5 (Ω · m) or less. Is set.

請求項7に記載の発明である土砂地盤改良工法の施工管理方法は、液状化強度と電気比抵抗値との関連を特定し、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、上記特定関連に基づいて地盤改良範囲及び液状化強度を確認しており、改良域における電気比抵抗を測定するだけで地盤改良域の範囲と品質を判定できる。   The construction management method of the earth and sand ground improvement method which is the invention of claim 7 specifies the relationship between the liquefaction strength and the electrical resistivity value, and at least sets the electrical resistivity value, the injection of pH 1.5-2 The chemical solution is injected into the soil in the ground improvement range, and then the electrical resistivity value in the depth direction is measured, and the ground improvement range and liquefaction strength are confirmed based on the above specific relationship. The extent and quality of the ground improvement zone can be determined by simply measuring the resistance.

請求項8に記載の発明である土砂地盤改良工法の施工管理方法は、液状化強度と電気比抵抗値との関連を特定するとともに、薬液注入前に深度方向の電気比抵抗値を地盤改良範囲において予め測定しておいて、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、測定値と上記測定値とを比較照合するとともに上記特定関連に基づいて地盤改良範囲及び液状化強度を確認しており、改良域における注入前後の電気比抵抗値を測定、比較するだけで地盤改良域の範囲と品質を判定できる。   The construction management method of the earth and sand ground improvement method according to claim 8 specifies the relationship between the liquefaction strength and the electrical resistivity value, and sets the electrical resistivity value in the depth direction to the ground improvement range before the chemical solution is injected. In advance, at least set the electrical resistivity value, inject the pH 1.5-2 injection chemical solution into the soil in the ground improvement range, then measure the electrical resistivity value in the depth direction, The measured value and the above measured value are compared and collated, and the ground improvement range and liquefaction strength are confirmed based on the above-mentioned specific relations, and the ground improvement is achieved simply by measuring and comparing the electrical resistivity value before and after injection in the improved region. Can determine range and quality.

請求項9に記載の発明である土砂地盤改良工法の施工管理方法は、薬液注入前に深度方向の電気比抵抗値を地盤改良範囲において予め測定しておいて、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、測定値と上記測定値とを比較照合することで地盤改良範囲を確認しており、改良域における注入前後の電気比抵抗値を測定、比較するだけで地盤改良域の範囲を判定できる。   In the construction management method of the earth and sand ground improvement method according to claim 9, the electrical resistivity value in the depth direction is measured in advance in the ground improvement range before the chemical solution is injected, and at least the electrical resistivity value is set. , Injecting the injection solution of pH 1.5-2 into the soil in the ground improvement range, then measuring the electrical resistivity value in the depth direction, and comparing the measured value with the measured value above, the ground improvement range It is possible to determine the range of the ground improvement zone simply by measuring and comparing the electrical resistivity values before and after the injection in the improvement zone.

請求項1、2に記載の発明である土砂地盤改良工法は、基本的に、シリカ粒子のコロイド溶液を主材とし主材にゲル化剤を配合した注入薬液を土砂地盤に注入する土砂地盤改良工法において、主材のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を設定した、pH1.5〜2の注入薬液を土砂地盤中に注入して土砂地盤を所定の液状化強度の地盤に改良するものであり、注入薬液を改良する土砂地盤の土砂を用いて試験測定し、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を予め確認することを特徴としているので、低濃度のシリカ粒子から成る薬液を低圧、高速で長時間に亘って注入することを可能にして削孔間隔を拡大した大口径の改良体を造成することで土砂地盤改良のコストを低減し、工期を短縮できる効果を奏している。また、注入薬液のpHを2〜1.5の範囲に納めることにより、注入薬液の浸透距離を増加させると同時に、浸透量を増大させることに貢献する、サンドゲル状態に到るゲル化時間を10(h)以上にできるとともに、土砂中に含まれている貝殻に起因されると推定されるガスの発生を防止することができる。   The earth and sand ground improvement method according to the first and second aspects of the invention is basically an earth and sand ground improvement in which an injection chemical solution in which a colloidal solution of silica particles is a main material and a gelling agent is mixed into the main material is injected into the earth and sand ground In the construction method, set the silica particle concentration of the main material, the gelation time to reach the sand gel state, and the electrical resistivity value in the sand gel state, and inject a pH 1.5-2 injection chemical solution into the earth and sand ground to prescribe the earth and sand ground It is intended to improve the ground of liquefaction strength, and test and measure using the earth and sand of the earth and sand to improve the injected chemical solution, and confirm the gelation time to reach the sand gel state and the electrical resistivity value in the sand gel state in advance. Therefore, it is possible to inject a chemical solution consisting of low-concentration silica particles at low pressure and high speed over a long period of time, thereby creating a large-diameter improved body with an increased drilling interval. Reducing the cost of the ground improvement, and provide an advantage of shortening the work period. In addition, by keeping the pH of the injected drug solution in the range of 2 to 1.5, the penetration time of the injected drug solution is increased, and at the same time, the gelation time to the sand gel state that contributes to increasing the penetration amount is 10 (H) While being able to do it above, generation | occurrence | production of the gas estimated to be originated from the shell contained in the earth and sand can be prevented.

請求項3に記載の発明である土砂地盤改良工法は、請求項1又は2に記載の土砂地盤改良工法において、注入薬液を、主材を構成するコロイド溶液に対する粒子濃度を4.5(%)以下にし、サンドゲル状態に到るゲル化時間を10(h)以上としてサンドゲルの状態における電気比抵抗値を5(Ω・m)以下に設定することを特徴としているので、上記機能を確実に達成している効果を奏している。   The earth-and-soil ground improvement method according to claim 3 is the earth-and-sand ground improvement method according to claim 1 or 2, wherein the injection chemical solution is a particle concentration of 4.5 (%) with respect to the colloidal solution constituting the main material. It is characterized by setting the electrical resistivity value in the sand gel state to 5 (Ω · m) or less by setting the gelation time to reach the sand gel state to 10 (h) or more, and reliably achieving the above function. Has the effect of doing.

請求項4、5に記載の発明である土砂地盤改良工法に用いる注入薬液は、主材を構成するコロイド溶液のシリカ粒子もしくは活性シリカ粒子の濃度を4.5(%)以下にし、サンドゲル状態に到るゲル化時間を10(h)以上としてサンドゲルの状態における電気比抵抗値を5(Ω・m)以下、並びにpH1.5〜2に設定しているので、改良域の地盤に低圧、高速で注入することを可能にして大口径の改良体を造成することができると共に、電気比抵抗値の測定で改良効果を確認できるので地盤改良の施工と管理を低コストで簡潔に実施できる効果を奏している。   The injection chemical solution used in the earth and sand ground improvement method according to claims 4 and 5 is such that the concentration of silica particles or active silica particles in the colloidal solution constituting the main material is 4.5 (%) or less, and is in a sand gel state. The gelation time to reach is 10 (h) or more, and the electrical resistivity value in the sand gel state is set to 5 (Ω · m) or less, and the pH is set to 1.5-2. It is possible to create a large-diameter improved body by making it possible to inject it at a low cost, and to confirm the improvement effect by measuring the electrical resistivity, so that the construction and management of ground improvement can be carried out simply at low cost. I play.

請求項6に記載の発明である土砂地盤改良工法に用いる注入薬液は、請求項5に記載の注入薬液を配合するのに、平均粒子径3〜6ナノメートルの活性シリカ粒子を0.28〜2.25重量%分散させてコロイド溶液にした主材と0.1〜10.0重量%の中性塩及び0.1〜5重量%の酸性塩を混合して成るゲル化剤とを配合することで、活性シリカ粒子の濃度を4.5(%)以下にし、サンドゲル状態に到るゲル化時間を10(h)以上としてサンドゲルの状態における電気比抵抗値を5(Ω・m)以下に設定しているので、上記作用効果を確実に達成する効果を奏している。   The injecting chemical solution used in the earth and sand ground improvement method according to the invention described in claim 6 contains 0.28 to active silica particles having an average particle diameter of 3 to 6 nanometers in order to blend the injecting chemical solution according to claim 5. 2. Mixing a main material dispersed in 25% by weight into a colloidal solution and a gelling agent formed by mixing 0.1 to 10.0% by weight of neutral salt and 0.1 to 5% by weight of acid salt. Thus, the concentration of the active silica particles is set to 4.5 (%) or less, the gelation time to reach the sand gel state is set to 10 (h) or more, and the electric specific resistance value in the sand gel state is 5 (Ω · m) or less. Therefore, the effect of reliably achieving the above-described effect is achieved.

請求項7に記載の発明である土砂地盤改良工法の施工管理方法は、液状化強度と電気比抵抗値との関連を特定し、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、上記特定関連に基づいて地盤改良範囲及び液状化強度を確認しており、改良域における電気比抵抗を測定するだけで地盤改良域の範囲と品質を判定できるので、地盤改良工事の施工管理を簡潔にできる効果を奏している。   The construction management method of the earth and sand ground improvement method which is the invention of claim 7 specifies the relationship between the liquefaction strength and the electrical resistivity value, and at least sets the electrical resistivity value, the injection of pH 1.5-2 The chemical solution is injected into the soil in the ground improvement range, and then the electrical resistivity value in the depth direction is measured, and the ground improvement range and liquefaction strength are confirmed based on the above specific relationship. Since it is possible to determine the range and quality of the ground improvement area simply by measuring the resistance, the construction management of the ground improvement work can be simplified.

請求項8に記載の発明である土砂地盤改良工法の施工管理方法は、液状化強度と電気比抵抗値との関連を特定するとともに、薬液注入前に深度方向の電気比抵抗値を地盤改良範囲において予め測定しておいて、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、測定値と上記測定値とを比較照合するとともに上記特定関連に基づいて地盤改良範囲及び液状化強度を確認しており、改良域における注入前後の電気比抵抗値を測定、比較するだけで地盤改良域の範囲と品質を判定できるので、地盤改良工事の施工管理をさらに簡潔にできる効果を奏している。   The construction management method of the earth and sand ground improvement method according to claim 8 specifies the relationship between the liquefaction strength and the electrical resistivity value, and sets the electrical resistivity value in the depth direction to the ground improvement range before the chemical solution is injected. In advance, at least set the electrical resistivity value, inject the pH 1.5-2 injection chemical solution into the soil in the ground improvement range, then measure the electrical resistivity value in the depth direction, The measured value and the above measured value are compared and collated, and the ground improvement range and liquefaction strength are confirmed based on the above-mentioned specific relations, and the ground improvement is achieved simply by measuring and comparing the electrical resistivity value before and after injection in the improved region. Since the range and quality of the area can be judged, the construction management of the ground improvement work can be further simplified.

請求項9に記載の発明である土砂地盤改良工法の施工管理方法は、薬液注入前に深度方向の電気比抵抗値を地盤改良範囲において予め測定しておいて、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、測定値と上記測定値とを比較照合することで地盤改良範囲を確認しており、改良域における注入前後の電気比抵抗値を測定、比較するだけで地盤改良域の範囲を判定できるので、地盤改良工事の施工管理をさらに簡潔にできる効果を奏している。   In the construction management method of the earth and sand ground improvement method according to claim 9, the electrical resistivity value in the depth direction is measured in advance in the ground improvement range before the chemical solution is injected, and at least the electrical resistivity value is set. , Injecting the injection solution of pH 1.5-2 into the soil in the ground improvement range, then measuring the electrical resistivity value in the depth direction, and comparing the measured value with the measured value above, the ground improvement range Since the range of the ground improvement area can be determined simply by measuring and comparing the electrical resistivity values before and after the injection in the improved area, the construction management of the ground improvement work can be further simplified.

本発明による土砂地盤改良工法は、シリカ粒子のコロイド溶液を主材とし主材にゲル化剤を配合した注入薬液を土砂地盤に注入するものであって、注入薬液を主材のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値、並びにpH1.5〜2で以て特定することを特徴にしている。地盤改良は、同薬液を低圧、高速で長時間に亘って改良域に注入し、薬液を注入された土砂地盤では、所定量のシリカ粒子が架橋してゲル化することで所望の液状化強度を発生させている。   The earth and sand ground improvement method according to the present invention is to inject an injecting chemical liquid containing a silica particle colloidal solution as a main material and a gelling agent into the main material into the earth and sand ground. It is characterized by the gelation time to reach the sand gel state, the electrical resistivity value in the sand gel state, and pH 1.5-2. In the ground improvement, the chemical solution is injected into the improvement zone at low pressure and high speed for a long time, and in the earth and sand ground into which the chemical solution is injected, a predetermined amount of silica particles are cross-linked and gelled to obtain the desired liquefaction strength. Is generated.

注入薬液は、主材を構成するコロイド溶液に対する粒子濃度を4.5(%)以下に設定しており、ゲル化剤の配合によってサンドゲル状態に到るゲル化時間を10(h)以上にして、サンドゲル状態における電気比抵抗値を5(Ω・m)以下、並びにpH1.5〜2に設定して、所期の目的を達成している。そして、本発明による注入薬液の実施の形態としては、主材として3ナノメートル乃至6ナノメートルの活性シリカ粒子を0.28重量%乃至2.25重量%の範囲で水に分散することで粒子濃度4.5(%)以下のコロイド溶液を構成しており、これに0.1重量%乃至5.0重量%濃度の酸性塩と0.1重量%乃至10.0重量%濃度の中性塩から構成されるゲル化剤を配合させることで、ゲル化時間10(h)以上及び電気比抵抗値5(Ω・m)以下に調整されている。   The injected drug solution has a particle concentration of 4.5 (%) or less with respect to the colloidal solution constituting the main material, and the gelation time to reach the sand gel state by blending the gelling agent is 10 (h) or more. The electrical specific resistance value in the sand gel state is set to 5 (Ω · m) or less and pH 1.5 to 2 to achieve the intended purpose. As an embodiment of the injectable drug solution according to the present invention, active silica particles of 3 to 6 nanometers as a main material are dispersed in water in a range of 0.28 to 2.25% by weight. Constructs a colloidal solution with a concentration of 4.5 (%) or less, and contains 0.1 to 5.0% by weight of acidic salt and 0.1 to 10.0% by weight of neutral salt. By adding a gelling agent composed of a salt, the gelation time is adjusted to 10 (h) or more and the electrical resistivity value 5 (Ω · m) or less.

本実施の形態では、主材としてASFシリカー4(旭電化工業(株)製、商品名)を用いている。改良土砂の液状化抵抗は、上記設定によってシリカ粒子濃度にはあまり依存せずにほぼ一定であり、液状化強度も後述する実験結果で示すように所望の値を満たすことが判明している。因みに、この場合の液状化防止メカニズムは、セメントのように固結によるものでなく、土砂の粒子間に存在する水が薬液のゲル化物質によって置換され、このゲル化物質が土砂の粒子同士を繋ぎ止めるものと推考されている。上記シリカ粒子濃度は、従来のシリカ粒子濃度10重量%と比較して超微粒子を用いて低濃度に設定されているので、薬液の浸透性が改善されており低圧注入によっても、浸透距離が10.0m以上に及ぶことが確認されている。これによって、シリカの使用量を少なくして大口径改良体の造成を可能にしているので、地盤改良コストの低減を図ることができる。   In this embodiment, ASF silica-4 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) is used as the main material. It has been found that the liquefaction resistance of the improved earth and sand is substantially constant without depending on the silica particle concentration by the above setting, and the liquefaction strength satisfies the desired value as shown in the experimental results described later. By the way, the liquefaction prevention mechanism in this case is not due to consolidation like cement, but the water present between the particles of the earth and sand is replaced by the gelled substance of the chemical liquid, and this gelled substance replaces the particles of the earth and sand. It is presumed to be tied. The silica particle concentration is set to a low concentration using ultrafine particles as compared with the conventional silica particle concentration of 10% by weight. Therefore, the permeability of the chemical solution is improved, and the penetration distance is 10 even by low-pressure injection. It has been confirmed that it extends over 0.0m. As a result, the amount of silica used is reduced, and a large-diameter improved body can be created, so the ground improvement cost can be reduced.

薬液のサンドゲル状態に到るゲル化時間は、ゲル化剤の配合によって調整されている。即ち、ゲル化剤中の酸性塩濃度を増大させてゆくと、酸性塩が主剤中のアルカリ成分を中和させてゲル化時間の延長を図ることが可能になり、10分から数週間にも調整できる。そして、サンドゲル状態に到るゲル化時間を10(h)以上にするためには、図1のようにpHを2以下にする必要があるが、pHを1.5以下にすると土砂中に含まれている貝殻に起因されると推定されるガスの発生を招くこともあることから、pHを2〜1.5の範囲に納めるようにしている。ゲル化時間の延長は薬液の浸透距離を増加させると同時に、浸透量を増大させることに貢献するので、重要な調整になる。尚、酸性塩としては、クエン酸塩、燐酸塩等の弱酸性塩も使用可能であるが、本実施の形態では、酸性塩としてASFアクターM(旭電化工業(株)製、商品名)を用いて、濃度を0.1重量%乃至5.0重量%に設定している。   The gelation time to reach the sand gel state of the chemical solution is adjusted by the blending of the gelling agent. In other words, if the acid salt concentration in the gelling agent is increased, the acid salt can neutralize the alkali component in the main agent and extend the gelation time, and it can be adjusted from 10 minutes to several weeks. it can. And in order to set the gelation time to reach the sand gel state to 10 (h) or more, it is necessary to make the pH 2 or less as shown in FIG. 1, but if the pH is made 1.5 or less, it is contained in the earth and sand. Since the generation of gas presumed to be caused by the shells is sometimes caused, the pH is set in the range of 2 to 1.5. Extending the gelation time is an important adjustment because it increases the penetration distance of the drug solution and contributes to an increase in the amount of penetration. In addition, although weak acidic salts, such as a citrate and a phosphate, can also be used as an acid salt, in this Embodiment, ASF Actor M (Asahi Denka Kogyo Co., Ltd. product name) is used as an acid salt. In use, the concentration is set to 0.1 wt% to 5.0 wt%.

本発明による注入薬液には、改良域における注入効果の確認を容易にするために、サンドゲル状態において5(Ω・m)以下の電気比抵抗値を生じるように調整している。上述したように、ゲル化時間を延長させるために酸性塩濃度を増大させてpHを2〜1.5の範囲に納めるとすると、土砂に注入する以前の液体状態における電気伝導度は図2に示すように、4〜9(mS/cm)のように急峻になって製品ロットによるばらつきを生ずることが予想される。   In order to facilitate confirmation of the injection effect in the improved region, the injection chemical solution according to the present invention is adjusted so as to generate an electric resistivity of 5 (Ω · m) or less in the sand gel state. As described above, if the acidic salt concentration is increased in order to extend the gelation time and the pH falls within the range of 2 to 1.5, the electric conductivity in the liquid state before being injected into the earth and sand is shown in FIG. As shown, it is expected to be steep, such as 4 to 9 (mS / cm), resulting in variations due to product lots.

そこで、このような状態を安定した値に設定するために、本発明ではゲル化剤として酸性塩の他に中性塩を加えて調整している。中性塩としては、塩化ナトリュウム、塩化カリュウム又は塩化アルミニュウム等を用いることができるが、本実施の形態では、ASFアクターNS(旭電化工業(株)製、商品名)を用いており、濃度を0.1重量%乃至10.0重量%に設定することで、図3に示されるように、電気伝導度4もしくは6から15(mS/cm)付近の大きな値に安定させた状態で設定している。   Therefore, in order to set such a state to a stable value, in the present invention, adjustment is made by adding a neutral salt in addition to an acidic salt as a gelling agent. As the neutral salt, sodium chloride, potassium chloride, aluminum chloride, or the like can be used. In this embodiment, ASF Actor NS (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) is used, and the concentration is By setting it to 0.1 wt% to 10.0 wt%, as shown in FIG. 3, the electric conductivity is set to a large value in the vicinity of 4 or 6 to 15 (mS / cm). ing.

以上のように、所期の電気伝導度に若干のばらつきがあったとしても中性塩の添加量を管理することによって、目的とする所望の電気伝導度に設定できるものであるが、中性塩は、コロイド液状になっているシリカ微粒子の表面に形成されている拡散二重層を破壊して、コロイド粒子同士の衝突による結合を活発にしてゲル化を促進する働きをすることから、中性塩の添加はサンドゲル状態に到るゲル化時間を短縮する傾向に作用するので、管理に当たってはその点を考慮しながら設定してゆくことが肝要である。   As described above, even if there is some variation in the desired electrical conductivity, it can be set to the desired desired electrical conductivity by controlling the amount of neutral salt added. Since the salt works to promote the gelation by destroying the diffusion double layer formed on the surface of the colloidal silica fine particles and activating the colloidal particles by collision with each other. Since the addition of salt acts on the tendency to shorten the gelation time to reach the sand gel state, it is important to set in consideration of this point in management.

尚、電気伝導度は、土砂中においては測定することができないので、土砂中のサンドゲル状態においては電気比抵抗を測定することによって注入薬液のゲル化状態と注入範囲の確認を行っている。電気比抵抗(Ω・m)は、電気伝導度(mS/cm)の逆数であり、電気比抵抗(Ω・m)=10/電気伝導度(mS/cm)の関係にある。電気伝導度は土砂中に注入されると周辺との関係で若干の変化が予想されることから、本発明ではサンドゲル状態における電気比抵抗値を設定して、本実施の形態では5(Ω・m)に設定しているものであり、液状状態にあるときの電気伝導度は変化を見越して調整されている。   In addition, since electrical conductivity cannot be measured in the earth and sand, the gelation state and injection | pouring range of an injection chemical | medical solution are confirmed by measuring an electrical specific resistance in the sand gel state in earth and sand. The electrical specific resistance (Ω · m) is the reciprocal of the electrical conductivity (mS / cm), and has the relationship of electrical specific resistance (Ω · m) = 10 / electrical conductivity (mS / cm). Since electrical conductivity is expected to change slightly in relation to the surroundings when injected into the earth and sand, the electrical resistivity value in the sand gel state is set in the present invention. In this embodiment, 5 (Ω · m), and the electric conductivity in the liquid state is adjusted in anticipation of the change.

以上の説明で明らかなように、本発明による土砂地盤改良工法と注入薬液は、シリカ粒子のコロイド溶液を主材とし、これにゲル化剤を配合した注入薬液を土砂地盤に注入するものであり、注入薬液として主材のシリカ粒子濃度を特定しサンドゲル状態に到るゲル化時間を大きくすることによって、地盤改良域に大量の薬液を低圧、高速で広範囲に注入することを可能にして大口径の改良体の造成と所望の液状化強度を発生させている。さらに、サンドゲル状態における電気比抵抗値を安定状態に特定することによって、注入後の電気比抵抗値を計測して注入効果確認の視点にすることで、地盤改良域の液状化強度とその範囲を簡潔に確認できるようにしている。   As is clear from the above explanation, the earth and sand ground improvement method and the injection chemical solution according to the present invention is a method in which an injection chemical solution containing a colloidal solution of silica particles and a gelling agent is injected into the earth and sand ground. By specifying the silica particle concentration of the main material as the injection chemical and increasing the gelation time to reach the sand gel state, it is possible to inject a large amount of chemical into the ground improvement area at low pressure and high speed, and large diameter The improvement of the above and the desired liquefaction strength are generated. Furthermore, by specifying the electrical resistivity value in the sand gel state as a stable state, by measuring the electrical resistivity value after injection and using it as a viewpoint for confirming the injection effect, the liquefaction strength and the range of the ground improvement area can be reduced. It is designed to be concise.

尚、本実施の形態では、主材を構成しているコロイド溶液を活性シリカ微粒子の分散で形成するとして説明してきたが、本発明は、注入薬液を主材のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を特定することによって所期の目的を達成するものであるから、コロイド溶液を他のシリカ微粒子の分散で形成するものであっても何らの支障がないものである。   In the present embodiment, the colloidal solution constituting the main material has been described as being formed by dispersion of active silica fine particles. However, the present invention reaches the concentration of silica particles in the main material and the sand gel state. By specifying the gelation time and the electrical resistivity value in the sand gel state, the intended purpose is achieved. Therefore, even if the colloid solution is formed by dispersion of other silica fine particles, there is no problem. There is nothing.

本発明によって造成された改良体を、室内における繰り返し振動三軸試験と繰り返し単純せん断試験によって「液状化強度」を確認した。   The “liquefaction strength” of the improved body produced by the present invention was confirmed by a repeated vibration triaxial test and repeated simple shear test in a room.

Figure 2009024493
Figure 2009024493

試験は、表1に示すように、配合シリカ濃度2.25%のケース1と配合シリカ濃度4.5%のケース2について実施され、図4には、それぞれの試験に供した試験体を示している。せん断試験の供試体は、三軸試験のそれに比較して小さいのでサンプリングと供試体の作成が比較的容易であり、試験は、100点の供試体を用意して液状化強度を求めている。   As shown in Table 1, the test was conducted for case 1 having a blended silica concentration of 2.25% and case 2 having a blended silica concentration of 4.5%, and FIG. 4 shows the specimens used for each test. ing. Since the specimen for the shear test is smaller than that for the triaxial test, sampling and preparation of the specimen are relatively easy. In the test, 100 specimens are prepared to determine the liquefaction strength.

図5は、繰り返し振動三軸試験の結果を示している。試験は、軸ひずみの両振幅が5%になる載荷回数をプロットし、繰り返し回数20回の応力比を液状化強度にしている。図示のように未改良域の液状化強度が0.25程度であるのに対して、ケース1の場合で0.32、ケース2の状態で0.51と地盤の改良によって「液状化強度」の大きくなったことが判る。そして、未改良砂には繰り返し単純せん断試験、繰り返し振動三軸試験を適用したが、せん断試験、三軸試験とも同様の曲線になっているように、「液状化強度」もほぼ同じ値が得られており、試験値の正しさを示している。   FIG. 5 shows the results of the repeated vibration triaxial test. In the test, the number of loadings at which both amplitudes of the axial strain are 5% is plotted, and the stress ratio of 20 repetitions is set as the liquefaction strength. As shown in the figure, the liquefaction strength in the unimproved area is about 0.25, whereas in the case 1, the liquefaction strength is 0.32, and in the case 2 is 0.51. It can be seen that The repeated simple shear test and the repeated vibration triaxial test were applied to the unmodified sand. However, as the shear test and the triaxial test have similar curves, the “liquefaction strength” has almost the same value. It shows the correctness of the test value.

図6には、未改良域(a)とケース1(b)の場合の応力−ひずみ曲線を示している。図6(a)から明らかなように、薬液の到達していない未改良域では繰り返し荷重によって、ある回数からせん断抵抗力が激減するためにひずみ振幅が急激に増加する状態を示しており、液状化破壊が発生している。これに対して、改良域では図6(b)のようにひずみは次第に大きくなっているが、急増することがなくせん断抵抗力を維持しており、繰り返し載荷によっても有限のひずみ振幅しか発生していない。   FIG. 6 shows a stress-strain curve in the case of the unimproved area (a) and case 1 (b). As is clear from FIG. 6 (a), in the unimproved region where the chemical solution has not reached, the shear resistance is drastically reduced from a certain number of times due to repeated loading, and the strain amplitude rapidly increases. The destruction has occurred. On the other hand, in the improved region, the strain gradually increases as shown in FIG. 6B, but the shear resistance is maintained without increasing rapidly, and only a finite strain amplitude is generated by repeated loading. Not.

以上の各試験によって確認されたように、本発明によって、主材を構成するコロイド溶液に対する粒子濃度を4.5(%)以下、サンドゲル状態に到るゲル化時間を10(h)以上及びサンドゲルの状態における電気比抵抗値を5(Ω・m)以下に設定される注入薬液は、これが土砂に注入されサンドゲル状態に到って改良体を形成した場合に、充分な「液状化強度」を発揮することが明らかである。   As confirmed by the above tests, according to the present invention, the particle concentration with respect to the colloidal solution constituting the main material is 4.5 (%) or less, the gelation time to reach the sand gel state is 10 (h) or more, and the sand gel. An injectable drug solution having an electrical resistivity value of 5 (Ω · m) or less in this state has a sufficient “liquefaction strength” when it is injected into the earth and sand to form an improved body. It is clear that it will work.

試験は、原位置での改良体調査でも行ったが、此処での試験は、「液状化強度」の実地試験と同時に、改良効果の確認方法を確立することを目的にしている。又、本発明による地盤改良方法はシリカ粒子濃度を低くしていることから、標準貫入試験を採用せずに、強度特性の変化に敏感に反応すると考えられる試験方法を採用して実施している。   The test was also conducted in the in-situ improvement survey, but the purpose of this test is to establish a method for confirming the improvement effect at the same time as the “liquefaction strength” field test. In addition, the ground improvement method according to the present invention is carried out by adopting a test method that is considered to react sensitively to changes in strength characteristics without adopting the standard penetration test because the silica particle concentration is low. .

図7は、それぞれの試験に用いられる先端コーンを示している。図7(a)は三成分コーン試験のものであり、先端コーンを貫入させることで、貫入抵抗、周辺摩擦力、間隙水圧を連続的に測定できる。図7(b)はダイラトメータ試験の平板状ブレードであり、ぶれ土片側にあるメンブレンの膨張によって地盤を水平方向に載荷している。   FIG. 7 shows the tip cone used for each test. FIG. 7A shows a three-component cone test. By penetrating the tip cone, the penetration resistance, the peripheral friction force, and the pore water pressure can be continuously measured. FIG. 7B shows a flat blade for the dilatometer test, in which the ground is loaded in the horizontal direction by the expansion of the membrane on the side of the shattering soil.

図7(c)は電気比抵抗試験に用いる先端コーンであり、上端ロッドの部分に電極を取り付けて貫入時に地盤の電気比抵抗を連続的に測定できる。本発明では注入薬液を調合して、薬液注入によって地盤の電気比抵抗を確実に変化させることで、改良効果の確認を簡便に実施できるようにしていることから、電気比抵抗を測定する試験は、地盤改良の施工管理を確実にするための確認試験である。   FIG.7 (c) is a front-end | tip cone used for an electrical specific resistance test, attaches an electrode to the part of an upper end rod, and can measure the electrical specific resistance of a ground continuously at the time of penetration. In the present invention, the test for measuring the electrical resistivity is made by preparing the injected drug solution and changing the electrical specific resistance of the ground reliably by the chemical solution injection so that the improvement effect can be easily confirmed. This is a confirmation test to ensure construction management for ground improvement.

以下に、各試験における計測結果を示すことで、本発明によって設定された注入薬液の注入効果の確認、特に、室内試験によって確認された「液状化強度」の追認と「改良域範囲」について確認の容易性について検討し、三成分コーン試験、ダイラトメータ試験の結果と比較して、電気比抵抗の測定による注入効果の確認が最も効率的で精度が高いことを実証する。   In the following, by showing the measurement results in each test, confirmation of the injection effect of the injectable drug solution set by the present invention, in particular, confirmation of “liquefaction strength” confirmed by laboratory tests and “improvement range” In comparison with the results of the three-component cone test and the dilatometer test, it is proved that the confirmation of the injection effect by measuring the electrical resistivity is the most efficient and accurate.

図8は、三成分コーン試験の結果であり、「液状化強度」の追認と併せて改良域を特定できる可能性の確認結果を示している。図8(a)は、ケース1について三成分コーン試験を実施した結果を示している。ケース1の場合は、主材のシリカ濃度が2.25%と低いために、貫入抵抗(qa)において深度3mの部分で若干の向上が見られるものの、周面摩擦(fs)、間隙水圧(ud)では、注入前後において差異を確認できる状態にない。これに対して、主材のシリカ濃度が4.5%のケース2については、図8(b)に見られるように、注入後のGL−4.0〜−7.0m間で明らかに貫入抵抗(qa)と周面摩擦(fs)が大きくなっており、間隙水圧(ud)が小さくなっていることで改良域を形成している状態を正確に確認できる。   FIG. 8 shows the result of the three-component corn test, and shows the confirmation result of the possibility that the improved region can be specified together with the confirmation of “liquefaction strength”. FIG. 8 (a) shows the result of conducting a three-component cone test for Case 1. In case 1, since the silica concentration of the main material is as low as 2.25%, the penetration resistance (qa) is slightly improved at a depth of 3 m, but the peripheral friction (fs), pore water pressure ( In ud), there is no state in which the difference can be confirmed before and after the injection. On the other hand, in case 2 where the silica concentration of the main material is 4.5%, as seen in FIG. 8B, it clearly penetrates between GL-4.0 to -7.0 m after injection. Since the resistance (qa) and the peripheral surface friction (fs) are increased and the pore water pressure (ud) is decreased, it is possible to accurately confirm the state in which the improved region is formed.

図9は、ダイラトメータ試験の結果であり、図8と同様に「液状化強度」の追認と併せて改良域を特定できる可能性の確認結果を示している。図9(a)は、ケース1についてダイラトメータ試験を実施した結果を示している。この場合も、主材のシリカ濃度が2.25%と低いために、メンブレン膨張時の圧力(p1)、土質パラメータの(ID)及び変形特性を示す(ED)が共に変化を見ることができず、注入前後において差異を確認できる状態にない。一方、ケース2については、図9(b)に示すように、土質パラメータの(ID)による土質の判定結果には改良効果の影響が見られないが、メンブレン膨張時の圧力(p1)、変形特性を示す(ED)が共に薬液の注入後に大きくなっており、地盤強度の増加を推測することができると同時に、改良域の範囲を正確に確認できる。   FIG. 9 shows the result of the dilatometer test, and shows the result of confirming the possibility of specifying the improved region together with the confirmation of the “liquefaction strength” as in FIG. FIG. 9A shows the result of conducting a dilatometer test on Case 1. FIG. Also in this case, since the silica concentration of the main material is as low as 2.25%, the pressure during expansion of the membrane (p1), the soil parameter (ID), and the deformation characteristics (ED) can all be observed. Therefore, there is no difference between before and after the injection. On the other hand, in case 2, as shown in FIG. 9 (b), although the influence of the improvement effect is not seen in the soil determination result by the soil parameter (ID), the pressure (p1) at the time of membrane expansion, the deformation Both (ED), which shows the characteristics, become larger after the chemical solution is injected, and an increase in ground strength can be estimated, and at the same time, the range of the improved region can be confirmed accurately.

図10乃至16は、ケース1に関して実施した電気比抵抗試験の実施範囲と計測結果であり、水平方向について改良域を特定できる可能性の確認状態を示している。図10は、本試験を実施した調査範囲を示す平面図であり、併せて三成分コーン試験とダイラトメータ試験を実施した位置についても参考的に表示している。試験結果は、図示のように直交する形で、No.1〜No.14の位置で測定した結果を深度方向に記録している。平面内に実線で示した部分は、GL−3.9mまで掘削した後に目視によって推測された改良範囲を表示しており、電気比抵抗によって確認された改良域の範囲と一致していることが確認できる。   FIGS. 10 to 16 show an implementation range and measurement results of the electrical resistivity test performed on Case 1, and show a confirmation state of the possibility of specifying an improved region in the horizontal direction. FIG. 10 is a plan view showing the survey area in which the present test was conducted, and the positions where the three-component cone test and the dilatometer test were conducted are also displayed for reference. The test results are in the form of an orthogonal number as shown in FIG. 1-No. The results measured at 14 positions are recorded in the depth direction. The portion indicated by the solid line in the plane shows the improved range estimated by visual inspection after excavating up to GL-3.9m, and is consistent with the improved range confirmed by the electrical resistivity. I can confirm.

図11乃至14は、各計測点における深度方向の電気比抵抗値を示す計測結果であり、改良域の確認状態を示している。試験結果について、GL−4m以深に注目すると、薬液を注入する以前は、各計測点が同様に電気比抵抗値が10〜20(Ω・m)の値を示しており、浅いほど大きくなっている。しかし、薬液の注入後は5(Ω・m)まで低下し、深さ方向にほぼ一定の値を示す層が存在することを示している。この層が注入された薬液が浸透している範囲であり、上下の浸透していない層と明確に区別することができる。   FIGS. 11 to 14 are measurement results showing the electrical resistivity values in the depth direction at the respective measurement points, and show the confirmation state of the improved region. Regarding the test results, focusing on GL-4m or deeper, before injecting the chemical solution, each measurement point similarly shows a value of electrical resistivity of 10 to 20 (Ω · m), and becomes shallower as it becomes shallower. Yes. However, it decreases to 5 (Ω · m) after the injection of the chemical solution, indicating that there is a layer showing a substantially constant value in the depth direction. This layer is the range in which the injected chemical solution penetrates, and can be clearly distinguished from the upper and lower layers that do not penetrate.

又、その浸透状態に視点を移してみると、注入位置を中心に浸透した深さ・層厚がほぼ対象に現れており、注入の中心から離れるに従って浸透された層厚が小さくなっていることが判る。さらに、本試験の目標改良半径である1.5mよりも離れると、薬液注入前の地盤における電気比抵抗値を示すようになり、浸透していないことを表示している。   Also, when shifting the viewpoint to the penetration state, the depth and layer thickness that penetrated mainly from the injection position appear in the target, and the penetrated layer thickness becomes smaller as it goes away from the injection center. I understand. Furthermore, when it leaves | separates from 1.5 m which is the target improvement radius of this test, it will show the electrical resistivity value in the ground before chemical | medical solution injection | pouring, and it has displayed that it has not osmose | permeated.

図15、16は、本試験を実施した調査範囲を示す断面図であり、図10の平面図に相当させた各計測点の深度方向における電気比抵抗値を示す計測結果であり、深度方向について改良域を特定できる可能性の確認状態を示している。本結果は、電気比抵抗の測定から推測される改良範囲を示しているものであり、図面に表示した破線から明らかなように、両断面とも改良域の範囲は、ストレーナーを中心にして球状浸透した所望の浸透範囲(半径1.5mの球体)とほぼ一致している。   15 and 16 are cross-sectional views showing the investigation range in which this test was conducted, and are measurement results showing the electrical resistivity values in the depth direction at the respective measurement points corresponding to the plan view of FIG. The confirmation status of the possibility of identifying the improvement area is shown. This result shows the improved range inferred from the measurement of electrical resistivity, and as is clear from the broken line shown in the drawing, the range of the improved area in both sections is the spherical penetration centered on the strainer. The desired penetration range (a sphere having a radius of 1.5 m) is almost the same.

従って、本発明による注入薬液を用いた地盤改良は、理想的な注入形態である浸透注入によって、コロイド溶液の濃度が低い場合でも所定の改良体を形成して地盤の改良を達成しているものであり、同時に注入後における電気比抵抗の計測によって、改良域の品質と範囲とを簡潔に特定出来ることが確認されたことになる。   Therefore, the ground improvement using the injection chemical solution according to the present invention achieves the ground improvement by forming a predetermined improvement body even when the concentration of the colloidal solution is low by osmotic injection which is an ideal injection form. At the same time, it was confirmed that the quality and range of the improved region could be succinctly identified by measuring the electrical resistivity after injection.

図17乃至19は、ケース2に関して実施した電気比抵抗試験の実施範囲と計測結果であり、水平方向と深度方向についてケース1と同様に改良域を特定できる可能性の確認状態を示している。平面内に実線で示した部分は、GL−4.2mまで掘削した後に目視によって推測された改良範囲を表示しており、電気比抵抗によって確認された改良域の範囲と一致していることが確認できる。但し、改良形状は、No.9とNo.18の方向に小さく、No.8の方向に大きくなっているが、小さくなっている方向には、中心部に比べて細粒分の多い砂質土層が確認されており、これによって浸透性の良い地盤の方向に薬液が優先的に浸透したものと推測される。   FIGS. 17 to 19 show the implementation range and measurement results of the electrical resistivity test performed on Case 2, and show the confirmation state of the possibility of specifying an improved region in the horizontal direction and the depth direction as in Case 1. The part indicated by the solid line in the plane shows the improved range estimated by visual inspection after excavating to GL-4.2m, and is consistent with the improved range confirmed by the electrical resistivity. I can confirm. However, the improved shape is No. 9 and No. No. 18 is smaller, no. Although it is larger in the direction of 8, a sandy soil layer with more fine grains than in the center is confirmed in the direction of decreasing, so that the chemical solution is directed toward the ground with good permeability. Presumed to have penetrated preferentially.

図18、19は、本試験を実施した調査範囲を示す断面図であり、コロイド溶液のシリカ濃度が高い場合についても、各計測点の深度方向における電気比抵抗値を示す計測結果によって、深度方向について改良域を特定できる可能性の確認状態を示している。推測される改良範囲は、両断面とも改良範囲の上端が地下水位GL−3mより低いGL−4m付近になっている。試掘によると、GL−4m付近には厚さ10cm程度の薄層の粘性土が存在していることが判明した。従って、上記平面図に現れた浸透域の差異は、この粘性土によって薬液の浸透が阻まれたものと推測される。実際にもそれ以深については、浸透注入によって地盤の改良が為されており、その浸透範囲は中心から2mに達している。   18 and 19 are cross-sectional views showing the investigation range in which the present test was carried out. Even when the silica concentration of the colloidal solution is high, the measurement results showing the electrical resistivity value in the depth direction at each measurement point indicate the depth direction. The confirmation state of the possibility that the improvement area can be specified for is shown. The estimated improved range is in the vicinity of GL-4m where the upper end of the improved range is lower than the groundwater level GL-3m in both cross sections. According to the test excavation, it was found that a thin layer of viscous soil having a thickness of about 10 cm exists in the vicinity of GL-4m. Therefore, the difference in the permeation area appearing in the plan view is presumed that the penetration of the chemical solution was hindered by the clay. Actually, deeper than that, the ground has been improved by osmotic injection, and the infiltration range has reached 2 m from the center.

従って、本発明による注入薬液を用いた地盤改良は、コロイド溶液の濃度が高い場合でも理想的な注入形態である浸透注入によって、所定の改良体を形成して地盤の改良を達成しているものであり、同時に注入後における電気比抵抗の計測によって、改良域の品質と範囲とを簡潔に特定出来ることが確認されたことになる。   Therefore, the ground improvement using the injection chemical solution according to the present invention achieves the ground improvement by forming a predetermined improvement body by osmotic injection which is an ideal injection form even when the concentration of the colloidal solution is high. At the same time, it was confirmed that the quality and range of the improved region could be succinctly identified by measuring the electrical resistivity after injection.

以上のように、室内における繰り返し振動三軸試験と繰り返し単純せん断試験による「液状化強度」の確認と、原位置での改良体調査で行われた三成分コーン試験、ダイラトメータ試験と電気比抵抗試験による「液状化強度」の実地試験及び改良効果を確認する方法の確立によって、本発明による注入薬液を用いた土砂地盤改良工法は、地盤改良域に大量の薬液を低圧、高速で広範囲に注入することを可能にして大口径の改良体の造成を図って所望の液状化強度を発生させ、さらに、注入後の電気比抵抗値を計測することで地盤改良域の液状化強度とその範囲を簡潔に確認できることが明らかになった。   As described above, confirmation of “liquefaction strength” by repeated vibration triaxial test and repeated simple shear test in the room, and three-component cone test, dilatometer test, and electrical resistivity test performed in the in-situ improvement body investigation Based on the field test of "liquefaction strength" and the establishment of a method for confirming the improvement effect, the earth and sand ground improvement method using the injection chemical solution according to the present invention injects a large amount of chemical solution into the ground improvement area at low pressure and high speed over a wide area. The desired liquefaction strength is generated by creating a large-diameter improved body, and the liquefaction strength in the ground improvement area and its range are simplified by measuring the electrical resistivity after injection. It became clear that it can be confirmed.

これらの結果を踏まえて、本発明による土砂地盤改良工法の施工管理方法は、液状化強度と電気比抵抗値との関連を特定し、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定し、上記特定関連に基づいて地盤改良範囲における液状化強度を確認している。あるいは、液状化強度と電気比抵抗値との関連を特定するとともに、薬液注入前に深度方向の電気比抵抗値を地盤改良範囲において予め測定しておいて、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、該測定値と上記測定値とを比較照合するとともに上記特定関連に基づいて地盤改良範囲における液状化強度を確認している。以下に、本発明による施工管理方法の実施の形態を特定関連図に基づいて説明する。   Based on these results, the construction management method of the earth and sand ground improvement method according to the present invention specifies the relationship between the liquefaction strength and the electrical resistivity value, and at least sets the electrical resistivity value, pH 1.5-2 The injected chemical solution is injected into the soil in the ground improvement range, and then the electrical resistivity value in the depth direction is measured, and the liquefaction strength in the ground improvement range is confirmed based on the above specific relationship. Alternatively, the relationship between the liquefaction strength and the electrical resistivity value is specified, and the electrical resistivity value in the depth direction is measured in advance in the ground improvement range before the chemical solution injection, and at least the electrical resistivity value is set, Inject a pH 1.5-2 infusion solution into the soil in the ground improvement range, and then measure the electrical resistivity value in the depth direction, compare the measured value with the measured value, and Based on this, the liquefaction strength in the ground improvement range is confirmed. Below, embodiment of the construction management method by this invention is described based on a specific related figure.

図20は、本発明による注入薬液を用いた試験によって予め作成した「液状化強度比」(a)と「電気比抵抗値」(b)の希釈倍率に対する特定関連図である。ここで用いる希釈倍率は、以下のように定められている。
希釈倍率=[(希釈によって加わる水の重量)+(主材の重量)]/(主材の重量)
本発明による施工管理方法は、図20に示した両特定関連図を用いて次のように実施することで、地盤改良域に所望の改良が確立していることを確認できる。
(1)注入薬液について、「液状化強度比」(a)と「電気比抵抗値」とを予め求めて上記特定関連図(a)(b)を作成する。
(2)注入薬液について、所定の「液状化強度比」を設定して、主材のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を設定する。
(3)注入薬液を所定の「希釈倍率」に希釈して地盤改良域に注入する。
(4)地盤改良域の電気比抵抗を計測する。
(5)計測された「電気比抵抗値」を特定関連図(b)に当てはめて、曲線に従って「希釈倍率」を特定し、「希釈倍率」を特定関連図(a)に当てはめて「液状化強度比」を求める。
(6)「液状化強度比」から改良域の「液状化強度」を確認する。
FIG. 20 is a specific relation diagram with respect to the dilution ratio of “liquefaction strength ratio” (a) and “electrical resistivity value” (b) prepared in advance by a test using an injectable drug solution according to the present invention. The dilution factor used here is determined as follows.
Dilution factor = [(weight of water added by dilution) + (weight of main material)] / (weight of main material)
The construction management method according to the present invention can be confirmed that the desired improvement has been established in the ground improvement area by carrying out the following using the both related diagrams shown in FIG.
(1) With respect to the injected drug solution, the “liquefaction strength ratio” (a) and the “electrical resistivity value” are obtained in advance, and the above-described specific relation diagrams (a) and (b) are created.
(2) About injection chemical | medical solution, predetermined | prescribed "liquefaction strength ratio" is set, the silica particle density | concentration of a main material, the gelation time to reach a sand gel state, and the electrical specific resistance value in a sand gel state are set.
(3) Dilute the injected drug solution to a predetermined “dilution ratio” and inject it into the ground improvement zone.
(4) Measure the electrical resistivity in the ground improvement area.
(5) Apply the measured “electrical resistivity value” to the specific related diagram (b), specify the “dilution ratio” according to the curve, and apply the “dilution ratio” to the specific related diagram (a) to “liquefy” Find the intensity ratio.
(6) Confirm the “liquefaction strength” in the improved area from the “liquefaction strength ratio”.

以上のように、本発明による施工管理方法は、注入薬液に関する「液状化強度比」と「電気比抵抗値」とを予め求めて、上記特定関連図(a)(b)の作成を済ましておくことで、以降の管理は、注入薬液の主材のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を設定する作業と、注入後の電気比抵抗を計測するだけの作業だけで、施工管理を簡潔に実施できる。   As described above, the construction management method according to the present invention obtains the “liquefaction strength ratio” and the “electrical resistivity value” relating to the injecting chemical solution in advance, and completes the creation of the specific related diagrams (a) and (b). By doing so, the subsequent management measures the work of setting the silica particle concentration of the main material of the injected drug solution, the gelation time to reach the sand gel state, and the electric specific resistance value in the sand gel state, and the electric specific resistance after injection. Construction management can be carried out simply with only the work.

しかして、上記管理方法では、改良域に所望の「液状化強度」が確立しているか否かを数値的に確認しているが、上述した試験結果でも明らかなように、本発明による注入薬液は、所定の数値設定によって改良域に所期の「液状化強度」を充分に形成できることが実証されている。従って、本発明による土砂地盤改良工法の施工管理方法は、この他に、地盤改良範囲において薬液注入前に深度方向の電気比抵抗値を予め測定しておいて、電気比抵抗値を設定した、pH1.5〜2の注入薬液を注入した後に同様の電気比抵抗値を測定して、両方の測定値を比較照合することで、地盤改良効果を確認することも可能である。   Thus, in the above management method, whether or not the desired “liquefaction strength” is established in the improved region is numerically confirmed. As is clear from the test results described above, the injectable drug solution according to the present invention is used. It has been demonstrated that the desired “liquefaction strength” can be sufficiently formed in the improved region by setting predetermined numerical values. Therefore, in addition to this, the construction management method of the earth and sand ground improvement method according to the present invention, in addition to measuring the electrical resistivity value in the depth direction before the chemical injection in the ground improvement range, set the electrical resistivity value, It is also possible to confirm the ground improvement effect by measuring the same electrical specific resistance value after injecting an injecting drug solution of pH 1.5 to 2 and comparing both measured values.

本施工管理方法は、注入薬液に関する「液状化強度比」と「電気比抵抗値」とを予め求めることなく、施工現場における電気比抵抗値の計測のみで地盤改良効果を確認するもので、以下のように実施する。
(1)薬液注入前に地盤改良範囲における深度方向の電気比抵抗値を予め測定する。
(2)注入薬液を地盤改良範囲の土砂中に注入した後に、地盤改良範囲における深度方向の電気比抵抗値を再び測定する。
(3)両測定値を比較照合して差異が存在することを確認する。
This construction management method is to confirm the ground improvement effect only by measuring the electrical resistivity value at the construction site without previously obtaining the `` liquefaction strength ratio '' and `` electrical resistivity value '' regarding the injected chemical solution, Implement as follows.
(1) The electrical resistivity value in the depth direction in the ground improvement range is measured in advance before the chemical solution is injected.
(2) After injecting the injected chemical into the soil in the ground improvement range, the electrical resistivity value in the depth direction in the ground improvement range is measured again.
(3) The measured values are compared and verified to confirm that there is a difference.

以上のように、本発明による施工管理方法では、注入薬液にゲル化剤で設定した電気比抵抗値を改良地盤の電気比抵抗値と比較して大きな差異を生じるように調合している特性を活用して、電気比抵抗値の変化を観測するのみで施工管理を簡潔に実施できる。例えば、海水の電気比抵抗値が低く、真水が高いことは一般周知であり、改良対象の地盤に海水が染み込んでいるときには、薬液注入により電気比抵抗値が増加していることで、また真水が染み込んでいるときには、電気比抵抗値が低下していることで、明らかに改良域を特定することができ、容易に施工管理を達成することができる。尚、本発明による施工管理方法では、通常の地盤における電気比抵抗が大凡の数値で確認されている場合には事前の計測も省略して、薬液注入後の電気比抵抗値が予め設定した電気比抵抗値(上記実施の形態では5(Ω・m))になっているか否かを確認するだけでも施工管理を達成できる。   As described above, in the construction management method according to the present invention, the electrical resistivity value set by the gelling agent in the injected drug solution is compared with the electrical resistivity value of the improved ground, and the characteristics are formulated so as to produce a large difference. Utilizing it, construction management can be performed simply by observing changes in electrical resistivity. For example, it is generally known that seawater has a low electrical resistivity value and high fresh water, and when seawater is infiltrated into the ground to be improved, the electrical resistivity value has increased due to the injection of chemicals. When the ink is soaked, the electrical resistivity value is lowered, so that the improved region can be clearly identified, and the construction management can be easily achieved. In the construction management method according to the present invention, when the electrical resistivity in the normal ground is confirmed with a rough numerical value, the preliminary measurement is also omitted and the electrical resistivity value after the chemical injection is set in advance. Construction management can be achieved simply by confirming whether or not the specific resistance value (5 (Ω · m) in the above embodiment) is reached.

以上の説明で明らかなように、本発明による土砂地盤改良工法の施工管理方法は、少なくとも電気比抵抗値を設定した注入薬液を土砂地盤に注入し、しかる後に深度方向の電気比抵抗値を測定して、地盤改良域における液状化強度とその範囲を確認しており、注入薬液にサンドゲル状態における電気比抵抗値を設定する作業と、注入後の電気比抵抗を計測するだけの作業だけで、施工管理を簡潔に実施できるものである。   As is clear from the above description, the construction management method of the earth-and-soil improvement method according to the present invention is to inject an injecting chemical solution having at least an electrical resistivity value into the earth-and-soil ground, and then measure the electrical resistivity value in the depth direction. Then, the liquefaction strength in the ground improvement area and its range have been confirmed, and only the work of setting the electrical resistivity value in the sand gel state for the injected chemical solution and the work of measuring the electrical resistivity after injection, Construction management can be carried out in a concise manner.

以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明による土砂地盤改良工法と注入薬液及びその施工管理方法は、上記実施の形態に何ら限定されるものでなく、主材におけるシリカ粒子、ゲル化剤における酸性塩や中性塩の各種態様、さらには濃度等の配合値や注入薬液へのサンドゲル状態に到るゲル化時間、電気比抵抗の設定値等に関して、本発明の趣旨を逸脱しない範囲において種々の変更が可能であることは当然のことである。   As mentioned above, although the present invention has been described in detail based on the embodiment, the earth and sand ground improvement method, the injection chemical solution, and the construction management method thereof according to the present invention are not limited to the above-described embodiment at all. The silica particles in the present invention, various aspects of the acidic salt and neutral salt in the gelling agent, as well as the blending value such as the concentration, the gelation time to reach the sand gel state to the injected drug solution, the set value of the electrical resistivity, etc. Naturally, various changes can be made without departing from the spirit of the present invention.

本発明による注入薬液を特定するために調整したサンドゲル状態に到るゲル化時間とpHの相関図Correlation diagram of gelation time and pH to reach a sand gel state adjusted to specify an injectable drug solution according to the present invention 本発明による注入薬液を特定するために調整した電気伝導度とpHの相関図Correlation diagram of electrical conductivity and pH adjusted to identify injectable drug solution according to the present invention 本発明による注入薬液を特定するために調整した電気伝導度とゲル化剤の中性塩配合の相関図Correlation diagram of electrical conductivity adjusted to specify injectable drug solution according to the present invention and neutral salt composition of gelling agent 液状化強度試験に使用した供試体Specimen used for liquefaction strength test 液状化強度試験における載荷回数とせん断応力比の計測値図Measured value chart of number of loadings and shear stress ratio in liquefaction strength test 液状化強度試験におけるせん断ひずみとせん断応力の計測値図Measured values of shear strain and shear stress in liquefaction strength test 原位置試験に適用した各試験方法の先端コーン図Tip cone diagram for each test method applied to in-situ testing 低濃度シリカ粒子のケースにおける三成分コーン試験の深度方向計測値図Measured depth map of three-component cone test in the case of low-concentration silica particles 低濃度シリカ粒子のケースにおけるダイラトメータ試験の深度方向計測値図Depth direction measurement value diagram of dilatometer test in case of low concentration silica particles 原位置試験を実施した低濃度シリカ粒子のケースにおける改良範囲の平面図Plan view of the improved range in the case of low-concentration silica particles subjected to in-situ testing 低濃度シリカ粒子のケースにおける電気比抵抗試験の深度方向計測値図Depth direction measurement value figure of electrical resistivity test in case of low concentration silica particles 低濃度シリカ粒子のケースにおける電気比抵抗試験の深度方向計測値図Depth direction measurement value figure of electrical resistivity test in case of low concentration silica particles 低濃度シリカ粒子のケースにおける電気比抵抗試験の深度方向計測値図Depth direction measurement value figure of electrical resistivity test in case of low concentration silica particles 低濃度シリカ粒子のケースにおける電気比抵抗試験の深度方向計測値図Depth direction measurement value figure of electrical resistivity test in case of low concentration silica particles 原位置試験を実施した低濃度シリカ粒子のケースにおける改良範囲の断面図Cross-sectional view of the improved range in the case of low-concentration silica particles subjected to in-situ testing 原位置試験を実施した低濃度シリカ粒子のケースにおける改良範囲の断面図Cross-sectional view of the improved range in the case of low-concentration silica particles subjected to in-situ testing 原位置試験を実施した標準濃度シリカ粒子のケースにおける改良範囲の平面図Plan view of the improved range in the case of standard concentration silica particles subjected to in-situ testing 原位置試験を実施した標準濃度シリカ粒子のケースにおける改良範囲の断面図Cross section of the improved range in the case of standard concentration silica particles subjected to in-situ testing 原位置試験を実施した標準濃度シリカ粒子のケースにおける改良範囲の断面図Cross section of the improved range in the case of standard concentration silica particles subjected to in-situ testing 地盤改良の施工管理に用いる特定関連図Specific relationship chart used for construction management of ground improvement

Claims (9)

シリカ粒子のコロイド溶液を主材とし、該主材にゲル化剤を配合した注入薬液を土砂地盤に注入する土砂地盤改良工法であって、主材のシリカ粒子濃度、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を設定した、pH1.5〜2の注入薬液を土砂地盤中に注入し、土砂地盤を所定の液状化強度の地盤に改良することを特徴とする土砂地盤改良工法。   This is a soil-and-soil improvement method that uses a colloidal solution of silica particles as the main material, and injects an injecting chemical solution containing a gelling agent into the main material into the earth and sand ground. An earth and sand ground improvement characterized by injecting a pH 1.5 to 2 infusion chemical solution that sets the electrical resistivity value in time and sand gel state into the earth and sand ground and improving the earth and sand ground to a ground with a predetermined liquefaction strength. Construction method. 注入薬液を改良する土砂地盤の土砂を用いて試験測定し、サンドゲル状態に到るゲル化時間及びサンドゲル状態における電気比抵抗値を予め確認することを特徴とする請求項1に記載の土砂地盤改良工法。   The soil and soil ground improvement according to claim 1, characterized in that a test and measurement is performed using the soil and sand of the soil and soil to improve the injected chemical solution, and the gelation time to reach the sand gel state and the electrical resistivity value in the sand gel state are confirmed in advance. Construction method. 注入薬液が、主材を構成するコロイド溶液に対する粒子濃度を4.5(%)以下、サンドゲル状態に到るゲル化時間を10(h)以上及びサンドゲルの状態における電気比抵抗値を5(Ω・m)以下に設定されることを特徴とする請求項1又は2に記載の土砂地盤改良工法。   The injected drug solution has a particle concentration of 4.5 (%) or less with respect to the colloidal solution constituting the main material, a gelation time to reach a sand gel state of 10 (h) or more, and an electrical resistivity value of 5 (Ω in the sand gel state) -M) The earth-and-soil ground improvement construction method according to claim 1 or 2, characterized by being set to the following. 主材を構成するコロイド溶液のシリカ粒子濃度を4.5(%)以下、サンドゲル状態に到るゲル化時間を10(h)以上及びサンドゲルの状態における電気比抵抗値を5(Ω・m)以下、並びにpH1.5〜2に設定して成ることを特徴とする請求項1乃至3のいずれかに記載の土砂地盤改良工法に用いる注入薬液。   The silica particle concentration of the colloidal solution constituting the main material is 4.5 (%) or less, the gelation time to reach the sand gel state is 10 (h) or more, and the electrical resistivity value in the sand gel state is 5 (Ω · m) The injection chemical solution used for the earth and sand ground improvement method according to any one of claims 1 to 3, wherein the pH is set to 1.5 to 2 below. 主材を構成するコロイド溶液の活性シリカ粒子濃度を4.5(%)以下、サンドゲル状態に到るゲル化時間を10(h)以上及びサンドゲルの状態における電気比抵抗値を5(Ω・m)以下に設定して成ることを特徴とする請求項1乃至3のいずれかに記載の土砂地盤改良工法に用いる注入薬液。   The active silica particle concentration of the colloidal solution constituting the main material is 4.5 (%) or less, the gelation time to reach the sand gel state is 10 (h) or more, and the electrical specific resistance value in the sand gel state is 5 (Ω · m The injection chemical solution used for the earth and sand ground improvement method according to any one of claims 1 to 3, characterized in that it is set as follows. 平均粒子径3〜6ナノメートルの活性シリカ粒子を0.28〜2.25重量%分散させてコロイド溶液にした主材、0.1〜10.0重量%の中性塩及び0.1〜5重量%の酸性塩を混合して成るゲル化剤から構成することを特徴とする請求項5に記載の注入薬液。   Main material prepared by dispersing 0.28 to 2.25% by weight of active silica particles having an average particle diameter of 3 to 6 nanometers into a colloidal solution, 0.1 to 10.0% by weight of neutral salt, and 0.1 to 6. The injectable drug solution according to claim 5, comprising a gelling agent obtained by mixing 5% by weight of an acidic salt. 液状化強度と電気比抵抗値との関連を特定し、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、上記特定関連に基づいて地盤改良範囲及び液状化強度を確認することを特徴とする土砂地盤改良工法の施工管理方法。   The relationship between the liquefaction strength and the electrical resistivity value is specified, and at least the electrical resistivity value is set, and an injection chemical solution with a pH of 1.5 to 2 is injected into the soil in the ground improvement range, and then the electrical ratio in the depth direction. A construction management method for earth and sand ground improvement method characterized by measuring a resistance value and confirming the ground improvement range and liquefaction strength based on the specific relationship. 液状化強度と電気比抵抗値との関連を特定するとともに、薬液注入前に深度方向の電気比抵抗値を地盤改良範囲において予め測定しておいて、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、該測定値と上記測定値とを比較照合するとともに上記特定関連に基づいて地盤改良範囲及び液状化強度を確認することを特徴とする土砂地盤改良工法の施工管理方法。   The relationship between the liquefaction strength and the electrical resistivity value was specified, the electrical resistivity value in the depth direction was measured in advance in the ground improvement range before the chemical solution injection, and at least the electrical resistivity value was set. Inject 5 to 2 of the medicinal solution into the soil in the ground improvement range, then measure the electrical resistivity value in the depth direction, compare the measured value with the measured value, and based on the specific relationship Construction management method of earth and sand ground improvement method characterized by confirming ground improvement range and liquefaction strength. 薬液注入前に深度方向の電気比抵抗値を地盤改良範囲において予め測定しておいて、少なくとも電気比抵抗値を設定した、pH1.5〜2の注入薬液を地盤改良範囲の土砂中に注入し、しかる後に深度方向の電気比抵抗値を測定して、該測定値と上記測定値とを比較照合することで地盤改良範囲を確認することを特徴とする土砂地盤改良工法の施工管理方法。   Before injection of the chemical solution, the electrical resistivity value in the depth direction is measured in advance in the ground improvement range, and at least the electrical resistivity value is set, and an injection chemical solution of pH 1.5 to 2 is injected into the soil in the ground improvement range. Then, after measuring the electrical resistivity value in the depth direction and comparing the measured value with the measured value, the ground improvement range is confirmed, and the construction management method of the earth and sand ground improvement construction method is characterized.
JP2008247967A 2008-09-26 2008-09-26 Earth-and-sand soil improving method, injection chemical, and construction management method therefor Pending JP2009024493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247967A JP2009024493A (en) 2008-09-26 2008-09-26 Earth-and-sand soil improving method, injection chemical, and construction management method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247967A JP2009024493A (en) 2008-09-26 2008-09-26 Earth-and-sand soil improving method, injection chemical, and construction management method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000053277A Division JP4376411B2 (en) 2000-02-29 2000-02-29 Earth and sand improvement method, injection chemical and its construction management method.

Publications (1)

Publication Number Publication Date
JP2009024493A true JP2009024493A (en) 2009-02-05

Family

ID=40396554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247967A Pending JP2009024493A (en) 2008-09-26 2008-09-26 Earth-and-sand soil improving method, injection chemical, and construction management method therefor

Country Status (1)

Country Link
JP (1) JP2009024493A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223153A (en) * 2015-05-29 2016-12-28 五洋建設株式会社 Ground improvement method by chemical injection, and ground improvement optimization method
JP2017129006A (en) * 2017-05-01 2017-07-27 五洋建設株式会社 Ground improvement method by injecting chemical liquid and ground improvement optimization method
JP2021004473A (en) * 2019-06-26 2021-01-14 戸田建設株式会社 Method of confirming ground improvement effect and measuring device used for it
CN113774897A (en) * 2021-10-22 2021-12-10 西安建筑科技大学 Method for curing sandy soil through MICP (micro-emulsified concrete) low-pH value mixed grouting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122618A (en) * 1982-12-28 1984-07-16 T S Gijutsu Kk Confirmation of improvement of ground
JPH06146261A (en) * 1992-11-09 1994-05-27 Nissan Chem Ind Ltd Earthquake proofing property improving method of sandy ground by silica series grout material
JPH0718660A (en) * 1993-06-28 1995-01-20 Sano Takeshi Created state detecting method for improved column in high-pressure injecting/agitating method and detecting device
JPH0841860A (en) * 1994-08-01 1996-02-13 Sano Takeshi Improvement examining method of soil improvement work and device used therefor
JPH093871A (en) * 1995-06-22 1997-01-07 Nissan Chem Ind Ltd Ground injection method
JPH10121457A (en) * 1996-10-17 1998-05-12 Unyusho Kowan Gijutsu Kenkyusho Liquidation countermeasure enginering method of sand ground by chemical injection
JPH1137997A (en) * 1997-07-22 1999-02-12 Shimizu Corp Method for evaluating chemical grouting-solidification characteristics
JPH11241336A (en) * 1998-02-25 1999-09-07 Kyokado Eng Co Ltd Ground hardening injection material, and ground injection construction method using same
JPH11336065A (en) * 1998-05-22 1999-12-07 Okumura Corp Liquefaction countermeasure construction method of sandy-soil ground by chemical injection
JP2001241031A (en) * 2000-02-29 2001-09-04 Okumura Corp Sediment and ground improvement method, and grouting chemicals and its control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122618A (en) * 1982-12-28 1984-07-16 T S Gijutsu Kk Confirmation of improvement of ground
JPH06146261A (en) * 1992-11-09 1994-05-27 Nissan Chem Ind Ltd Earthquake proofing property improving method of sandy ground by silica series grout material
JPH0718660A (en) * 1993-06-28 1995-01-20 Sano Takeshi Created state detecting method for improved column in high-pressure injecting/agitating method and detecting device
JPH0841860A (en) * 1994-08-01 1996-02-13 Sano Takeshi Improvement examining method of soil improvement work and device used therefor
JPH093871A (en) * 1995-06-22 1997-01-07 Nissan Chem Ind Ltd Ground injection method
JPH10121457A (en) * 1996-10-17 1998-05-12 Unyusho Kowan Gijutsu Kenkyusho Liquidation countermeasure enginering method of sand ground by chemical injection
JPH1137997A (en) * 1997-07-22 1999-02-12 Shimizu Corp Method for evaluating chemical grouting-solidification characteristics
JPH11241336A (en) * 1998-02-25 1999-09-07 Kyokado Eng Co Ltd Ground hardening injection material, and ground injection construction method using same
JPH11336065A (en) * 1998-05-22 1999-12-07 Okumura Corp Liquefaction countermeasure construction method of sandy-soil ground by chemical injection
JP2001241031A (en) * 2000-02-29 2001-09-04 Okumura Corp Sediment and ground improvement method, and grouting chemicals and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223153A (en) * 2015-05-29 2016-12-28 五洋建設株式会社 Ground improvement method by chemical injection, and ground improvement optimization method
JP2017129006A (en) * 2017-05-01 2017-07-27 五洋建設株式会社 Ground improvement method by injecting chemical liquid and ground improvement optimization method
JP2021004473A (en) * 2019-06-26 2021-01-14 戸田建設株式会社 Method of confirming ground improvement effect and measuring device used for it
JP7248241B2 (en) 2019-06-26 2023-03-29 戸田建設株式会社 Confirmation method of ground improvement effect and measuring device used therefor
CN113774897A (en) * 2021-10-22 2021-12-10 西安建筑科技大学 Method for curing sandy soil through MICP (micro-emulsified concrete) low-pH value mixed grouting

Similar Documents

Publication Publication Date Title
CN106323999B (en) A kind of rock hydraulic fracturing experiment crack intervention Enhanced Imaging method
JP7248241B2 (en) Confirmation method of ground improvement effect and measuring device used therefor
JP2009024493A (en) Earth-and-sand soil improving method, injection chemical, and construction management method therefor
JP4886921B2 (en) Effective diameter confirmation method of ground improvement body
JP4376411B2 (en) Earth and sand improvement method, injection chemical and its construction management method.
CN104532886A (en) Pile bottom sediment and pile tip foundation detecting device and method for cast-in-place piles
JP5478386B2 (en) Improving method for ground with underground cavity
Spagnoli et al. Influence of salt solutions on the undrained shear strength and the clogging of smectite-quartz mixtures
Moon et al. Landslides in sensitive soils, Tauranga, New Zealand.
CN105275005A (en) Method for detecting post grouting quality of pile foundation through electric method well logging system
JP2000178956A (en) Ground survey method
JP6493834B2 (en) Ground liquefaction countermeasure method
Hu et al. Engineering characteristics and reinforcement approaches of organic sandy soil
JP2013221298A (en) Quality management support method of grouting technique
CN108226005A (en) A kind of evaluation method of acid solution deep penetration low damage energy
JP6792117B1 (en) Evaluation method of improvement range and improvement effect in chemical solution improved ground and ground improvement method using it
Kibria et al. Determination of moisture content and unit weight of clayey soil using resistivity imaging (RI)
JP2001090054A (en) Engineering method for preventing liquefaction of sandy soil ground by chemical grouting
Teng et al. Electro-osmotic chemical treatment of clay on shear modulus
JP6304350B1 (en) Selection method of ground improvement method and ground improvement method
JP6550300B2 (en) Ground improvement method
Yeo et al. Evaluation of water ingress in cement treated material for durability assessments
CN105275025A (en) Method of checking pile post-grouting quality through acoustic logging system
JP2007182695A (en) Diameter estimating method for soil improving body
KR20180077364A (en) Construction method of mall-scale precast piles considering cement milk influenence

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20110621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A02