JP4969307B2 - Train detector - Google Patents

Train detector Download PDF

Info

Publication number
JP4969307B2
JP4969307B2 JP2007113561A JP2007113561A JP4969307B2 JP 4969307 B2 JP4969307 B2 JP 4969307B2 JP 2007113561 A JP2007113561 A JP 2007113561A JP 2007113561 A JP2007113561 A JP 2007113561A JP 4969307 B2 JP4969307 B2 JP 4969307B2
Authority
JP
Japan
Prior art keywords
train
time
transmission
track
train detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007113561A
Other languages
Japanese (ja)
Other versions
JP2008265626A (en
Inventor
義憲 播磨
亮吉 南
Original Assignee
大同信号株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同信号株式会社 filed Critical 大同信号株式会社
Priority to JP2007113561A priority Critical patent/JP4969307B2/en
Publication of JP2008265626A publication Critical patent/JP2008265626A/en
Application granted granted Critical
Publication of JP4969307B2 publication Critical patent/JP4969307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

この発明は、鉄道分野における軌道回路方式の列車検知装置に関し、詳しくは、時分割送信方式および並列受信方式の列車検知装置に関する。このような列車検知装置では、所定周波数の列車検知用信号の時分割送信がサイクリックに行われて、随時、各軌道回路上の列車の有無が検知されるとともに、各軌道回路への妨害波の有無も検知される。予め選定した送信パターンで列車検知用信号の送信が行われるので、その送信パターンの繰り返し時間を「サイクル時間」と呼び、送信パターンの基本単位時間を「スロット時間(コマ時間)」と呼ぶ。スロット時間は一定で全軌道回路に共通するが、サイクル時間は軌道回路で異なることもあれば同じこともある。「送信実行時間」や「送信停止時間」はスロット時間の正整数倍であり、サイクル時間もスロット時間の正整数倍であり。   The present invention relates to a track detection device of a track circuit system in the railway field, and more particularly to a train detection device of a time division transmission method and a parallel reception method. In such a train detection device, time-division transmission of a train detection signal of a predetermined frequency is performed cyclically, and the presence or absence of a train on each track circuit is detected at any time, and an interference wave to each track circuit is detected. The presence or absence of is also detected. Since the train detection signal is transmitted in a transmission pattern selected in advance, the repetition time of the transmission pattern is called “cycle time”, and the basic unit time of the transmission pattern is called “slot time (frame time)”. The slot time is constant and common to all track circuits, but the cycle time may or may not be the same for each track circuit. “Transmission execution time” and “transmission stop time” are a positive integer multiple of the slot time, and the cycle time is also a positive integer multiple of the slot time.

なお、鉄道分野における用語「在線検知時間」は、或る軌道回路に列車が入って来たときに列車有無の検知状態が非在線状態(列車なし)から在線状態(列車あり)へ切り替わるまでに許容される遅延時間を意味し、大抵の路線について500ms以下を目標にして決められている。この在線検知時間は、列車進入時間や,落下時素とも呼ばれる。
また、鉄道分野における用語「非在線検知時間」は、或る軌道回路から列車が出て行ったときにその列車進出を確認するために列車有無の検知状態が非在線状態から在線状態に切り替わるまでに課される待ち時間を意味する。列車が当該軌道回路を進出したことの検知を確実に行うために、ある一定の時間、進出した状態の継続することが監視されるが、この一定時間を非在線検知時間という。この非在線検知時間は、在線検知時間よりも長く、大抵の路線について2000ms程度に決められていて、列車進出時間や,動作時素,扛上時素とも呼ばれる。
In addition, the term “on-line detection time” in the railroad field means that when a train enters a certain track circuit, the detection state of the presence / absence of the train switches from the non-on-line state (no train) to the on-line state (with train). It means an allowable delay time, and is determined with a goal of 500 ms or less for most routes. This on-line detection time is also referred to as train entry time or fall time element.
In addition, the term “non-existing line detection time” in the railway field is used when the train presence / absence detection state is switched from the non-existing state to the existing line state in order to confirm the advance of the train when a train leaves a certain track circuit. Means waiting time. In order to reliably detect that the train has advanced on the track circuit, it is monitored that the state where the train has advanced for a certain period of time. This certain period of time is referred to as a non-existing line detection time. This out-of-track detection time is longer than the on-line detection time, and is determined to be about 2000 ms for most routes, and is also referred to as train advance time, operating time element, and uphill time element.

そして、列車検知装置では、或る軌道回路に列車が進入したときには速やかに少なくとも在線検知時間以内に列車有無の検知状態が非在線状態から在線状態に切り替えられる一方、或る軌道回路から列車が進出したときには、そのことが検出されても直ちに列車有無の検知状態が在線状態から非在線状態に切り替えられるのでなく、非在線検知時間以上に亘って列車進出状態の継続することが監視され、それを確認できた後に列車有無の検知状態が在線状態から非在線状態に切り替えられる。   In the train detection device, when a train enters a certain track circuit, the train presence / absence detection state is quickly switched from the non-present state to the present state within at least the presence line detection time, while the train advances from a certain track circuit. When it is detected, the train presence / absence detection state is not immediately switched from the on-line state to the non-on-line state, but the train advancing state is monitored over the non-on-line detection time. After confirming, the detection state of the presence / absence of the train is switched from the on-line state to the non-on-line state.

複数の軌道回路に対して時分割送信と並列受信とを行う列車検知装置が知られている(例えば特許文献1,非特許文献1参照)。この列車検知装置は、列車検知用信号を複数の軌道回路に時分割で且つサイクリックに送出するとともに、その列車検知用信号を各軌道回路から並列に受信し、その列車検知用信号に係る送信の有無と受信の有無とに基づいて各軌道回路上の列車の有無と各軌道回路への妨害波の有無とを検知する装置であって、列車検知用信号として装置自体が生成する、商用電力の商用周波数より高い周波数の発振信号を用い、その時分割送信を少なくとも同一周波数については同時送信の全く無い完全な時分割で行う、というものである。その列車検知用信号の送信パターンでは、スロット時間も送信実行時間も送信停止時間も在線検知時間より短くなっている。
ようになっている。
A train detection apparatus that performs time-division transmission and parallel reception on a plurality of track circuits is known (see, for example, Patent Document 1 and Non-Patent Document 1). The train detection device sends train detection signals to a plurality of track circuits in a time-sharing and cyclic manner, and receives the train detection signals from each track circuit in parallel, and transmits the train detection signals. Is a device that detects the presence or absence of a train on each track circuit and the presence or absence of an interfering wave on each track circuit based on the presence or absence and reception of commercial power generated by the device itself as a train detection signal An oscillation signal having a frequency higher than the commercial frequency is used, and the time division transmission is performed in a complete time division with no simultaneous transmission at least for the same frequency. In the train detection signal transmission pattern, the slot time, transmission execution time, and transmission stop time are shorter than the presence line detection time.
It is like that.

以下、そのような従来の列車検知装置の具体的構成について、本願発明の説明に役立つ部分を図面を引用して説明する。
図4は、(a)が列車検知装置10の回路構成を示すブロック図、(b)が制御部20による列車検知用信号の送信パターンの一部を抜粋したタイムチャートである。
Hereinafter, with regard to a specific configuration of such a conventional train detection device, a portion useful for explaining the present invention will be described with reference to the drawings.
4A is a block diagram showing a circuit configuration of the train detection device 10, and FIG. 4B is a time chart excerpting a part of a transmission pattern of a train detection signal by the control unit 20.

この列車検知装置10は(図4(a)参照)、列車検知用信号を時分割でサイクリックに送出する送信手段として、周波数f1の発振信号を生成する発信器11と、周波数f2の発振信号を生成する発信器12と、それらの発振信号を入力して何れか一方を列車検知用信号の素として出力する切換器13と、その素信号を電力増幅して列車検知用信号にする電力増幅器15と、この列車検知用信号の送信先を軌道8の軌道回路1T〜12Tのうちから一つずつ順に選択して該当軌道回路にだけ列車検知用信号を送出する送信選択回路16とを具えている。   This train detection apparatus 10 (see FIG. 4A) includes a transmitter 11 for generating an oscillation signal having a frequency f1 and an oscillation signal having a frequency f2 as transmission means for cyclically transmitting a train detection signal in a time division manner. A transmitter 12 that generates a train detection signal, a switching device 13 that inputs those oscillation signals and outputs one of them as a prime of a train detection signal, and a power amplifier that amplifies the prime signal to a train detection signal. 15 and a transmission selection circuit 16 for selecting the transmission destination of the train detection signal one by one from the track circuits 1T to 12T of the track 8 and sending the train detection signal only to the track circuit. Yes.

また、列車検知装置10は、各軌道回路1T〜12Tから列車検知用信号を並列に受信する受信手段として、軌道回路1T〜12Tと同数の十二個ほど設けられており軌道回路と個別に接続されていてそれぞれ該当する軌道回路から列車検知用信号を受信して受信レベルを計測する多数の受信回路21と、それらの受信信号から何れか一つを選択する受信選択回路22と、その選択されたアナログ受信信号をデジタルの受信信号A(より具体的には受信信号Aの受信レベルのデジタル値)に変換するA/D変換回路23と、列車検知用信号に係る送信の有無と受信の有無とに基づいて各軌道回路1T〜12T上の列車の有無を判別して列車有無検知信号Bを生成するとともに列車検知用信号に係る送信の有無と受信の有無とに基づいて各軌道回路1T〜12Tへの妨害波の有無を判別して妨害波有無検知信号Cを生成する判定部24と、列車有無検知信号Bと妨害波有無検知信号Cとに応じて各軌道回路1T〜12Tの軌道リレーを駆動したりモニタ表示情報を生成する出力部25とを具えている。   The train detection device 10 is provided as a receiving means for receiving train detection signals from the track circuits 1T to 12T in parallel, and is provided with about the same number as the track circuits 1T to 12T. A plurality of receiving circuits 21 for receiving a train detection signal from the corresponding track circuit and measuring the reception level, and a receiving selection circuit 22 for selecting one of the received signals, A / D conversion circuit 23 that converts the received analog reception signal into a digital reception signal A (more specifically, a digital value of the reception level of reception signal A), and the presence / absence of transmission and reception related to the train detection signal And the presence / absence of a train on each of the track circuits 1T to 12T is determined to generate the train presence / absence detection signal B, and each track is determined based on the presence / absence of transmission and reception of the train detection signal. Each track circuit 1T to 12T is determined according to the determination unit 24 that determines the presence or absence of an interference wave on the roads 1T to 12T and generates the interference wave presence / absence detection signal C, and the train presence / absence detection signal B and the interference wave presence / absence detection signal C. And an output unit 25 for driving the track relay and generating monitor display information.

さらに、列車検知装置10は、上述した回路の動作制御を司る制御部20も具えており、その制御に従って列車検知用信号の送信と受信とが同期して行われるようになっている。具体的には、周波数f1,f2は互いに異なるが何れも商用電力の50Hzや60Hzより高い500Hz〜700Hzの何れかになっており、切換器13によるその切替はサイクル時間D毎に行われる(図4(b)参照)。サイクル時間Dは任意設定のアイドリング時間を無視すると軌道回路1T〜12Tの個数に対応して十二個のスロット時間Eに区分されており、送信選択回路16によって列車検知用信号の送出先の軌道回路がスロット時間E毎に順次変更されるので、送信停止時間Gはスロット時間Eの11倍になっており、送信実行時間Hはスロット時間Eと同じ時間になっている。   Furthermore, the train detection apparatus 10 also includes a control unit 20 that controls the operation of the circuit described above, and transmission and reception of train detection signals are performed in synchronization according to the control. Specifically, although the frequencies f1 and f2 are different from each other, they are either commercial power 50 Hz or 500 Hz to 700 Hz which is higher than 60 Hz, and the switching by the switch 13 is performed every cycle time D (FIG. 4 (b)). If the idling time set arbitrarily is ignored, the cycle time D is divided into twelve slot times E corresponding to the number of track circuits 1T to 12T. Since the circuit is sequentially changed every slot time E, the transmission stop time G is 11 times the slot time E, and the transmission execution time H is the same as the slot time E.

スロット時間Eは、周波数f1,f2の同時送信を行う場合は70ms程度である(非特許文献1参照)。そうすると、サイクル時間Dは70×12=840ms、送信停止時間Gは70×11=770ms、送信実行時間Hは70×1=70msとなり、送信停止時間は500ms程度の在線検知時間より長くなり在線検知時間内で列車検知ができない。そこで、実際には軌道回路1T〜12Tを1T〜6Tと6T〜12Tの2グループに分け、それぞれの軌道回路に対して、周波数f1,f2を同時に送信を行うことにより、送信停止時間を35×11=385msとして在線検知時間より短くしている(非特許文献1参照)。   The slot time E is about 70 ms when performing simultaneous transmission of the frequencies f1 and f2 (see Non-Patent Document 1). Then, the cycle time D is 70 × 12 = 840 ms, the transmission stop time G is 70 × 11 = 770 ms, the transmission execution time H is 70 × 1 = 70 ms, and the transmission stop time is longer than the existing line detection time of about 500 ms. The train cannot be detected in time. Therefore, in practice, the track circuits 1T to 12T are divided into two groups of 1T to 6T and 6T to 12T, and the frequencies f1 and f2 are simultaneously transmitted to each track circuit, thereby reducing the transmission stop time to 35 ×. 11 = 385 ms, which is shorter than the existing line detection time (see Non-Patent Document 1).

一方、それぞれの受信回路21による列車検知用信号の受信は、随時行われており、受信選択回路22による受信信号の選択とA/D変換回路23による受信信号Aの出力と判定部24による列車有無検知信号B及び妨害波有無検知信号Cの生成は、スロット時間E毎に繰り返されるが、各スロット時間Eにおいて軌道回路1T〜12Tのそれぞれに対応して12回ずつ行われる。そして、列車検知用信号を送信中の軌道回路については、受信信号Aの信号受信状態が「信号あり(A:1)」のときには列車有無検知信号Bが「列車なし(B:0)」にされ、受信信号Aの信号受信状態が「信号なし(A:0)」のときには列車有無検知信号Bが「列車あり(B:1)」にされる。ただし、列車有無検知信号Bを「列車あり」から「列車なし」へ遷移させるのは、非在線検知時間以上の継続を確認してから、行われる。   On the other hand, reception of train detection signals by the respective reception circuits 21 is performed at any time. Selection of the reception signal by the reception selection circuit 22, output of the reception signal A by the A / D conversion circuit 23, and train by the determination unit 24 The generation of the presence / absence detection signal B and the interference wave presence / absence detection signal C is repeated every slot time E, but is performed 12 times in each slot time E corresponding to each of the track circuits 1T to 12T. For the track circuit that is transmitting the train detection signal, when the signal reception state of the reception signal A is “signal present (A: 1)”, the train presence / absence detection signal B is “no train (B: 0)”. When the signal reception state of the reception signal A is “no signal (A: 0)”, the train presence / absence detection signal B is set to “train present (B: 1)”. However, the train presence / absence detection signal B is changed from “with train” to “without train” after confirming the continuation of the non-existing line detection time or more.

これに対し、列車検知用信号の送信を停止中の軌道回路については、受信信号Aの信号受信状態が「信号あり(A:1)」のときには妨害波有無検知信号Cが「妨害波あり(C:1)」にされ、受信信号Aの信号受信状態が「信号なし(A:0)」のときには妨害波有無検知信号Cが「妨害波なし(C:0)」にされる。
このように列車検知用信号に係る送信の有無と受信の有無とに基づいて各軌道回路上の列車の有無ばかりか各軌道回路への妨害波の有無までも検知されるようにしたことにより、列車検知装置10にあっては、雑音等の妨害による錯誤動作が回避され、列車の有無が的確に検知されるので、保安度・安全性が向上している。
On the other hand, for the track circuit in which the transmission of the train detection signal is stopped, when the signal reception state of the reception signal A is “signal present (A: 1)”, the jamming wave presence / absence detection signal C is “having a jamming wave ( C: 1) ”, and when the signal reception state of the received signal A is“ no signal (A: 0) ”, the interference wave presence / absence detection signal C is set to“ no interference wave (C: 0) ”.
In this way, based on the presence or absence of transmission related to the signal for train detection and the presence or absence of reception, not only the presence or absence of a train on each track circuit, but also the presence or absence of interfering waves to each track circuit, In the train detection device 10, an error operation due to interference such as noise is avoided, and the presence or absence of a train is accurately detected, so the degree of security and safety are improved.

上述した列車検知装置10の他、列車検知用信号として商用電力AC100Vを50Hz又は60Hzの商用周波数f3のまま用いる装置も、従来より使用されており、これは商用軌道回路や,商用周波軌道回路,商用周波数軌道回路と呼ばれている(例えば非特許文献2,3参照)。この商用周波数軌道回路では、該当する軌道回路への送信側に軌道トランスが設けられ、その軌道回路の受信側に軌道リレーが設けられ、列車検知用信号の送受信が常に継続して行われるようになっている。なお、使用電力調整や過電流防止のため、送信側には適宜な軌道抵抗子(限流子,防護用の抵抗子)の付設されることが多い。   In addition to the train detection device 10 described above, a device that uses commercial power AC100V as a train detection signal with a commercial frequency f3 of 50 Hz or 60 Hz has been conventionally used, which includes a commercial track circuit, a commercial frequency track circuit, It is called a commercial frequency orbit circuit (for example, see Non-Patent Documents 2 and 3). In this commercial frequency track circuit, a track transformer is provided on the transmission side to the corresponding track circuit, a track relay is provided on the reception side of the track circuit, and transmission and reception of train detection signals are continuously performed. It has become. In order to adjust power consumption and prevent overcurrent, an appropriate orbital resistor (current limiter, protective resistor) is often attached to the transmission side.

特開平6−127387号公報(特許第3340769号)JP-A-6-127387 (Patent No. 3340769) 社団法人日本鉄道電気技術協会発行「鉄道と電気技術」平成10年2月号、P32〜37「列車検知装置(MTD形)の実用化」、著者:播磨義憲・内藤高通・北村信男・三枝秀隆・金子隆Published by Japan Railway Electrical Engineering Association, “Railway and Electrical Technology” February, 1998 issue, P32-37 “Practical use of train detection device (MTD type)”, author: Yoshinori Harima, Takamichi Naito, Nobuo Kitamura, Hidetaka Saegusa・ Kaneko Takashi 板倉栄治著「軌道回路」社団法人信号保安協出版、昭和46年10月30日、p42〜44「3.1商用周波の交流軌道回路」、p55「交流軌道リレー」Eiji Itakura “Track Circuit”, Signal Safety Association Publishing, October 30, 1971, p42-44 “3.1 Commercial Frequency AC Track Circuit”, p55 “AC Track Relay” 「軌道回路(改訂版)」日本鉄道電気技術協会出版、平成14年4月10日、P21〜23「4.3商用周波数軌道回路」、p60〜68「6.1交流軌道リレー」“Track Circuit (Revised)” published by Japan Railway Electrical Engineering Association, April 10, 2002, P21-23 “4.3 Commercial Frequency Track Circuit”, p60-68 “6.1 AC Track Relay”

軌道回路上の列車を検知する上述の従来装置では、時分割送信方式・並列受信方式の場合、各軌道回路上の列車の有無を検知できるうえ、各軌道回路への妨害波の有無を検知することができて雑音等の妨害による錯誤動作が回避されるので、保安度・安全性が高い、という利点がある一方、商用周波数より高い周波数の列車検知用信号を生成するために電力増幅器が組み込まれており、この電力増幅器には、軌道回路に送信する電力を大きくすることにより列車検知性能を高めるために高電力なものが必要で、かつ信号歪を小さくしなければならないA級動作的な信号処理が課されることから、電力増幅器に大形かつ高性能なものが採用されるので、電力増幅器が高価になるのを避けられない。   In the above-described conventional device for detecting a train on a track circuit, in the case of the time division transmission method and the parallel reception method, it is possible to detect the presence or absence of a train on each track circuit and to detect the presence or absence of an interference wave on each track circuit. It is possible to avoid mistakes caused by interference such as noise, so there is an advantage that safety and safety are high, while a power amplifier is incorporated to generate a train detection signal with a frequency higher than the commercial frequency. This power amplifier requires a high power to increase train detection performance by increasing the power transmitted to the track circuit, and is a class A operation that must reduce signal distortion. Since signal processing is imposed, a large-sized and high-performance power amplifier is adopted, so that it is inevitable that the power amplifier becomes expensive.

これに対し、商用周波数軌道回路の場合は、装置構成が簡素で装置単価はさほど高くないが、軌道回路それぞれに軌道トランスを設けるので軌道トランスが多数必要なため合計では設備費が嵩むうえ、列車検知用信号を常時送信し続けるため消費電力が大きくて運転費が嵩むばかりか各軌道回路への妨害波の有無を検出することができない。
そこで、列車検知性能に加えて妨害波検知性能も高い軌道回路方式の列車検知装置を低廉にするべく、電力増幅器より単価の安い軌道トランスで列車検知用信号を生成するように時分割送信方式・並列受信方式の列車検知装置を改良することが考えられる。
On the other hand, in the case of a commercial frequency track circuit, the device configuration is simple and the unit price is not so high. However, since a track transformer is provided for each track circuit, a large number of track transformers are required, and the total equipment cost increases. Since the detection signal is continuously transmitted, the power consumption is large and the operation cost increases, and it is impossible to detect the presence or absence of an interference wave in each track circuit.
Therefore, in order to reduce the cost of the track detection system with a track circuit system that has high interference wave detection performance in addition to train detection performance, a time-division transmission system It is conceivable to improve the parallel reception type train detection device.

図5は、そのような改良案のうち上述した従来の列車検知装置を組み合わせた直截的な構成例を示し、(a)が列車検知装置30の回路ブロック図、(b)が制御部32による列車検知用信号の送信パターンのタイムチャートである。
この列車検知装置30が上述した従来の列車検知装置10と相違するのは(図5(a)参照)、発信器11,12と切換器13と送信レベル設定器14と電力増幅器15とに代えて軌道トランス31が導入された点と、送信選択回路16と軌道回路4T〜12Tとの接続が解除された点と、受信回路21が三個に減らされた点と、それらに伴って制御部20が制御部32になった点である。
FIG. 5 shows an example of a straightforward configuration combining the above-described conventional train detection device among such improvements, (a) is a circuit block diagram of the train detection device 30, and (b) is a control unit 32. It is a time chart of the transmission pattern of the signal for train detection.
This train detection device 30 differs from the conventional train detection device 10 described above (see FIG. 5A) in place of the transmitters 11 and 12, the switch 13, the transmission level setting device 14, and the power amplifier 15. The point where the track transformer 31 is introduced, the point where the connection between the transmission selection circuit 16 and the track circuits 4T to 12T is released, the point where the number of the receiving circuits 21 is reduced to three, and the control unit accordingly 20 is the control unit 32.

軌道トランス31は、商用周波数軌道回路のものと同じく、列車検知用信号として商用電力AC100Vを商用周波数f3のまま用いるものであり、図示は割愛したが、必要に応じて適宜な軌道抵抗子が出力側に接続される。
送信選択回路16は、列車検知用信号の送信先を軌道8の軌道回路1T〜3Tから一つずつ順に選択して該当軌道回路にだけ列車検知用信号を送出するようになっている。
受信回路21も、それに対応して、軌道回路1T〜3Tとだけ個別接続されている。
As with the commercial frequency track circuit, the track transformer 31 uses the commercial power AC100V as the train detection signal as it is at the commercial frequency f3. Although not shown, an appropriate track resistor is output as necessary. Connected to the side.
The transmission selection circuit 16 selects the transmission destination of the train detection signal one by one from the track circuits 1T to 3T of the track 8 one by one, and sends the train detection signal only to the corresponding track circuit.
Correspondingly, the receiving circuit 21 is individually connected only to the track circuits 1T to 3T.

制御部32は、外された切換器13や電力増幅器15等の制御が不要になった他、新たに設けられた軌道トランス31も制御が不要なので、それらを除いた部分16,22〜24を制御部20と同様に制御するが、列車検知用信号の送信パターンが軌道回路1T〜3Tの分だけに減縮されている(図5(b)参照)。その原因は、列車検知用信号の周波数が500Hz〜700Hzの周波数f1,f2から50Hzか60Hzの商用周波数f3に下がったことにある。詳述すると、実用的な構成の受信回路21による列車検知用信号の受信レベル検出には数周期以上の時間が必要であり、その時間の短縮限界が140ms程度であるため、スロット時間Eを140msとすると、在線検知時間よりサイクル時間Dの短い完全時分割方式の下で在線検知時間の500ms内に確保できるスロット数は、式[500/140=3.5・・]より、三個までに限定されるのである。   Since the control unit 32 does not need to control the removed switch 13 and the power amplifier 15 and the like, and the newly provided track transformer 31 does not need to be controlled, the parts 16 and 22 to 24 except for those are excluded. Although it controls similarly to the control part 20, the transmission pattern of the signal for train detection is reduced only by the part of track circuit 1T-3T (refer FIG.5 (b)). The cause is that the frequency of the train detection signal has decreased from the frequencies f1, f2 of 500 Hz to 700 Hz to the commercial frequency f3 of 50 Hz or 60 Hz. More specifically, the reception level detection of the train detection signal by the reception circuit 21 having a practical configuration requires a time of several cycles or more, and the time reduction limit is about 140 ms. Therefore, the slot time E is set to 140 ms. Then, the number of slots that can be secured within 500 ms of the on-line detection time under the complete time division method in which the cycle time D is shorter than the on-line detection time is up to three from the equation [500/140 = 3.5 ··]. It is limited.

しかしながら、一台の列車検知装置30で監視できる軌道回路が三個しかないのでは、一台の列車検知装置10で監視できる十二個の軌道回路を監視するのに、列車検知装置30が四台も必要になる。このため、電力増幅器15等を軌道トランス31に代えて装置単価を下げた利点が損なわれてしまう。それどころか、合計では設備費が却って嵩んでしまう虞すらある。
そこで、列車検知性能に加えて妨害波検知性能も高い低廉な軌道回路方式の列車検知装置を実現するには、列車検知用信号の周波数が商用周波数であっても多数の軌道回路を監視できるように時分割送信方式・並列受信方式の列車検知装置を改良すること、それも列車検知性能や妨害波検知性能を損なわないで改良することが、技術的な課題となる。
However, if there are only three track circuits that can be monitored by one train detection device 30, four train detection devices 30 are used to monitor twelve track circuits that can be monitored by one train detection device 10. A stand is also required. For this reason, the advantage of replacing the power amplifier 15 and the like with the orbital transformer 31 and reducing the unit price of the apparatus is impaired. On the contrary, there is even a risk that the total equipment cost will be rather high.
Therefore, in order to realize a low-priced track circuit type train detection device that has high interference wave detection performance in addition to train detection performance, a large number of track circuits can be monitored even if the frequency of the train detection signal is a commercial frequency. In addition, it is a technical problem to improve the train detection device of the time division transmission method and the parallel reception method, and to improve the train detection performance and the interference wave detection performance without impairing the train detection performance.

本発明の列車検知装置は、このような課題を解決するために創案されたものであり、列車検知用の信号として、例えば電灯や動力用として電力会社などから供給される商用電力を商用周波数のまま使用することにより、装置自体に列車検知用信号を生成・増幅する機能及びそのハードウェアを持たないものとする。この結果、装置構成が簡略化され装置価格が低廉になる。一方、商用周波などの低い周波数の信号を複数軌道回路分、計測し判定処理するためには時間がかかる。そこでそれぞれの軌道回路に対する送信実行時間を長くし、また複数の軌道回路に同時期に同一の信号を送信することを許容することにして、一定の時間内に複数の軌道回路に対する受信処理を可能にすることが、基本的な解決策となる。   The train detection device of the present invention has been developed to solve such problems. For example, commercial power supplied from an electric power company or the like for electric lights or power is used as a signal for train detection. By using the device as it is, the device itself does not have a function to generate and amplify a train detection signal and its hardware. As a result, the apparatus configuration is simplified and the apparatus price is reduced. On the other hand, it takes time to measure and determine a low frequency signal such as a commercial frequency for a plurality of track circuits. Therefore, the transmission execution time for each track circuit is lengthened, and it is possible to transmit the same signal to multiple track circuits at the same time, thereby enabling reception processing for multiple track circuits within a certain time. Is the basic solution.

もっとも、送信パターンが完全な時分割送信でなくなった場合、妨害波検知性能の低下が危惧されるが、部分的には並列な送信を含んだ時分割送信であっても、送信パターンが多様化されていれば、妨害波検知性能が十分に確保されることが判明した。しかも、そのような好ましい送信パターンであって、従来の列車検知装置で監視可能な軌道回路の個数より多くの軌道回路を監視することのできる送信パターンを、発明者が見いだしたのである。本発明は、このような知見に基づいて具現化されたものであり、以下のようになっている。   However, if the transmission pattern is not perfect time division transmission, there is a concern that the interference detection performance will be degraded, but the transmission pattern will be diversified even in part with time division transmission including parallel transmission. If this is the case, it has been found that the interference wave detection performance is sufficiently secured. Moreover, the inventor has found such a preferable transmission pattern that can monitor more track circuits than the number of track circuits that can be monitored by a conventional train detection device. The present invention has been embodied based on such knowledge and is as follows.

すなわち、本発明の列車検知装置は(解決手段1)、列車検知用信号を複数の軌道回路に時分割で且つサイクリックに送出するとともに、前記列車検知用信号を各軌道回路から並列に受信し、前記列車検知用信号に係る送信の有無と受信の有無とに基づいて各軌道回路上の列車の有無と各軌道回路への妨害波の有無とを検知する列車検知装置において、前記列車検知用信号として商用電力が商用周波数のまま用いられ、前記列車検知用信号の送信手段が、前記軌道回路の総てではないが幾つかには並列に送信を実行し且つ前記軌道回路それぞれについて送信停止時間は在線検知時間より短くし而も各軌道回路毎のサイクル時間は非在線検知時間より短くするものであり、前記非在線検知時間スパンで送信パターンが異なる、ことを特徴とする。   That is, the train detection device of the present invention (Solution 1) sends a train detection signal to a plurality of track circuits in a time-sharing and cyclic manner, and receives the train detection signal from each track circuit in parallel. In the train detection device for detecting the presence / absence of a train on each track circuit and the presence / absence of an interfering wave on each track circuit based on the presence / absence of transmission and reception according to the train detection signal, Commercial power is used as the signal at the commercial frequency, and the transmission means for the train detection signal performs transmission in parallel for some but not all of the track circuits and the transmission stop time for each track circuit Is shorter than the on-line detection time, and the cycle time for each track circuit is shorter than the non-on-line detection time, and the transmission pattern is different in the non-on-line detection time span.

また、本発明の列車検知装置は(解決手段2)、上記解決手段1の列車検知装置であって、前記軌道回路をグループ分けしたグループ毎に前記列車検知用信号の送信パターンが異なり、各グループ内では同じ送信パターンが時間を異ならせて用いられる、ことを特徴とする。   Moreover, the train detection device of the present invention is (the solution means 2), the train detection device of the solution means 1, wherein the train detection signal transmission pattern is different for each group in which the track circuits are grouped, and each group The same transmission pattern is used at different times.

さらに、本発明の列車検知装置は(解決手段3)、上記解決手段2の列車検知装置であって、前記グループのうち何れか二つで送信パターンが異なっていることを特徴とする。   Furthermore, the train detection apparatus of the present invention (Solution means 3) is the train detection apparatus of the above-mentioned solution means 2, wherein any two of the groups have different transmission patterns.

また、本発明の列車検知装置は(解決手段4)、上記解決手段1〜3の列車検知装置であって、前記全体サイクル時間における送信実行の割合が半分以下になっていることを特徴とする。   Moreover, the train detection apparatus of the present invention is (the solution means 4), which is the train detection apparatus of the above solution means 1 to 3, wherein the transmission execution rate in the entire cycle time is less than half. .

このような本発明の列車検知装置にあっては(解決手段1)、列車検知に加えて妨害波検知も可能な軌道回路方式と時分割送信方式と並列受信方式とを踏襲したうえで、商用電力が商用周波数のまま列車検知用信号として用いられるようにしたことにより、高価な電力増幅器が省けるので、装置が低廉になる。
また、列車検知用信号の送信に際して時分割送信は維持しながらも部分的には並列送信が行われるようにしたことにより、在線検知時間以内に列車検知用信号を送信される軌道回路の個数が完全時分割時の[在線検知時間/スロット時間]より増えるので、十分に多数の軌道回路を一台で監視することができる。
In such a train detection apparatus of the present invention (Solution 1), after following the track circuit method, the time-division transmission method, and the parallel reception method capable of detecting a disturbance wave in addition to the train detection, Since the electric power is used as a signal for detecting a train with a commercial frequency, an expensive power amplifier can be omitted, so that the apparatus becomes inexpensive.
In addition, the time division transmission is maintained while transmitting the train detection signal, but the parallel transmission is partially performed, so that the number of track circuits to which the train detection signal is transmitted within the on-line detection time is reduced. Since it is greater than the [on-line detection time / slot time] at the complete time division, a sufficiently large number of track circuits can be monitored by one unit.

さらに、列車検知用信号の送信に際し軌道回路それぞれについて送信停止時間が在線検知時間より短くなっているので、列車検知性能が高く維持されている。
しかも、列車検知用信号の送信に際し送信停止時間が短くてもサイクル時間は在線検知時間より長くなっていることから、或るスロット時間に全軌道回路へ送出されたパターンと同じパターンが再び発現する次のスロット時間までの期間は従来と同等かそれより長いため、送信パターンが多様化されるので、特に送信停止の分散状態が多様化されるので、妨害波検知性能も高く維持される。
Furthermore, since the transmission stop time is shorter than the on-line detection time for each track circuit when the train detection signal is transmitted, the train detection performance is maintained high.
Moreover, since the cycle time is longer than the on-line detection time even when the transmission stop time is short when transmitting the train detection signal, the same pattern as the pattern sent to all track circuits at a certain slot time reappears. Since the period until the next slot time is equal to or longer than that of the prior art, the transmission pattern is diversified. In particular, since the dispersion state of the transmission stop is diversified, the interference wave detection performance is also maintained high.

これにより、列車検知用信号の周波数が商用周波数であっても多数の軌道回路を監視できるように時分割送信方式・並列受信方式の列車検知装置を改良することが、列車検知性能や妨害波検知性能を損なわないで、行われる。
また、列車検知用信号の送信に際して全体サイクル時間についてはそれを在線検知時間ばかりか非在線検知時間よりも長くしたことにより、送信パターンにおける送信停止の分散状態の多様化が高まることから、妨害波検知性能が高く維持される確度が向上する。
したがって、この発明によれば、列車検知性能に加えて妨害波検知性能も高い低廉な軌道回路方式の列車検知装置を実現することができる。
As a result, it is possible to improve train detection performance and interference wave detection by improving time-division transmission / parallel reception system train detection devices so that many track circuits can be monitored even if the frequency of the train detection signal is a commercial frequency. Performed without compromising performance.
In addition, since the total cycle time for transmission of the train detection signal is made longer than the on-line detection time as well as the on-line detection time, the diversification of the dispersion state of the transmission stop in the transmission pattern will increase, so the interference wave The accuracy with which the detection performance is maintained high is improved.
Therefore, according to the present invention, it is possible to realize a low-priced track circuit type train detection device that has high interference wave detection performance in addition to train detection performance.

さらに、本発明の列車検知装置にあっては(解決手段2)、軌道回路をグループ分けしたうえで、グループ毎に列車検知用信号の送信パターンを異ならせるとともに、各グループ内では時間を異ならせて同じ送信パターンを用いるようにしたことにより、比較的簡単なグループ毎パターンから多様で複雑な全体の送信パターンができあがるので、妨害波検知性能が高くて好ましい送信パターンを案出ことが容易になり、ひいては列車検知装置の具体化が容易になる。   Furthermore, in the train detection device of the present invention (Solution means 2), the track circuits are divided into groups, the transmission pattern of the train detection signal is made different for each group, and the time is made different within each group. By using the same transmission pattern, a diverse and complex overall transmission pattern can be created from a relatively simple group-by-group pattern, which makes it easy to devise a favorable transmission pattern with high interference wave detection performance. As a result, the train detection device can be easily realized.

また、本発明の列車検知装置にあっては(解決手段3)、グループによってはサイクル時間まで異なるようにしたことから、全軌道回路に係る全体サイクル時間は、各グループに係るサイクル時間の最小公倍数になるので、非在線検知時間より長くなる確率が高い。
このように短めのグループ毎パターンを並べて全体の送信パターンのサイクル時間が伸びるようにしたことにより、全体サイクル時間が格段に長くなって、妨害波検知性能が十分に高く保持されるので、所望の送信パターンの案出ひいては列車検知装置の具体化が一層容易になる。
In the train detection device of the present invention (solution 3), since the cycle time differs depending on the group, the total cycle time related to all track circuits is the least common multiple of the cycle time related to each group. Therefore, there is a high probability that it will be longer than the absence detection time.
By arranging a shorter pattern for each group and extending the cycle time of the entire transmission pattern in this way, the total cycle time is significantly increased and the interference wave detection performance is maintained sufficiently high. As a result, the train detection device can be easily realized.

また、本発明の列車検知装置にあっては(解決手段4)、送信パターンに関して全体サイクル時間における送信実行の割合が半分以下なので、列車検知用信号の瞬時の送信電力が商用周波数軌道回路のそれと同じであれば時間平均の消費電力は商用周波数軌道回路のそれの半分以下になり、消費電力を商用周波数軌道回路のそれと同等以下に保つのであれば、列車検知用信号の瞬時の送信電力を二倍まで高めることが許容される。
そのため、本発明の列車検知装置を設置することにより、商用周波数軌道回路の適用可能な軌道については運転費を半減させることができる。商用周波数軌道回路をそのまま適用するのが難しい軌道であっても、列車検知用信号の瞬時の送信電力を高めればS/N比が改善されるような軌道については、商用周波数軌道回路と同等かそれ以下の運転費で、各軌道回路上の列車の有無と各軌道回路への妨害波の有無を検出することができる。
In the train detection device of the present invention (solution 4), since the transmission execution rate in the entire cycle time with respect to the transmission pattern is less than half, the instantaneous transmission power of the train detection signal is the same as that of the commercial frequency track circuit. If it is the same, the time average power consumption will be less than half that of the commercial frequency track circuit, and if the power consumption is kept equal to or less than that of the commercial frequency track circuit, the instantaneous transmission power of the train detection signal will be It is permissible to increase up to twice.
Therefore, by installing the train detection device of the present invention, it is possible to halve the operating cost for a track to which a commercial frequency track circuit can be applied. Even if it is difficult to apply the commercial frequency track circuit as it is, the track whose S / N ratio is improved by increasing the instantaneous transmission power of the train detection signal is equivalent to the commercial frequency track circuit. With less operating costs, it is possible to detect the presence or absence of a train on each track circuit and the presence or absence of an interfering wave on each track circuit.

このような本発明の列車検知装置について、これを実施するための具体的な形態を、以下の実施例1により説明する。
図1〜3に示した実施例1は、上述した解決手段1〜5(出願当初の請求項1〜5)を総て具現化したものである。
なお、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
With respect to such a train detection apparatus of the present invention, a specific mode for carrying out this will be described in Example 1 below.
The first embodiment shown in FIGS. 1 to 3 embodies all the above-described solving means 1 to 5 (claims 1 to 5 at the beginning of the application).
In the drawings, the same reference numerals are given to the same components as those in the prior art, and therefore, repeated explanations are omitted. Hereinafter, the differences from the prior art will be mainly described.

本発明の列車検知装置の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、(a)が列車検知装置40のブロック構成図、(b)が制御部42による送信パターンの抜粋のタイムチャート、図2が総ての送信パターンのタイムチャートである。また、図3は、(a)が判定部24による判定論理の概要を示す表、(b)がその判定論理を詳細に示すフローチャートである。   A specific configuration of the train detection apparatus according to the first embodiment of the present invention will be described with reference to the drawings. 1A is a block diagram of the train detection device 40, FIG. 1B is a time chart of transmission pattern excerpts by the control unit 42, and FIG. 2 is a time chart of all transmission patterns. 3A is a table showing an outline of determination logic by the determination unit 24, and FIG. 3B is a flowchart showing the determination logic in detail.

この列車検知装置40が既述した改良案の列車検知装置30と相違するのは(図1(a)参照)、送信選択回路16が送信選択回路41になった点と、受信回路21が十六個に増えた点と、それらに伴って制御部32が制御部42になった点である。列車検知用信号の送信先の軌道回路1T〜16Tも十六個に増えている。
列車検知用信号を複数の軌道回路1T〜16Tに時分割で且つサイクリックに送出する送信部は、軌道トランス31と送信選択回路41とからなり、列車検知装置30や商用周波数軌道回路と同様、電力増幅器15が無く、列車検知用信号として商用電力AC100Vを商用周波数f3のまま用いるものとなっている。軌道抵抗子は必要に応じて軌道トランス31の出力ラインか送信選択回路41の各出力ラインに設けられる。
This train detection device 40 differs from the improved train detection device 30 described above (see FIG. 1A) in that the transmission selection circuit 16 becomes a transmission selection circuit 41 and the reception circuit 21 is sufficiently different. The number of points is increased to six, and the control unit 32 is changed to the control unit 42 in accordance with them. The number of track circuits 1T to 16T to which train detection signals are transmitted has increased to sixteen.
A transmission unit that cyclically transmits a train detection signal to a plurality of track circuits 1T to 16T in a time-sharing manner includes a track transformer 31 and a transmission selection circuit 41, and like the train detection device 30 and the commercial frequency track circuit, There is no power amplifier 15, and commercial power AC100V is used as a train detection signal with the commercial frequency f3. The track resistor is provided on the output line of the track transformer 31 or on each output line of the transmission selection circuit 41 as required.

送信選択回路41は、列車検知用信号の送信先を軌道8の軌道回路1T〜16Tから一個か十五以下の複数個を選択して該当軌道回路には同じ列車検知用信号を並列に送出するようになっている。このような送信選択回路41は、例えば並列動作可能な十六個のソリッドステートリレーで具現化されて、大電力の列車検知用信号を操作するが、スイッチング動作すれば足りるので、大きなコストアップは避けられる。
十六個に増えた受信回路21は軌道回路1T〜16Tと個別に接続されており、各軌道回路1T〜16Tから列車検知用信号を並列に受信する受信部21〜23は、受信信号Aとして各スロット時間E毎に受信回路21の受信レベルのデジタル値を十六個ずつ出力するようになっている。
The transmission selection circuit 41 selects one or a plurality of train detection signal destinations from the track circuits 1T to 16T of the track 8 and sends the same train detection signal to the track circuit in parallel. It is like that. Such a transmission selection circuit 41 is embodied by, for example, sixteen solid-state relays that can operate in parallel, and operates a high-power train detection signal. can avoid.
The reception circuits 21 increased to sixteen are individually connected to the track circuits 1T to 16T, and the reception units 21 to 23 that receive the train detection signals from the track circuits 1T to 16T in parallel are received signals A, respectively. For each slot time E, sixteen digital values of the reception level of the reception circuit 21 are output.

列車検知用信号に係る送信の有無と受信の有無とに基づいて各軌道回路1T〜16T上の列車の有無と各軌道回路1T〜16Tへの妨害波の有無とを検知する判定部24は、列車有無検知信号Bとして各スロット時間E毎に「列車なし(B:0)」か「列車あり(B:1)」の判定結果を送信実行の軌道回路数と同じ個数ずつ出力し、妨害波有無検知信号Cとして各スロット時間E毎に「妨害波あり(C:1)」か「妨害波なし(C:0)」の判定結果を送出停止の軌道回路数と同じ個数ずつ出力し、合わせて十六個ずつ出力する。
制御部42は、送信選択回路41と受信選択回路22とA/D変換回路23と判定部24とを制御して送信選択回路41の切替タイミングに受信選択回路22とA/D変換回路23と判定部24とを同期させる点で制御部20や制御部32と同じであるが、列車検知用信号の送信パターンが次の条件1〜6を総て満たすものに変更されている。
The determination unit 24 that detects the presence or absence of a train on each track circuit 1T to 16T and the presence or absence of an interference wave to each track circuit 1T to 16T based on the presence or absence of transmission related to the train detection signal, As a train presence / absence detection signal B, for each slot time E, the determination result of “no train (B: 0)” or “with train (B: 1)” is output by the same number as the number of track circuits for transmission execution, and the interference wave For each slot time E, the presence / absence detection signal C is output for each slot time E with the same number of judgment results as “no disturbing wave (C: 1)” or “no disturbing wave (C: 0)”. 16 pieces are output at a time.
The control unit 42 controls the transmission selection circuit 41, the reception selection circuit 22, the A / D conversion circuit 23, and the determination unit 24, and receives the reception selection circuit 22, the A / D conversion circuit 23, and the switching timing of the transmission selection circuit 41. Although it is the same as the control part 20 and the control part 32 at the point which synchronizes with the determination part 24, the transmission pattern of the signal for train detection is changed into what satisfies the following conditions 1-6.

すなわち、条件1:軌道回路1T〜16Tの幾つかには並列に送信を実行しても良いが軌道回路1T〜16Tの総てに同時送信は行わないこと、条件2:軌道回路1T〜16Tそれぞれについて送信停止時間Gを在線検知時間より短くすること、条件3:軌道回路をグループ分けしてグループ毎にパターンを異ならせること、条件4:各グループ内では時間を異ならせて同じ送信パターンを用いること、条件5:個別サイクル時間を非在線検知時間より短くすること、条件6:全体サイクル時間において送信実行時間の占める割合が半分以下になっていること、という条件を総て送信パターンが満たしている。   That is, condition 1: some of the track circuits 1T to 16T may be transmitted in parallel, but no simultaneous transmission is performed for all of the track circuits 1T to 16T, and condition 2: each of the track circuits 1T to 16T. The transmission stop time G is set to be shorter than the on-line detection time, condition 3: the track circuit is grouped to make the pattern different for each group, and condition 4: the same transmission pattern is used with different times in each group. Condition 5: The individual cycle time should be shorter than the non-existing line detection time, Condition 6: The ratio of the transmission execution time in the entire cycle time is less than half, and the transmission pattern satisfies all the conditions. Yes.

試行を重ねて探し当てた具体例を一つ、探索手順と共に述べる(図1(b),図2参照)。なお、図1(b)では送信実行を枠付きf3で示し送信停止を実線で示し、図2では、送信実行をハイの論理値で示し、送信停止をローの論理値で示し、一部の論理値にはスロット数を付記した。
先ず、軌道回路1T〜16Tを軌道回路1T〜4T,軌道回路5T〜8T,軌道回路9T〜12T,軌道回路13T〜16Tの四グループに分け、軌道回路1Tに対する送信パターンとして例えばH:1,G:2,H:1,G:2,H:2,G:2を選定する。
One specific example in which trials have been found will be described together with the search procedure (see FIGS. 1B and 2). In FIG. 1 (b), the transmission execution is indicated by a framed f3, the transmission stop is indicated by a solid line, and in FIG. 2, the transmission execution is indicated by a high logical value, and the transmission stop is indicated by a low logical value. The number of slots is added to the logical value.
First, the track circuits 1T to 16T are divided into four groups of track circuits 1T to 4T, track circuits 5T to 8T, track circuits 9T to 12T, track circuits 13T to 16T, and transmission patterns for the track circuit 1T are, for example, H: 1, G : 2, H: 1, G: 2, H: 2, G: 2.

ここで、「H:1」は送信実行時間Hがスロット時間Eの一倍であることを示し、「G:2」は送信停止時間Gがスロット時間Eの二倍であることを示している。
それから、その選定パターンをスロット時間Eだけずらした送信パターンを軌道回路2Tに対して割り当て、更にスロット時間Eだけずらした送信パターンを軌道回路3Tに対して割り当て、更にスロット時間Eだけずらした送信パターンを軌道回路4Tに対して割り当てる。
Here, “H: 1” indicates that the transmission execution time H is twice the slot time E, and “G: 2” indicates that the transmission stop time G is twice the slot time E. .
Then, a transmission pattern obtained by shifting the selected pattern by the slot time E is assigned to the track circuit 2T, a transmission pattern shifted by the slot time E is further assigned to the track circuit 3T, and a transmission pattern shifted by the slot time E is further assigned. Are assigned to the track circuit 4T.

スロット時間Eが既述した140msとすると、在線検知時間の500ms内に確保できるスロット数は既述したように三個までであり、そのうち一個は送信実行時間Hに割り当てなければならないので、送信停止時間Gはスロット時間Eの二倍以下に限定される。一方、消費電力低減の観点等からサイクル時間における送信停止時間Gの割合を半分超にすることが求められ、妨害波検知性能向上の観点から送信停止時間Gの割合を増やすことが求められるので、送信停止時間Gには一律にスロット時間Eの二倍を割り当てた。
このグループの個別サイクル時間Daは、140×10=1400msであり、非在線検知時間より短くなっている。
Assuming that the slot time E is 140 ms as described above, the number of slots that can be secured within the existing line detection time of 500 ms is three as described above, and one of them must be allocated to the transmission execution time H. The time G is limited to not more than twice the slot time E. On the other hand, since the ratio of the transmission stop time G in the cycle time is required to be more than half from the viewpoint of reducing power consumption, etc., and the ratio of the transmission stop time G is required to be increased from the viewpoint of improving the interference wave detection performance, The transmission stop time G is uniformly assigned twice the slot time E.
The individual cycle time Da of this group is 140 × 10 = 1400 ms, which is shorter than the absence detection time.

同様にして、軌道回路5Tに対する送信パターンとして例えばH:1,G:2,H:2,G:2,H:2,G:2を選定する。これは、頭尾を繋げて循環させる変形を考慮しても、上述した軌道回路1Tへの送信パターンと異なっている。
それから、それをスロット時間Eずつずらして軌道回路6T,7T,8Tに対して割り当てる。
このグループの個別サイクル時間Dbは140×11=1540msであり、これも非在線検知時間より短くなっている。
Similarly, for example, H: 1, G: 2, H: 2, G: 2, H: 2, G: 2 are selected as transmission patterns for the track circuit 5T. This is different from the transmission pattern to the track circuit 1T described above, even when the deformation of connecting the head and tail is circulated.
Then, it is shifted by the slot time E and assigned to the track circuits 6T, 7T, and 8T.
The individual cycle time Db of this group is 140 × 11 = 1540 ms, which is also shorter than the non-existing line detection time.

さらに、軌道回路9T〜12Tのグループには例えばH:1,G:2,H:2,G:2,H:3,G:2を割り振り、軌道回路13T〜16Tのグループには例えばH:2,G:2,H:1,G:2,H:3,G:2を割り振る。
これらのグループに係る個別サイクル時間Dc,Ddは140×14=1680msであり、これも非在線検知時間より短くなっている。
全体サイクル時間は、10,11,12の最小公倍数が660なので、140×660=92400msになると見込まれ、非在線検知時間より桁違いに長い。
Further, for example, H: 1, G: 2, H: 2, G: 2, H: 3, G: 2 are allocated to the group of track circuits 9T to 12T, and H: is assigned to the group of track circuits 13T to 16T, for example. 2, G: 2, H: 1, G: 2, H: 3, G: 2 are allocated.
The individual cycle times Dc and Dd related to these groups are 140 × 14 = 1680 ms, which is also shorter than the absence detection time.
Since the least common multiple of 10, 11, and 12 is 660, the total cycle time is expected to be 140 × 660 = 92400 ms, which is orders of magnitude longer than the non-existing line detection time.

なお、このような送信パターンでの時分割送信でも列車検知ばかりか妨害波検知まで行える判定部24を明確にしておく。判定部24は、各スロット時間E毎に軌道回路1T〜16T総てについて各軌道回路上の列車の有無の検知と各軌道回路への妨害波の有無の検知とを行うものであり、その際(図3(a)参照)、商用周波数f3の列車検知用信号を送信中の軌道回路については、受信信号Aの信号受信状態が「信号あり(A:1)」のときには列車有無検知信号Bを「列車なし(B:0)」にし、受信信号Aの信号受信状態が「信号なし(A:0)」のときには列車有無検知信号Bを「列車あり(B:1)」にする一方、列車検知用信号の送信を停止中の軌道回路については、受信信号Aの信号受信状態が「信号あり(A:1)」のときには妨害波有無検知信号Cを「妨害波あり(C:1)」にし、受信信号Aの信号受信状態が「信号なし(A:0)」のときには妨害波有無検知信号Cを「妨害波なし(C:0)」にするようになっている。   It should be noted that a determination unit 24 that can perform not only train detection but also jamming wave detection even in time division transmission with such a transmission pattern is clarified. The determination unit 24 detects the presence / absence of a train on each track circuit and the presence / absence of an interfering wave on each track circuit for each of the track circuits 1T to 16T at each slot time E. (See FIG. 3A.) For the track circuit that is transmitting the train detection signal at the commercial frequency f3, when the signal reception state of the reception signal A is “signal present (A: 1)”, the train presence / absence detection signal B Is set to “No train (B: 0)”, and when the signal reception state of the received signal A is “No signal (A: 0)”, the train presence / absence detection signal B is set to “With train (B: 1)”, For the track circuit in which transmission of the train detection signal is stopped, when the signal reception state of the reception signal A is “signal present (A: 1)”, the interference wave presence / absence detection signal C is set to “jamming wave present (C: 1)”. And the signal reception state of the received signal A is “no signal (A: 0)”. "No disturbance (C: 0)" the disturbance-detection signal C is adapted to the.

ただし、列車有無検知信号Bを「列車あり」から「列車なし」へ遷移させる際には列車進出の確認に非在線検知時間を掛ける必要があるため、例えば次のように具体化されている。すなわち(図3(b)参照)、受信信号Aと商用周波数f3送信状態とに応じて場合分けし(ステップS1,S2,S4)、「信号なし(A:0)」かつ「送信実行中」のときには列車有無検知信号Bを「列車あり(B:1)」にし(ステップS1,S2,S3)、「信号なし(A:0)」かつ「送信停止中」のときには妨害波有無検知信号Cを「妨害波なし(C:0)」にし(ステップS1,S2)、「信号あり(A:1)」かつ「送信停止中」のときには妨害波有無検知信号Cを「妨害波あり(C:1)」にするようになっている(ステップS1,S4,S9)。   However, when the train presence / absence detection signal B is transitioned from “with train” to “without train”, it is necessary to take a non-existing line detection time for confirmation of train advancement. That is, (see FIG. 3B), the case is classified according to the reception state of the received signal A and the commercial frequency f3 (steps S1, S2, S4), “no signal (A: 0)” and “during transmission”. In the case of, the train presence / absence detection signal B is set to “with train (B: 1)” (steps S1, S2, S3), and when “no signal (A: 0)” and “transmission stopped”, the interference wave presence / absence detection signal C Is set to “no interference wave (C: 0)” (steps S1 and S2). When “signal present (A: 1)” and “transmission stopped”, the interference wave presence / absence detection signal C is set to “interference wave presence (C: 1) "(steps S1, S4, S9).

また、受信信号Aと商用周波数f3送信状態とが「信号あり(A:1)」かつ「送信実行中」のときには更に直前の状態で場合分けし(ステップS1,S4,S5)、直前の状態が在線であったときには列車進出の仮検知を内部認知するにとどめて列車有無検知信号Bには「列車あり(B:1)」を維持させる(ステップS7)。これに対し、直前の状態が非在線であったときには(ステップS1,S4,S5,S6)、列車進出の仮検知から非在線検知時間が経過したか否かを調べて、未了であれば仮検知を脱していないので列車有無検知信号Bには「列車あり(B:1)」を維持させるが、経過していれば列車有無検知信号Bを「列車なし(B:0)」にするようになっている(ステップS8)。   Further, when the reception signal A and the commercial frequency f3 transmission state are “signal present (A: 1)” and “transmission in progress”, the previous state is further classified (steps S1, S4, S5), and the previous state When the train is on the line, only the provisional detection of the train advancement is recognized internally, and the train presence / absence detection signal B is maintained as “with train (B: 1)” (step S7). On the other hand, when the previous state is a non-existing line (steps S1, S4, S5, S6), it is checked whether or not the non-existing line detection time has elapsed since the temporary detection of the train advancement. Since the temporary detection is not removed, the train presence / absence detection signal B is maintained as “with train (B: 1)”, but if it has elapsed, the train presence / absence detection signal B is set to “without train (B: 0)”. (Step S8).

この実施例1の列車検知装置40について、その使用態様及び動作を説明する。列車検知装置40は軌道8の軌道回路1T〜16Tに対して使用される(図1(a)参照)。その軌道回路の個数は、十六個であり、商用周波数軌道回路のときの一個より多いのはもちろん、列車検知装置30のときの三個より多く、更には列車検知装置10のときの十二個より多い。各軌道回路に対するケーブル接続等は、従来と同様で良く、軌道回路の一端部が送信選択回路41の出力先にされ他端部が受信回路21の入力先にされる。そして、軌道トランス31に商用電力AC100Vが供給されると、制御部42の制御に従って送信部31,41と受信部21〜23と判定部24とが同期しながら列車検知用信号の送信とその受信に基づく列車有無および妨害波有無の検知とを繰り返えす。   About the train detection apparatus 40 of this Example 1, the use aspect and operation | movement are demonstrated. The train detection device 40 is used for the track circuits 1T to 16T of the track 8 (see FIG. 1A). The number of track circuits is sixteen, more than one in the case of a commercial frequency track circuit, more than three in the case of the train detection device 30, and further twelve in the case of the train detection device 10. More than pieces. The cable connection or the like for each track circuit may be the same as in the prior art, with one end of the track circuit being the output destination of the transmission selection circuit 41 and the other end being the input destination of the reception circuit 21. When commercial power AC100V is supplied to the track transformer 31, transmission and reception of train detection signals are performed while the transmission units 31, 41, the reception units 21 to 23, and the determination unit 24 are synchronized under the control of the control unit 42. Repeated detection of presence / absence of train and presence / absence of interference wave based on the above.

その際、軌道回路1T〜16Tに対する列車検知用信号の送出は商用周波数f3の交流信号を上述した送信パターンに従って実行か停止することで行われる(図1(b),図2参照)。しかも、各スロット時間E毎に軌道回路1T〜16T総てについて受信信号Aの取得と列車および妨害波の有無の検知とが行われる(図3参照)。
そのため、何れの軌道回路についても、500ms程度の在線検知時間の間に必ず列車検知用信号の送信が実行され、それに基づいて列車有無検知信号Bが生成されるので、該当軌道回路に対する列車の進入が許容時間内で適切に検知される。これに対し、該当軌道回路からの列車進出については、継続確認しながら非在線検知時間の経過を待ったうえで列車有無検知信号Bの値が変更されるので、列車の進出も適切に検知される。
At that time, transmission of the train detection signal to the track circuits 1T to 16T is performed by executing or stopping the AC signal of the commercial frequency f3 in accordance with the transmission pattern described above (see FIGS. 1B and 2). Moreover, acquisition of the received signal A and detection of the presence of a train and an interfering wave are performed for all the track circuits 1T to 16T for each slot time E (see FIG. 3).
Therefore, for any track circuit, transmission of the train detection signal is always executed during the on-line detection time of about 500 ms, and the train presence / absence detection signal B is generated based on the train detection signal B. Accordingly, the train enters the track circuit. Is properly detected within the allowable time. On the other hand, for the train advance from the track circuit, the value of the train presence / absence detection signal B is changed after waiting for the elapse of the non-existing line detection time while continuously checking, so the train advance is also detected appropriately. .

また、送信停止中の軌道回路から商用周波数f3の信号が受信されると、該当軌道回路は「妨害波あり」とされるが、上述の送信パターンでは、全体サイクル時間が92400msで2000ms程度の非在線検知時間より十分に長く、その長時間に亘ってスロット時間E毎の送信パターンが異なっているため、送信停止の分散状態が多様化されているので、妨害波の伝搬状況など種々の状況を把握することができる。さらに、全体サイクル時間92400msにおける送信実行時間Hの割合が約46%で半分以下になっているので、エネルギー効率が商用周波数軌道回路に比べて二倍より良い。   Further, when the signal of the commercial frequency f3 is received from the track circuit whose transmission is stopped, the corresponding track circuit is set to “has an interference wave”. However, in the above transmission pattern, the total cycle time is 92400 ms and the non-order of about 2000 ms. Since the transmission pattern for each slot time E is sufficiently longer than the presence line detection time and the transmission pattern for each slot time E is varied over a long period of time, the dispersion state of the transmission stop is diversified. I can grasp it. Furthermore, since the ratio of the transmission execution time H in the total cycle time 92400 ms is about 46%, which is less than half, the energy efficiency is better than twice that of the commercial frequency orbit circuit.

[その他]
上記実施例では、受信信号Aの有無を決める受信レベルの閾値(判定レベル)が単一の場合を説明したが、判定レベルは多段化してもよく、それに基づいて例えば「妨害波あり」の状態を細分化するのも良い。
例えば、送信停止中の軌道回路に対する妨害波検知の判定レベルを二段階とし、高いレベルの場合には「列車あり」と同等に扱われる「強い妨害波あり」にするが、低いレベルの場合には警報のみの「弱い妨害波あり」にするといったことにより、妨害の原因に対して予防的な処置を促すこともできる。
[Others]
In the above embodiment, the case where there is a single reception level threshold (determination level) that determines the presence or absence of the reception signal A has been described. It is good to subdivide.
For example, the judgment level of interference wave detection for the track circuit when transmission is stopped is made in two stages, and if it is high, it is treated as `` with strong interference '' equivalent to `` with train '', but if it is low level Can also promote preventive measures against the cause of the interference by setting “with weak interference wave” only for the alarm.

また、妨害波に対する過剰反応を防止するには、妨害波有無検知信号Cの「妨害波なし」から「妨害波あり」へ遷移にも、列車有無検知信号Bに係る上述のような継続確認条件を付加するのが良い。
さらに、本発明の具現化に際し、複数の軌道回路からの受信信号間の位相差を検知する手段を設けて、3位式の軌道回路を実現しても良い。
Further, in order to prevent an excessive reaction to the interference wave, the continuation confirmation condition as described above related to the train presence / absence detection signal B is also applied to the transition of the interference wave presence / absence detection signal C from “no interference wave” to “with interference wave”. It is good to add.
Furthermore, when embodying the present invention, a third-order track circuit may be realized by providing means for detecting a phase difference between received signals from a plurality of track circuits.

本発明の実施例1について、列車検知装置の構造等を示し、(a)がブロック図、(b)が送信パターンの抜粋のタイムチャートである。About Example 1 of this invention, the structure etc. of a train detection apparatus are shown, (a) is a block diagram, (b) is a time chart of the excerpt of a transmission pattern. 総ての送信パターンのタイムチャートである。It is a time chart of all the transmission patterns. (a)が判定論理の概要を示す表、(b)が判定論理を詳細に示すフローチャートである。(A) is a table | surface which shows the outline | summary of a determination logic, (b) is a flowchart which shows a determination logic in detail. 従来の列車検知装置の構造等を示し、(a)がブロック図、(b)が送信パターンの抜粋のタイムチャートである。The structure etc. of the conventional train detection apparatus are shown, (a) is a block diagram, (b) is the time chart of the excerpt of a transmission pattern. 従来の列車検知装置を組み合わせた直截的な改良案を示し、(a)がブロック図、(b)が送信パターンのタイムチャートである。The straightforward improvement plan which combined the conventional train detection apparatus is shown, (a) is a block diagram, (b) is a time chart of a transmission pattern.

符号の説明Explanation of symbols

8…軌道(鉄道)、1T〜16T…軌道回路、
10…列車検知装置、11,12…発信器、13…切換器、
14…送信レベル設定器、15…電力増幅器、16…送信選択回路、
20…制御部、21…受信回路、22…受信選択回路、
23…A/D変換回路、24…判定部、25…出力部、
30…列車検知装置、31…軌道トランス、32…制御部、
40…列車検知装置、41…送信選択回路、42…制御部、
A…受信信号、B…列車有無検知信号、C…妨害波有無検知信号、
D…サイクル時間(送信パターン繰り返し時間)、
E…スロット時間(基本単位時間,コマ時間)、
G…送信停止時間、H…送信実行時間
8 ... Track (railroad), 1T-16T ... Track circuit,
10 ... train detection device, 11, 12 ... transmitter, 13 ... switch,
14 ... transmission level setting device, 15 ... power amplifier, 16 ... transmission selection circuit,
20 ... Control unit, 21 ... Reception circuit, 22 ... Reception selection circuit,
23 ... A / D conversion circuit, 24 ... determining unit, 25 ... output unit,
30 ... train detection device, 31 ... track transformer, 32 ... control unit,
40 ... train detection device, 41 ... transmission selection circuit, 42 ... control unit,
A ... Reception signal, B ... Train presence / absence detection signal, C ... Interference wave presence / absence detection signal,
D: Cycle time (transmission pattern repetition time),
E: Slot time (basic unit time, frame time),
G: Transmission stop time, H: Transmission execution time

Claims (3)

列車検知用信号を複数の軌道回路に時分割で且つサイクリックに送出するとともに、前記列車検知用信号を各軌道回路から並列に受信し、前記列車検知用信号に係る送信の有無と受信の有無とに基づいて各軌道回路上の列車の有無と各軌道回路への妨害波の有無とを検知する列車検知装置において、前記列車検知用信号として商用電力が商用周波数のまま用いられ、前記列車検知用信号の送信手段が、前記軌道回路の総てではないが幾つかには並列に送信を実行し且つ前記軌道回路それぞれについて送信停止時間は在線検知時間より短くし而も各軌道回路毎のサイクル時間は非在線検知時間より短くするものであり、前記非在線検知時間スパンで送信パターンが異なり、前記軌道回路をグループ分けしたグループ毎に前記列車検知用信号の送信パターンが異なり、各グループ内では同じ送信パターンが時間を異ならせて用いられ、各グループ内の軌道回路についても総てではないが幾つかには並列に送信を実行するようになっている、ことを特徴とする列車検知装置。 Sending train detection signals to a plurality of track circuits in a time-sharing and cyclic manner, receiving the train detection signals in parallel from each track circuit, and transmitting and not receiving the train detection signals In the train detection device that detects the presence / absence of a train on each track circuit and the presence / absence of an interfering wave on each track circuit based on the above, commercial power is used as the train detection signal at a commercial frequency, and the train detection The signal transmission means executes transmission in parallel for some but not all of the track circuits, and the transmission stop time for each track circuit is shorter than the on-line detection time, and the cycle for each track circuit time are those shorter than the non-rail detection time, the non-rail transmission pattern detection time span Ri Do different, feeding of the train detection signal for each group obtained by grouping the track circuit Different pattern, within each group used the same transmission pattern by varying the time, but not all also track circuit in each group into several adapted to perform a transmission in parallel, it A train detection device. 前記グループのうち何れか二つで送信パターンが異なっていることを特徴とする請求項1記載の列車検知装置。 The train detection device according to claim 1, wherein any two of the groups have different transmission patterns. 前記全体サイクル時間における送信実行の割合が半分以下になっていることを特徴とする請求項1又は請求項2に記載された列車検知装置。 The train detection apparatus according to claim 1 or 2 , wherein a ratio of transmission execution in the entire cycle time is less than half.
JP2007113561A 2007-04-23 2007-04-23 Train detector Active JP4969307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113561A JP4969307B2 (en) 2007-04-23 2007-04-23 Train detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113561A JP4969307B2 (en) 2007-04-23 2007-04-23 Train detector

Publications (2)

Publication Number Publication Date
JP2008265626A JP2008265626A (en) 2008-11-06
JP4969307B2 true JP4969307B2 (en) 2012-07-04

Family

ID=40045731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113561A Active JP4969307B2 (en) 2007-04-23 2007-04-23 Train detector

Country Status (1)

Country Link
JP (1) JP4969307B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737859B2 (en) * 2010-04-23 2015-06-17 日本信号株式会社 Rail break detection device
KR101879583B1 (en) * 2017-10-18 2018-07-18 (주)에이알텍 Railway Orbital Information Transmitting System

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340769B2 (en) * 1992-10-22 2002-11-05 東日本旅客鉄道株式会社 Train detection device
JP3415957B2 (en) * 1995-03-22 2003-06-09 日本信号株式会社 On-board equipment for automatic train control
JP3683162B2 (en) * 2000-05-24 2005-08-17 東日本旅客鉄道株式会社 Train detection method

Also Published As

Publication number Publication date
JP2008265626A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
EP2656226B1 (en) Communications architecture for providing data communication, synchronization and fault detection between isolated modules
JP4908018B2 (en) Current differential relay device, signal processing method thereof, and transmission line protection system
JP6042993B2 (en) Method and apparatus for data communication between an inverter and a network monitoring unit
JP2015198458A (en) Inverter system and method for controlling parallel synchronous operation of multiple inverters
US6807377B1 (en) Parallel optical transmission/reception module
JP4969307B2 (en) Train detector
WO2014025734A2 (en) Modular inverter drive
JP5737859B2 (en) Rail break detection device
AU2013397474A1 (en) Track circuit power supply vital monitor
US20110236014A1 (en) Optical-transmission-line inspection apparatus, optical transmission system, and optical-transmission-line inspection method
KR101792040B1 (en) Parallel inverter system
JP2009142078A (en) Uninterruptible power supply
CN103151905B (en) A kind of many IGCT synchronizable optical pulsed triggering circuits
JP2010274832A (en) Transmitter for track circuit
JP2006014483A (en) Power converter
JP3683162B2 (en) Train detection method
JP4693447B2 (en) Train detector
JP2011259535A (en) Motor control system
JP7469199B2 (en) Relay transmitter
JP4795837B2 (en) Train detector
JP3540669B2 (en) Automatic train control device
JP5533422B2 (en) Elevator signal transmission device
KR100337620B1 (en) Train detection device
GB2526138A (en) Diagnostics and control circuit
KR20180107388A (en) Stop control system of railroad train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250