JP4967494B2 - Method for producing heat-resistant polyimide metal laminate - Google Patents

Method for producing heat-resistant polyimide metal laminate Download PDF

Info

Publication number
JP4967494B2
JP4967494B2 JP2006196634A JP2006196634A JP4967494B2 JP 4967494 B2 JP4967494 B2 JP 4967494B2 JP 2006196634 A JP2006196634 A JP 2006196634A JP 2006196634 A JP2006196634 A JP 2006196634A JP 4967494 B2 JP4967494 B2 JP 4967494B2
Authority
JP
Japan
Prior art keywords
polyimide
copolymer
heat
thermoplastic polyimide
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006196634A
Other languages
Japanese (ja)
Other versions
JP2008023760A (en
Inventor
暢 飯泉
貴男 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006196634A priority Critical patent/JP4967494B2/en
Publication of JP2008023760A publication Critical patent/JP2008023760A/en
Application granted granted Critical
Publication of JP4967494B2 publication Critical patent/JP4967494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐熱性に優れたポリイミド金属積層板の製造方法に関する。   The present invention relates to a method for producing a polyimide metal laminate having excellent heat resistance.

カメラ、パソコン、液晶ディスプレイなどの電子機器類への用途として金属配線を設けた芳香族ポリイミドフィルムは広く使用されている。   Aromatic polyimide films provided with metal wiring are widely used as applications for electronic devices such as cameras, personal computers and liquid crystal displays.

金属配線を設けた芳香族ポリイミドフィルムの製造方法は多数報告されている。多層構造の熱圧着性ポリイミドフィルムに金属箔を積層して得られる金属箔積層ポリイミドフィルムとしては、特許文献1には、高耐熱性の芳香族ポリイミド層の少なくとも片面に熱圧着性の芳香族ポリイミド層が流延製膜成形法で積層一体化された熱圧着性多層ポリイミドフィルムと金属箔とが、ダブルベルトプレスを用いて加圧下に熱圧着ー冷却されて積層されてなるフレキシブル金属箔積層体が開示されている。
また特許文献2には、絶縁樹脂層の片面又は両面に金属箔を有するフレキシブル積層板であって、絶縁樹脂層は複数層のポリイミド樹脂層からなり、金属箔と接する少なくとも1層のポリイミド樹脂層が250℃における貯蔵弾性率が1×10Pa以上の高弾性樹脂層によって形成されており、絶縁樹脂層における高弾性樹脂層の厚み割合が3〜45%の範囲にあることを特徴とするフレキシブル積層板が開示されている。
特開平12−103010号公報 特開2005−288811号公報
Many methods for producing aromatic polyimide films provided with metal wiring have been reported. As a metal foil laminated polyimide film obtained by laminating a metal foil on a thermocompression bonding polyimide film having a multilayer structure, Patent Document 1 discloses a thermocompression bonding aromatic polyimide on at least one surface of a highly heat-resistant aromatic polyimide layer. A flexible metal foil laminate in which a thermocompression-bonding multilayer polyimide film and a metal foil, which are laminated and integrated by a casting film forming method, are laminated by thermocompression-cooling under pressure using a double belt press. Is disclosed.
Patent Document 2 discloses a flexible laminate having a metal foil on one or both sides of an insulating resin layer, the insulating resin layer comprising a plurality of polyimide resin layers, and at least one polyimide resin layer in contact with the metal foil. Is formed by a high elastic resin layer having a storage elastic modulus at 250 ° C. of 1 × 10 8 Pa or more, and the thickness ratio of the high elastic resin layer in the insulating resin layer is in the range of 3 to 45%. A flexible laminate is disclosed.
JP-A-12-103010 JP 2005-288811 A

電子材料分野で使用されるCOF(Chip On Film、Chip On Flex)やFPC(Flexible Printed Circuit Board)に用いられるポリイミド金属積層板は、実装工程における半田フロートなどの高温プロセスを受けるため、高い耐熱性が求められる。この耐熱性を向上させるために、ポリイミドと金属箔とを接着剤を使用せずに張り合わせるオールポリイミド金属積層体が検討されている。   Polyimide metal laminates used in COF (Chip On Film, Chip On Flex) and FPC (Flexible Printed Circuit Board) used in the field of electronic materials are subjected to high-temperature processes such as solder float in the mounting process, so they have high heat resistance. Is required. In order to improve this heat resistance, an all-polyimide metal laminate in which polyimide and metal foil are bonded together without using an adhesive has been studied.

金属箔とポリイミドからラミネート法によりポリイミド金属積層板を製造する場合には、ポリイミド金属積層板の耐熱性を向上させる手段として、ポリイミドのガラス転移温度を上げたり、高温領域での弾性率を上げる方法が考えられる。しかしこれらの方法では、より高温下、高圧下でのラミネート装置が必要となるため、装置の高額化、金属箔の変色、生産性の低下などの問題が生じる。
本発明では、簡易に製造でき、優れた半田耐熱性を有するポリイミド金属積層板及びその製造方法を提供することである。
When manufacturing a polyimide metal laminate from a metal foil and polyimide by a lamination method, as a means of improving the heat resistance of the polyimide metal laminate, a method of increasing the glass transition temperature of polyimide or increasing the modulus of elasticity in a high temperature region Can be considered. However, these methods require a laminating apparatus at a higher temperature and a higher pressure, which causes problems such as higher cost of the apparatus, discoloration of the metal foil, and lowering of productivity.
In this invention, it is providing the polyimide metal laminated board which can be manufactured simply and has the outstanding solder heat resistance, and its manufacturing method.

本発明では、簡便に製造可能でかつ耐熱性に優れたポリイミド金属積層板及びこれらの製造方法を検討した。その結果、金属箔と直接接する熱可塑性ポリイミドとして、結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られるポリイミド共重合体を用いた場合、加える熱履歴により非結晶性と結晶性の特性が変化し、通常の製造法では非結晶性を有し、さらにガラス転移温度以上の温度で保持することにより結晶化が進むことを利用することを考えついた。
つまり、ポリイミドと金属箔とをラミネートにより直接はりあわせる場合に、ポリイミドのガラス転移温度以上での弾性率の低下が大きく流動性の良好な非結晶性の特性を利用する場合には、比較的低い温度・加圧条件下でラミネートを行うことが出来るが、結晶性の特性ではガラス転移温度以上での弾性率の低下度合いが低く流動性が劣るため、高温・加圧条件下でのラミネートを行う必要があり、生産性に劣り、生産機器などのコストが高くなる。そこで、金属箔とポリイミドとを加熱加圧によるラミネート法で積層して得られる金属積層体に用いる金属箔と直接接する熱可塑性ポリイミドとして、ラミネート時に主に非結晶性を示し、さらに金属積層体の使用時に主に結晶性を示すようなポリイミドを用いることにより、生産性に優れ、耐熱性に優れた金属積層体が得られることを見出した。
In this invention, the polyimide metal laminated board which can be manufactured simply and was excellent in heat resistance, and these manufacturing methods were examined. As a result, when using a polyimide copolymer obtained by copolymerizing a component that yields a crystalline polyimide and a component that yields an amorphous polyimide as the thermoplastic polyimide that is in direct contact with the metal foil, It has been considered to utilize the fact that the characteristics of non-crystallinity and crystallinity change, the non-crystallinity is obtained in a normal manufacturing method, and the crystallization proceeds by holding at a temperature higher than the glass transition temperature.
In other words, when laminating polyimide and metal foil directly by lamination, a relatively low temperature is required when using non-crystalline properties with a large decrease in elastic modulus above the glass transition temperature of polyimide and good fluidity.・ Lamination can be performed under pressure, but the crystallinity is low and the fluidity is inferior at a temperature lower than the glass transition temperature. Therefore, it is necessary to perform lamination under high temperature and pressure. There is inferior productivity and the cost of production equipment etc. becomes high. Therefore, as a thermoplastic polyimide that is in direct contact with the metal foil used in the metal laminate obtained by laminating metal foil and polyimide by the laminating method by heat and pressure, it exhibits mainly non-crystallinity at the time of lamination. It has been found that a metal laminate having excellent productivity and excellent heat resistance can be obtained by using a polyimide that mainly exhibits crystallinity during use.

本発明の第一は、動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いてはり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を加熱して、動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体を動的粘弾性の測定より結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法である。
好ましくは本発明は、動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いて、動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上ではり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上に加熱して、動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体を結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法である。
The first of the present invention uses a non-crystalline thermoplastic polyimide copolymer obtained by copolymerizing a component capable of obtaining a crystalline polyimide from a measurement of dynamic viscoelasticity and a component capable of obtaining a non-crystalline polyimide. And
A polyimide metal laminate is manufactured by laminating a heat-resistant polyimide film and a metal foil using a laminating apparatus through an amorphous thermoplastic polyimide copolymer layer from measurement of dynamic viscoelasticity,
Furthermore, the polyimide metal laminate was heated, and the amorphous thermoplastic polyimide copolymer was changed from the dynamic viscoelasticity measurement to the thermoplastic polyimide copolymer showing crystallinity from the dynamic viscoelasticity measurement. It is a manufacturing method of the heat resistant polyimide metal laminated board made into.
Preferably, the present invention uses an amorphous thermoplastic polyimide copolymer obtained by copolymerizing a component capable of obtaining a crystalline polyimide and a component capable of obtaining an amorphous polyimide from dynamic viscoelasticity measurement. ,
Heat-resistant polyimide film and metal foil are measured by dynamic viscoelasticity measurement and non-crystalline thermoplastic polyimide polyimide is measured by dynamic viscoelasticity measurement. A polyimide metal laminate is manufactured by laminating above the glass transition temperature of the copolymer,
Furthermore, the polyimide metal laminate is heated to a temperature higher than the glass transition temperature of the amorphous thermoplastic polyimide copolymer from the measurement of dynamic viscoelasticity, and the amorphous thermoplastic polyimide copolymer from the measurement of dynamic viscoelasticity. Is a thermoplastic polyimide copolymer exhibiting crystallinity, which is a method for producing a heat-resistant polyimide metal laminate.

本発明の第二は、動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いてはり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を加熱して、熱可塑性ポリイミド共重合体単体の透過法でのX線回折強度からRuland法で算出される結晶化度が3%以下の非結晶性の熱可塑性ポリイミド共重合体をX線回折強度からRuland法で算出される結晶化度が3%を超えた結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法である。
さらに好ましくは本発明は、動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いて非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上ではり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上に加熱して、熱可塑性ポリイミド共重合体単体の透過法でのX線回折強度からRuland法で算出される結晶化度が3%以下の非結晶性の熱可塑性ポリイミド共重合体を、X線回折強度からRuland法で算出される結晶化度が3%を超えた結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法である。
The second of the present invention uses an amorphous thermoplastic polyimide copolymer obtained by copolymerizing a component capable of obtaining a crystalline polyimide and a component capable of obtaining an amorphous polyimide from the measurement of dynamic viscoelasticity. And
A polyimide metal laminate is manufactured by laminating a heat-resistant polyimide film and a metal foil with a laminating device through an amorphous thermoplastic polyimide copolymer layer,
Further, by heating the polyimide metal laminate, the amorphous thermoplastic polyimide copolymer having a crystallinity of 3% or less calculated from the X-ray diffraction intensity of the thermoplastic polyimide copolymer alone by the transmission method is 3% or less. A method for producing a heat-resistant polyimide metal laminate, characterized in that the coalescence is a thermoplastic polyimide copolymer having a crystallinity calculated from the X-ray diffraction intensity by the Ruland method exceeding 3%. .
More preferably, the present invention uses a non-crystalline thermoplastic polyimide copolymer obtained by copolymerizing a component capable of obtaining a crystalline polyimide and a component capable of obtaining a non-crystalline polyimide from the measurement of dynamic viscoelasticity. And
Lamination of polyimide metal by bonding heat-resistant polyimide film and metal foil to the glass transition temperature of amorphous thermoplastic polyimide copolymer or higher using laminating device via amorphous thermoplastic polyimide copolymer layer Manufacturing the board,
Furthermore, the polyimide metal laminate is heated to a temperature higher than the glass transition temperature of the amorphous thermoplastic polyimide copolymer, and the crystal calculated by the Randland method from the X-ray diffraction intensity in the transmission method of the thermoplastic polyimide copolymer alone. A non-crystalline thermoplastic polyimide copolymer having a degree of crystallinity of 3% or less is converted into a thermoplastic polyimide copolymer exhibiting crystallinity with a crystallinity degree exceeding 3% calculated from the X-ray diffraction intensity by the Rand method. It is the manufacturing method of the heat resistant polyimide metal laminated board characterized by having performed.

本発明の第一及び第二の製造方法の好ましい態様を以下に示す。これら態様は複数組み合わせることが出来る。
1)熱可塑性ポリイミド共重合体は、
動的粘弾性の測定より結晶性ポリイミドが得られる3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物及び1,3−ビス(4−アミノフェノキシ)ベンゼンを含む成分と、
非結晶性ポリイミドが得られる2,3,3’,4’−ビフェニルテトラカルボン酸ニ無水物及び1,3−ビス(4−アミノフェノキシ)ベンゼンとを含む成分とを共重合して得られる熱可塑性ポリイミド共重合体であること。
2)ポリイミド金属積層板の加熱は、不活性ガス雰囲気中で行うこと。
Preferred embodiments of the first and second production methods of the present invention are shown below. A plurality of these aspects can be combined.
1) Thermoplastic polyimide copolymer
A component containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 1,3-bis (4-aminophenoxy) benzene, from which a crystalline polyimide is obtained by measuring dynamic viscoelasticity;
Heat obtained by copolymerizing a component containing 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride and 1,3-bis (4-aminophenoxy) benzene to obtain an amorphous polyimide It must be a plastic polyimide copolymer.
2) Heat the polyimide metal laminate in an inert gas atmosphere.

熱可塑性ポリイミド共重合体の非結晶性と結晶性の判断は動的粘弾性の測定で行うことが出来る。   Judgment of non-crystallinity and crystallinity of a thermoplastic polyimide copolymer can be made by measuring dynamic viscoelasticity.

熱可塑性ポリイミド共重合体の非結晶性と結晶性の判断は、熱可塑性ポリイミド共重合体単体の透過法でのX線回折強度からRuland法で算出される結晶化度で行うことが出来る。
非結晶性の熱可塑性ポリイミド共重合体は、熱可塑性ポリイミド共重合体単体の透過法でのX線回折強度からRuland法で算出される結晶化度が好ましくは3%以下、さらに好ましくは2%以下、より好ましくは1%以下、特に好ましくは0%であることが好ましく、
結晶性の熱可塑性ポリイミド共重合体は、熱可塑性ポリイミド共重合体単体の透過法でのX線回折強度からRuland法で算出される結晶化度が好ましくは3%を超えて、さらに好ましくは2%を超えて、より好ましくは1%を超えて、特に好ましくは0%を超えていることが好ましい。
Judgment of the non-crystallinity and crystallinity of the thermoplastic polyimide copolymer can be made based on the crystallinity calculated by the Ruland method from the X-ray diffraction intensity of the thermoplastic polyimide copolymer alone by the transmission method.
The non-crystalline thermoplastic polyimide copolymer preferably has a crystallinity calculated by the Ruland method from the X-ray diffraction intensity of the thermoplastic polyimide copolymer alone, preferably 3% or less, more preferably 2%. Or less, more preferably 1% or less, particularly preferably 0%,
The crystalline thermoplastic polyimide copolymer preferably has a degree of crystallinity calculated by the Ruland method from the X-ray diffraction intensity of the thermoplastic polyimide copolymer alone, exceeding 3%, more preferably 2 %, More preferably more than 1%, particularly preferably more than 0%.

本発明の耐熱性ポリイミド金属積層板の製造方法は、非結晶性の熱可塑性ポリイミド共重合体を圧着層に用いることにより、比較的低温で積層することができ、その後熱可塑性ポリイミド共重合体を結晶性を有するまで加熱することにより、耐熱性に優れた耐熱性ポリイミド金属積層板を得ることが出来る。   The method for producing a heat-resistant polyimide metal laminate of the present invention can be laminated at a relatively low temperature by using an amorphous thermoplastic polyimide copolymer for the pressure-bonding layer, and then the thermoplastic polyimide copolymer is By heating until it has crystallinity, a heat-resistant polyimide metal laminate having excellent heat resistance can be obtained.

耐熱性ポリイミドフィルムは、プリント配線板、フレキシブルプリント基板、TAB、COF、COB等の電子部品の基板素材として用いられる耐熱性に優れる芳香族ポリイミドフィルム或いは非熱圧着性芳香族ポリイミドフィルムを用いることが出来、該ポリイミドフィルムを構成する酸ニ無水物成分(例えば、3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物、ピロメリット酸ニ無水物、1,4−ヒドロキノンジベンゾエート−3,3’,4,4’−テトラカルボン酸二無水物などを主たる成分として含むもの、好ましくはこれらの酸ニ無水物成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む酸ニ無水物成分)及びジアミン成分(p−フェニレンジアミン、4,4−ジアミノジフェニルエーテル、m−トリジン、4,4’−ジアミノベンズアニリドなどを主たる成分として含むもの、好ましくはこれらのジアミン成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含むジアミン成分)とから得られる、或いは該ポリイミドフィルムを構成する酸成分及びジアミン成分とを含むポリイミドなどを挙げることができる。
耐熱性ポリイミドフィルムの具体例としては、プリント配線板、フレキシブルプリント基板、TABテープ等の電子部品の素材として用いられるポリイミドフィルム、例えば、商品名「ユーピレックス(S、又はR)」(宇部興産社製)、商品名「カプトン」(東レ・デュポン社製、デュポン社製)、商品名「アピカル」(鐘淵化学社製)などのポリイミドフィルム及び、これらのフィルムを構成する酸成分及びジアミン成分とから得られる、或いは該ポリイミドフィルムを構成する酸成分及びジアミン成分とを含むポリイミドなどを挙げることができる。
As the heat-resistant polyimide film, an aromatic polyimide film having excellent heat resistance or a non-thermocompression-bonding aromatic polyimide film used as a substrate material for electronic components such as printed wiring boards, flexible printed boards, TAB, COF, and COB may be used. And an acid dianhydride component (for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 1,4-hydroquinone dibenzoate-3) constituting the polyimide film , 3 ′, 4,4′-tetracarboxylic dianhydride as a main component, preferably these acid dianhydride components are at least 70 mol% or more, more preferably 80 mol% or more, more preferably Acid dianhydride component containing 90 mol% or more) and diamine component (p-phenylenediamine, 4,4-diamino) Those containing diphenyl ether, m-tolidine, 4,4′-diaminobenzanilide as main components, preferably these diamine components are at least 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol% or more. And a polyimide containing an acid component and a diamine component constituting the polyimide film.
Specific examples of the heat-resistant polyimide film include a polyimide film used as a material for electronic components such as a printed wiring board, a flexible printed circuit board, and a TAB tape, such as a trade name “UPILEX (S or R)” (manufactured by Ube Industries, Ltd.). ), Trade name “Kapton” (manufactured by Toray DuPont, DuPont), trade name “Apical” (manufactured by Kaneka Chemical Co., Ltd.) and the like, and acid components and diamine components constituting these films The polyimide etc. which are obtained or contain the acid component and diamine component which comprise this polyimide film can be mentioned.

耐熱性ポリイミドフィルムとしては、以下の特徴を少なくとも1つ有するポリイミドを用いることができる。(これらの特徴は任意の特徴を複数組み合わせることが出来る。)
1)単独のポリイミドフィルムの場合にガラス転移温度が200℃以上、さらに好ましくは300℃以上か確認不可能であるもの、
2)、特に線膨張係数(50〜200℃)(MD)が5×10−6〜20×10−6cm/cm/℃であるもの、
3)引張弾性率(MD、ASTM−D882)は300kg/mm以上であるもの、
4)非熱可塑性ポリイミド、などをあげることができる。
As the heat-resistant polyimide film, polyimide having at least one of the following characteristics can be used. (These features can be combined with any number of features.)
1) In the case of a single polyimide film, the glass transition temperature is 200 ° C. or higher, more preferably 300 ° C. or higher.
2), especially those having a linear expansion coefficient (50 to 200 ° C.) (MD) of 5 × 10 −6 to 20 × 10 −6 cm / cm / ° C.,
3) The tensile elastic modulus (MD, ASTM-D882) is 300 kg / mm 2 or more,
4) Non-thermoplastic polyimide can be used.

金属箔としては、銅、アルミニウム、金、ステンレスなどの合金、などの金属箔を用いることができ、好適には圧延銅箔、電解銅箔などの銅箔が好ましい。
金属箔としては、どのような表面粗さでも用いることができるが、表面粗さRzが0.5μm以上であるものが好ましい。また、金属箔の表面粗さRzが7μm以下、特に5μm以下であるものが好ましい。このような金属箔、例えば銅箔はVLP、LP(またはHTE)として知られている。
金属箔の厚さは特に制限はないが、1〜35μm、さらに3〜25μm、特に8〜20μmであるものが好ましい。
金属箔の厚みが5μm以下のものは、キャリア付き金属箔、例えばアルミニウム箔キャリア付き銅箔などが使用できる。
As the metal foil, a metal foil such as an alloy such as copper, aluminum, gold or stainless steel can be used, and a copper foil such as a rolled copper foil or an electrolytic copper foil is preferable.
As the metal foil, any surface roughness can be used, but those having a surface roughness Rz of 0.5 μm or more are preferable. Further, it is preferable that the surface roughness Rz of the metal foil is 7 μm or less, particularly 5 μm or less. Such metal foils, such as copper foils, are known as VLP, LP (or HTE).
The thickness of the metal foil is not particularly limited, but is preferably 1 to 35 μm, more preferably 3 to 25 μm, and particularly preferably 8 to 20 μm.
When the thickness of the metal foil is 5 μm or less, a metal foil with a carrier, such as a copper foil with an aluminum foil carrier, can be used.

熱可塑性ポリイミド共重合体層の熱可塑性ポリイミド共重合体は、動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる熱可塑性ポリイミド共重合体である。
熱可塑性ポリイミド共重合体層又は熱可塑性ポリイミド共重合体は、金属箔との熱圧着性或いは熱融着性を有する。
The thermoplastic polyimide copolymer of the thermoplastic polyimide copolymer layer is a thermoplastic polyimide obtained by copolymerizing a component that yields a crystalline polyimide and a component that yields an amorphous polyimide from dynamic viscoelasticity measurements. It is a copolymer.
The thermoplastic polyimide copolymer layer or the thermoplastic polyimide copolymer has a thermocompression bonding property or a heat fusion property with the metal foil.

熱可塑性ポリイミド共重合体に用いるテトラカルボン酸ニ無水物は、公知のテトラカルボン酸ニ無水物を用いることができ、一般式(1)に示すテトラカルボン酸ニ無水物を主成分として用いられ、本発明の特性を損なわない範囲で一般式(1)に示すテトラカルボン酸ニ無水物を除く公知のテトラカルボン酸ニ無水物を用いることが出来、好ましくはテトラカルボン酸ニ無水物中、一般式(1)に示すテトラカルボン酸ニ無水物を50モル%以上、さらに好ましくは70モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上を用いることが好ましい。

Figure 0004967494
(但し、一般式(1)において、Xは一般式(2)で示す群から選択された4価の基を示す。)
Figure 0004967494
(但し、一般式(2)において、Rは、一般式(3)から選ばれる2価の基を示す。)
Figure 0004967494
As the tetracarboxylic dianhydride used for the thermoplastic polyimide copolymer, a known tetracarboxylic dianhydride can be used, and the tetracarboxylic dianhydride represented by the general formula (1) is used as a main component, As long as the properties of the present invention are not impaired, known tetracarboxylic dianhydrides other than the tetracarboxylic dianhydrides shown in the general formula (1) can be used, and preferably in the tetracarboxylic dianhydrides, the general formula The tetracarboxylic dianhydride shown in (1) is preferably used in an amount of 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
Figure 0004967494
(In the general formula (1), X represents a tetravalent group selected from the group represented by the general formula (2).)
Figure 0004967494
(However, in General Formula (2), R 1 represents a divalent group selected from General Formula (3).)
Figure 0004967494

熱可塑性ポリイミド共重合体に用いるテトラカルボン酸ニ無水物の具体例として、
無水ピロメリット酸、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物、
オキシジフタル酸二無水物、ジフェニルスルホン―3,4,3’,4’―テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、
p−フェニレンビス(トリメリット酸モノエステル酸無水物)、p−ビフェニレンビス(トリメリット酸モノエステル酸無水物)、
m−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、p−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、
1,3−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ビフェニル二無水物、
2,2−ビス〔(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物等を挙ることができる。これらは単独でも、2種以上混合しても用いることができる。
As a specific example of tetracarboxylic dianhydride used for thermoplastic polyimide copolymer,
Pyromellitic anhydride,
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride,
Oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ′, 4′-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4 -Dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, bis (3,4-di Carboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride,
p-phenylenebis (trimellitic acid monoester acid anhydride), p-biphenylenebis (trimellitic acid monoester acid anhydride),
m-terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, p-terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride,
1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxy) Phenoxy) biphenyl dianhydride,
2,2-bis [(3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic acid A dianhydride etc. can be mentioned. These can be used alone or in combination of two or more.

テトラカルボン酸ニ無水物としては、一般式(1)に示す化合物以外に、脂肪族や脂環式或いはシリコン含有のテトラカルボン酸ニ無水物を、本発明の特性を損なわない範囲で用いることができる。   As the tetracarboxylic dianhydride, in addition to the compound represented by the general formula (1), an aliphatic, alicyclic or silicon-containing tetracarboxylic dianhydride may be used as long as the characteristics of the present invention are not impaired. it can.

ジアミンは、ベンゼン環を2〜4個有する芳香族ジアミン化合物を好適に用いることができ、一般式(4)に示すジアミンを主成分として用いられ、本発明の特性を損なわない範囲で一般式(4)に示すジアミンを除く公知のジアミンを用いることが出来、好ましくはジアミン中、一般式(4)に示すジアミンを50モル%以上、さらに好ましくは70モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上を用いることができる。

Figure 0004967494
(但し、一般式(4)において、Yは一般式(5)で示す群から選択された2価の基を示す。)
Figure 0004967494
(但し、一般式(5)において、R、R、R及びRは、直結、−O−,−S−,−CO−,−SO−,−CH−,−C(CH−及び−C(CF−から選ばれる2価の基を示し、
〜M、M’〜M’、L〜L、L’〜L’及びL”〜L”は、−H,−F,−Cl,−Br,−I,−CN,−OCH3,−OH,−COOH,−CH,−C,−CFを示す。
、R、R及びR5は、それぞれ独立して、同一であっても、異なってもよく、
〜M、M’〜M’、L〜L、L’〜L’及びL”〜L”は、それぞれ独立して、同一であっても、異なってもよい。) As the diamine, an aromatic diamine compound having 2 to 4 benzene rings can be suitably used. The diamine represented by the general formula (4) is used as a main component, and the general formula ( Known diamines other than the diamine shown in 4) can be used. Preferably, in the diamine, the diamine shown in the general formula (4) is 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more. Particularly preferably, 90 mol% or more can be used.
Figure 0004967494
(However, in General Formula (4), Y represents a divalent group selected from the group represented by General Formula (5).)
Figure 0004967494
(In the general formula (5), R 2 , R 3 , R 4 and R 5 are directly connected, —O—, —S—, —CO—, —SO 2 —, —CH 2 —, —C ( A divalent group selected from CH 3 ) 2 — and —C (CF 3 ) 2 —;
M 1 to M 4 , M ′ 1 to M ′ 4 , L 1 to L 4 , L ′ 1 to L ′ 4 and L ″ 1 to L ″ 4 are represented by —H, —F, —Cl, —Br, — shows I, -CN, -OCH 3, -OH , -COOH, -CH 3, -C 2 H 5, and -CF 3.
R 2 , R 3 , R 4 and R 5 may each independently be the same or different,
M 1 to M 4 , M ′ 1 to M ′ 4 , L 1 to L 4 , L ′ 1 to L ′ 4 and L ″ 1 to L ″ 4 are independently the same or different. Also good. )

ジアミンの具体例として、
p−フェニレンジアミン、o−フェニレンジアミン、
3,3'−ジクロロベンジジン、3,3'−ジメチルベンジジン、2,2'−ジメチルベンジジン、3,3'−ジメトキシベンジジン、
3,3'−ジアミノジフェニルエーテル、3,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルエーテル、3,3'−ジアミノジフェニルスルフィド、3,4'−ジアミノジフェニルスルフィド、4,4'−ジアミノジフェニルスルフィド、3,3'−ジアミノジフェニルスルホン、3,4'−ジアミノジフェニルスルホン、4,4'−ジアミノジフェニルスルホン、3,3'−ジアミノベンゾフェノン、3,3'−ジアミノ−4,4'−ジクロロベンゾフェノン、3,3'−ジアミノ−4,4'−ジメトキシベンゾフェノン、3,3'−ジアミノジフェニルメタン、3,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルメタン、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、3,3'−ジアミノジフェニルスルホキシド、3,4'−ジアミノジフェニルスルホキシド、4,4'−ジアミノジフェニルスルホキシド、
1,3−ビス(3−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)−4−トリフルオロメチルベンゼン、
3,3'−ジアミノ−4−(4−フェニル)フェノキシベンゾフェノン、3,3'−ジアミノ−4、4'−ジ(4−フェニルフェノキシ)ベンゾフェノン、1,3−ビス(3−アミノフェニルスルフィド)ベンゼン、1,3−ビス(4−アミノフェニルスルフィド)ベンゼン、1,4−ビス(4−アミノフェニルスルフィド)ベンゼン、1,3−ビス(3−アミノフェニルスルホン)ベンゼン、1,3−ビス(4−アミノフェニルスルホン)ベンゼン、1,4−ビス(4−アミノフェニルスルホン)ベンゼン、
1,3−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(3−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼン、
3,3'−ビス(3−アミノフェノキシ)ビフェニル、3,3'−ビス(4−アミノフェノキシ)ビフェニル、4,4'−ビス(3−アミノフェノキシ)ビフェニル、4,4'−ビス(4−アミノフェノキシ)ビフェニル、ビス〔3−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(3−アミノフェノキシ)フェニル〕メタン、ビス〔3−(4−アミノフェノキシ)フェニル〕メタン、ビス〔4−(3−アミノフェノキシ)フェニル〕メタン、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3 −ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3 −ヘキサフルオロプロパン、等を挙げることができる。これらは単独でも、2種以上混合しても用いることができる。
As a specific example of diamine,
p-phenylenediamine, o-phenylenediamine,
3,3′-dichlorobenzidine, 3,3′-dimethylbenzidine, 2,2′-dimethylbenzidine, 3,3′-dimethoxybenzidine,
3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfide 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 3,3′-diamino-4,4′-dichlorobenzophenone 3,3′-diamino-4,4′-dimethoxybenzophenone, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 2,2-bis (3-aminophenyl) ) Propane, 2,2-bis (4-aminophenyl) propane, , 2-bis (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (4-aminophenyl) -1,1,1,3,3,3 Hexafluoropropane, 3,3′-diaminodiphenyl sulfoxide, 3,4′-diaminodiphenyl sulfoxide, 4,4′-diaminodiphenyl sulfoxide,
1,3-bis (3-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) Benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-amino) Phenoxy) -4-trifluoromethylbenzene,
3,3′-diamino-4- (4-phenyl) phenoxybenzophenone, 3,3′-diamino-4,4′-di (4-phenylphenoxy) benzophenone, 1,3-bis (3-aminophenyl sulfide) Benzene, 1,3-bis (4-aminophenylsulfide) benzene, 1,4-bis (4-aminophenylsulfide) benzene, 1,3-bis (3-aminophenylsulfone) benzene, 1,3-bis ( 4-aminophenylsulfone) benzene, 1,4-bis (4-aminophenylsulfone) benzene,
1,3-bis [2- (4-aminophenyl) isopropyl] benzene, 1,4-bis [2- (3-aminophenyl) isopropyl] benzene, 1,4-bis [2- (4-aminophenyl) Isopropyl) benzene,
3,3′-bis (3-aminophenoxy) biphenyl, 3,3′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4 -Aminophenoxy) biphenyl, bis [3- (3-aminophenoxy) phenyl] ether, bis [3- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, bis [ 4- (4-aminophenoxy) phenyl] ether, bis [3- (3-aminophenoxy) phenyl] ketone, bis [3- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) Phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [3- (3-aminophenoxy) phenyl] sulfur Bis [3- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [3- (3 -Aminophenoxy) phenyl] sulfone, bis [3- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, Bis [3- (3-aminophenoxy) phenyl] methane, bis [3- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-amino Phenoxy) phenyl] methane, 2,2-bis [3- (3-aminophenoxy) phenyl] propane, 2, -Bis [3- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [3- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, Examples include 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane. These can be used alone or in combination of two or more.

ジアミンとしては、一般式(5)に示す化合物以外に、脂肪族系、脂環式系、シリコン含有のジアミンなどのジアミンを、本発明の特性を損なわない範囲で用いることができる。   As the diamine, in addition to the compound represented by the general formula (5), diamines such as aliphatic, alicyclic, and silicon-containing diamines can be used as long as the characteristics of the present invention are not impaired.

動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分の判定法を示す。
例として、熱可塑性ポリイミド共重合体が3種類の酸成分(酸ニ無水物)(a1,a2,a3)と2種類のジアミン成分(b1,b2)から得られるポリイミドの場合の判定法を以下に示す。
酸成分a1とジアミン成分b1成分(ポリイミドc1)、酸成分a1とジアミン成分b2成分(ポリイミドc2)、
酸成分a2とジアミン成分b1成分(ポリイミドc3)、酸成分a2とジアミン成分b2成分(ポリイミドc4)、
酸成分a3とジアミン成分b1成分(ポリイミドc5)、酸成分a3とジアミン成分b2成分(ポリイミドc6)、より6種類のポリイミド(c1、c2、c3、c4、c5、c6)を合成する。
6種類のポリイミド(c1、c2、c3、c4、c5、c6)の動的粘弾性を測定し、6種類のポリイミドが結晶性ポリイミドか非結晶性ポリイミドかを判別し、これら6種類のポリイミドの中に、結晶性ポリイミド及び非結晶性ポリイミドの両方を含む場合は、本発明で用いる熱可塑性ポリイミド共重合体である。
動的粘弾性の測定結果が、図1(a)のパターンの場合、結晶性と判別し、図1(b)のパターンの場合、非結晶性と判別する。
熱可塑性ポリイミド共重合体が2種類の酸成分(酸ニ無水物)と2種類のジアミン成分の場合は、4種類のポリイミドを合成して判別できる。
The determination method of the component from which a crystalline polyimide is obtained from the measurement of dynamic viscoelasticity, and the component from which an amorphous polyimide is obtained is shown.
As an example, the determination method in the case where the thermoplastic polyimide copolymer is a polyimide obtained from three kinds of acid components (acid dianhydrides) (a1, a2, a3) and two kinds of diamine components (b1, b2) is as follows. Shown in
Acid component a1 and diamine component b1 component (polyimide c1), acid component a1 and diamine component b2 component (polyimide c2),
Acid component a2 and diamine component b1 component (polyimide c3), acid component a2 and diamine component b2 component (polyimide c4),
Six types of polyimides (c1, c2, c3, c4, c5, c6) are synthesized from the acid component a3 and the diamine component b1 component (polyimide c5), the acid component a3 and the diamine component b2 component (polyimide c6).
The dynamic viscoelasticity of six types of polyimide (c1, c2, c3, c4, c5, c6) is measured, whether the six types of polyimide are crystalline polyimide or non-crystalline polyimide, When both a crystalline polyimide and an amorphous polyimide are included, it is a thermoplastic polyimide copolymer used in the present invention.
When the measurement result of the dynamic viscoelasticity is the pattern of FIG. 1A, it is determined as crystalline, and when it is the pattern of FIG. 1B, it is determined as non-crystalline.
When the thermoplastic polyimide copolymer has two types of acid components (acid dianhydride) and two types of diamine components, four types of polyimide can be synthesized and discriminated.

結晶性ポリイミドが得られる可能性のある酸成分とジアミン成分の組合せとしては、
1)無水ピロメリット酸、3,3’、4,4’−ビフェニルテトラカルボン酸ニ無水物、オキシジフタル酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、p−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、p−ビフェニレンビス(トリメリット酸モノエステル酸無水物)などの酸成分と、
2)ジアミン成分が、一般式(5)に示すベンゼン核1つのジアミン、一般式(5)に示すベンゼン核2つのジアミン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェニルスルフィド)ベンゼン、1,4−ビス(4−アミノフェニルスルフィド)ベンゼン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテルなどのジアミン成分とから得られるポリイミドを挙げることが出来る。
As a combination of an acid component and a diamine component that may give a crystalline polyimide,
1) pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, oxydiphthalic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, p-ter Such as phenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-biphenylenebis (trimellitic acid monoester acid anhydride), etc. An acid component;
2) The diamine component is one diamine nucleus diamine represented by general formula (5), two benzene nucleus diamines represented by general formula (5), 1,3-bis (4-aminophenyl) benzene, 1,4-bis. (4-aminophenyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenyl sulfide) benzene, 1, 4-bis (4-aminophenylsulfide) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) Mention may be made of polyimides obtained from diamine components such as phenyl] ether.

非結晶性ポリイミドが得られる可能性のある酸成分とジアミン成分の組合せとしては、上記の結晶性ポリイミドが得られる可能性のある酸成分とジアミン成分の組合せを除く、一般式(1)に示す酸成分と一般式(5)に示すベンゼン核3,4及び5のジアミンと殻得られるポリイミドを挙げることが出来る。   As a combination of an acid component and a diamine component that may yield an amorphous polyimide, a combination of an acid component and a diamine component that may yield the above-mentioned crystalline polyimide is excluded, as shown in the general formula (1). Mention may be made of the acid component, the diamines of benzene nuclei 3, 4 and 5 shown in the general formula (5) and the resulting polyimide.

熱可塑性ポリイミド共重合体は、非結晶性の熱可塑性ポリイミド共重合体の場合にはガラス転移温度は、ラミネート装置が用いられる温度であることが好ましく、例えば150〜330℃の範囲が好ましい。
熱可塑性ポリイミド共重合体は、酸成分とジアミン成分とを組み合わせることで種々の異なるガラス転移温度を持つポリイミドを得ることが出来、ラミネートを考慮して、例えば150〜330℃の範囲、さらに170〜320℃の範囲、さらに190〜310℃の範囲、特に210〜300℃の範囲が好ましい。
In the case where the thermoplastic polyimide copolymer is an amorphous thermoplastic polyimide copolymer, the glass transition temperature is preferably a temperature at which the laminating apparatus is used, and is preferably in the range of 150 to 330 ° C, for example.
The thermoplastic polyimide copolymer can obtain polyimides having various different glass transition temperatures by combining an acid component and a diamine component, and in consideration of the laminate, for example, in the range of 150 to 330 ° C., further 170 to A range of 320 ° C, a range of 190 to 310 ° C, particularly a range of 210 to 300 ° C is preferable.

耐熱性ポリイミドフィルムの厚みは、使用する目的に応じて適宜選択すればよいが、例えば電子基板として使用でき、生産性、取扱性及び搬送性を考慮すると厚みは4〜150μmの範囲が好ましく位、さらに5〜100μmの範囲が好ましく、特に8〜80μmの範囲が好ましい。
熱可塑性ポリイミド共重合体層の厚みは、耐熱性ポリイミドフィルムと金属箔とをはり合せることができる厚みであればよく、使用する目的に応じて適宜選択すればよいが、好ましくは0.1〜20μm、さらに好ましくは0.2〜10μm、より好ましくは0.5〜5μm、特に好ましくは1〜3μmの範囲をあげることができる。
The thickness of the heat-resistant polyimide film may be appropriately selected according to the purpose of use, but can be used as, for example, an electronic substrate, and the thickness is preferably in the range of 4 to 150 μm in consideration of productivity, handleability and transportability. Furthermore, the range of 5-100 micrometers is preferable, and the range of 8-80 micrometers is especially preferable.
The thickness of the thermoplastic polyimide copolymer layer may be any thickness as long as the heat-resistant polyimide film and the metal foil can be bonded together, and may be appropriately selected according to the purpose of use. The range is 20 μm, more preferably 0.2 to 10 μm, more preferably 0.5 to 5 μm, and particularly preferably 1 to 3 μm.

ラミネート装置としては、加圧できるもの、加圧下に熱圧着できるもの、加圧下に熱圧着及び冷却できるものを用いることができ、例えば、一対の圧着ロール(圧着部は金属製、セラミック溶射金属製、樹脂製のいずれでもよい)、ダブルベルトプレス及びホットプレスなどを用いることが出来、特に加圧下に熱圧着および冷却できるものであって、そのなかでも特に液圧式のダブルベルトプレスを好適に挙げることができる。
ラミネート装置として、金属ロールなどの圧着ロールやダブルベルトプレスを使用することで、連続的に加圧或いは加熱下に圧着して、長尺状のポリイミド金属積層板或いは長尺状の耐熱性ポリイミド金属積層板を製造することができる。
As the laminating apparatus, one that can be pressurized, one that can be thermocompression-bonded under pressure, and one that can be thermocompression-bonded and cooled under pressure can be used. For example, a pair of crimping rolls (the crimping part is made of metal or ceramic sprayed metal) And any one made of resin), a double belt press, a hot press, and the like can be used. In particular, a thermodynamic pressure bonding and cooling can be performed under pressure, and among them, a hydraulic double belt press is particularly preferable. be able to.
As a laminating device, by using a pressure roll such as a metal roll or a double belt press, it is continuously crimped under pressure or heating, and a long polyimide metal laminate or a long heat-resistant polyimide metal Laminates can be manufactured.

ダブルベルトプレスを使用して金属箔とポリイミドフィルムとの積層体の製造条件は、特開2001−270039号公報や特開2005−306002号公報などを参考にすることができる。   JP-A-2001-270039 and JP-A-2005-306002 can be referred to for the production conditions of a laminate of a metal foil and a polyimide film using a double belt press.

本発明の耐熱性ポリイミド金属積層板を製造するための途中の材料であるポリイミド金属積層板は、
ラミネート装置を用いて、
1)耐熱性ポリイミドフィルムと、非結晶性の熱可塑性ポリイミド共重合体フィルムと、金属箔とを、
2)耐熱性ポリイミドフィルムの表面に非結晶性の熱可塑性ポリイミド共重合体層を有するフィルムと、金属箔とを、
若しくは、
3)耐熱性ポリイミドフィルムと、金属箔の表面に非結晶性の熱可塑性ポリイミド共重合体層を有する箔とを、
圧着して、好ましくは加熱圧着して、さらに好ましくは非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上に加熱圧着して、より好ましくは非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上から420℃以下の温度で加熱圧着して、特に好ましくは非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度より10℃、さらに20℃、特に30℃以上高い温度から420℃以下の温度で加熱圧着することにより、ポリイミド金属積層板、好ましくは動的粘弾性の測定より非結晶性を示す熱可塑性ポリイミド共重合体層を有するポリイミド金属積層板を製造することができる。
非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上での加熱圧着時間は、熱可塑性ポリイミド共重合体の非結晶性が非結晶性のままで圧着される時間であればよく、又は熱可塑性ポリイミド共重合体の非結晶性が結晶性になる時間であってもよく、例えば、0秒を超えていればよく、好ましくは0.001秒以上、さらに好ましくは0.05秒以上、より好ましくは0.1秒以上であればよい。
ポリイミド金属積層板は、熱可塑性ポリイミド共重合体のガラス転移温度以上から420℃以下の温度で加熱圧着して、特に好ましくは熱可塑性ポリイミド共重合体のガラス転移温度より10℃、さらに20℃、特に30℃以上高い温度から420℃以下の温度で加熱圧着することにより、密着性に優れるポリイミド金属積層板を得ることができる。
ポリイミド金属積層板の熱可塑性ポリイミド共重合体層が非結晶性を示すの判断は、金属箔を除去して得られる樹脂部分の動的粘弾性の測定結果より判断することができるが、前記測定が困難な場合には、熱可塑性ポリイミド共重合体フィルムを作成し、ラミネート条件で加熱処理を行ったフィルムを測定することにより判断することができる。
The polyimide metal laminate which is a material in the middle for producing the heat-resistant polyimide metal laminate of the present invention,
Using a laminator
1) A heat-resistant polyimide film, an amorphous thermoplastic polyimide copolymer film, and a metal foil,
2) A film having a non-crystalline thermoplastic polyimide copolymer layer on the surface of a heat-resistant polyimide film, and a metal foil,
Or
3) A heat-resistant polyimide film and a foil having a non-crystalline thermoplastic polyimide copolymer layer on the surface of the metal foil,
Crimping, preferably thermocompression bonding, more preferably thermocompression bonding above the glass transition temperature of the amorphous thermoplastic polyimide copolymer, more preferably amorphous thermoplastic polyimide copolymer glass It is thermocompression-bonded at a temperature not lower than the transition temperature and not higher than 420 ° C., particularly preferably 10 ° C., more preferably 20 ° C., particularly not lower than 30 ° C. higher than the glass transition temperature of the amorphous thermoplastic polyimide copolymer. A polyimide metal laminate, preferably a polyimide metal laminate having a thermoplastic polyimide copolymer layer exhibiting non-crystallinity from the measurement of dynamic viscoelasticity, can be produced by thermocompression bonding at a temperature of 5 ° C.
The thermocompression bonding time at or above the glass transition temperature of the amorphous thermoplastic polyimide copolymer may be a time during which the noncrystalline property of the thermoplastic polyimide copolymer remains noncrystalline, or heat It may be the time when the non-crystallinity of the plastic polyimide copolymer becomes crystalline. For example, it may be longer than 0 seconds, preferably 0.001 seconds or more, more preferably 0.05 seconds or more, more Preferably, it may be 0.1 seconds or longer.
The polyimide metal laminate is thermocompression bonded at a temperature not lower than the glass transition temperature of the thermoplastic polyimide copolymer and not higher than 420 ° C., particularly preferably 10 ° C. from the glass transition temperature of the thermoplastic polyimide copolymer, further 20 ° C., In particular, a polyimide metal laminate having excellent adhesion can be obtained by thermocompression bonding at a temperature of 30 ° C. or higher to 420 ° C. or lower.
The determination that the thermoplastic polyimide copolymer layer of the polyimide metal laminate plate is non-crystalline can be determined from the measurement result of the dynamic viscoelasticity of the resin portion obtained by removing the metal foil. Is difficult, it can be determined by preparing a thermoplastic polyimide copolymer film and measuring the film that has been heat-treated under lamination conditions.

本発明の耐熱性ポリイミド金属積層板は、ポリイミド金属積層板を加熱して、好ましくは窒素やアルゴンなどの不活性ガス雰囲気中で加熱して、動的粘弾性やX線回折強度の測定より非結晶性を示す熱可塑性ポリイミド共重合体層を、動的粘弾性の測定より結晶性を示す熱可塑性ポリイミド共重合体層にかえたものである。
本発明の耐熱性ポリイミド金属積層板において、
ポリイミド金属積層板の加熱条件は、動的粘弾性やX線回折強度の測定より非結晶性を示す熱可塑性ポリイミド共重合体層を、動的粘弾性やX線回折強度の測定より結晶性を示す熱可塑性ポリイミド共重合体層にかえることができる条件であればよく、加熱の温度、加熱の時間、加熱の圧力、加熱の雰囲気、その他の環境を適宜選択して行うことができ、例えば熱可塑性ポリイミド共重合体のガラス転移温度以上、好ましくは熱可塑性ポリイミド共重合体のガラス転移温度より5℃、10℃、15℃、20℃、25℃、30℃、35℃或いは40℃高い温度で行うことができ、特に好ましくは熱可塑性ポリイミド共重合体のガラス転移温度より30℃、40℃或いは50℃から熱可塑性ポリイミド共重合体のガラス転移温度より150℃、120℃、100℃、90℃或いは80℃高い温度範囲、或いはガラス転移温度より400℃以下の温度で行うと、比較的短時間、例えば1分以上、好ましくは3分以上、さらに好ましくは5分以上、特に好ましくは10分以上で行うことができる。
The heat-resistant polyimide metal laminate of the present invention is obtained by heating the polyimide metal laminate, preferably in an inert gas atmosphere such as nitrogen or argon, and measuring the dynamic viscoelasticity or X-ray diffraction intensity. A thermoplastic polyimide copolymer layer exhibiting crystallinity is replaced with a thermoplastic polyimide copolymer layer exhibiting crystallinity by measurement of dynamic viscoelasticity.
In the heat-resistant polyimide metal laminate of the present invention,
The heating conditions for the polyimide metal laminate are: a thermoplastic polyimide copolymer layer that exhibits non-crystallinity from the measurement of dynamic viscoelasticity and X-ray diffraction intensity, and a crystallinity from the measurement of dynamic viscoelasticity and X-ray diffraction intensity. It is sufficient that the conditions can be changed to the thermoplastic polyimide copolymer layer shown, and the heating temperature, the heating time, the heating pressure, the heating atmosphere, and other environments can be selected as appropriate, for example, heat More than the glass transition temperature of the plastic polyimide copolymer, preferably 5 ° C., 10 ° C., 15 ° C., 20 ° C., 25 ° C., 30 ° C., 35 ° C. or 40 ° C. higher than the glass transition temperature of the thermoplastic polyimide copolymer Particularly preferred is 30 ° C. from the glass transition temperature of the thermoplastic polyimide copolymer, 40 ° C. or 50 ° C. to 150 ° C. from the glass transition temperature of the thermoplastic polyimide copolymer. When carried out at a temperature range higher than 0 ° C, 100 ° C, 90 ° C or 80 ° C, or 400 ° C or lower than the glass transition temperature, it is relatively short time, for example, 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes. As mentioned above, it can carry out especially preferably in 10 minutes or more.

本発明の耐熱性ポリイミド金属積層板は、金属箔は片面或いは両面に金属箔を有する。
本発明の耐熱性ポリイミド金属積層板において、
ポリイミド金属積層板の加熱は、公知の種々の装置を使用して行うことができ、熱風炉、赤外線加熱炉などの炉、イナートオーブンなどのオーブン、ラミネート装置など加熱装置を適宜選択して行うことができる。
In the heat-resistant polyimide metal laminate of the present invention, the metal foil has a metal foil on one side or both sides.
In the heat-resistant polyimide metal laminate of the present invention,
Heating of the polyimide metal laminate can be performed using various known devices, and a heating device such as a furnace such as a hot air oven or an infrared heating furnace, an oven such as an inert oven, or a laminating device is appropriately selected. Can do.

耐熱性ポリイミドフィルムの表面に熱可塑性ポリイミド共重合体層を有する多層フィルムは、公知の方法で得ることができる。
耐熱性ポリイミドフィルム或いは非熱可塑性ポリイミドの前駆体のフィルムに、熱可塑性ポリイミド共重合体又はこれらの前駆体の溶液を塗工し、必要に応じてイミド化するための加熱を行うことで得ることができる。
耐熱性ポリイミドフィルムは、片面に金属箔を有する耐熱性ポリイミドフィルム、片面に金属箔を接着剤層を介して有する耐熱性ポリイミドフィルム、片面に金属箔を本発明で用いる熱可塑性ポリイミド共重合体層を介して有する耐熱性ポリイミドフィルムを用いることができる。これらを用いると両面に金属箔を有する積層体を得ることができる。
A multilayer film having a thermoplastic polyimide copolymer layer on the surface of the heat-resistant polyimide film can be obtained by a known method.
Obtained by applying a thermoplastic polyimide copolymer or a solution of these precursors to a heat-resistant polyimide film or a non-thermoplastic polyimide precursor film, and heating for imidization as necessary. Can do.
The heat-resistant polyimide film is a heat-resistant polyimide film having a metal foil on one side, a heat-resistant polyimide film having a metal foil on one side via an adhesive layer, and a thermoplastic polyimide copolymer layer using the metal foil on one side in the present invention. The heat-resistant polyimide film which has it through can be used. If these are used, the laminated body which has metal foil on both surfaces can be obtained.

金属箔の表面に熱可塑性ポリイミド共重合体層を有する箔は、公知の方法で得ることができる。
金属箔の表面に、熱可塑性ポリイミド共重合体又はこれらの前駆体の溶液を塗工し、必要に応じてイミド化するための加熱を行うことで得ることができる。
A foil having a thermoplastic polyimide copolymer layer on the surface of the metal foil can be obtained by a known method.
It can be obtained by applying a solution of a thermoplastic polyimide copolymer or a precursor thereof onto the surface of the metal foil, and heating for imidization as necessary.

熱可塑性ポリイミド共重合体又はこれらの前駆体の溶液を塗工、塗布する方法としては、公知の方法を用いることができ、例えば、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法などの公知の塗布方法を挙げる事が出来できる。   As a method of applying and applying a solution of a thermoplastic polyimide copolymer or a precursor thereof, a known method can be used, for example, a gravure coating method, a spin coating method, a silk screen method, a dip coating method, Known coating methods such as spray coating method, bar coating method, knife coating method, roll coating method, blade coating method and die coating method can be exemplified.

熱可塑性ポリイミド共重合体は、公知の方法で合成することができ、ランダム重合、ブロック重合、或いはあらかじめ複数のポリイミド前駆体溶液或いはポリイミド溶液を合成しておき、その複数の溶液を混合後反応条件下で混合して均一溶液とする、いずれの方法によっても達成される。   The thermoplastic polyimide copolymer can be synthesized by a known method. Random polymerization, block polymerization, or a plurality of polyimide precursor solutions or polyimide solutions are synthesized in advance, and the plurality of solutions are mixed and then subjected to reaction conditions. It can be achieved by any method of mixing under a homogeneous solution.

熱可塑性ポリイミド共重合体は、酸成分とジアミン成分とを、有機溶媒中、約100℃以下、さらに80℃以下、さらに0〜60℃の温度で、特に20〜60℃の温度で、約0.2〜60時間反応させてポリイミド前駆体の溶液とし、このポリイミド前駆体溶液をドープ液として使用し、そのドープ液の薄膜を形成し、その薄膜から溶媒を蒸発させ除去すると共にポリイミド前駆体をイミド化することにより製造することができる。またポリイミド前駆体溶液に、イミド化反応触媒として各種塩基性化合物を添加することも好適に行われる。
また溶解性に優れるポリイミドでは、ポリイミド前駆体溶液を150〜250℃に加熱するか、またはイミド化剤を添加して150℃以下、特に15〜50℃の温度で反応させて、イミド環化した後溶媒を蒸発させる、もしくは貧溶媒中に析出させて粉末とした後、該粉末を有機溶液に溶解してポリイミドの有機溶媒溶液を得ることができる。
The thermoplastic polyimide copolymer contains an acid component and a diamine component in an organic solvent at a temperature of about 100 ° C. or lower, further 80 ° C. or lower, further 0 to 60 ° C., particularly 20 to 60 ° C. Reaction for 2 to 60 hours to form a polyimide precursor solution, using this polyimide precursor solution as a dope solution, forming a thin film of the dope solution, evaporating and removing the solvent from the thin film and removing the polyimide precursor It can be produced by imidization. It is also preferable to add various basic compounds as an imidization reaction catalyst to the polyimide precursor solution.
Moreover, in the polyimide which is excellent in solubility, the polyimide precursor solution is heated to 150 to 250 ° C., or an imidizing agent is added and reacted at a temperature of 150 ° C. or less, particularly 15 to 50 ° C., to imide cyclization. After the solvent is evaporated or precipitated into a poor solvent to form a powder, the powder can be dissolved in an organic solution to obtain an organic solvent solution of polyimide.

ポリイミド溶液或いはポリイミド前駆体溶液の重合反応を実施するに際して、有機極性溶媒中の全モノマ−の濃度は、使用する目的や製造する目的に応じて適宜選択すればよく、例えば、有機極性溶媒中の全モノマ−の濃度が1〜15質量%、特に2〜8質量%となる割合であることが好ましい。   In carrying out the polymerization reaction of the polyimide solution or the polyimide precursor solution, the concentration of all monomers in the organic polar solvent may be appropriately selected according to the purpose of use and the purpose of production. For example, in the organic polar solvent It is preferable that the concentration of the total monomer is 1 to 15% by mass, particularly 2 to 8% by mass.

ポリイミド溶液或いはポリイミド前駆体溶液の重合反応を実施するに際して、溶液粘度は、使用する目的(塗布、流延など)や製造する目的に応じて適宜選択すればよく、ポリアミック(ポリイミド前駆体)酸溶液は、30℃で測定した回転粘度が、約0.1〜5000ポイズ、特に0.5〜2000ポイズ、さらに好ましくは1〜2000ポイズ程度のものであることが、作業性の面から好ましい。したがって、前記の重合反応は、生成するポリアミック酸が上記のような粘度を示す程度にまで実施することが望ましい。
上記の方法でポリイミド溶液或いはポリイミド前駆体溶液を製造し、それに新たに有機溶媒を加え、希釈して用いることができる。
When carrying out the polymerization reaction of the polyimide solution or the polyimide precursor solution, the solution viscosity may be appropriately selected according to the purpose of use (coating, casting, etc.) and the purpose of production. Polyamic (polyimide precursor) acid solution It is preferable from the viewpoint of workability that the rotational viscosity measured at 30 ° C. is about 0.1 to 5000 poise, particularly 0.5 to 2000 poise, more preferably about 1 to 2000 poise. Therefore, it is desirable to carry out the polymerization reaction to such an extent that the produced polyamic acid exhibits the above viscosity.
A polyimide solution or a polyimide precursor solution is produced by the above method, and an organic solvent is newly added to the solution to dilute it.

熱可塑性ポリイミド共重合体は、ジアミン成分とテトラカルボン酸二無水物の略等モル量、ジアミン成分が少し過剰な量或いは酸成分が少し過剰な量を、有機溶媒中で反応させてポリイミド前駆体の溶液(均一な溶液状態が保たれていれば一部がイミド化されていてもよい)を得ることができる。
熱可塑性ポリイミド共重合体は、アミン末端を封止するためにジカルボン酸無水物、例えば、無水フタル酸およびその置換体、ヘキサヒドロ無水フタル酸およびその置換体、無水コハク酸およびその置換体など、特に、無水フタル酸を添加して合成することができる。
The thermoplastic polyimide copolymer is a polyimide precursor obtained by reacting an approximately equimolar amount of a diamine component and a tetracarboxylic dianhydride, a slight excess amount of a diamine component or a slight excess amount of an acid component in an organic solvent. (A part of the solution may be imidized as long as a uniform solution state is maintained).
Thermoplastic polyimide copolymers are used for diamine anhydrides, such as phthalic anhydride and its substitution, hexahydrophthalic anhydride and its substitution, succinic anhydride and its substitution, etc. It can be synthesized by adding phthalic anhydride.

熱可塑性ポリイミド共重合体は、有機溶媒中、ジアミン(アミノ基のモル数として)の使用量が酸無水物の全モル数(テトラ酸二無水物とジカルボン酸無水物の酸無水物基としての総モルとして)に対する比として、0.95〜1.05、特に0.98〜1.02、そのなかでも特に0.99〜1.01であることが好ましい。ジカルボン酸無水物を使用する場合の使用量はテトラカルボン酸二無水物の酸無水物基モル量に対する比として、0.05以下であるような割合の各成分を反応させることができる。   In the thermoplastic polyimide copolymer, the amount of diamine (as the number of moles of amino group) used in the organic solvent is the total number of moles of acid anhydride (as the acid anhydride group of tetraacid dianhydride and dicarboxylic acid anhydride). The ratio to the total mole) is preferably 0.95 to 1.05, particularly 0.98 to 1.02, and particularly preferably 0.99 to 1.01. When the dicarboxylic acid anhydride is used, each component can be reacted at a ratio of 0.05 or less as a ratio of the tetracarboxylic dianhydride to the molar amount of the acid anhydride group.

ポリイミド前駆体のゲル化を制限する目的でリン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマー)濃度に対して0.01〜1%の範囲で添加することができる。
また、イミド化促進の目的で、ドープ液中に塩基性有機化合物を添加することができる。例えば、イミダゾール、2−イミダゾール、1,2−ジメチルイミダゾール、2−フェニルイミダゾール、ベンズイミダゾール、イソキノリン、置換ピリジンなどをポリアミック酸に対して0.05〜10重量%、特に0.1〜2重量%の割合で使用することができる。これらは比較的低温でポリイミドフィルムを形成するため、イミド化が不十分となることを避けるために使用することができる。
また、接着強度の安定化の目的で、熱融着性ポリイミド用ポリアミック酸溶液に有機アルミニウム化合物、無機アルミニウム化合物または有機錫化合物を添加してもよい。例えば水酸化アルミニウム、アルミニウムトリアセチルアセトナートなどをポリアミック酸に対してアルミニウム金属として1ppm以上、特に1〜1000ppmの割合で添加することができる。
For the purpose of limiting the gelation of the polyimide precursor, a phosphorus stabilizer such as triphenyl phosphite, triphenyl phosphate, etc. is in the range of 0.01 to 1% with respect to the solid content (polymer) concentration during polyamic acid polymerization. Can be added.
For the purpose of promoting imidization, a basic organic compound can be added to the dope solution. For example, imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole, benzimidazole, isoquinoline, substituted pyridine and the like are 0.05 to 10% by weight, particularly 0.1 to 2% by weight, based on the polyamic acid. Can be used in proportions. Since these form a polyimide film at a relatively low temperature, they can be used to avoid insufficient imidization.
Further, for the purpose of stabilizing the adhesive strength, an organoaluminum compound, an inorganic aluminum compound or an organotin compound may be added to the polyamic acid solution for heat-fusible polyimide. For example, aluminum hydroxide, aluminum triacetylacetonate or the like can be added in an amount of 1 ppm or more, particularly 1 to 1000 ppm as an aluminum metal with respect to the polyamic acid.

ポリイミド或いはポリイミド前駆体の製造に使用する有機溶媒は、これらを合成できる公知の有機溶媒を用いることが出来、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、フェノール類、クレゾール類などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。   As the organic solvent used for the production of the polyimide or the polyimide precursor, a known organic solvent capable of synthesizing these can be used. N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, N-methylcaprolactam, phenols, cresols and the like can be mentioned. These organic solvents may be used alone or in combination of two or more.

本発明の耐熱性ポリイミド金属積層板は、熱融着性を有する多層ポリイミドフィルムおよび金属箔が強固に、好ましくはは90°剥離強度が1.0kgf/cm以上で積層され、セラミック、耐熱性ポリイミドフィルム、金属などの他の基材と常温だけでなく300℃程度の加熱時においても接着することがなく、例えば他の耐熱性ポリイミドフィルムと300℃程度の温度で加圧下に積層しても90°剥離強度が20gf/cm以下である。
本発明の片面金属箔積層板は、成形加工性が良好で、そのまま穴あけ加工、折り曲げ加工や絞り加工、金属配線形成、配線上への電子回路の熱圧着などを行うことができる。
The heat-resistant polyimide metal laminate of the present invention comprises a multilayered polyimide film having a heat-fusible property and a metal foil, preferably laminated with a 90 ° peel strength of 1.0 kgf / cm or more. It does not adhere to other base materials such as films and metals not only at room temperature but also when heated at about 300 ° C., for example, even if laminated with other heat resistant polyimide film under pressure at a temperature of about 300 ° C. ° Peel strength is 20 gf / cm or less.
The single-sided metal foil laminate of the present invention has good moldability, and can be directly subjected to drilling, bending, drawing, metal wiring formation, electronic circuit thermocompression bonding on the wiring, and the like.

本発明の耐熱性ポリイミド金属積層板は、プリント配線板、フレキシブルプリント基板、TAB、COF、COB等の電子部品や電子機器類の配線基板材料として用いることができる。   The heat-resistant polyimide metal laminate of the present invention can be used as a wiring board material for electronic components such as printed wiring boards, flexible printed boards, TAB, COF, and COB and electronic devices.

熱可塑性ポリイミド共重合体のガラス転移温度は、動的粘弾性の測定より求めることができる。   The glass transition temperature of the thermoplastic polyimide copolymer can be determined by measurement of dynamic viscoelasticity.

以下、本発明を実施例に基づき、さらに詳細に説明する。但し、本発明は実施例により制限されるものでない。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the examples.

以下の各例において、部は質量部を意味する。
以下の各例において、物性評価および銅箔積層フィルムの剥離強度は以下の方法に従って測定した。
1)フィルムのガラス転移温度(℃):Rheometric Scientific, Inc.製 Rheometrics Solid Analyzer IIを用いて、動的粘弾性測定(昇温速度10℃/分、周波数6.28rad/秒)tanδのピーク温度により評価した。
2)動的粘弾性測定:Rheometric Scientific, Inc.製 Rheometrics Solid Analyzer IIを用いて、昇温速度10℃/分、周波数6.28rad/秒の条件で行った。
フィルムの結晶化の有無は、ガラス転移温度以上での貯蔵弾性率の保持傾向により評価した。
ポリイミドフィルムの動的粘弾性測定(E’)の測定図で、図1(a)には結晶性の判断例を、図1(b)には非結晶性の判断例を示す。
図1(a)の結晶性の例では、Tg後にE’が急激に低下することなく緩やかに低下し、又はTg後に温度が高くなるにつれ、E’が急な低下、緩やかな低下、さらに低下する傾向を示すのに対し、 図1(b)の非結晶性の例では、Tg後にE’が急激に低下している。Tg後のE’の低下傾向により、結晶性と非結晶性を判断できる。
3)フィルムの結晶化度:リガク社製 回転対陰極方X線回折装置RINT2500型を用いて、透過法でX線回折強度を測定し、Ruland法を用いて結晶化度を算出した。
4)吸湿半田耐熱性:23℃−60%RHで24時間調湿したポリイミド金属積層板を、各温度(270℃、300℃、310℃、340℃)の半田槽へ10秒間フロートし、発泡や膨れの有無を目視で確認した。
発泡及び膨れが認められないものを問題なしと判断した。
In each of the following examples, “part” means “part by mass”.
In each of the following examples, the physical property evaluation and the peel strength of the copper foil laminated film were measured according to the following methods.
1) Glass transition temperature (° C.) of film: Rheometric Scientific, Inc. Using a Rheometrics Solid Analyzer II manufactured by the company, dynamic viscoelasticity measurement (temperature increase rate: 10 ° C./min, frequency: 6.28 rad / sec) was evaluated based on the peak temperature of tan δ.
2) Dynamic viscoelasticity measurement: Rheometric Scientific, Inc. Using a manufactured Rheometrics Solid Analyzer II, the heating rate was 10 ° C./min and the frequency was 6.28 rad / sec.
The presence or absence of crystallization of the film was evaluated by the retention tendency of the storage elastic modulus above the glass transition temperature.
FIGS. 1A and 1B show measurement examples of dynamic viscoelasticity measurement (E ′) of a polyimide film, and FIG. 1B shows an example of non-crystalline determination.
In the crystallinity example of FIG. 1 (a), E ′ decreases slowly without decreasing rapidly after Tg, or E ′ decreases rapidly, gradually decreases, and further decreases as the temperature increases after Tg. In contrast, in the non-crystalline example of FIG. 1B, E ′ rapidly decreases after Tg. The crystallinity and non-crystallinity can be judged from the decreasing tendency of E ′ after Tg.
3) Crystallinity of film: X-ray diffraction intensity was measured by a transmission method using a rotating counter-cathode X-ray diffractometer RINT2500 manufactured by Rigaku Corporation, and a crystallinity was calculated using a Ruland method.
4) Moisture-absorbing solder heat resistance: Polyimide metal laminates conditioned at 23 ° C-60% RH for 24 hours are floated for 10 seconds in solder baths at various temperatures (270 ° C, 300 ° C, 310 ° C, 340 ° C), and foamed. The presence or absence of blistering was confirmed visually.
It was judged that there was no problem when foaming and swelling were not observed.

(参考例1:耐熱性ポリイミドフィルム用ポリイミドの製造)
N−メチル−2−ピロリドン中でパラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマ−濃度が18%(重量%、以下同じ)になるように加え、50℃で3時間反応させた。得られたポリアミック酸溶液の25℃における溶液粘度は、約1680ポイズであった。
(Reference Example 1: Production of polyimide for heat-resistant polyimide film)
Monomer concentration of paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) in N-methyl-2-pyrrolidone at a molar ratio of 1000: 998 Was 18% (weight%, the same applies hereinafter), and reacted at 50 ° C. for 3 hours. The solution viscosity at 25 ° C. of the obtained polyamic acid solution was about 1680 poise.

(参考例2:熱可塑性ポリイミド共重合体の製造)
N−メチル−2−ピロリドン中で1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)および3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:200:800のモル比で加え、モノマ−濃度が18%になるように、またトリフェニルホスフェ−トをモノマ−重量に対して0.5重量%加え、40℃で3時間反応させた。得られたポリアミック酸溶液の25℃における溶液粘度は、約1680ポイズであった。
TPE−Rとa−BPDAとから得られるポリイミドは粘弾性の測定の結果、非結晶性であり、TPE−Rとs−BPDAとから得られるポリイミドは粘弾性の測定の結果、結晶性であった。
(Reference Example 2: Production of thermoplastic polyimide copolymer)
1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) in N-methyl-2-pyrrolidone and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) is added at a molar ratio of 1000: 200: 800 to give a monomer concentration of 18% and triphenylphosphine. The fat was added at 0.5% by weight with respect to the monomer weight, and reacted at 40 ° C. for 3 hours. The solution viscosity at 25 ° C. of the obtained polyamic acid solution was about 1680 poise.
The polyimide obtained from TPE-R and a-BPDA is non-crystalline as a result of measurement of viscoelasticity, and the polyimide obtained from TPE-R and s-BPDA is crystalline as a result of measurement of viscoelasticity. It was.

(参考例3:熱圧着性ポリイミドフィルムの製造)
三層押出し成形用ダイス(マルチマニホ−ルド型ダイス)を設けた製膜装置を使用し、参考例1及び参考例2で得たポリアミック酸溶液を三層押出ダイスの厚みを変えて金属製支持体上に流延し、140℃の熱風で連続的に乾燥した後、剥離して自己支持性フィルムを形成した。この自己支持性フィルムを支持体から剥離した後加熱炉で150℃から450℃まで徐々に昇温して溶媒の除去、イミド化を行って、厚み25μmの長尺状の3層構造の熱圧着性ポリイミドフィルムをロ−ルに巻き取った。
3層構造の熱圧着性ポリイミドフィルムの厚み構成(熱可塑性/耐熱性/熱可塑性)は、4μm/17μm/4μmである。
(Reference Example 3: Production of thermocompression bonding polyimide film)
Using a film forming apparatus provided with a three-layer extrusion die (multi-manifold type die), the polyamic acid solution obtained in Reference Example 1 and Reference Example 2 was used to change the thickness of the three-layer extrusion die and to make a metal support. The film was cast on the substrate, dried continuously with hot air at 140 ° C., and then peeled to form a self-supporting film. After peeling this self-supporting film from the support, the temperature is gradually raised from 150 ° C. to 450 ° C. in a heating furnace to remove the solvent and imidize, and thermocompression bonding of a long three-layer structure with a thickness of 25 μm The conductive polyimide film was wound up on a roll.
The thickness structure (thermoplastic / heat resistance / thermoplasticity) of the thermocompression bonding polyimide film having a three-layer structure is 4 μm / 17 μm / 4 μm.

(参考例4:熱可塑性フィルムAの作製)
参考例3で得られる長尺状の熱圧着性ポリイミドフィルムの熱可塑性ポリイミド共重合体の粘弾性は、直接測定できないため、参考例2のポリアミック酸溶液より熱可塑性フィルムを製造し、この熱可塑性フィルムの粘弾性を測定して非結晶性又は結晶性を判断するようにした。
参考例2で得られた熱可塑性ポリイミド共重合体の前駆体を、ガラス板上へ乾燥後の厚みが50μとなるように流延し、140℃の熱風で乾燥した後、剥離して自己支持性フィルムを形成した。この自己支持性フィルムを四方テンターへ張りつけ、150℃から350℃まで徐々に昇温して溶媒の除去、イミド化を行って熱可塑性フィルムAを得た。
熱可塑性フィルムAのガラス転移温度は、240(℃)であった。
(Reference Example 4: Production of thermoplastic film A)
Since the viscoelasticity of the thermoplastic polyimide copolymer of the long thermocompression-bondable polyimide film obtained in Reference Example 3 cannot be directly measured, a thermoplastic film is produced from the polyamic acid solution of Reference Example 2, and this thermoplasticity The viscoelasticity of the film was measured to judge non-crystalline or crystalline.
The thermoplastic polyimide copolymer precursor obtained in Reference Example 2 was cast on a glass plate so that the thickness after drying was 50 μm, dried with hot air at 140 ° C., and then peeled and self-supported. An adhesive film was formed. This self-supporting film was attached to a four-way tenter, and the temperature was gradually raised from 150 ° C. to 350 ° C. to remove the solvent and imidize to obtain a thermoplastic film A.
The glass transition temperature of the thermoplastic film A was 240 (° C.).

(参考例5:熱可塑性ポリイミドの製造)
N−メチル−2−ピロリドン中で1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)とを1000:1000のモル比で加え、モノマ−濃度が18%になるように、またトリフェニルホスフェ−トをモノマ−重量に対して0.5重量%加え、40℃で3時間反応させた。得られたポリアミック酸溶液を得た。
(Reference Example 5: Production of thermoplastic polyimide)
1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) in N-methyl-2-pyrrolidone Was added at a molar ratio of 1000: 1000 so that the monomer concentration was 18%, and triphenyl phosphate was added at 0.5% by weight based on the monomer weight, and the mixture was reacted at 40 ° C. for 3 hours. . The obtained polyamic acid solution was obtained.

(実施例1)
(片面銅箔ポリイミド積層板の製造)
ロ−ル巻きした電解銅箔(日鉱マテリアル製、BHY−22B−T、厚み12μm)と、ダブルベルトプレス直前のインラインで200℃の熱風で30秒間加熱して予熱した参考例3で製造の熱圧着性ポリイミドフィルムと、ユーピレックス25Sとを積層し、加熱ゾーンの温度(最高加熱温度:330℃、冷却ゾーンの温度(最低冷却温度:180℃)、連続的に圧着圧力:3.9MPa、圧着時間2分で、連続的に熱圧着−冷却して積層して、片面銅箔ポリイミド積層板(幅:540mm、長さ:1000m)を巻き取りロールに巻き取った。
Example 1
(Manufacture of single-sided copper foil polyimide laminates)
Rolled electrolytic copper foil (manufactured by Nikko Materials, BHY-22B-T, thickness 12 μm) and heat produced in Reference Example 3 preheated by heating with hot air at 200 ° C. for 30 seconds in-line immediately before double belt press A pressure-sensitive polyimide film and Upilex 25S are laminated, and the heating zone temperature (maximum heating temperature: 330 ° C., cooling zone temperature (minimum cooling temperature: 180 ° C.), continuously crimping pressure: 3.9 MPa, crimping time In 2 minutes, it was continuously laminated by thermocompression-cooling and cooling, and a single-sided copper foil polyimide laminate (width: 540 mm, length: 1000 m) was wound on a take-up roll.

(耐熱性ポリイミド金属積層板の製造)
得られたロール巻状の片面銅箔ポリイミド積層板を、窒素雰囲気下で室温から300℃まで1時間で昇温し、300℃で16時間保持し、耐熱性ポリイミド金属積層板を得た。同時に、参考例4で得られた熱可塑性フィルムAをテンターに張りつけて同じ処理を行い、加熱処理フィルムAを得た。処理した耐熱性ポリイミド金属積層板の、23℃−60%RH−24Hr調湿後の半田耐熱性を評価した結果、310℃であった。また、加熱処理フィルムAのX線回折を測定し、結果を図2に示す。図2より結晶化に伴うピークが見られ結晶化度は7%と算出した。さらに、加熱処理フィルムAの動的粘弾性の測定し、結果を図3に示す。図3よりガラス転移温度以上の温度で結晶化に起因する弾性率の変化が認められた。
(Manufacture of heat-resistant polyimide metal laminates)
The roll-rolled single-sided copper foil polyimide laminate thus obtained was heated from room temperature to 300 ° C. over 1 hour in a nitrogen atmosphere and held at 300 ° C. for 16 hours to obtain a heat-resistant polyimide metal laminate. At the same time, the thermoplastic film A obtained in Reference Example 4 was attached to a tenter and the same treatment was performed to obtain a heat-treated film A. It was 310 degreeC as a result of evaluating the solder heat resistance of the heat-resistant polyimide metal laminated board processed after 23 degreeC-60% RH-24Hr humidity control. Moreover, the X-ray diffraction of the heat processing film A was measured, and a result is shown in FIG. The peak accompanying crystallization was seen from FIG. 2, and the crystallinity was calculated as 7%. Furthermore, the dynamic viscoelasticity of the heat-treated film A was measured, and the results are shown in FIG. From FIG. 3, a change in elastic modulus due to crystallization was observed at a temperature higher than the glass transition temperature.

(実施例2)
実施例1で得られたロール巻状の片面銅箔ポリイミド積層板を、窒素雰囲気下で室温から300℃まで1時間で昇温し、300℃で2時間保持し、耐熱性ポリイミド金属積層板を得た。同時に参考例4で得られた熱可塑性フィルムAをテンターに張りつけて同じ処理を行い、加熱処理フィルムBを得た。処理した耐熱性ポリイミド金属積層板の半田耐熱性を評価した結果、310℃であった。また、加熱処理フィルムBの動的粘弾性を測定し、結果を図4に示す。図4よりガラス転移温度以上の温度で結晶化に起因する弾性率の変化が認められた。
(Example 2)
The roll-rolled single-sided copper foil polyimide laminate obtained in Example 1 was heated from room temperature to 300 ° C. in 1 hour in a nitrogen atmosphere and held at 300 ° C. for 2 hours to obtain a heat-resistant polyimide metal laminate. Obtained. At the same time, the thermoplastic film A obtained in Reference Example 4 was attached to a tenter and subjected to the same treatment to obtain a heat-treated film B. It was 310 degreeC as a result of evaluating the solder heat resistance of the processed heat resistant polyimide metal laminated board. Moreover, the dynamic viscoelasticity of the heat processing film B was measured, and a result is shown in FIG. From FIG. 4, a change in elastic modulus due to crystallization was observed at a temperature higher than the glass transition temperature.

(実施例3)
実施例1で得られたロール巻状の片面銅箔ポリイミド積層板を、窒素雰囲気下で室温から350℃まで1時間で昇温し、350℃で4時間保持し、耐熱性ポリイミド金属積層板を得た。同時に参考例4で得られた熱可塑性フィルムAをテンターに張りつけて同じ処理を行い、加熱処理フィルムCを得た。処理した耐熱性ポリイミド金属積層板の、23℃−60%RH−24Hr調湿後の半田耐熱性を評価した結果、340℃でも問題ない。また、加熱処理フィルムCの動的粘弾性を測定し、結果を図5に示す。図5よりガラス転移温度以上の温度で結晶化に起因する弾性率の変化が認められた。
(Example 3)
The roll-rolled single-sided copper foil polyimide laminate obtained in Example 1 was heated from room temperature to 350 ° C. in a nitrogen atmosphere over 1 hour and held at 350 ° C. for 4 hours to obtain a heat-resistant polyimide metal laminate. Obtained. At the same time, the thermoplastic film A obtained in Reference Example 4 was attached to a tenter and subjected to the same treatment to obtain a heat-treated film C. As a result of evaluating the solder heat resistance of the treated heat-resistant polyimide metal laminate after humidity adjustment at 23 ° C.-60% RH-24Hr, there is no problem even at 340 ° C. Moreover, the dynamic viscoelasticity of the heat processing film C was measured, and a result is shown in FIG. From FIG. 5, a change in elastic modulus due to crystallization was observed at a temperature higher than the glass transition temperature.

(比較例1)
参考例5のポリアミック酸溶液を用いて、参考例4と同様にして、熱可塑性フィルムBを得た。熱可塑性フィルムBを実施例1の耐熱性ポリイミド金属積層板の製造と同様の加熱を行い、加熱処理フィルムDを得た。
加熱処理フィルムDの動的粘弾性を測定し、結果を図6に示す。図6より非結晶性であり、結晶化に起因する弾性率の変化は認められなかった。
(Comparative Example 1)
A thermoplastic film B was obtained in the same manner as in Reference Example 4 using the polyamic acid solution of Reference Example 5. The thermoplastic film B was heated in the same manner as in the production of the heat-resistant polyimide metal laminate of Example 1 to obtain a heat-treated film D.
The dynamic viscoelasticity of the heat-treated film D was measured, and the result is shown in FIG. From FIG. 6, it was non-crystalline and no change in elastic modulus due to crystallization was observed.

(比較例2)
(片面銅箔ポリイミド積層板の製造)
ロ−ル巻きした電解銅箔(日鉱マテリアル製、BHY−22B−T、厚み12μm)と、ダブルベルトプレス直前のインラインで200℃の熱風で30秒間加熱して予熱した参考例3で製造の熱圧着性ポリイミドフィルムと、ユーピレックス25Sとを積層し、加熱ゾーンの温度(最高加熱温度:330℃、冷却ゾーンの温度(最低冷却温度:180℃)、連続的に圧着圧力:3.9MPa、圧着時間2分で、連続的に熱圧着−冷却して積層して、片面銅箔ポリイミド積層板(幅:540mm、長さ:1000m)を巻き取りロールに巻き取った。
得られた片面銅箔ポリイミド積層板(加熱未処理)を23℃−60%RH−24Hr調湿後の半田耐熱性を評価した結果、270℃であった。
また、熱可塑性フィルムAのX線回折を測定し、結果を図7に示す。図7より結晶化に伴うピークは認められなかった。さらに、熱可塑性フィルムAの動的粘弾性を測定し、結果を図8に示す。図8よりガラス転移温度以上の温度で結晶化に起因する弾性率の変化は認められなかった。
(Comparative Example 2)
(Manufacture of single-sided copper foil polyimide laminates)
Rolled electrolytic copper foil (manufactured by Nikko Materials, BHY-22B-T, thickness 12 μm) and heat produced in Reference Example 3 preheated by heating with hot air at 200 ° C. for 30 seconds in-line immediately before double belt press A pressure-sensitive polyimide film and Upilex 25S are laminated, and the heating zone temperature (maximum heating temperature: 330 ° C., cooling zone temperature (minimum cooling temperature: 180 ° C.), continuously crimping pressure: 3.9 MPa, crimping time In 2 minutes, it was continuously laminated by thermocompression-cooling and cooling, and a single-sided copper foil polyimide laminate (width: 540 mm, length: 1000 m) was wound on a take-up roll.
It was 270 degreeC as a result of evaluating the solder heat resistance after 23 degreeC-60% RH-24Hr humidity control of the obtained single-sided copper foil polyimide laminated board (heat-unprocessed).
Further, the X-ray diffraction of the thermoplastic film A was measured, and the results are shown in FIG. From FIG. 7, no peak associated with crystallization was observed. Furthermore, the dynamic viscoelasticity of the thermoplastic film A was measured, and the result is shown in FIG. From FIG. 8, no change in elastic modulus due to crystallization was observed at a temperature higher than the glass transition temperature.

(比較例3)
実施例1で得られたロール巻状の片面銅箔ポリイミド積層板を、窒素雰囲気下で室温から250℃まで1時間で昇温し、250℃で4時間保持し、耐熱性ポリイミド金属積層板を得た。同時に参考例4で得られた熱可塑性フィルムAをテンターに張りつけて同じ処理を行い、加熱処理フィルムBを得た。処理した耐熱性ポリイミド金属積層板の半田耐熱性を評価した結果、270℃であった。また、加熱処理フィルムBの動的粘弾性を測定し、結果を図9に示す。図9よりガラス転移温度以上の温度で結晶化に起因する弾性率の変化が認められなかった。
(Comparative Example 3)
The roll-rolled single-sided copper foil polyimide laminate obtained in Example 1 was heated from room temperature to 250 ° C. in 1 hour in a nitrogen atmosphere and held at 250 ° C. for 4 hours to obtain a heat-resistant polyimide metal laminate. Obtained. At the same time, the thermoplastic film A obtained in Reference Example 4 was attached to a tenter and subjected to the same treatment to obtain a heat-treated film B. It was 270 degreeC as a result of evaluating the solder heat resistance of the processed heat resistant polyimide metal laminated board. Moreover, the dynamic viscoelasticity of the heat processing film B was measured, and a result is shown in FIG. From FIG. 9, no change in elastic modulus due to crystallization was observed at a temperature higher than the glass transition temperature.

ポリイミドフィルムの結晶性(a)と非結晶性(b)を示す動的粘弾性の測定の参考測定図である。It is a reference measurement figure of the measurement of dynamic viscoelasticity which shows the crystallinity (a) and non-crystallinity (b) of a polyimide film. 実施例1の加熱処理フィルムAのX線回折のスペクトル図である。2 is a spectrum diagram of X-ray diffraction of the heat-treated film A of Example 1. FIG. 実施例1の加熱処理フィルムAの動的粘弾性の測定図である。3 is a measurement diagram of dynamic viscoelasticity of the heat-treated film A of Example 1. FIG. 実施例2の加熱処理フィルムBの動的粘弾性の測定図である。3 is a measurement diagram of dynamic viscoelasticity of the heat-treated film B of Example 2. FIG. 実施例3の加熱処理フィルムCの動的粘弾性の測定図である。6 is a measurement diagram of dynamic viscoelasticity of the heat-treated film C of Example 3. FIG. 比較例1の加熱処理フィルムDの動的粘弾性の測定図である。6 is a measurement diagram of dynamic viscoelasticity of a heat-treated film D of Comparative Example 1. FIG. 比較例2の熱可塑性フィルムAのX線回折のスペクトル図である。5 is a spectrum diagram of X-ray diffraction of a thermoplastic film A of Comparative Example 2. FIG. 比較例2の熱可塑性フィルムAの動的粘弾性の測定図である。5 is a measurement diagram of dynamic viscoelasticity of a thermoplastic film A of Comparative Example 2. FIG. 比較例3の熱可塑性フィルムAの動的粘弾性の測定図である。6 is a measurement diagram of dynamic viscoelasticity of a thermoplastic film A of Comparative Example 3. FIG.

Claims (5)

動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いてはり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を不活性ガス雰囲気中で加熱して、動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体を動的粘弾性の測定より結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法。
Using the amorphous thermoplastic polyimide copolymer obtained by copolymerizing the component from which the crystalline polyimide is obtained from the measurement of dynamic viscoelasticity and the component from which the amorphous polyimide is obtained,
A polyimide metal laminate is manufactured by laminating a heat-resistant polyimide film and a metal foil with a laminating device through an amorphous thermoplastic polyimide copolymer layer,
Furthermore, the polyimide metal laminate is heated in an inert gas atmosphere, and the amorphous thermoplastic polyimide copolymer is measured from the dynamic viscoelasticity measurement. A method for producing a heat-resistant polyimide metal laminate, characterized by being combined.
動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いて非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上ではり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を不活性ガス雰囲気中で非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上に加熱して、動的粘弾性の測定より非結晶性の熱可塑性ポリイミド共重合体を、動的粘弾性の測定より結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法。
Using the amorphous thermoplastic polyimide copolymer obtained by copolymerizing the component from which the crystalline polyimide is obtained from the measurement of dynamic viscoelasticity and the component from which the amorphous polyimide is obtained,
Lamination of polyimide metal by bonding heat-resistant polyimide film and metal foil to the glass transition temperature of amorphous thermoplastic polyimide copolymer or higher using laminating device via amorphous thermoplastic polyimide copolymer layer Manufacturing the board,
Furthermore, the polyimide metal laminate is heated to a temperature higher than the glass transition temperature of the amorphous thermoplastic polyimide copolymer in an inert gas atmosphere, and the amorphous thermoplastic polyimide copolymer is obtained by measuring dynamic viscoelasticity. A method for producing a heat-resistant polyimide metal laminate, characterized in that a thermoplastic polyimide copolymer exhibiting crystallinity is obtained from measurement of dynamic viscoelasticity.
動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いてはり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を不活性ガス雰囲気中で加熱して、熱可塑性ポリイミド共重合体単体の透過法でのX線回折強度からRuland法で算出される結晶化度が3%以下の非結晶性の熱可塑性ポリイミド共重合体をX線回折強度からRuland法で算出される結晶化度が3%を超えた結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法。
Using the amorphous thermoplastic polyimide copolymer obtained by copolymerizing the component from which the crystalline polyimide is obtained from the measurement of dynamic viscoelasticity and the component from which the amorphous polyimide is obtained,
A polyimide metal laminate is manufactured by laminating a heat-resistant polyimide film and a metal foil with a laminating device through an amorphous thermoplastic polyimide copolymer layer,
Furthermore, when the polyimide metal laminate is heated in an inert gas atmosphere, the crystallinity calculated by the Randland method from the X-ray diffraction intensity of the thermoplastic polyimide copolymer alone is 3% or less. Heat-resistant polyimide metal laminate characterized in that the thermoplastic polyimide copolymer is a thermoplastic polyimide copolymer having a crystallinity of more than 3% calculated from the X-ray diffraction intensity by the Ruland method. A manufacturing method of a board.
動的粘弾性の測定より結晶性ポリイミドが得られる成分と非結晶性ポリイミドが得られる成分とを共重合して得られる非結晶性の熱可塑性ポリイミド共重合体を用いて、
耐熱性ポリイミドフィルムと金属箔とを非結晶性の熱可塑性ポリイミド共重合体層を介してラミネート装置を用いて非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上ではり合わせてポリイミド金属積層板を製造し、
さらにポリイミド金属積層板を不活性ガス雰囲気中で非結晶性の熱可塑性ポリイミド共重合体のガラス転移温度以上に加熱して、熱可塑性ポリイミド共重合体単体の透過法でのX線回折強度からRuland法で算出される結晶化度が3%以下の非結晶性の熱可塑性ポリイミド共重合体を、X線回折強度からRuland法で算出される結晶化度が3%を超えた結晶性を示す熱可塑性ポリイミド共重合体にしたことを特徴とする耐熱性ポリイミド金属積層板の製造方法。
Using the amorphous thermoplastic polyimide copolymer obtained by copolymerizing the component from which the crystalline polyimide is obtained from the measurement of dynamic viscoelasticity and the component from which the amorphous polyimide is obtained,
Lamination of polyimide metal by bonding heat-resistant polyimide film and metal foil to the glass transition temperature of amorphous thermoplastic polyimide copolymer or higher using laminating device via amorphous thermoplastic polyimide copolymer layer Manufacturing the board,
Further, the polyimide metal laminate is heated to a temperature higher than the glass transition temperature of the amorphous thermoplastic polyimide copolymer in an inert gas atmosphere. From the X-ray diffraction intensity in the transmission method of the thermoplastic polyimide copolymer alone, the Rand A non-crystalline thermoplastic polyimide copolymer having a crystallinity calculated by the method of 3% or less, and a crystallinity calculated from the X-ray diffraction intensity by the Ruland method to a crystallinity exceeding 3%. A method for producing a heat-resistant polyimide metal laminate, characterized by comprising a plastic polyimide copolymer.
熱可塑性ポリイミド共重合体は、
動的粘弾性の測定より結晶性ポリイミドが得られる3,3’,4,4’−ビフェニルテトラカルボン酸ニ無水物及び1,3−ビス(4−アミノフェノキシ)ベンゼンを含む成分と、動的粘弾性の測定より非結晶性ポリイミドが得られる2,3,3’,4’−ビフェニルテトラカルボン酸ニ無水物及び1,3−ビス(4−アミノフェノキシ)ベンゼンとを含む成分とを共重合して得られる熱可塑性ポリイミド共重合体であることを特徴とする請求項1〜4のいずれか1項に記載の耐熱性ポリイミド金属積層板の製造方法。
The thermoplastic polyimide copolymer is
A component containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 1,3-bis (4-aminophenoxy) benzene, from which a crystalline polyimide can be obtained by measuring dynamic viscoelasticity; Copolymerizing a component containing 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride and 1,3-bis (4-aminophenoxy) benzene to obtain an amorphous polyimide from the measurement of viscoelasticity The method for producing a heat-resistant polyimide metal laminate according to any one of claims 1 to 4, wherein the thermoplastic polyimide copolymer is obtained by heating.
JP2006196634A 2006-07-19 2006-07-19 Method for producing heat-resistant polyimide metal laminate Active JP4967494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196634A JP4967494B2 (en) 2006-07-19 2006-07-19 Method for producing heat-resistant polyimide metal laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196634A JP4967494B2 (en) 2006-07-19 2006-07-19 Method for producing heat-resistant polyimide metal laminate

Publications (2)

Publication Number Publication Date
JP2008023760A JP2008023760A (en) 2008-02-07
JP4967494B2 true JP4967494B2 (en) 2012-07-04

Family

ID=39114900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196634A Active JP4967494B2 (en) 2006-07-19 2006-07-19 Method for producing heat-resistant polyimide metal laminate

Country Status (1)

Country Link
JP (1) JP4967494B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114642A1 (en) 2007-03-20 2008-09-25 Kaneka Corporation Film and flexible metal-clad laminate
JPWO2009107752A1 (en) * 2008-02-27 2011-07-07 古河電気工業株式会社 Materials for electrical and electronic parts and electrical and electronic parts
KR101702395B1 (en) * 2014-12-30 2017-02-06 주식회사 이녹스 METAL CLAD LAMINATE USING THERMOPLASTIC POLYIMIDE ADHESIVE FILM WITH EXCELLENT HIGH HEAT-RESISTANCE BY Water Absorption

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102622B2 (en) * 1995-02-27 2000-10-23 宇部興産株式会社 Metal foil laminated polyimide film
JP4304854B2 (en) * 2000-09-21 2009-07-29 宇部興産株式会社 Multilayer polyimide film and laminate
JP4457542B2 (en) * 2001-06-22 2010-04-28 宇部興産株式会社 Multi-layer polyimide film with thermocompression bonding, heat-resistant copper-clad board
JP4736389B2 (en) * 2003-10-02 2011-07-27 宇部興産株式会社 Polyimide film with improved slipperiness and substrate using the same

Also Published As

Publication number Publication date
JP2008023760A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4147639B2 (en) Flexible metal foil laminate
JP4362917B2 (en) Metal foil laminate and its manufacturing method
JP4930724B2 (en) Copper-clad laminate
JP5251508B2 (en) Heat-resistant film metal foil laminate and method for producing the same
TWI408202B (en) Followed by sheet and copper foil laminated board
JP2006188025A (en) Copper-clad laminate
JP2001270034A (en) Flexible metal foil laminate
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP2001270036A (en) Flexible metal foil laminate
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP4967494B2 (en) Method for producing heat-resistant polyimide metal laminate
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
JP4257587B2 (en) Flexible metal foil laminate
JP6496812B2 (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal-clad laminate
JP7195848B2 (en) Polyamic acid, polyimide, resin film, metal-clad laminate and manufacturing method thereof
JP2000123512A (en) Magnetic head suspension and its production
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same
JP4894866B2 (en) Multilayer polyimide film and laminate
JP4821411B2 (en) Polyimide film with heat-sealability only on one side, single-sided copper-clad laminate
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP4345187B2 (en) Method for producing flexible metal foil laminate
JP2007230019A (en) Manufacturing method of metal clad laminated sheet
JP2006281517A (en) Manufacturing method of flexible copper clad laminated sheet
JP2004315601A (en) Polyimide film with improved adhesiveness, its preparation method, and its laminate
JP4415950B2 (en) Method for producing flexible metal foil laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4967494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250