JP4894866B2 - Multilayer polyimide film and laminate - Google Patents

Multilayer polyimide film and laminate Download PDF

Info

Publication number
JP4894866B2
JP4894866B2 JP2009030719A JP2009030719A JP4894866B2 JP 4894866 B2 JP4894866 B2 JP 4894866B2 JP 2009030719 A JP2009030719 A JP 2009030719A JP 2009030719 A JP2009030719 A JP 2009030719A JP 4894866 B2 JP4894866 B2 JP 4894866B2
Authority
JP
Japan
Prior art keywords
polyimide
layer
polyimide film
film
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009030719A
Other languages
Japanese (ja)
Other versions
JP2009154541A (en
Inventor
智彦 山本
俊彦 阿武
敏之 西野
隆志 天根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009030719A priority Critical patent/JP4894866B2/en
Publication of JP2009154541A publication Critical patent/JP2009154541A/en
Application granted granted Critical
Publication of JP4894866B2 publication Critical patent/JP4894866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

この発明は、多層ポリイミドフィルム及び多層ポリイミドフィルムと金属層との積層体に関するものであり、特に低熱線膨張性の基体ポリイミド層の片面または両面に特定のポリイミド層が塗布法あるいは多層押出し流延製膜成形法などの成形法により積層されてなる多層ポリイミドフィルムおよびこのフィルムを用いた金属との積層体に関するものである。   The present invention relates to a multilayer polyimide film and a laminate of a multilayer polyimide film and a metal layer, and in particular, a specific polyimide layer is applied on one side or both sides of a low thermal linear expansion base polyimide layer by a coating method or multilayer extrusion casting. The present invention relates to a multilayer polyimide film laminated by a molding method such as a film molding method and a laminate with a metal using this film.

従来、カメラ、パソコン、液晶ディスプレイなどの電子機器類への用途として芳香族ポリイミドフィルムは広く使用されている。芳香族ポリイミドフィルムをフレキシブルプリント板(FPC)やテ−プ・オ−トメイティッド・ボンディング(TAB)などの基板材料として使用するためには、エポキシ樹脂などの接着剤を用いて銅箔を張り合わせる方法が採用されている。   Conventionally, aromatic polyimide films have been widely used as applications for electronic devices such as cameras, personal computers, and liquid crystal displays. In order to use an aromatic polyimide film as a substrate material such as a flexible printed board (FPC) or tape-automated bonding (TAB), a copper foil is bonded using an adhesive such as an epoxy resin. The method is adopted.

芳香族ポリイミドフィルムは耐熱性、機械的強度、電気的特性などが優れているが、エポキシ樹脂などの接着剤の耐熱性等が劣るため、本来のポリイミドの特性を損なうことが指摘されている。このような問題を解決するために、接着剤を使用しないでポリイミドフィルムに銅を電気メッキしたり、銅箔にポリアミック酸溶液を塗布し、乾燥、イミド化したり、熱可塑性のポリイミドを熱圧着させたオ−ルポリイミド基材も開発されている。   Aromatic polyimide films are excellent in heat resistance, mechanical strength, electrical characteristics, etc., but it has been pointed out that since the heat resistance of adhesives such as epoxy resins is inferior, the characteristics of the original polyimide are impaired. In order to solve such problems, copper is electroplated on the polyimide film without using an adhesive, or a polyamic acid solution is applied to the copper foil, followed by drying, imidization, or thermocompression bonding of thermoplastic polyimide. An all-polyimide substrate has also been developed.

また、ポリイミドフィルムと金属箔との間にフィルム状ポリイミド接着剤をサンドイッチ状に接合させたポリイミドラミネ−トおよびその製法が知られている(特許文献1)。しかし、このポリイミドラミネ−トは、剥離強度(接着強度)が小さく使用が制限されるという問題がある。   Also known is a polyimide laminate in which a film-like polyimide adhesive is sandwiched between a polyimide film and a metal foil, and a method for producing the same (Patent Document 1). However, this polyimide laminate has a problem that its peel strength (adhesive strength) is small and its use is restricted.

これらの問題点を解決するため、出願人らにより特許文献2や特許文献3で多層押し出し法によるポリイミドフィルムの製造方法および材料が提案された。これらによって多くの問題点が解決されたが、公報に示された薄層部分に用いられる組成の材料では、塩素系の溶剤例えば塩化メチレンへの浸析により表面が溶解(フィルムの白化現象発生)する場合があり用途によっては問題となる場合がある。また、前記公報に具体的示されたモノマ−組成では溶融温度の細かい調整が困難である。実施例に示されるようなアミン末端封止剤の導入により接着性は改善されるが、反面上記溶剤での溶解、白化が促進されることがわかった。本溶剤は、配線基板の製造時の洗浄工程に用いられるものと思われる。
米国特許第4543295号公報 特公平7−102648号公報 特開平10−138318号公報
In order to solve these problems, the applicants proposed a method and a material for producing a polyimide film by multilayer extrusion in Patent Document 2 and Patent Document 3. Many problems were solved by these, but in the material of the composition used for the thin layer portion disclosed in the publication, the surface was dissolved by leaching into a chlorinated solvent such as methylene chloride (whitening of the film occurred) May cause problems depending on the application. Further, fine adjustment of the melting temperature is difficult with the monomer composition specifically shown in the above publication. Although the adhesiveness was improved by the introduction of an amine end-capping agent as shown in the examples, it was found that dissolution and whitening in the above solvent were promoted. This solvent is considered to be used in the cleaning process during the production of the wiring board.
U.S. Pat. No. 4,543,295 Japanese Patent Publication No. 7-102648 Japanese Patent Laid-Open No. 10-138318

この発明の目的は、比較的緩和な条件で金属箔と積層でき、塩素系の溶剤に対する耐久性が優れ、かつガラス転移温度を幅広く制御できることにより接着条件を幅広く選択でき、かつ高温の使用にも耐えうることを多層ポリイミドフィルムおよびそのフィルムを用いた金属積層体を提供するものである。   The object of the present invention is that it can be laminated with a metal foil under relatively mild conditions, has excellent durability against chlorinated solvents, and can control the glass transition temperature widely, so that a wide range of bonding conditions can be selected, and it can be used at high temperatures. The present invention provides a multilayer polyimide film and a metal laminate using the film that can withstand.

この発明は、低熱膨張性の基体ポリイミド(X)層の少なくとも片面に下記式   The present invention provides the following formula on at least one side of the low thermal expansion base polyimide (X) layer.

Figure 0004894866
Figure 0004894866

[式中、Ar1は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物残基とが50:50〜90:10のモル比である芳香族テトラカルボン酸二無水物残基であり、Ar21,3−ビス(4−アミノフェノキシ)ベンゼンである芳香族ジアミン残基である。]で示されるイミド単位を有する薄層ポリイミド(Y)を有する多層ポリイミドフィルムに関するものである。また、この発明は、前記の多層ポリイミドフィルムと金属層とが、前記薄層ポリイミド(Y)を介して積層されてなる積層体に関するものである。 [In the formula, Ar 1 is 50 of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride residue: It is an aromatic tetracarboxylic dianhydride residue having a molar ratio of 50 to 90:10, and Ar 2 is an aromatic diamine residue that is 1,3-bis (4-aminophenoxy) benzene . ] It is related with the multilayer polyimide film which has the thin layer polyimide (Y) which has an imide unit shown. Moreover, this invention relates to the laminated body formed by laminating | stacking the said multilayer polyimide film and a metal layer through the said thin layer polyimide (Y).

この発明によれば、以上のような構成を有しているため、比較的緩和な条件で金属箔と積層でき、塩素系の溶剤に対する耐久性が優れ、かつガラス転移温度を幅広く制御できることにより接着条件を幅広く選択でき、かつ高温の使用にも耐えうる多層ポリイミドフィルムを得ることができる。   According to this invention, since it has the above-described configuration, it can be laminated with a metal foil under relatively relaxed conditions, has excellent durability against chlorinated solvents, and can be widely controlled by controlling the glass transition temperature. A multilayer polyimide film that can select a wide range of conditions and can withstand high temperature use can be obtained.

また、この発明によれば、塩素系の溶剤に対する耐久性が優れ、かつ高温の使用にも耐えうる金属層積層ポリイミドフィルム積層体(フレキシブル金属箔積層体)を得ることができる。   Moreover, according to this invention, the durability with respect to a chlorine-type solvent is excellent, and the metal layer laminated polyimide film laminated body (flexible metal foil laminated body) which can endure use of high temperature can be obtained.

以下にこの発明の好ましい態様を列記する。
1)基体ポリイミドが、下記式
The preferred embodiments of the present invention are listed below.
1) The base polyimide has the following formula

Figure 0004894866
[式中、m/n(モル比)=100/0〜70/30である。]で示されるイミド単位を有する請求項1に記載の多層ポリイミドフィルム。
Figure 0004894866
[Wherein, m / n (molar ratio) = 100/0 to 70/30. ] The multilayer polyimide film of Claim 1 which has an imide unit shown by these.

2)基体ポリイミド(X)を与える基体層用のポリアミック酸溶液と薄層ポリイミド(Y)を与える薄層用ポリアミック酸溶液とを共押出し流延製膜法によって基体ポリイミド(X)層の少なくとも片面に薄層ポリイミド(Y)を積層一体化してなる上記の多層ポリイミドフィルム。
3)基体ポリイミド(X)を与える基体層用のポリアミック酸溶液から形成された自己支持フィルムの少なくとも片面に薄層ポリイミド(Y)を与える薄層用ポリアミック酸溶液を薄く塗布し、加熱乾燥し、イミド化してなる上記の多層ポリイミドフィルム。
2) At least one side of the base polyimide (X) layer by coextrusion casting and casting polyamic acid solution for base layer giving base polyimide (X) and polyamic acid solution for thin layer giving thin layer polyimide (Y) The above multilayer polyimide film obtained by laminating and integrating a thin layer polyimide (Y).
3) Thinly apply the thin layer polyamic acid solution for providing the thin layer polyimide (Y) on at least one surface of the self-supporting film formed from the base layer polyamic acid solution for providing the base polyimide (X), heat-dry, Said multilayer polyimide film formed by imidization.

4)積層が、多層ポリイミドフィルムの薄層ポリイミド(Y)層と金属箔とを重ね合わせた後、加熱圧着してなる上記の積層体。
5)積層が、多層ポリイミドフィルムの薄層ポリイミド(Y)層に金属を蒸着法および/またはメッキ法によって金属層を形成してなる上記の積層体。
6)金属層の厚み(片面、合計厚み)が4〜35μm、好適には4〜9μmである上記の積層体。
4) The above laminate obtained by laminating a thin polyimide (Y) layer of a multilayer polyimide film and a metal foil, followed by thermocompression bonding.
5) The above laminate obtained by forming a metal layer by vapor deposition and / or plating on a thin polyimide (Y) layer of a multilayer polyimide film.
6) Said laminated body whose thickness (one side, total thickness) of a metal layer is 4-35 micrometers, Preferably it is 4-9 micrometers.

この発明における多層ポリイミドフィルの基体ポリイミド層を構成する基体ポリイミドとして、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとが100/0〜70/30である芳香族ジアミンとを重合、イミド化して得られるポリイミドのような回路用金属、特に銅に近い低線膨張係数を有しており有利である。また、電子技術分野において低線膨張係数を有するポリイミドフィルムを与えるポリイミドとして他の種類のポリイミドも同様に使用できることは勿論である。   As the base polyimide constituting the base polyimide layer of the multilayer polyimide fill in this invention, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 4,4′-diaminodiphenyl ether It has a low linear expansion coefficient close to that of a circuit metal such as polyimide obtained by polymerizing and imidizing an aromatic diamine having a ratio of 100/0 to 70/30, particularly copper, which is advantageous. Of course, other types of polyimide can be used in the same manner as a polyimide for providing a polyimide film having a low linear expansion coefficient in the field of electronic technology.

この発明においては、多層ポリイミドフィルの薄層ポリイミド層を構成する薄層用ポリイミドとして、下記式   In the present invention, as a polyimide for a thin layer constituting a thin polyimide layer of a multilayer polyimide film, the following formula

Figure 0004894866
Figure 0004894866

[式中、Ar1は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物残基とが50:50〜90:10のモル比である芳香族テトラカルボン酸二無水物残基であり、Ar21,3−ビス(4−アミノフェノキシ)ベンゼンである芳香族ジアミン残基である。]で示されるイミド単位を有するポリイミドを使用することが必要である。 [In the formula, Ar 1 is 50 of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride residue: It is an aromatic tetracarboxylic dianhydride residue having a molar ratio of 50 to 90:10, and Ar 2 is an aromatic diamine residue that is 1,3-bis (4-aminophenoxy) benzene . It is necessary to use a polyimide having an imide unit represented by

前記のイミド単位を有する薄層用ポリイミドは、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDAと略記することもある。)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDAと略記することもある。)とが50:50〜90:10のモル比である芳香族テトラカルボン酸二無水物成分(成分とは、酸あるいは炭素数1〜4のアルキルアルコ−ルとのエステル化物をいう)と、1、3−ビス(4−アミノフェノキシ)ベンゼンである芳香族ジアミンとを重合、イミド化して得られるポリイミドが挙げられる。薄層用ポリイミドの特性を損なわない範囲で、前記のビフェニルテトラカルボン酸二無水物成分および芳香族ジアミンの一部を他の種類のテトラカルボン酸二無水物成分および/または芳香族ジアミンで置き換えてもよい。 The polyimide for thin layers having the imide unit is preferably 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (sometimes abbreviated as s-BPDA) and 2,3,3. An aromatic tetracarboxylic dianhydride component (component and component) having a molar ratio of 50:50 to 90:10 with ', 4'-biphenyltetracarboxylic dianhydride (sometimes abbreviated as a-BPDA). Represents an esterified product of an acid or an alkyl alcohol having 1 to 4 carbon atoms) and an aromatic diamine which is 1,3-bis (4-aminophenoxy) benzene, and is a polyimide obtained by imidization. Is mentioned. As long as the properties of the thin layer polyimide are not impaired, a part of the biphenyltetracarboxylic dianhydride component and the aromatic diamine may be replaced with other types of tetracarboxylic dianhydride components and / or aromatic diamines. Also good.

前記の各成分の割合に関して、s−BPDAのモル比が多いほどガラス転移温度が多いほど低下し、a−BPDA100モル%で約260℃に対し、50モル%で250℃、また、10モル%で220℃程度まで低下し、高温でのハンダ耐熱性が低下する傾向がある。このため、アミン成分の1、3−ビス(4−アミノフェノキシ)ベンゼンをp−フェニレンジアミン(以下単にPPDと略記することもある。)やジアミノジフェニルエ−テル、特に4,4’−ジアミノジフェニルエ−テル(以下、単にDADEと略記することもある。)に置換することにより、塩化メチレンに溶解、表面の白化せず、かつ接着性を有したままガラス転移温度を60℃以上増加でき、ガラス転移温度を210℃から310℃程度まで任意に変化できる。更に高いガラス転移温度であっても接着は可能であるが、プレス時の温度が上昇し、生産性が著しく低下する。   Regarding the proportion of each of the above-mentioned components, the glass transition temperature decreases as the molar ratio of s-BPDA increases, and is about 260 ° C. at 100 mol% of a-BPDA, 250 ° C. at 50 mol%, and 10 mol%. The soldering heat resistance at high temperature tends to decrease. Therefore, the amine component 1,3-bis (4-aminophenoxy) benzene is replaced with p-phenylenediamine (hereinafter sometimes simply referred to as PPD) or diaminodiphenyl ether, particularly 4,4′-diaminodiphenyl. By substituting with ether (hereinafter sometimes abbreviated simply as DADE), it is possible to increase the glass transition temperature by 60 ° C. or more while dissolving in methylene chloride, not whitening the surface, and having adhesiveness. The glass transition temperature can be arbitrarily changed from 210 ° C. to about 310 ° C. Adhesion is possible even at a higher glass transition temperature, but the temperature at the time of pressing rises and the productivity is significantly reduced.

また、塩素系の溶剤に対する溶解、白化の点から、酸過剰(従って、無水カルボン酸末端封止)を避けることが好ましい。さらに、Tgなどを組成で制御するため、分子量制御のためにアミン末端封止目的の無水カルボン酸を添加する必要はない。   Further, from the viewpoint of dissolution and whitening in a chlorine-based solvent, it is preferable to avoid acid excess (and hence carboxylic anhydride terminal blocking). Further, since Tg and the like are controlled by the composition, it is not necessary to add a carboxylic anhydride for amine terminal blocking in order to control the molecular weight.

前記の薄層用ポリイミドは、前記各成分を有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液あるいはポリアミック酸の溶液にさらに有機溶媒を加えてポリアミック酸濃度を調節したものをド−プとして使用し、基体ポリイミド層(基体ポリイミドのド−プ液膜あるいは基体ポリイミドの自己支持性フィルム)に前記のド−プ液の薄膜を形成し、50〜400℃で1〜30分間程度加熱乾燥して、その薄膜から溶媒を蒸発させ除去すると共にポリアミック酸をイミド環化することにより形成することができる。前記の薄層用ポリイミドを与えるポリアミック酸のド−プは、ポリアミック酸の濃度が1〜20重量%程度であることが好ましい。   The polyimide for a thin layer is prepared by reacting each of the above components in an organic solvent at a temperature of about 100 ° C. or less, particularly 20 to 60 ° C. to obtain a polyamic acid solution, which is further added to the polyamic acid solution or the polyamic acid solution. A film prepared by adding an organic solvent to adjust the polyamic acid concentration is used as a dope, and a thin film of the above-mentioned dope liquid is used as a base polyimide layer (base polyimide dope liquid film or base polyimide self-supporting film). Can be formed by heating and drying at 50 to 400 ° C. for about 1 to 30 minutes to evaporate and remove the solvent from the thin film and imide cyclization of the polyamic acid. The polyamic acid dope that provides the thin layer polyimide preferably has a polyamic acid concentration of about 1 to 20% by weight.

この発明においては、前記の多層ポリイミドフィルムとしては、好適には熱圧着性とともに線膨張係数(50〜200℃)(MD)が30×10−6cm/cm/℃以下、特に15×10−6〜25×10−6cm/cm/℃で厚みが10〜150μmであるあるものが好ましく、また、引張弾性率(MD、ASTM−D882)が300kg/mm以上であるものが好ましい。 In the present invention, the multilayer polyimide film preferably has a thermocompression bonding property and a linear expansion coefficient (50 to 200 ° C.) (MD) of 30 × 10 −6 cm / cm / ° C. or less, particularly 15 × 10 Those having a thickness of 6 to 25 × 10 −6 cm / cm / ° C. and a thickness of 10 to 150 μm are preferable, and those having a tensile elastic modulus (MD, ASTM-D882) of 300 kg / mm 2 or more are preferable.

前記の多層ポリイミドフィルムは、好適には共押出し−流延製膜法(単に、多層押出法ともいう。)によって基体用ポリイミドのド−プ液と薄層用ポリイミドのド−プ液とを積層、乾燥、イミド化して多層ポリイミドフィルムを得る方法、あるいは前記の基体用ポリイミドのド−プ液を支持体上に流延塗布し、乾燥した自己支持性フィルム(ゲルフィルム)の片面あるいは両面に薄層用ポリイミドのド−プ液を塗布し、乾燥、イミド化して多層ポリイミドフィルムを得る方法によって得ることができる。   The above-mentioned multilayer polyimide film is preferably formed by laminating a polyimide solution for a substrate and a polyimide solution for a thin layer by a coextrusion-casting film forming method (also simply referred to as a multilayer extrusion method). A method of obtaining a multilayer polyimide film by drying and imidization, or applying the above-mentioned polyimide dope solution for a substrate onto a support and applying a thin film on one or both sides of a dried self-supporting film (gel film). It can be obtained by a method of applying a layer polyimide solution, drying and imidizing to obtain a multilayer polyimide film.

前記のポリアミック酸のゲル化を制限する目的でリン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマ−)濃度に対して0.01〜1%の範囲で添加することができる。また、イミド化促進の目的で、ド−プ液中にイミド化剤を添加することができる。例えば、イミダゾ−ル、2−イミダゾ−ル、1,2−ジメチルイミダゾ−ル、2−フェニルイミダゾ−ル、ベンズイミダゾ−ル、イソキノリン、置換ピリジンなどをポリアミック酸に対して0.05〜10重量%、特に0.1〜2重量%の割合で使用することができる。これらは比較的低温でイミドを完了することができる。   In order to limit the gelation of the polyamic acid, a phosphorous stabilizer such as triphenyl phosphite, triphenyl phosphate is 0.01 to 1% based on the solid content (polymer) concentration during polyamic acid polymerization. It can be added in the range of. For the purpose of promoting imidization, an imidizing agent can be added to the dope solution. For example, imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole, benzimidazole, isoquinoline, substituted pyridine and the like are 0.05 to 10 weights with respect to the polyamic acid. %, Especially 0.1 to 2% by weight. They can complete the imide at relatively low temperatures.

また、接着強度の安定化の目的で、熱圧着性ポリイミド原料ド−プに有機アルミニウム化合物、無機アルミニウム化合物または有機錫化合物を添加してもよい。例えば水酸化アルミニウム、アルミニウムトリアセチルアセトナ−トなどをポリアミック酸に対してアルミニウム金属として1ppm以上、特に1〜1000ppmの割合で添加することができる。   For the purpose of stabilizing the adhesive strength, an organoaluminum compound, an inorganic aluminum compound, or an organotin compound may be added to the thermocompression bonding polyimide raw material dope. For example, aluminum hydroxide, aluminum triacetylacetonate or the like can be added in an amount of 1 ppm or more, particularly 1 to 1000 ppm as an aluminum metal with respect to the polyamic acid.

前記の基体層としてのポリイミドは、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミン(以下単にPPDと略記することもある。)と場合によりさらに4,4’−ジアミノジフェニルエ−テル(以下単にDADEと略記することもある。)とから製造される。この場合PPD/DADE(モル比)は100/0〜85/15であることが好ましい。さらに、基体層としてのポリイミドは、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)およびピロメリット酸二無水物(PMDA)とパラフェニレンジアミン(PPD)および4,4’−ジアミノジフェニルエ−テル(DADE)とから製造される。この場合、酸二無水物中BTDAが20〜90モル%、PMDAが10〜80モル%、ジアミン中PPDが30〜90モル%、DADEが10〜70モル%であることが好ましい。   The polyimide as the substrate layer is preferably 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine (hereinafter sometimes abbreviated as PPD) and optionally further 4 in some cases. , 4′-diaminodiphenyl ether (hereinafter sometimes simply referred to as DADE). In this case, the PPD / DADE (molar ratio) is preferably 100/0 to 85/15. Further, polyimide as a base layer is composed of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), pyromellitic dianhydride (PMDA), paraphenylenediamine (PPD), and 4,4. It is produced from '-diaminodiphenyl ether (DADE). In this case, it is preferable that BTDA in acid dianhydride is 20 to 90 mol%, PMDA is 10 to 80 mol%, PPD in diamine is 30 to 90 mol%, and DADE is 10 to 70 mol%.

また、上記の基体層としての耐熱性ポリイミドとしては、単独のポリイミドフィルムの場合にガラス転移温度が350℃以上か確認不可能であるものが好ましく、特に線膨張係数(50〜200℃)(MD)が5×10−6〜30×10−6cm/cm/℃であるものが好ましい。また、引張弾性率(MD、ASTM−D882)は300kg/mm以上であるものが好ましい。この基体層ポリイミドの合成は、最終的に各成分の割合が前記範囲内であればランダム重合、ブロック重合、あるいはあらかじめ2種類のポリアミック酸を合成しておき両ポリアミック酸溶液を混合後反応条件下で混合して均一溶液とする、いずれの方法によっても達成される。 In addition, as the heat-resistant polyimide as the base layer, it is preferable that the glass transition temperature is 350 ° C. or higher in the case of a single polyimide film, and in particular, the linear expansion coefficient (50 to 200 ° C.) (MD ) Is preferably 5 × 10 −6 to 30 × 10 −6 cm / cm / ° C. The tensile modulus (MD, ASTM-D882) is preferably 300 kg / mm 2 or more. The synthesis of the base layer polyimide is performed by random polymerization, block polymerization, or by synthesizing two types of polyamic acids in advance and mixing both polyamic acid solutions if the proportion of each component is within the above range. To achieve a homogeneous solution.

前記各成分を使用し、ジアミン成分とテトラカルボン酸二無水物の略等モル量を、有機溶媒中で反応させてポリアミック酸の溶液(均一な溶液状態が保たれていれば一部がイミド化されていてもよい)とする。前記基体層ポリイミドの物性を損なわない種類と量の他の芳香族テトラカルボン酸二無水物や芳香族ジアミン、例えば4,4’−ジアミノジフェニルメタン等を使用してもよい。   Using each of the above-mentioned components, a substantially equimolar amount of a diamine component and a tetracarboxylic dianhydride are reacted in an organic solvent to give a polyamic acid solution (partly imidized if a uniform solution state is maintained) May be used). Other aromatic tetracarboxylic dianhydrides and aromatic diamines such as 4,4'-diaminodiphenylmethane, etc., which do not impair the physical properties of the base layer polyimide, may be used.

前記のポリアミック酸製造に使用する有機溶媒は、基体層用ポリイミドおよび薄層用ポリイミドのいずれに対しても、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、クレゾ−ル類などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。   The organic solvent used for the production of the polyamic acid is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, for both the base layer polyimide and the thin layer polyimide. N, N-diethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, N-methylcaprolactam, cresols and the like can be mentioned. These organic solvents may be used alone or in combination of two or more.

前記の多層ポリイミドフィルムの製造においては、例えば上記の基体層の耐熱性ポリイミドのポリアミック酸溶液と薄層用の熱圧着性ポリイミドまたはその前駆体の溶液を共押出して、これをステンレス鏡面、ベルト面等の支持体面上に流延塗布し、100〜200℃で半硬化状態またはそれ以前の乾燥状態とすることが好ましい。200℃を越えた高い温度で流延フィルムを処理すると、多層ポリイミドフィルムの製造において、接着性の低下などの欠陥を来す傾向にある。この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。   In the production of the multilayer polyimide film, for example, a polyamic acid solution of heat-resistant polyimide for the base layer and a thermocompression bonding polyimide solution for a thin layer or a precursor solution thereof are coextruded, and this is made into a stainless steel mirror surface or belt surface. It is preferable to cast and apply on a support surface such as a semi-cured state or a dried state before that at 100 to 200 ° C. When a cast film is processed at a high temperature exceeding 200 ° C., defects such as a decrease in adhesion tend to be caused in the production of a multilayer polyimide film. This semi-cured state or an earlier state means that it is in a self-supporting state by heating and / or chemical imidization.

前記の基体層ポリイミドを与えるポリアミック酸の溶液と、薄層用ポリイミドを与えるポリアミック酸の溶液との共押出しは、例えば特開平3−180343号公報(特公平7−102661号公報)に記載の共押出法によって三層の押出し成形用ダイスに供給し、支持体上にキャストしておこなうことができる。前記の基体層ポリイミドを与える押出し物層の片面あるいは両面に、薄層用ポリイミドを与えるポリアミック酸の溶液あるいはポリイミド溶液を積層して多層フィルム状物を形成して乾燥後、薄層用ポリイミドのガラス転移温度(Tg)以上で劣化が生じる温度以下の温度、好適には250〜420℃の温度(表面温度計で測定した表面温度)まで加熱して(好適にはこの温度で1〜60分間加熱して)乾燥およびイミド化して、基体層ポリイミドの片面あるいは両面に薄層用ポリイミドを有する多層押出しポリイミドフィルム、好適には熱圧着性多層押出しポリイミドフィルムを製造することができる。   The coextrusion of the polyamic acid solution for providing the base layer polyimide and the polyamic acid solution for providing the thin layer polyimide is, for example, the co-extrusion described in JP-A-3-180343 (JP-B-7-102661). It can supply to the die | dye for extrusion molding of three layers by an extrusion method, and can cast and cast on a support body. A polyimide film for a thin layer is formed by laminating a polyamic acid solution or a polyimide solution for providing a polyimide for a thin layer on one or both sides of the extrudate layer for providing the base layer polyimide to form a multi-layer film, drying, and then laminating polyimide glass Heat to a temperature below the transition temperature (Tg) and below the temperature at which deterioration occurs, preferably 250 to 420 ° C. (surface temperature measured with a surface thermometer) (preferably heated at this temperature for 1 to 60 minutes) And drying and imidizing to produce a multi-layer extruded polyimide film, preferably a thermocompression-bonding multi-layer extruded polyimide film having a thin layer polyimide on one or both sides of the base layer polyimide.

前記の薄層ポリイミドは、前記の酸成分とジアミン成分とを使用することによって、好適にはガラス転移温度が190〜280℃、特に200〜275℃であって、好適には前記の条件で乾燥・イミド化して薄層(好適には熱圧着性の)ポリイミドのゲル化を実質的に起こさせないことによって達成される、ガラス転移温度以上で300℃以下の範囲内の温度で溶融せず、かつ弾性率(通常、275℃での弾性率が50℃での弾性率の0.001〜0.5倍程度)を保持しているものが好ましい。   By using the acid component and the diamine component, the thin-layer polyimide preferably has a glass transition temperature of 190 to 280 ° C, particularly 200 to 275 ° C, and preferably is dried under the above conditions. Not being melted at temperatures above the glass transition temperature and below 300 ° C. achieved by imidizing and not causing gelation of the thin layer (preferably thermocompression bonding) polyimide, and It is preferable to maintain an elastic modulus (usually, an elastic modulus at 275 ° C. is approximately 0.001 to 0.5 times the elastic modulus at 50 ° C.).

前記の多層ポリイミドフィルムは、基体層ポリイミドのフィルム(層)の厚さが5〜125μmであることが好ましく、薄層ポリイミド(Y)層の厚さは1〜25μm、特に1〜15μm、その中でも特に2〜12μmが好ましい。また、前記の他の金属箔と積層される場合の薄層である熱圧着性ポリイミド(Y)層の厚さは、使用する他の金属箔の表面粗さ(Rz)以上であることが好ましい。特に、多層ポリイミドフィルムとして、両面に熱圧着性および/または柔軟性のポリイミド層を有し、全体の厚みが7〜50μm、特に7〜25μmであるもので、引張弾性率(25℃)が400〜1000kgf/mm程度であるものが高密度化の点から好ましい。 In the multilayer polyimide film, the thickness of the base layer polyimide film (layer) is preferably 5 to 125 μm, and the thickness of the thin polyimide (Y) layer is 1 to 25 μm, particularly 1 to 15 μm. 2-12 micrometers is especially preferable. Moreover, it is preferable that the thickness of the thermocompression bonding polyimide (Y) layer which is a thin layer when laminated with the other metal foil is equal to or greater than the surface roughness (Rz) of the other metal foil to be used. . In particular, as a multilayer polyimide film, it has a thermocompression bonding and / or flexible polyimide layer on both sides, and has an overall thickness of 7 to 50 μm, particularly 7 to 25 μm, and a tensile modulus (25 ° C.) of 400. What is about -1000 kgf / mm < 2 > is preferable from the point of densification.

この発明において多層ポリイミドフィルムに積層する金属層としては、銅、アルミニウム、鉄、金などの金属箔や金属膜あるいはこれら金属の合金箔や合金膜が挙げられるが、好適には圧延銅箔、電解銅箔、蒸着および/またはメッキ銅膜などがあげられる。金属箔として、表面粗度の余り大きくなくかつ余り小さくない、好適には薄層ポリイミドとの接触面のRzが3μm以下、特に0.5〜3μm、その中でも特に1.5〜3μmであるものが好ましい。このような金属箔、例えば銅箔はVLP、LP(またはHTE)として知られている。金属箔の厚さは特に制限はないが、35μm以下、好ましくは3〜18μm、特に3μm〜12μmであることが好ましい。また、Rzが小さい場合には、金属箔表面を表面処理したものを使用してもよい。   Examples of the metal layer laminated on the multilayer polyimide film in this invention include metal foils and metal films of copper, aluminum, iron, gold and the like, and alloy foils and alloy films of these metals. Examples thereof include copper foil, vapor deposition and / or plated copper film. As the metal foil, the surface roughness is not so large and not too small, preferably the Rz of the contact surface with the thin-layer polyimide is 3 μm or less, particularly 0.5 to 3 μm, especially 1.5 to 3 μm. Is preferred. Such metal foils, such as copper foils, are known as VLP, LP (or HTE). The thickness of the metal foil is not particularly limited, but is 35 μm or less, preferably 3 to 18 μm, particularly preferably 3 μm to 12 μm. Moreover, when Rz is small, you may use what surface-treated the metal foil surface.

この発明においては、好適には前記の熱圧着性多層ポリイミドフィルムと金属箔とを、ロ−ルラミネ−トあるいはダブルベルトプレスなどの連続ラミネ−ト装置であって、熱圧着性多層ポリイミドフィルムのみあるいは熱圧着性多層ポリイミドフィルムと金属箔を導入する直前のインラインで150〜250℃程度、特に150℃より高く250℃以下の温度で2〜120秒間程度予熱できるように熱風供給装置や赤外線加熱機などの予熱器を用いて予熱して、加熱圧着して張り合わせることによって、フレキシブル金属箔積層体である積層体を得ることができる。前記のダブルベルトプレスは、加圧下に高温加熱−冷却を行うことができるものであって、熱媒を用いた液圧式のものが好ましい。前記のインラインとは原材料の繰り出し装置と連続ラミネ−ト装置の圧着部との間に予熱装置を設置し、直後に圧着できる装置配置になったものをいう。   In the present invention, preferably, the thermocompression-bonding multilayer polyimide film and the metal foil are continuous laminating apparatuses such as a roll laminator or a double belt press, and the thermocompression-bonding multilayer polyimide film alone or Hot air supply device, infrared heater, etc. so that it can be preheated at about 150 to 250 ° C., particularly at a temperature higher than 150 ° C. and not higher than 250 ° C. for about 2 to 120 seconds, just before introducing the thermocompression-bonding multilayer polyimide film and metal foil It is possible to obtain a laminated body that is a flexible metal foil laminated body by preheating using the preheater, and applying heat pressure bonding together. The double belt press is capable of performing high-temperature heating and cooling under pressure, and is preferably a hydraulic type using a heat medium. The above-mentioned in-line means a device arrangement in which a preheating device is installed between the raw material feeding device and the crimping part of the continuous laminating device and can be crimped immediately after.

特に、前記の積層体は、好適にはロ−ルラミネ−トまたはダブルベルトプレスの加熱圧着ゾ−ンの温度が熱圧着性ポリイミドのガラス転移温度より20℃以上高く400℃以下の温度、特にガラス転移温度より30℃以上高く400℃以下の温度で加圧下に熱圧着し、特にダブルベルトプレスの場合には引き続いて冷却ゾ−ンで加圧下に冷却して、好適には熱圧着性ポリイミドのガラス転移温度より20℃以上低い温度、特に30℃以上低い温度まで冷却して、積層することによって製造することができ、接着強度が大きい(90°剥離強度が0.7kg/cm以上、特に1kg/cm以上である。)。   In particular, the laminate preferably has a roll laminating or double belt press thermocompression zone temperature of 20 ° C. higher than the glass transition temperature of thermocompression bonding polyimide and 400 ° C. or less, particularly glass. It is thermocompression bonded under pressure at a temperature of 30 ° C. or higher and 400 ° C. or lower than the transition temperature. Especially in the case of a double belt press, it is subsequently cooled under pressure with a cooling zone. It can be produced by laminating by cooling to a temperature 20 ° C. or more lower than the glass transition temperature, particularly 30 ° C. or less, and has a high adhesive strength (90 ° peel strength is 0.7 kg / cm or more, especially 1 kg) / Cm or more).

前記の方法において、製品が片面金属箔のフレキシブル金属箔積層体である場合には、剥離容易な高耐熱性フィルム、例えば前記のRzが2μm未満の高耐熱性フィルムまたは金属箔、好適にはポリイミドフィルム(宇部興産社製、ユ−ピレックスS)やフッ素樹脂フィルムなどの高耐熱性樹脂フィルムや圧延銅箔などであって表面粗さが小さく(すなわち、回路用の金属層表面のRzより小さく)表面平滑性の良好な金属箔を保護材(剥離フィルム)として、熱圧着性ポリイミド層と他の金属面との間に介在させてもよい。この保護材は積層後、積層体から除いて巻き取ってもよく、保護材を積層したままで巻き取って使用時に取り除いてもよい。   In the above method, when the product is a flexible metal foil laminate of a single-sided metal foil, a highly heat-resistant film that can be easily peeled, such as a high-heat-resistant film or metal foil having a Rz of less than 2 μm, preferably polyimide High heat-resistant resin film such as film (Ube Industries, Upilex S) and fluororesin film, rolled copper foil, etc., and surface roughness is small (that is, smaller than Rz of the metal layer surface for circuits) A metal foil with good surface smoothness may be interposed between the thermocompression bonding polyimide layer and another metal surface as a protective material (peeling film). After the lamination, the protective material may be removed from the laminate and wound up, or the protective material may be taken up while being laminated and removed during use.

前記の方法によって、特にダブルベルトを使用して、長尺で幅が約400mm以上、特に約500mm以上の幅広の、接着強度が大きく(90°剥離強度が0.7kg/cm以上、特に1kg/cm以上である。)、金属箔表面に皺が実質的に認めれられない程度の外観が良好な積層体を得ることができる。   By the above-mentioned method, particularly using a double belt, it is long and wide at about 400 mm or more, particularly about 500 mm or more, and has high adhesive strength (90 ° peel strength is 0.7 kg / cm or more, particularly 1 kg / cm) or more), and a laminate having a good appearance such that no wrinkles are substantially observed on the surface of the metal foil can be obtained.

また、この発明における積層体は、高耐熱性芳香族ポリイミド層の両面に柔軟性ポリイミドを積層一体化した多層ポリイミドフィルムをプラズマ放電などの放電処理して、蒸着法、スパッタリング法、メッキ法などによって金属膜を形成することによって得ることもできる。   Moreover, the laminate in the present invention is obtained by subjecting a multilayer polyimide film in which flexible polyimide is laminated and integrated on both surfaces of a high heat resistant aromatic polyimide layer to a discharge treatment such as plasma discharge, and by a vapor deposition method, a sputtering method, a plating method, or the like. It can also be obtained by forming a metal film.

前記の金属蒸着層の積層は、例えば、真空蒸着法、電子ビ−ム蒸着法、スパッタリング法などの物理化学的な蒸着法によって特に好適に行うことができる。蒸着法としては、真空度が10−7〜10−2Torr程度であり、蒸着速度が50〜5000Å/秒程度であって、さらに、蒸着基板(フィルム)の温度が20〜600℃程度であることが好ましい。スパッタリング法において、特にRFマグネットスパッタリング法が好適であり、その際の真空度が1Torr以下、特に10−3〜10−2Torr程度であり、基板(フィルム)温度が20〜450℃程度であって、その層の形成速度が0.5〜500Å/秒程度であることが好ましい。 The lamination of the metal vapor deposition layer can be particularly suitably performed by a physicochemical vapor deposition method such as a vacuum vapor deposition method, an electron beam vapor deposition method, or a sputtering method. As a vapor deposition method, the degree of vacuum is about 10 −7 to 10 −2 Torr, the vapor deposition rate is about 50 to 5000 kg / sec, and the temperature of the vapor deposition substrate (film) is about 20 to 600 ° C. It is preferable. In the sputtering method, the RF magnet sputtering method is particularly suitable, the degree of vacuum at that time is 1 Torr or less, particularly about 10 −3 to 10 −2 Torr, and the substrate (film) temperature is about 20 to 450 ° C. The formation rate of the layer is preferably about 0.5 to 500 kg / second.

前記の金属膜の材質としては、銅または銅合金、アルミニウム、パラジウムなどが挙げられる。下地層として、クロム、チタン、ニッケル、パラジウムなどを使用し、表面層として銅を使用してもよい。下地層の厚みは通常1μm以下程度である。また、このようにして得られた金属層に金属メッキ層を形成してもよく、その金属メッキ層の材質としては、銅、銅合金、銀などが挙げられる。金属メッキ層の形成方法としては、無電解メッキ法あるいは電解メッキ法のいずれでもよい。肉厚の金属膜は厚みが約1〜30μm、特に1〜12μm程度、その中でも3〜12μmであることが好ましい。また、前記のスパッタ・蒸着法を含めて金属膜形成を連続ロ−ルで行うことが好ましい。   Examples of the material of the metal film include copper or a copper alloy, aluminum, and palladium. Chrome, titanium, nickel, palladium, or the like may be used as the base layer, and copper may be used as the surface layer. The thickness of the underlayer is usually about 1 μm or less. In addition, a metal plating layer may be formed on the metal layer thus obtained, and examples of the material of the metal plating layer include copper, copper alloy, and silver. As a method for forming the metal plating layer, either an electroless plating method or an electrolytic plating method may be used. The thick metal film has a thickness of about 1 to 30 μm, particularly about 1 to 12 μm, and preferably 3 to 12 μm. In addition, it is preferable that the metal film is formed in a continuous roll including the sputtering and vapor deposition methods.

この発明によって得られる積層体は、通常、金属層をエッチング処理した後、ポリイミド層をパンチング加工などの機械的処理あるいはレ−ザ−加工して、フィルムに貫通穴(スル−ホ−ル)を形成する。レ−ザ−加工の装置は、例えば特開平10−323786号公報に記載されているレ−ザ−加工装置を挙げることができる。また、レ−ザ−による穴あけ加工方法としては、例えば特開平6−142961号公報に記載されているレ−ザ−加工方法を挙げることができる。   In the laminate obtained by this invention, the metal layer is usually subjected to etching treatment, and then the polyimide layer is subjected to mechanical treatment such as punching or laser processing to form through holes (through holes) in the film. Form. Examples of the laser processing apparatus include a laser processing apparatus described in JP-A-10-323786. As a drilling method using a laser, for example, a laser processing method described in JP-A-6-142961 can be cited.

例えば、レ−ザ−として、CO2、YAGレ−ザ−のように赤外領域の発振波長をもつレ−ザ−をそのまま、あるいは非線形型光学結晶に照射して取り出して発振波長が260〜400nm程度の範囲にある紫外領域にあるレ−ザ−を使用することができる。また、レ−ザ−加工は、例えばポリイミドフィルムの片面に金属層が積層された積層体の場合には、ポリイミド層に所定の断面形状を与えるマスクをして、レ−ザ−を照射して約30〜300μmφ、好適には約50〜100μmφの貫通穴を形成する。そして、レ−ザ−加工部を過マンガン酸カリ水溶液などの酸化剤によってデスミア処理した後、未加工の金属層にはパタ−ン形成して、基板とすることができる。   For example, as a laser, a laser having an oscillation wavelength in the infrared region, such as a CO2 or YAG laser, is taken out as it is or by irradiating a nonlinear optical crystal to obtain an oscillation wavelength of 260 to 400 nm. Lasers in the ultraviolet region that are in the range of the extent can be used. For example, in the case of a laminate in which a metal layer is laminated on one side of a polyimide film, laser processing is performed by irradiating the laser with a mask that gives the polyimide layer a predetermined cross-sectional shape. A through hole having a diameter of about 30 to 300 μmφ, preferably about 50 to 100 μmφ is formed. Then, the laser processed portion is desmeared with an oxidizing agent such as an aqueous potassium permanganate solution, and then a pattern is formed on the unprocessed metal layer to form a substrate.

また、例えば多層ポリイミドフィルムの両面に金属層が積層された積層体の場合にはまた、片面の金属層を化学エッチングして所定形状のパタ−ン形成した後、残部の金属層をマスクとしてポリイミド層にレ−ザ−を照射して約30〜300μmφ、好適には約50〜100μmφの貫通穴を形成して、レ−ザ−加工部を前記と同様にデスミア処理した後、他の金属層にはパタ−ン形成して、基板とすることができる。   For example, in the case of a laminate in which metal layers are laminated on both sides of a multilayer polyimide film, a metal layer on one side is chemically etched to form a pattern with a predetermined shape, and then the remaining metal layer is used as a mask to form polyimide. The layer is irradiated with a laser to form a through hole of about 30 to 300 μmφ, preferably about 50 to 100 μmφ, and after the laser processing portion is desmeared in the same manner as described above, another metal layer is formed. The substrate can be formed by patterning.

前記の方法によってレ−ザ−加工して得られる積層体およびメッキした基板は電子部品用基板として好適に使用できる。例えば、COF用のFPC、パッケ−ジ用TAB、多層基板のベ−ス基板として好適に使用することができる。   The laminate obtained by laser processing by the above method and the plated substrate can be suitably used as an electronic component substrate. For example, it can be suitably used as an FPC for COF, a TAB for packaging, and a base substrate for multilayer substrates.

以下、この発明を実施例および比較例によりさらに詳細に説明する。以下の各例において、物性評価および金属箔積層体の剥離強度は以下の方法に従って測定した。
ガラス転移温度:DSCにて測定した。
結晶化度:XRD(X線回折)によって測定した。ピ−クが認められない場合、非結晶性と評価した。
線膨張係数:20〜200℃、5℃/分の昇温速度で測定(MD)した。
積層体の剥離強度:90°剥離強度を測定した。
耐熱性:金属箔積層体を260℃の半田浴に1分間浸漬して、膨れ、はがれ、変色の有無を観察した。膨れ、はがれ、変色の無い場合を耐熱性良好と判断した。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In each of the following examples, the physical property evaluation and the peel strength of the metal foil laminate were measured according to the following methods.
Glass transition temperature: measured by DSC.
Crystallinity: measured by XRD (X-ray diffraction). When no peak was observed, it was evaluated as non-crystalline.
Linear expansion coefficient: measured (MD) at a heating rate of 20 to 200 ° C. and 5 ° C./min.
Peel strength of laminate: 90 ° peel strength was measured.
Heat resistance: The metal foil laminate was immersed in a solder bath at 260 ° C. for 1 minute, and the presence or absence of swelling, peeling or discoloration was observed. The case where there was no blistering, peeling or discoloration was judged as good heat resistance.

積層体の剥離強度:340℃に保った熱プレスを用い、電解銅箔(厚み35μm)をポリイミドフィルムと重ね、5分間予熱後、60Kgf/cmの圧力で1分間プレスを行い、銅箔積層体を得た。この積層体について,50mm/分で90°剥離強度を測定した。
耐溶剤性:塩化メチレンに室温(25℃)で5分間浸漬後、減圧下室温で2時間乾燥後の重量(浸析後重量)と浸漬前の重量:重量変化率(%)=(浸析後重量−浸析前重量)/浸析前重量×100、および目視による表面変化観察で評価(重量減の検出限界は±0.5%)
ガラス転移点:動的粘弾性測定装置を用いてTanδのピークの温度
Peel strength of the laminate: Using a hot press maintained at 340 ° C., an electrolytic copper foil (thickness 35 μm) is superimposed on the polyimide film, preheated for 5 minutes, and then pressed at a pressure of 60 kgf / cm 2 for 1 minute to laminate the copper foil Got the body. About this laminated body, 90 degree peel strength was measured at 50 mm / min.
Solvent resistance: after immersion in methylene chloride at room temperature (25 ° C.) for 5 minutes and then drying under reduced pressure at room temperature for 2 hours (weight after soaking) and weight before soaking: weight change rate (%) = (soaking) Post weight-weight before leaching) / weight before leaching × 100, and evaluation by visual observation of surface change (detection limit of weight loss is ± 0.5%)
Glass transition point: Tanδ peak temperature using a dynamic viscoelasticity measuring device

実施例1
基体ポリイミド(X)製造用ド−プの合成
撹拌機、窒素導入管を備えた反応容器に、ジメチルアセトアミド(DMAc)を加え、さらに、パラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマ−濃度が18%(重量%、以下同じ)になるように加えた。添加終了後50℃を保ったまま3時間反応を続けた。得られたポリアミック酸溶液は褐色粘調液体であり、25℃における溶液粘度は約1500ポイズであった。なお、このポリアミック酸溶液から別途に製造した厚み50μmのポリイミドフィルムは、線膨張係数(50〜200℃)(MD)が15×10−6cm/cm/℃で、引張弾性率(MD、ASTM−D882)が756kg/mmであった。
Example 1
Dimethylacetamide (DMAc) is added to a reaction vessel equipped with a synthetic stirrer and a nitrogen introduction tube for a substrate polyimide (X) production dope, and further paraphenylenediamine (PPD) and 3,3 ′, 4,4 '-Biphenyltetracarboxylic dianhydride (s-BPDA) was added at a molar ratio of 1000: 998 such that the monomer concentration was 18% (wt%, the same applies hereinafter). After completion of the addition, the reaction was continued for 3 hours while maintaining 50 ° C. The obtained polyamic acid solution was a brown viscous liquid, and the solution viscosity at 25 ° C. was about 1500 poise. In addition, the polyimide film with a thickness of 50 μm separately produced from this polyamic acid solution has a linear expansion coefficient (50 to 200 ° C.) (MD) of 15 × 10 −6 cm / cm / ° C. and a tensile elastic modulus (MD, ASTM). -D882) was 756 kg / mm 2 .

薄層用ポリイミド製造用ド−プの合成
撹拌機、窒素導入管を備えた反応容器に、N,N−ジメチルアセトアミド(DMAC)を加え、さらに、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)を加えた。続いて2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)と50:50のモル比として、TPE−R:(a−BPDA+s−BPDA)を1000:992のモル比でモノマー濃度が22%になるように、またトリフェニルホスフェートをモノマー重量に対して0.1%加えた。添加終了後25℃にて4時間反応を続け、淡褐色透明粘調なポリアミック酸溶液を得た。25℃における溶液粘度は約1500ポイズであった。
Synthesis of dope for producing polyimide for thin layer N, N-dimethylacetamide (DMAC) was added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and further 1,3-bis (4-aminophenoxy) benzene (TPE-R) was added. Subsequently, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA), 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (s-BPDA) and 50: 50 molar ratio of TPE-R: (a-BPDA + s-BPDA) so that the monomer concentration is 22% at a molar ratio of 1000: 992, and 0.1% of triphenyl phosphate is added to the monomer weight. It was. After completion of the addition, the reaction was continued at 25 ° C. for 4 hours to obtain a light brown transparent viscous polyamic acid solution. The solution viscosity at 25 ° C. was about 1500 poise.

二層構造の多層ポリイミドフィルムの製造
二層押し出しダイスから、平滑な金属製支持体の上面に押し出して流延し、140℃の熱風で連続的に乾燥し、固化フィルム(自己支持性フィルム)を形成し、その固化フィルムを支持体から剥離した後、加熱炉で、200℃から350℃まで徐々に昇温して、溶媒を除去すると共にポリマ−のイミド化を行い、厚み35μm[薄層(Y)の厚み10μm、基体ポリイミド25μm]の二層構造の多層ポリイミドフィルムを製造した。
Manufacture of multilayer polyimide film with two-layer structure Extruded from a two-layer extrusion die onto the upper surface of a smooth metal support, continuously dried with hot air at 140 ° C, and solidified film (self-supporting film) After forming and peeling the solidified film from the support, the temperature was gradually raised from 200 ° C. to 350 ° C. in a heating furnace to remove the solvent and imidize the polymer, and the thickness was 35 μm [thin layer ( A multilayer polyimide film having a two-layer structure having a thickness of 10 μm and a base polyimide of 25 μm] was produced.

積層体の製造
この熱圧着性の薄層(Y)ポリイミドフィルム上に、35μmの銅箔を重ね合わせ、さらにその銅箔上に12μmのアルミニウム箔を重ね合わせて、それらの重ね合わせたものを熱プレス機内の加熱板間に配置し、340℃の温度で50kg/cmの圧力で、5分間、熱圧着を行って、金属箔積層ポリイミドフィルムを製造した。このようにして得られたフィルムのガラス転移温度Tg、塩化メチレンに5分浸析後のフィルムの重量減少率と目視観察の結果および金属箔積層ポリイミドフィルムの90°剥離強度を表1に示した。
Manufacture of Laminate A 35 μm copper foil is superimposed on this thermocompression thin layer (Y) polyimide film, and a 12 μm aluminum foil is further superimposed on the copper foil. It arrange | positioned between the hot plates in a press, and thermocompression bonding was performed for 5 minutes by the pressure of 50 kg / cm < 2 > at the temperature of 340 degreeC, and the metal foil laminated polyimide film was manufactured. Table 1 shows the glass transition temperature Tg of the film thus obtained, the weight reduction rate of the film after 5 minutes of immersion in methylene chloride, the result of visual observation, and the 90 ° peel strength of the metal foil laminated polyimide film. .

実施例2
薄層用ポリイミド層を得るために、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)と3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)との割合を35:65のモル比とした以外は、実施例1と同様にして多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表1に示す。
Example 2
In order to obtain a polyimide layer for a thin layer, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride A multilayer polyimide film and a metal foil laminated polyimide film were produced in the same manner as in Example 1 except that the ratio of (s-BPDA) was 35:65. The results are shown in Table 1.

実施例3
薄層用ポリイミド層を得るために、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)と3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)との割合を25:75のモル比とした以外は、実施例1と同様にして多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表1に示す。
Example 3
In order to obtain a polyimide layer for a thin layer, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride A multilayer polyimide film and a metal foil laminated polyimide film were produced in the same manner as in Example 1, except that the ratio of (s-BPDA) was 25:75. The results are shown in Table 1.

実施例4
薄層用ポリイミド層を得るために、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)と3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)との割合を15:85のモル比とした以外は、実施例1と同様にして多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表1に示す。
Example 4
In order to obtain a polyimide layer for a thin layer, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride A multilayer polyimide film and a metal foil laminated polyimide film were produced in the same manner as in Example 1 except that the ratio of (s-BPDA) was 15:85. The results are shown in Table 1.

比較例1
薄層用ポリイミド層を得るために、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)と3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)との割合を100:0のモル比とした以外は、実施例1と同様にして多層ポリイミドフィルムを製造した。塩化メチレン浸析後に重量が16.9%減少し、目視でも明らかに変質したものであった。
Comparative Example 1
In order to obtain a polyimide layer for a thin layer, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride A multilayer polyimide film was produced in the same manner as in Example 1 except that the ratio of (s-BPDA) was changed to a molar ratio of 100: 0. After methylene chloride leaching, the weight decreased by 16.9% and was visually altered.

比較例2
薄層用ポリイミド層を得るために、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)と3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)との割合を75:25のモル比とした以外は、実施例1と同様にして多層ポリイミドフィルムを製造した。塩化メチレン浸析後に重量が1.3%減少し、目視でも明らかに変質したものであった。
Comparative Example 2
In order to obtain a polyimide layer for a thin layer, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride A multilayer polyimide film was produced in the same manner as in Example 1 except that the ratio of (s-BPDA) was changed to a molar ratio of 75:25. After methylene chloride infiltration, the weight decreased by 1.3%, which was clearly altered visually.

比較例3
薄層用ポリイミド層を得るために、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)と3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)との割合を0:100のモル比とした以外は、実施例1と同様と同様にして多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。金属箔積層ポリイミドフィルムの剥離強度が0gで全く接着していなかった。
Comparative Example 3
In order to obtain a polyimide layer for a thin layer, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride A multilayer polyimide film and a metal foil laminated polyimide film were produced in the same manner as in Example 1 except that the ratio of (s-BPDA) was changed to a molar ratio of 0: 100. The peel strength of the metal foil laminated polyimide film was 0 g and was not adhered at all.

Figure 0004894866
いずれも、重量減が±0.5%以下、表面目視○、剥離強度1.1kg/cm以上で、良好であった。
Figure 0004894866
In all cases, weight loss was ± 0.5% or less, surface observation ○, and peel strength of 1.1 kg / cm or more, which were favorable.

実験例1
薄層用ポリイミド製造用として、N,N−ジメチルアセトアミド(DMAc)を加え、さらに、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、4,4’−ジアミノジフェニルエーテル(DADE)を75:25のモル比で加え、続いて、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)を50:50のモル比で加えた以外は実施例1と同様にして、多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表2に示す。
Experimental example 1
For the production of polyimide for thin layers, N, N-dimethylacetamide (DMAc) is added, and 1,3-bis (4-aminophenoxy) benzene (TPE-R), 4,4′-diaminodiphenyl ether (DADE) At a molar ratio of 75:25, followed by 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA), 3,4,3 ′, 4′-biphenyltetracarboxylic acid A multilayer polyimide film and a metal foil laminated polyimide film were produced in the same manner as in Example 1 except that dianhydride (s-BPDA) was added at a molar ratio of 50:50. The results are shown in Table 2.

実験例2
薄層用ポリイミド製造用ドープの合成における各成分の割合を、TPE−R:DADE=50:50、a−BPDA:s−BPDA=50:50のモル比とした以外は実験例1と同様にして、多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表2に示す。
Experimental example 2
The ratio of each component in the synthesis | combination of the dope for polyimide manufacture for thin layers was carried out similarly to Experimental example 1 except having set it as the molar ratio of TPE-R: DADE = 50: 50 and a-BPDA: s-BPDA = 50: 50. Thus, a multilayer polyimide film and a metal foil laminated polyimide film were produced. The results are shown in Table 2.

実験例3
薄層用ポリイミド製造用ドープの合成における各成分の割合を、TPE−R:DADE=25:75、a−BPDA:s−BPDA=50:50のモル比とした以外は実験例1と同様にして、多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表2に示す。
Experimental example 3
The ratio of each component in the synthesis | combination of the dope for polyimide manufacture for thin layers was carried out similarly to Experimental example 1 except having set it as the molar ratio of TPE-R: DADE = 25: 75 and a-BPDA: s-BPDA = 50: 50. Thus, a multilayer polyimide film and a metal foil laminated polyimide film were produced. The results are shown in Table 2.

Figure 0004894866
いずれも、重量減が±0.5%以下、表面目視○、剥離強度0.8kg/cm以上で、良好であった。
Figure 0004894866
In all cases, the weight loss was ± 0.5% or less, the surface visual observation ○, and the peel strength 0.8 kg / cm or more.

実験例4
薄層用ポリイミド製造用として、N,N−ジメチルアセトアミド(DMAc)を加え、さらに、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、パラフェニレンジアミン(PPD)を90:10のモル比で加え、続いて、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)を50:50のモル比で加えた以外は実験例1と同様にして、多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表3に示す。
Experimental Example 4
For production of thin layer polyimide, N, N-dimethylacetamide (DMAc) was added, and 1,3-bis (4-aminophenoxy) benzene (TPE-R) and paraphenylenediamine (PPD) were added at 90:10. Followed by 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA), 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride ( A multilayer polyimide film and a metal foil laminated polyimide film were produced in the same manner as in Experimental Example 1 except that s-BPDA) was added at a molar ratio of 50:50. The results are shown in Table 3.

実験例5
薄層用ポリイミド製造用ドープの合成における各成分の割合を、TPE−R:PPD=50:50、a−BPDA:s−BPDA=50:50のモル比とした以外は実験例1と同様にして、多層ポリイミドフィルムおよび金属箔積層ポリイミドフィルムを製造した。結果を表3に示す。
Experimental Example 5
The ratio of each component in the synthesis | combination of the dope for polyimide manufacture for thin layers was carried out similarly to Experimental example 1 except having set it as the molar ratio of TPE-R: PPD = 50: 50 and a-BPDA: s-BPDA = 50: 50. Thus, a multilayer polyimide film and a metal foil laminated polyimide film were produced. The results are shown in Table 3.

Figure 0004894866
いずれも、重量減が±0.5%以下、表面目視○、剥離強度0.9kg/cm以上で、良好であった。
Figure 0004894866
In all cases, weight loss was ± 0.5% or less, surface observation ○, and peel strength of 0.9 kg / cm or more.

実施例5
実施例1における薄層ポリイミド用ポリアミック酸溶液と基体ポリイミド用ポリアミック酸溶液とから、厚み構成:4μm/10μm/4μmの多層ポリイミドフィルムを得た。この多層ポリイミドフィルムと厚さ18μmの電解銅箔(三井金属鉱業社製、3EC−VLP、Rz:3.8μm)とを、ダブルベルトプレスに連続的に供給し、予熱後、加熱ゾーンの温度(最高加熱温度)380℃(設定)、冷却ゾーンの温度(最低冷却温度)117℃)で、連続的に加圧下に熱圧着−冷却して積層し、金属箔積層ポリイミドフィルム(幅:約530mm)であるロール巻状物を得た。得られた金属箔積層ポリイミドフィルムは、実施例1と同等の特性を示した。

Example 5
From the polyamic acid solution for thin layer polyimide and the polyamic acid solution for base polyimide in Example 1, a multilayer polyimide film having a thickness constitution of 4 μm / 10 μm / 4 μm was obtained. This multilayer polyimide film and an electrolytic copper foil having a thickness of 18 μm (manufactured by Mitsui Metal Mining Co., Ltd., 3EC-VLP, Rz: 3.8 μm) are continuously supplied to a double belt press, and after preheating, the temperature of the heating zone ( (Maximum heating temperature) 380 ° C. (setting), cooling zone temperature (minimum cooling temperature) 117 ° C.), continuously laminated under pressure and thermocompression-cooling, metal foil laminated polyimide film (width: about 530 mm) A roll roll was obtained. The obtained metal foil laminated polyimide film exhibited the same characteristics as in Example 1.

Claims (9)

低熱膨張性の基体ポリイミド(X)層の少なくとも片面に下記式
Figure 0004894866
[式中、Ar1は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物残基とが50:50〜90:10のモル比である芳香族テトラカルボン酸二無水物残基であり、Ar2は1,3−ビス(4−アミノフェノキシ)ベンゼンである芳香族ジアミン残基である。]で示されるイミド単位を有する薄層ポリイミド(Y)を有する多層ポリイミドフィルム。
At least one side of the low thermal expansion base polyimide (X) layer has the following formula
Figure 0004894866
[In the formula, Ar 1 is 50 of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride residue: It is an aromatic tetracarboxylic dianhydride residue having a molar ratio of 50 to 90:10, and Ar 2 is an aromatic diamine residue that is 1,3-bis (4-aminophenoxy) benzene. ] The multilayer polyimide film which has the thin layer polyimide (Y) which has an imide unit shown.
式中、Ar 1 は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物残基とが75:25〜90:10のモル比である芳香族テトラカルボン酸二無水物残基である請求項1記載の多層ポリイミドフィルム。 In the formula, Ar 1 is 75:25 of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride residue. The multilayer polyimide film according to claim 1, which is an aromatic tetracarboxylic dianhydride residue having a molar ratio of ˜90: 10 . 基体ポリイミドが、下記式
Figure 0004894866
[式中、m/n(モル比)=100/0〜70/30である。]で示されるイミド単位を有する請求項1又は2記載の多層ポリイミドフィルム。
Base polyimide is the following formula
Figure 0004894866
[Wherein, m / n (molar ratio) = 100/0 to 70/30. The multilayer polyimide film of Claim 1 or 2 which has an imide unit shown by these .
基体ポリイミド(X)を与える基体層用のポリアミック酸溶液と薄層ポリイミド(Y)を与える薄層用ポリアミック酸溶液とを共押出し流延製膜法によって基体ポリイミド(X)層の少なくとも片面に薄層ポリイミド(Y)を積層一体化してなる請求項1〜3のいずれか1項に記載の多層ポリイミドフィルム。 A polyamic acid solution for the base layer that gives the base polyimide (X) and a polyamic acid solution for the thin layer that gives the thin layer polyimide (Y) are coextruded and thinned on at least one side of the base polyimide (X) layer by the casting film forming method. The multilayer polyimide film according to any one of claims 1 to 3, wherein the layer polyimide (Y) is laminated and integrated . 基体ポリイミド(X)を与える基体層用のポリアミック酸溶液から形成された自己支持フィルムの少なくとも片面に薄層ポリイミド(Y)を与える薄層用ポリアミック酸溶液を塗布し、加熱乾燥し、イミド化してなる請求項1〜3のいずれか1項に記載の多層ポリイミドフィルム。 Apply a thin layer polyamic acid solution for providing a thin layer polyimide (Y) to at least one surface of a self-supporting film formed from a base layer polyamic acid solution for providing a base polyimide (X), heat dry, and imidize. The multilayer polyimide film according to any one of claims 1 to 3 . 請求項1〜5のいずれかに記載された多層ポリイミドフィルムと金属層とが、薄層ポリイミド(Y)を介して積層されてなる積層体。  A laminate comprising the multilayer polyimide film according to any one of claims 1 to 5 and a metal layer laminated via a thin-layer polyimide (Y). 積層が、多層ポリイミドフィルムの薄層ポリイミド(Y)層と金属箔とを重ね合わせた後、加熱圧着してなる請求項6に記載の積層体。 The laminate according to claim 6, wherein the laminate is formed by superposing a thin polyimide (Y) layer of a multilayer polyimide film and a metal foil, followed by thermocompression bonding . 積層が、多層ポリイミドフィルムの薄層ポリイミド(Y)層に金属を蒸着法および/またはメッキ法によって金属層を形成してなる請求項6に記載の積層体。 The laminate according to claim 6, wherein the lamination is performed by forming a metal layer by vapor deposition and / or plating on a thin polyimide (Y) layer of a multilayer polyimide film . 金属層の厚み3〜35μmである請求項6〜8のいずれか1項に記載の積層体。 The laminate according to any one of claims 6 to 8, wherein the thickness of the metal layer is 3 to 35 µm .
JP2009030719A 2009-02-13 2009-02-13 Multilayer polyimide film and laminate Expired - Lifetime JP4894866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030719A JP4894866B2 (en) 2009-02-13 2009-02-13 Multilayer polyimide film and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030719A JP4894866B2 (en) 2009-02-13 2009-02-13 Multilayer polyimide film and laminate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000286456A Division JP4304854B2 (en) 2000-09-21 2000-09-21 Multilayer polyimide film and laminate

Publications (2)

Publication Number Publication Date
JP2009154541A JP2009154541A (en) 2009-07-16
JP4894866B2 true JP4894866B2 (en) 2012-03-14

Family

ID=40959048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030719A Expired - Lifetime JP4894866B2 (en) 2009-02-13 2009-02-13 Multilayer polyimide film and laminate

Country Status (1)

Country Link
JP (1) JP4894866B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075212A1 (en) * 2007-12-11 2009-06-18 Kaneka Corporation Laminate, method for producing laminate, flexible printed circuit board, and method for manufacturing flexible printed circuit board
CN104119533B (en) * 2010-02-10 2018-06-26 宇部兴产株式会社 Polyimide film, the polyimide laminate containing it and the polyimide metal laminate containing it

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102622B2 (en) * 1995-02-27 2000-10-23 宇部興産株式会社 Metal foil laminated polyimide film
JP3267154B2 (en) * 1995-08-01 2002-03-18 宇部興産株式会社 LAMINATE AND ITS MANUFACTURING METHOD
JPH10138318A (en) * 1996-09-13 1998-05-26 Ube Ind Ltd Production of multilayered extrusion polyimide film
JP3534151B2 (en) * 1996-10-29 2004-06-07 宇部興産株式会社 Polyimide precursor composition and polyimide film
JP3786157B2 (en) * 1998-07-31 2006-06-14 宇部興産株式会社 Polyimide film with improved adhesion, process for producing the same, and laminate
JP4147639B2 (en) * 1998-09-29 2008-09-10 宇部興産株式会社 Flexible metal foil laminate

Also Published As

Publication number Publication date
JP2009154541A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4304854B2 (en) Multilayer polyimide film and laminate
JP5035220B2 (en) Copper-clad laminate and manufacturing method thereof
JP4362917B2 (en) Metal foil laminate and its manufacturing method
JP4147639B2 (en) Flexible metal foil laminate
JP4457542B2 (en) Multi-layer polyimide film with thermocompression bonding, heat-resistant copper-clad board
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP2006188025A (en) Copper-clad laminate
JP4692139B2 (en) Single-sided or double-sided metal foil laminated polyimide films and methods for producing them
JP5480490B2 (en) Adhesive film and flexible metal-clad laminate
JP4356184B2 (en) Flexible metal foil laminate
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2001270036A (en) Flexible metal foil laminate
JP4006999B2 (en) Polyimide film and laminate
JP2002144476A (en) Polyimide film good in laser processability, substrate and processing method
JP4894866B2 (en) Multilayer polyimide film and laminate
JP5040451B2 (en) Manufacturing method of laminate of release material and single-sided metal foil laminated resin film, single-sided metal foil laminated film
JP4193461B2 (en) Heat-sealable polyimide and laminate using the polyimide
JP2007216688A (en) Copper clad laminated sheet and its manufacturing method
JP4967494B2 (en) Method for producing heat-resistant polyimide metal laminate
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same
JP2000123512A (en) Magnetic head suspension and its production
JP2009029141A (en) Thermocompression bondable polyimide and laminate
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP4345187B2 (en) Method for producing flexible metal foil laminate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term